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Probing the linear and nonlinear excitations of Bose-condensed neutral atoms in a trap
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We investigate the response of a Bose-Einstein condensate of trapped, neutral atoms to weak and strong
sinusoidal perturbation of the trapping potential both by solving the Bogoliubov equations and by direct
integration of the time-dependent, driven Ginzburg-Pitaevskii-Gross equation. We find that the distortion of the
condensate is maximal when the frequency of the perturbation equals one of the mode positions of the
condensate’s excitation spectrum. On resonance, the condensate exhibits a strong nonlinear response that can
be used as a clear signature of the mode frequency in an experiment where the trap potential is weakly
perturbed. For strong driving, we find evidence for an array of nonlinear effects such as harmonic generation
and frequency mixing. These phenomena are the matter-wave analogs of conventional nonlinear optics and
should be straightforward to study in evaporatively cooled samples of alkali-metal atoms.
[S1050-294{@6)03009-0

PACS numbdss): 03.75.Fi, 05.30.Jp, 67.90z

[. INTRODUCTION cooling cycle, the response of the condensate to the pertur-
bation is maximal when the frequency of the driving field
Now that Bose-Einstein condensatidBEC) has been equals one of the quasiparticle mode energies. This is the
achieved in magnetic, alkali vapof$—3], we look forward case because the equations that determine the normal modes
to the prospect of experimentally probing the properties ofand frequencies of the time-dependent Ginzburg-Pitaevskii-
these recently developed macroscopic quantum system&ross or nonlinear Schdinger equatior{NLSE) also deter-
This prospect provides strong motivation for the develop-mine the quasiparticle mode energies and field operator
ment of theoretical descriptions of condensate propertieswithin the Bogoliubov approximation. This distortion of the
One important issue for such theory is the vibrational exci-condensate occurs because shaking the trap causes atoms to
tation spectrum of the condensat. Below the condensa- leave the condensate with the concomitant creation of new
tion point, it is the modification of this spectrum, that is, the quasiparticlegquasiparticles do not correspond directly with
modification of the system’s response to perturbations, thahe thermal atoms, howeverThese processes will be most
leads to such well-known effects as superfluidity. As the vi-efficient when the trap is resonantly shaken, which, in turn,
brational excitations of the condensed gas can differ substarmauses the maximum disturbance of the condensate. We pro-
tially from those of an uncondensed atomic vapor, they mayose an experiment for measuring the quasiparticle mode
well provide a means to determine the presence and propeenergies. We also present a numerical method for computing
ties of a trapped condensate. The linear excitation spectrutihe quasiparticle spectrum and give results for an illustrative
for a homogeneous, weakly interacting condensate at zercase.
temperature was derived many years ago by Bogolilbav While the linear-response theory provides a precise and
This method was extended by Pitaevdldi] and the finite relatively quick method for finding the excitation frequen-
temperature version described for inhomogeneous condewies, one has to consider how well it can describe the re-
sates by Fettel7]. sponse of a real, trapped condensate. Linear-response theory
A key feature of the experiments in which BEC has, toassumes that the excitations do not affect the condensate
date, been reporteld—3] is the ability, through the use of ground state or couple to one another and thus may ignore a
forced evaporative cooling, to control the condensate fracwide range of possible nonlinear effects. Furthermore, the
tion of the system. It is therefore possible to cool the systentime-dependent behavior of an excited condensate will likely
to the point where the number of condensate atoms far exXse of interest in future experiments.
ceeds the number of thermal atoms. In this case, the system We have therefore also modeled the response of BEC to
temperature is well below the condensation point and th@erturbations in the trapping potential by solving tirae-
Bogoliubov approximation will apply. Under this approxi- dependenNLSE by direct numerical integration. This analy-
mation, the condensate plus thermal-atom system can lms verifies the linear-response spectrum for vibrational exci-
characterized as a collection of noninteracting quasiparticleations of a radially symmetric condensate described above
plus a condensate vacudmi. and, in addition, includes nonlinear effects such as the gen-
In this paper we investigate the linear and nonlinear reeration of harmonics of the probe frequency and frequency
sponse of such a system to vibrational perturbations of thenixing between the resonance frequencies. Many aspects of
trapping potential. If the condensate is perturbed by a weakhis condensate nonlinear response should be straightforward
harmonic driving field applied at the end of the evaporativeto study in evaporatively cooled samples of alkali at-
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oms. These phenomena are, in fact, the matter-wave analogs [(r), bt (r)]=8(r—r"),
of conventional nonlinear optics.

