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We investigate the response of a Bose-Einstein condensate of trapped, neutral atoms to weak and strong
sinusoidal perturbation of the trapping potential both by solving the Bogoliubov equations and by direct
integration of the time-dependent, driven Ginzburg-Pitaevskii-Gross equation. We find that the distortion of the
condensate is maximal when the frequency of the perturbation equals one of the mode positions of the
condensate’s excitation spectrum. On resonance, the condensate exhibits a strong nonlinear response that can
be used as a clear signature of the mode frequency in an experiment where the trap potential is weakly
perturbed. For strong driving, we find evidence for an array of nonlinear effects such as harmonic generation
and frequency mixing. These phenomena are the matter-wave analogs of conventional nonlinear optics and
should be straightforward to study in evaporatively cooled samples of alkali-metal atoms.
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I. INTRODUCTION

Now that Bose-Einstein condensation~BEC! has been
achieved in magnetic, alkali vapors@1–3#, we look forward
to the prospect of experimentally probing the properties of
these recently developed macroscopic quantum systems.
This prospect provides strong motivation for the develop-
ment of theoretical descriptions of condensate properties.
One important issue for such theory is the vibrational exci-
tation spectrum of the condensate@4#. Below the condensa-
tion point, it is the modification of this spectrum, that is, the
modification of the system’s response to perturbations, that
leads to such well-known effects as superfluidity. As the vi-
brational excitations of the condensed gas can differ substan-
tially from those of an uncondensed atomic vapor, they may
well provide a means to determine the presence and proper-
ties of a trapped condensate. The linear excitation spectrum
for a homogeneous, weakly interacting condensate at zero
temperature was derived many years ago by Bogoliubov@5#.
This method was extended by Pitaevskii@6# and the finite
temperature version described for inhomogeneous conden-
sates by Fetter@7#.

A key feature of the experiments in which BEC has, to
date, been reported@1–3# is the ability, through the use of
forced evaporative cooling, to control the condensate frac-
tion of the system. It is therefore possible to cool the system
to the point where the number of condensate atoms far ex-
ceeds the number of thermal atoms. In this case, the system
temperature is well below the condensation point and the
Bogoliubov approximation will apply. Under this approxi-
mation, the condensate plus thermal-atom system can be
characterized as a collection of noninteracting quasiparticles
plus a condensate vacuum@7#.

In this paper we investigate the linear and nonlinear re-
sponse of such a system to vibrational perturbations of the
trapping potential. If the condensate is perturbed by a weak,
harmonic driving field applied at the end of the evaporative

cooling cycle, the response of the condensate to the pertur-
bation is maximal when the frequency of the driving field
equals one of the quasiparticle mode energies. This is the
case because the equations that determine the normal modes
and frequencies of the time-dependent Ginzburg-Pitaevskii-
Gross or nonlinear Schro¨dinger equation~NLSE! also deter-
mine the quasiparticle mode energies and field operator
within the Bogoliubov approximation. This distortion of the
condensate occurs because shaking the trap causes atoms to
leave the condensate with the concomitant creation of new
quasiparticles~quasiparticles do not correspond directly with
the thermal atoms, however!. These processes will be most
efficient when the trap is resonantly shaken, which, in turn,
causes the maximum disturbance of the condensate. We pro-
pose an experiment for measuring the quasiparticle mode
energies. We also present a numerical method for computing
the quasiparticle spectrum and give results for an illustrative
case.

While the linear-response theory provides a precise and
relatively quick method for finding the excitation frequen-
cies, one has to consider how well it can describe the re-
sponse of a real, trapped condensate. Linear-response theory
assumes that the excitations do not affect the condensate
ground state or couple to one another and thus may ignore a
wide range of possible nonlinear effects. Furthermore, the
time-dependent behavior of an excited condensate will likely
be of interest in future experiments.

We have therefore also modeled the response of BEC to
perturbations in the trapping potential by solving thetime-
dependentNLSE by direct numerical integration. This analy-
sis verifies the linear-response spectrum for vibrational exci-
tations of a radially symmetric condensate described above
and, in addition, includes nonlinear effects such as the gen-
eration of harmonics of the probe frequency and frequency
mixing between the resonance frequencies. Many aspects of
this condensate nonlinear response should be straightforward
to study in evaporatively cooled samples of alkali at-
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oms. These phenomena are, in fact, the matter-wave analogs
of conventional nonlinear optics.

II. CONDENSATE LINEAR RESPONSE

A. Connecting the quasiparticle spectrum
and the condensate linear response

In this section we demonstrate that, if a weak, harmonic
perturbation is added to the trap potential at the end of the
evaporative cooling cycle, then the perturbing frequencies at
which the condensate response is maximal are identical to
the quasiparticle spectrum under conditions of the Bogoliu-
bov approximation. We also describe an experiment for mea-
suring the spectrum that can be performed on current-
generation condensates. In an actual experiment, it will be
very difficult to drive the condensate so as to obtain only the
linear response. In practice, the condensate response will
likely be nonlinear when driven on resonance. This nonlinear
response will bemaximal, however, at the linear excitation
frequencies and this is the basis for the proposed experiment.

1. The quasiparticle spectrum

Consider the many-atom system whose temperature is
well below the condensation point and that is composed of a
condensate plus thermal atoms. We assume that most of the
atoms are in the condensate and that the atom-atom interac-
tion can be represented by a pseudopotential whose strength
is determined by ans-wave scattering lengtha:

V~r2r 8!5U0d~r2r 8!, ~2.1!

where

U05
4p\2a

m
. ~2.2!

The grand canonical, many-atom Hamiltonian is written in
terms of the boson field operator as

K̂5E d3r ĉ†~r !H0ĉ~r !

1
1

2
U0E d3r ĉ†~r !ĉ†~r !ĉ~r !ĉ~r !

2mE d3r ĉ†~r !ĉ~r !, ~2.3!

whereH0 is the bare-trap Hamiltonian

H052
\2

2m
¹21Vtrap~r !, ~2.4!

m is the chemical potential,m is the mass of the trapped
atom, andVtrap~r ! is the harmonic trap potential.

The boson field operatorsĉ†~r ! and ĉ~r !, respectively,
create and destroy an atom at positionr and satisfy the com-
mutation relations

@ĉ~r !,ĉ†~r 8!#5d~r2r 8!,

@ĉ~r !,ĉ~r 8!#5@ĉ†~r !,ĉ†~r 8!#50. ~2.5!

Under the Bogoliubov approximation, the condensate is as-
sumed to contain most of the atoms so thatN2N0!N0 ,
whereN0 denotes the macroscopic occupation of the conden-
sate andN denotes the total number of condensate plus ther-
mal atoms. In this case, the field operator can be written as
the sum of ac-numbercondensate wave functionC~r ! plus a
small correctionf̂~r !,

ĉ~r !5C~r !1f̂~r !, ~2.6!

whereC~r ! satisfies the normalization condition

E d3r uC~r !u25N0 . ~2.7!

Inserting Eq.~2.6! into Eq. ~2.3! and neglecting terms in
f̂~r ! higher than quadratic yields the following expression
for K̂:

K̂5E d3rC* ~r !FH02m1
1

2
U0uC~r !u2GC~r !

1E d3rC* ~r !@H02m1U0uC~r !u2#f̂~r !

1E d3r f̂†~r !@H02m1U0uC~r !u2#C~r !

1E d3r f̂†~r !@H02m12U0uC~r !u2#f̂~r !

1
1

2
U0E d3r f̂†~r !@C~r !#2f̂†~r !1

1

2
U0E d3r f̂~r !

3@C* ~r