[(r), p(r)1=[ 4" (r), ' (r")]=0. (2.5)

Under the Bogoliubov approximation, the condensate is as-

sumed to contain most of the atoms so that Ng<<Ng,

whereN, denotes the macroscopic occupation of the conden-
In this section we demonstrate that, if a weak, harmonicsate andN denotes the total number of condensate plus ther-

perturbation is added to the trap potential at the end of thenal atoms. In this case, the field operator can be written as

evaporative cooling cycle, then the perturbing frequencies ahe sum of a&c-numbercondensate wave functiok(r) plus a

which the condensate response is maximal are identical temall correctiong(r),

the quasiparticle spectrum under conditions of the Bogoliu- ~ .

bov approximation. We also describe an experiment for mea- Y(r)=w(r)+ ¢(r), (2.6

suring the spectrum that can be performed on current-

generation condensates. In an actual experiment, it will bavhereW(r) satisfies the normalization condition

very difficult to drive the condensate so as to obtain only the

linear response. In practice, the condensate response will

likely be nonlinear when driven on resonance. This nonlinear

response will benaximal however, at the linear excitation

frequencies and this is the basis for the proposed experimerpserting Eq.(2.6) into Eq. (2.3) and neglecting terms in

¢(r) higher than quadratic yields the following expression
1. The quasiparticle spectrum for K:

Il. CONDENSATE LINEAR RESPONSE

A. Connecting the quasiparticle spectrum
and the condensate linear response

f d3r|W(r)|?=N,. 2.7

Consider the many-atom system whose temperature is
well below the condensation point and that is composed of ag — dsr\p*(r)[Ho_MJr l UolW (12| (r)
condensate plus thermal atoms. We assume that most of the 2
atoms are in the condensate and that the atom-atom interac-
tion can be represented by a pseudopotential whose strength +f d3rw* (r)[Ho— p+ U0|\p(r)|2]:ﬁ(r)
is determined by as-wave scattering length:

V(r—r')=Ugd(r—r"), 2.1) +J d3r (N[ Ho— e+ Ug| T (r)|2]W (1)
where +f d3r (N[ Ho— s+ 2U[ ¥ (r)[21(r)
4mh? 1 . . 1 .
0= Wm ) (2.2) +§u0f d3r¢T(r)[W(r)]2¢T(r)+§uof d3re(r)

X[W*(r)]2(r).

The first term in the above equation iscanumber and the
second and third terms will vanish identically¥(r) satis-
fies the time-independent NLYB]

The grand canonical, many-atom Hamiltonian is written in
terms of the boson field operator as

k:f d3r gt (r)Ho(r)
1 [Ho+Uo|®(n)|?1¥(r)=uW(r). (2.9
_ 31 y g g
" 2 Uof drTIn PPN ¢n The Bogoliubov-approximate grand canonical Hamiltonian
then takes the form

— | OO, 23 A A
KB=§'+f d*r@"(r)[Ho— p+2Uo| ¥ (1)|21h(r)
whereH, is the bare-trap Hamiltonian 1 1
o +§uofd3r<%T<r>[\1f<r>]2<%*<r>+§uof dr (1)

Ho=— 5— V2+Vyafr), 2.4 -
o= am ¥ Vel 24 X[W*(1)]P(r), 2.9

w is the chemical potentiain is the mass of the trapped where{’ is ac number.

atom, andV,{r) is the harmonic trap potential. The Bogoliubov Hamiltonian is a sum of a quadratic form
The boson field operatorg'(r) and i(r), respectively, and ac number and can be cast into the form of a collection

create and destroy an atom at positioand satisfy the com- of noninteracting quasiparticles by the Bogoliubov transfor-

mutation relations mation
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- bation will cause the condensate to oscillate and its deformed
B(1)=2 [ur(N B +oF (B (210  shape can be detected. The key to the connection between
A the quasiparticle spectrum and the condensate linear re-
sponse is that the effect of the small thermal-atom compo-
nent on the large condensate can be neglected. Experimen-
. tally, the thermal-atom component can be made smaller and
ST(r)= 2 [u} (r),8{+ v, (r) By, (2.11 smaller(using evaporative coolingvithout affecting the size
A of the condensate linear response. Eventually, the system can
be brought to a state where the linear response, even though
it is small, will dominate the effect of the thermal-atom com-

and

where theB, are quasiparticle creation and destruction op-

erators and the implicit assumption is made that the Conderb'onent on the condensate. The linear-response behavior of

sate wave function is not included in _the stwe shall show the condensatéor T<T,) should then be well described by
later that the condensate wave function forms a special solyp,o time-dependent, driven NLJE]

tion of the equations that, andv, must satisfy. The qua-

siparticle operators satisfy the usual commutation relations . d¥ B ) ot .
for boson creation and destruction operators i —==[Hot Ug| W(r,)[*+f, (e "'+ f_(r)elr]
[Bv.BL1=6wr, [Br.Bu]=[BL.8,1=0. (212 XW(r,1). (2.20

The reduction oK to a collection of noninteracting qua- 1he f-(r) are the(possibly spatially dependgnamplitudes

siparticles occurs if thel, andv, satisfy the equations of the sinusoidal perturbation an, is the probe frequency.
b » Ox bt a To find the linear response of the condensate to the driv-

LUy (r)+Uo[W(r)]%,(r)=Eyuy(r) (2.13  ing field, we shall assume th#t(r t) takes the form of a sum
of an undisturbed ground-state part and a response part that

and oscillates at frequencies w as
Lo\ (D +U[P*(N]2uy ()= —E\w,(r), (2.14 ‘I’(r,t)=e*‘““ﬁ[Né’zs/fg(r)Jru(r)e*i‘“P‘+v*(r)e‘“’z‘]- )
2.2
where o . . .
Here u is interpreted as the chemical potential of the undis-
L=Hg— p+2Ug|¥(r)|2 (2.15  turbed ground state, which is represented by(saled con-

densate orbitalj,(r). The functionsu(r) andv(r) are the
and theu, andu, are square-integrable functions. The form Fourier components of the condensate’s linear response to
of the Bogoliubov-approximate grand canonical Hamiltonianthe external disturbance that oscillate at frequencies .
after performing this transformation is, to withircanumber, After inserting Eq(2.21) into (2.20), retaining only terms
up to first order inu(r), v(r), andf .. and equating like pow-
~ N ers of e*'“p!, three equations result that must be simulta-
KB_; SVEVEE (2.1 neously solved fogy(r), u(r), v(r), and u. These equations
have the form
The details of deriving the above form are contained in Ref.

2 —
[7]. Note, however, that the definition of the in this paper [Ho+NoUol ¢ig(r)[*14g(r) = (1), (222
differs by a sign change from those contained in that refer- [Ho— (m+Hhwp)+2NoUg| #g(r)|?Ju(r)
ence.

This is a Hamiltonian describing a collection of noninter- +NoUg[ ng(r)]zv(r)= - Né’2f+(r)¢g(r),
acting quasiparticles for which the condensate is the vacuum. 2.23
The condensate wave function and the quasiparticle mode '
spectrum can therefore be completely determined by solving [HO—(M—ﬁwp)+2NOUO|wg(r)|2]u(r)
the system of coupled equations

+NoUol 4 (1 12u(r) =—Ng'*f _(r) yg(r).
[HotNoUol g(r) 1g(n) = mitg(r), (217 (2.2

Luy(r)+NoUo[ #g(N]?0\(N)=E\u\(r), (218  These coupled equations were used for example by Pitae-
vskii in his treatment of the elementary excitations around a
Luy(r)+NoUo[ 5 (N12uy(r)=—Eyvy(r), (219  vortex[6]. They are found in a very wide range of theory and
) ) amount to theér =0 version of the random-phase approxima-
where we have written the condensate wave function agqn for a finite systenf7]. The second-quantized version of
W(r)=Ng “ggy(r) to make explicit the number of condensate g theory is discussed by Lee and Guig], who were
atoms. considering Bose condensation in a random inhomogeneous
medium(e.g., vycor glags
The condensate linear-response equati&os.(2.23 and
(2.24)] can be solved by writing their solution as an expan-
Next we consider the effect of applying a weak, sinu-sion in the condensate normal modes. We shall next develop
soidal perturbation to the trap potential that confines thehe equations that determine these modes and show how they
equilibrium system described above. Applying such a perturare used to find the linear-response solution. Most impor-

2. The condensate linear response to weak perturbation
of the trap potential
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tantly, however, we will see that the normal-mode equations
are identical to Eqs(2.18 and(2.19 that define the quasi- QAZJ d3rpl(r)osg(r). (2.39
particle mode energies.
Substituting these expansions into E2.31) yields a system
3. Normal-mode solution of the linear-response equations of completely uncoupled equations to be solved for ¢he

To find the normal modes of the condensate, we first sefhe final solution is written as
f.(r) to zero in Egs.(2.23 and(2.24. It is clear that the NG
resulting equations will support square-integrable solutions P(r)= —Z
only for discrete values o, (i.e., w,). The normal-mode A
equations thus have the form

Pr(1). (2.39

W) —w

Note that theinear responseliverges when the condensate
_ 2 _ is driven exactly on resonance. This unphysical behavior re-
[£=RoyJun(r) +NoUol g(r) oA (r)=0 (229 sults from our neglect of loss processes and nonlinear effects.
and The actual condensate on-resonance response is very sensi-
tive to nonlinear effects, as will be seen later in this paper.
NoUol ¢7g (1) 12ux(r)+[L+hwy]u\(r)=0, (2.26
B. Normal-mode solutions for an illustrative case
where\ represents a set of quantum numbers. These equa-
tions are identical to Eq$2.18 and(2.19 if E,=fw,. ToO The problem of computing the normal modes can be cast
complete the connection between the quasiparticle excitatiotn the form of a generalized-eigenvalue problem within a
spectrum and the condensate response we show below hdncated basis set of trap eigenfunctions. The numerical so-
these normal modes describe the condensate linear responkgion can then be found using standard techniques. In this
We define anormal modeas the two-component object subsection we present the results of normal-mode calcula-
tions for an illustrative experimental caga which the trap

B (1) = ( Ux(r)) (2.27) potential is isotropitand demonstrate their convergence as a
» ua(r)) ' function of basis-set sizéN,,.qd. Details of the computa-

) ] o ) tional method are reported in a separate papé}.
With this definition, Eqs(2.25 and(2.26) can be cast in the We have computed the normal frequencies and normal-

form mode solutions for the case of Cs atoms contained in a
Hep, (1) =twyosb, (1), (2.2  Magneto-optic trap whose parameters are those of a pub-
lished experimental arrangeméda®)], for which the ground-
where state solution of the NLSE has been calculated previously by
both time-independenfl13] and time-dependent methods
H—( L V) _ ( 1 0 ) (2.29 [14]. The mass of a Cs atom is taken torhe=2.2x10 ?° kg
“lvx gt % o —-1) ' and the scattering length is taken to Be=3.18 nm. The
value of U, from Eq. (2.2 then becomed),=2.0x10>*
with V(r)=NoUo#5(r) and £ defined by Eq(2.15). Jn?. The potential Vy,r) is that of an isotropic
The{¢,} constitute a complete basis $&60], orthonormal harmonic oscillator with a frequency of 10 Hz. This is
with respect to the inner product, defined by associated with a harmonic-oscillator length scaler gf

=(fil2Mw ) "?=1.95<10"° m. The number of condensate
<¢M|¢A2>EJ d3r¢11(r)03¢>>\2(r)= Sy, (230 atoms used in this examplelig=10546 and the value of the
chemical potential igt=4.Fi wyqp.

. Table 1 lists thel=0 normal frequencies for the above
and _the dagger denotes the transposed, Complex-conjugatggse where 10, 20, and 40 basis-set elements have been used
matrix. PN ; - AR

. . Note that only 20 basis-set functions are sufficient to obtain
I;he Imgar [ﬁ_sponfef equatio(@.23 and (2.24 can be frequencies that have converged to four significant figures.
written, using this notation, as Another feature of the normal-frequency spectrum exhibited

(H-—Ahwos)(r)=—o59(r), (2.31) by the table is that even a small basis-set produces nearly
converged normal frequencies. Only the largedtequen-
where cies for a given set size do not match the corresponding ones
found when the set size is increased. Increasing the basis-set
u(r) NG'2F 4 (1) ghg(r) size allows us, in effect, merely to obtain a larger portion of
Y=\ y(ry) 9= —N§Zf_(r)gy(r) )" the infinite normal-frequency spectrum. This aspect of the

(2.32  convergence of the normal frequencies with respect to basis-
set size occurred for all angular momenta for which frequen-
The solution of the linear-response equations is found byies were obtaineup tol=10).
expanding both/(r) andg(r) in the normal modes Table 1l contains the lowest ten normal frequencies for
I=0,...,4. Twenty basis-set wave functions were used in
the calculation of all values and each value was rounded so
as to match the value obtained when 40 wave functions were
used. The frequencies given in the table are expressed in
where theg, are given by the overlap integral units of wy,,. These normal frequencies were also verified

w(r>=§ (1), g(r>=§ gn(r), (2.33
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TABLE I. Excitation frequencies as a function of basis-set size, for the atom trap parameters given in Sec.
II B. The frequencies are given as multiples of the trap frequengy,. Only the positive excitation fre-
quencies are listed and the eigenvalue for the spurious state has been omitted. Note that the last two
frequencies in each column are unreliable because of the truncated basis.

n (radial quantum numbgr Npasis= 10 Npasis=20 Npasi=40
1 2.199 2.193 2.193
2 3.879 3.873 3.872
3 5.839 5.598 5.598
4 9.175 7.384 7.383
5 9.208 9.207
6 11.07 11.06
7 12.98 12.95
8 14.89 14.85
9 18.46 16.76

10 18.69
11 20.62
12 22.57
13 24.52
14 26.47
15 28.43
16 30.40
17 32.36
18 34.36
19 37.63

by solving the time-dependent NLSE in the limit of weak fraction is large(~90% and whose temperature is well be-
driving. This is described in Sec. Ill. low the transition point T<T.). The steps that would be
The main result of the condensation is the appearance ¢ferformed are as follows. First, evaporatively cool the atoms
elementary excitations with frequencies shifted away fromynj| the number of condensate atoms is much larger than the
that of.the_uncond(_ensed atoms in the trap. This shift is illusy,  ;mper of thermal atoms. Second, apply a very weak har-
ggtae(?u'gcﬁgﬁ éﬁ‘ﬁh'%s cont§1r|rr]1is$ 2&::?%0?}20 fSér?Cz}S' 'a'\'/e7r monic perturbation to the trapping potential at probe fre-
K Dtrap- q y y fluencyw, at the end of the cooling cycle. Next, probe the

convenient observable for experiments that rely on lase q h I h q d bal
cooling and trapping techniques where the translational moSondensate shage.g., allow the condensate to expand bal-

tion of the atoms can be eaS“y observed. Note thamﬁ |iStica||y_and take a flash piCtU}:eFina”y, repeat the-above
in the figure are referenced @and that both the vertical and Steps with an incremented value &f, until the maximum
horizontal scales are graduated in unitsiaf,,,. The dotted distortion of the condensatgelative to the case where no
horizontal lines indicate the excitation frequencies of theperturbation was appligds found.

bare-trapping potential. In practice, the number of condensate atoms will vary
) from shot to shot so that the resonance lines will be blurred
C. The proposed experiment somewhat. For the time-averaged orbiting potential trap of

It is possible to measure directly the quasiparticle excitaRef.[1] this should amount to no more than 10%5], and it
tion of a condensate—thermal-atom system whose condensasepossible to collect cloud images for many condensates that

TABLE Il. Lowest ten positive normal frequencies, in units @f,,, for |=0-4, for the atom trap
parameters given in Sec. Il B.

n (radial quantum numbgr =0 =1 =2 1=3 =4
0 0.000 1.000 1.526 2.065 2.660
1 2.193 2.872 3.510 4.156 4.828
2 3.872 4.636 5.373 6.104 6.844
3 5.598 6.422 7.223 8.014 8.807
4 7.383 8.244 9.088 9.921 10.75
5 9.207 10.10 10.97 11.83 12.69
6 11.06 11.97 12.87 13.76 14.64
7 12.95 13.87 14.78 15.69 16.59
8 14.85 15.78 16.71 17.63 18.54
9 16.76 17.71 18.64 19.57 20.49
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dd(p,7) # 1 d(p, )|
|%: —a—l)2+zp2+8A2Noﬂa%
+Vp(p,7) | P(p,7). (3.9

BecauseN, appears as part of the nonlinear potential, we
require the norm of/(r) to be one, i.e.,

12 -
) Azf |p(p,7)|?dp=1. (3.9
0

477( 2Mwyrap
During our calculations, we maintain a normalization of
I51p(p)[?"dp=1. This means that the values of the nonlinear
coefficient that we quote are f@, =2Noa(2mwyqd%) 2 in
order to satisfy Eq(3.5).

We begin with ground-state condensate wave functions,
which can be found using a number of methg#i3,14. We

are all perturbed by the same frequency while simultathen apply the NLSE to these solutions and propagate them
neously measuring the condensate fraction. The cloud imhrough time using the Crank-Nicolson numerical method for
ages could then be binned so that only systems with the santéffusive, initial value, partial differential equation$6]. At

condensate fractions could be compared.

each time step, we can change the value/pfin order to

A related experiment can also be performed to measuréimulate a time-dependent probe.

One of our aims is to determine the excitation resonance

the damping time of the quasi-particle modes directly in the | : L _
time domain. Once the mode energies have been measuredfgguencies, that is, those frequencies at which the conden-
single mode can be excited by applying the perturbation a¢ate responds most strongly to the probe and compare these
the proper frequency and following the mode’s decay byWIth those determined by the Imear—responsg theory. This
probing after successively longer delay times. These experfréquency response spectrum can be found directly from the
ments may, however, be affected by two- and three_bodpme-dependent wave function as follows. At each time step

inelastic scattering processes for long delay tirfies. we record the value of the wave function at a given spatial
point. The resulting array provides a map of the condensate’s

motion as a function of time. It describes the temporal re-
sponse of the condensate, and as such, may be Fourier trans-
A. Solving the time-dependent NLSE formed to yield a spectrum of the frequencies at which vari-

To study the general nonlinear response of the condensaf!S components of the condensate are oscillating. This

to external probes we have solved the time-dependent, drivespectrum thus shows the frequencies of the vibrational exci-

NLSE by direct numerical integration. For this purpose Wetations on the condensate. We will discuss its characteristics

write the NLSE in the form

ay(r,t) h? 1
h =% =[—ﬁV2+§mwﬁapr2+Nouo|¢<r,t)l’-’

IIl. CONDENSATE NONLINEAR RESPONSE

in more detail later on.

B. Weak-probe response

First, consider a weak, single-frequency probe of the form

V=K cogkpp—w,7), (3.6

+Vp(r,t)}¢/(r,t), (3.9

wherek, and w, are the probe wave number and frequency,
whereV,(r,t) represents an arbitrary time-dependent proberespectively, andK is the amplitude. By varyingw, and
We consider only radially symmetric solutions and write monitoring the response of the wave function, we are able to
the radial part of the wave function in the form determine the condensate’s resonance frequencies using the
Fourier transform method described above. In general, a
W(r)=A @ probe will most efficiently drive a given resonan@denti-

r’ fied by the index\) if w, andk, match well withw, andk, ,
respectively. However, we find that the location of the peaks
whereA is a constant used to ensure proper normalizationin the excitation spectrum has virtually no dependence on the
With this substitution and the transformation to harmonic-probe wave number. Thus we $gt=1 in all cases described
oscillator units in this section.

In order to compare the results of this method to those
B fi from the linear-response theory, we apply a very weak probe.
p= 2MWyrap By weak we mean thaK is much less than the nonlinear
coefficient. Specifically, in the examples discussed in this
section, K=0.15 andC,, =34.5. This nonlinearity corre-
sponds to parameters that match those used in the previous

(3.2

-12
) 7= Ouad (3.3

the three-dimension&BD) NLSE becomes an effectively 1D
equation
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linear-response calculations. Since the results depend only
on Cy_, they can be scaled to include a number of different (@)
experimental configurations, including a trap with,,=25 g.s.

Hz and containing 4408'Rb atoms.(For 8’Rb, a~6 nm
[17])

Whenw, matches one of the resonance frequencies listed
in the =0 column of Table Il,w,, the frequency response
spectrum shows marked differences from the off-resonance
case. Figure @ shows the off-resonance response, for Wp 04
wp,=1.8, and for an integration time a¥=50.[Unless other- 5 0 1 > 3
wise noted, all times, frequencies, and wave numbers are Frequency (harmonic oscillator units)
guoted in harmonic-oscillator trap units, as defined in Eq.

(3.3).] The vast majority of the response appears at zero fre-

guency, which corresponds to the ground vibrational state of

the trap. We interpret the relative strength of this peak as an

indication that very little of the condensate has been excited 0.8
into higher vibrational modes. Only a very weak response is g-s. ®)
visible at the probe frequency and also at the first resonance
frequencyw,~2.2. However, whem, =y, significant exci-
tation of the condensate occurs, as shown in Fig). 2n this

case, spectral features corresponding to the ground state and
to the first excited mode appear with nearly equal intensities.
This suggests that the the first excited mode has a population
similar to the ground state. The other peaks in the spectrum

are at integer multiples of,: they are harmonics of the A
probe and will be discussed in more detail in Sec. Il C. 0 5 10 15

This distinctive behavior allows us to identify the reso- Frequency (harmonic oscillator units)
nance frequencies fairly straightforwardly. The first six ex-
cited modes, as determined with this method, are FIG. 2. Condensate response following driving with a single-
®,=2.206), ®,=3.906), w;=5.676), w,=7.356), frequency sinusoidal probe for=50. (a) Response to an off-
ws=9.226), andwg=11.106). These agree to within uncer- resonance probgw,=1.8) showing most of the condensate in the
tainty to the radially symmetrici.e., | =0) excitation fre- Vibrational ground state, labeled g.s. The first resonance frequency
quencies listed in Table Il. The normal modes method is, ofS at ;. (b) Response whem,=w;. In this case, the response at
course, limited to weak response, but is capable of muchhe first resonance frequency is as strong as that of the ground state,
higher precision with less computational effort than the tech&nd a number of harmonics have been excited.
nigue presented in this section. The method just outlined
requires a fairly time-consuming search through various valthe condensate increases as the nonlinear term i(3Eg.
ues of w, in search of resonances, which in turn must bebecomes largelr4], which in turn causes an increase in the
identified somewhat subjectively from the response spectraesonance frequencies. However, as the nonlinearity in-
Furthermore, the resolution of the Fourier transform is deterereases, the condensate exparidssuminga>0), which
mined by the propagation time of the simulation: high reso-tends to shift the resonance frequencies down. These consid-
lution requires long integration times. erations have different relative importances to higher- or

We turn now to a brief discussion of these linear excita-lower-frequency excitations and indeed some of the reso-
tions. Figure 3 shows the condensate wave function in itgances listed above are upshifted while others are down-
ground statédashed lingand after the application of a probe shifted from the uncondensed valusge Fig. 1
with frequencyw,=7.35 for =25 (solid line) The excita-
tions are clearly visible as radial density variations on the
ground-state background.

The excitation frequencies show a distinct difference from The appearance of the harmonics in Figh)2s a clear
those expected for the noninteracting case, that is, from urindication of a nonlinear response. This excitation of har-
condensed atoms in a 3D harmonic trap. In that case, theonics is not predicted in the linear-response theory and is
vibrational energy levels are well known to be separated byignificantly stronger than in a noninteracting gas. By non-
hwy,,. However, in the case of radially symmettzero an-  linear response we mean effects due to the coupling between
gular momentumnsolutions, excitations are only allowed be- the excited modes and the ground state due to the presence of
tween alternating energy levels of the harmonic oscillatorcondensation. Such coupling is expected as a result of the
This means that the peaks in the frequency spectrum of aonlinear potential in Eq.3.1). Any perturbation in the over-
noninteracting oscillator are separated hy,2,. The results  all potential causes a corresponding time-dependent change
in the interacting case differ from this by up to 10%, even atin the wave function. This change in the wave function in
the modest value o€y, used here. These frequency shifts turn causes further variation in the nonlinear potential, and
arise as a result of several changes in the gas following corso on. This process can eventually lead to the population of
densation. First, the speed of propagation of a disturbance anodes with a variety of momenta and to the generation of

w

N

Intensity (arb. units)

—_

o
)

o
o

Intensity (arb. units)
o
N

C. Strong-probe response
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harmonics of the input frequency. The nonlinear response is

magnified when the probe matches a resonance frequency, 0.6
because in this case the initial variation in the condensate 0.5
wave function is the strongest. Harmonics of the probe fre- 0.4
guency appear even away from resonances; however, in this «;0'3

case they are several orders of magnitude weaker than the
first order response ai,, . 0.2
A frequency response consisting of equally spaced exci-

; . ; : . 0.1
tations is also expected in an uncondensed harmonic oscilla-
tor, but there the physical description is qualitatively and 00 > P 6
quantitatively different from the condensed case. Because Radius (harmonic oscillator units)

the energy level structure of the linear harmonic oscillator

consists of equally spaced levels, driving the system at the FIG. 3. The dotted line shows the wave function for a conden-
proper resonance frequency, i.e,=2.0, will cause transi- sate in its ground state, while the solid line is the same wave func-
tions to the first excited level, from which excitation can tion following the application of a resonant single-frequency probe
occur to the second level, and so forth. These higher-ordep=7.39. The excitation due to the probe shows up as radial
components will be very small. For a nonlinear oscillator, thedensity fluctuations.

energy levels are not equally spaced and so a similar process

can only occur with a much lower efficiency. The equally ~ The relative strengths of the spectral features in Fig. 4
spaced peaks in the condensate spectrum are harmonigrit some discussion. The maximum intensity of several of
caused by nonlinear response. We find that the excitation té€ features is beyond the scale of Fig. 4; in fact, the height
higher modes is much weaker in an uncondensed Syste@ffeatureb is aboyt 500 on this scale and the contribution of
than is the production of harmonics in a condensate: théhe ground state is a factor of 100 larger again. Clearly, the

strength of the respective responses differs by a factor d?roadband_ prob.e is not as effective at exciting the resonance
about 100 for equal probe amplitudes. modes as is a single-frequency, on-resonance probe. Further-

To extend the results obtained above with single-more' the harmonic generation and frequency mixing pro-
frequency probe, we now consider the effects of a strongeFesses produce responses that are relatively weak, especially

: : . t the higher frequencies. Changes to the duration of the
broadband probe. By applying a probe .W'th a wide range 0ﬁriving st?age theqsize of the timg step, and the valuey of
frequency components, we hope to excite a number of V'braﬁave only a minor effect on the relative strengths of the

tional modes simultaneously and to observe effects due 9 rious spectral features.

their cogpling. We drive the cqndensate with “white noise” Both the harmonic generation and frequency mixing are
by multiplying the trap potential by a random number be-ihe matter-wave equivalents of the corresponding processes
tween 1 andy, wherey is of order 5, at each time step. After iy conventional(light) optics. The possibility of nonlinear
several hundred time steps, the driving stops and the excitegtom optics in a number of other systems has also been pro-
wave function evolves in the usual, time-independent, tragosed recently18] and the availability of condensates adds

potential. During this evolution, we record the value of theanother platform for observing such effects with coherent
wave function at a given spatial point at each time step anghatter waves.

Fourier transform the resulting time profile as before. Be-
cause the driving process is random, we must average the IV. DISCUSSION
results of several runs in order to get a more accurate view of
the condensate response. However, the broadband method isIn summary, we have proposed an experiment to probe
more efficient for finding the frequency spectrum than thethe quasiparticle mode spectrum of a system consisting of a
single-frequency technique, because all of the resonancéarge Bose-Einstein condensate plus a relatively smaller
will appear in a single computation. component of thermal atoms. This experiment consists of
Figure 4 shows an example of this response, averageapplying a weak, sinusoidal perturbation to the trap potential
over four runs for whichy=3.5 andC,, =34.5. The driv- at the end of the evaporative cooling cycle and then measur-
ing duration wasr=1.8 and the unperturbed evolution time ing the disturbance this produces on the condensate relative
was 7=198.2. During the driving time, 300 computational to the case where no disturbance is applied. We have also
time steps elapsed. demonstrated that the frequencies of the applied perturbation
A large number of excitations are visib(€ig. 4); these at which the linear response of the condensate is maximal are
are identified individually in Table 1lI(The contribution of exactly the quasiparticle mode energies. In an actual experi-
the ground state at zero frequency has been removed feonent, exciting only the condensate’s linear response on reso-
clarity.) It is possible to identify features corresponding to nance will be very difficult due to the dominance of nonlin-
the first four resonance frequencies found in Sec. Ill B. As inear effects even for very weak driving. We have seen,
the case of the single-frequency probe, a number of harmorirowever, that there is a significant difference in the nonlinear
ics of the resonance modes appear. Furthermore, featuresndensate response between on- and off-resonance driving.
whose frequencies correspond to sums and differences of tHéne difference should serve as a clear signature of the posi-
resonances and the harmonics are also evident. This fréions of the modes in the quasiparticle spectrum.
guency mixing is a further indication that nonlinear pro- We have also seen that it should be possible to observe
cesses are present in the condensate’s response. nonlinear effects in the response of a dilute atomic Bose-
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of the real condensates currently under experimental study,
the main damping will be from two loop corrections to the
mean field(i.e., collisions. This is because one loop effects
such as Landau dampir@0] should not be effective in a
small trap. A full calculation of the two loop diagram is

h ok 1 under way for a condensate in a trggil], but quantitative

‘ A , results are not available at the moment. We know, however,
3Freque:|cy (harionic wecilator u,fhs) 8 s 1 that in a recent experimeil], collisions occur at a rate of

approximately 1/10 of the trap oscillation frequeni@2].

FIG. 4. Condensate response following the application of alhe resulting damping rate should thus be small enough that
broadband probe. The features labeled in this spectrum are idenit should be possible to resolve many of the features pre-
fied in Table IIl. The first four resonance frequencies, some of theidicted here.
harmonics, and several sum and difference frequencies are visible. The widths of the mode frequencies could hinder a clean
The harmonic generation and frequency mixing indicate the presmeasurement of the excitation spectrum. These widths will
ence of nonlinear coupling between the vibrational modes. The corpe determined by the lifetimes of the excitations caused by
tributior_l of the ground state at zero frequency has been subtractege applied disturbance and the lifetimes will, in turn, be
from this spectrum. limited by losses due to either interaction of the condensate

with the thermal atoms or interaction of the condensate at-
Einstein condensate to even a very modest external probems with themselves. The theory we have presented in this
These effects are due, of course, entirely to the presence phper does not account for these processes and indeed the
the nonlinear mean-field term in E@.1). The experimental condensate linear response diverges exactly at resonance.
observation of harmonic generation or frequency mixing If the lifetime of the excitation is too long, then the width
would therefore be a good diagnostic of the presence of af the peaks in the frequency spectrum could become more
mean field. narrow than the experimental resolution. There is some de-

The theoretical approach used here relies on a zeraree of experimental control that can be exercised over this
temperature, mean-field approximation and does not includifetime. If the condensate fraction is reduced, then the en-
a mechanism for damping or dissipation of excitations withinhanced thermal component should limit the lifetime and thus
the condensate. We believe that a mean-field method cancrease the resonance widths. If the condensate fraction is
closely model the condensates that are currently experimeneo small, however, the theory presented in this paper will
tally accessible, because a similar calculatidi®] has not be valid and a more sophisticated treatm@ntvhich the
achieved a very good match with the experimental results irffect of the thermal-atom component on the condensate is
[1]. We should, however, address the effects of dissipatiomccounted formust be used23]. This can be achieved by
on the excitations we study. A finite excitation lifetime solving the finiteT Hartree-Fock-Bogoliubov equatiofi24].
would mean that condensate vibrations would need to b&ven under the conditions assumed in this paper, the excited
observed fairly quickly after the probe was applied. The ex-atoms will affect the mode energies. We expect this effect to
citations would also acquire a frequency width inversely pro-be minimal due to the modest size of the thermal-atom com-
portional to their lifetime. The lack of any damping meansponent assumed. It has been shown by several authors that
that the fundamental width of the peaks in the response speexcited atoms merely shift and damp the quasi-particle
tra we present is zero, although the peaks are broadened hyodes as long as the condensate is not too close to the region
the imperfect resolution of the Fourier transform. In the casef critical fluctuations. For the homogeneous case, the domi-

nant damping mechanism is Landau damping of the motion

TABLE IIl. Spectral features shown in Fig. 4. All frequencies Of the condensate as has been shown by Payne and Griffin
are in units ofw, . The uncertainty in the frequenciesi9.02, and [20].

Intensity (arb. units)
- n
T

s
«”

o

results primarily from the resolution of the Fourier transform. The elementary excitations also have characteristic shapes
that will influence the efficiency with which we can drive
Label Frequency Description them. This is because the coupling to a given mode will

depend on the overlap of the mode with the shape of the

a 1.67 @21 driving potential, a fact that one can exploit in examining the

b 2.19 e dynamics of the condensate. We expect them to be long lived
c 3.38 Wz~ wy as soon as we are out of the narrowed region for critical
d 3.86 w2 fluctuations in the trap.

e 4.38 20, In order to model exactly the current generation of atomic

f 5.17 wg— oy traps, it will be necessary to extend this technique to con-
g 5.57 w3 figurations that are not spherically symmetric. Such an ex-
h 6.05 w1t wp tension would require a full 2D or 3D treatment, but would

i 6.57 3w, allow us to consider rotational excitations and possibly even
j 7.36 o vortices. In addition, several recent proposals have suggested
k 7.72 20, that condensates created from atoms with negative scattering
I 8.24 Ay + Wy lengths may be stable or metastafl8,25. An analysis of

m 9.55 W+ o, the excitation spectra of such systems should help clarify this

question and is planned to be addressed in a future paper.
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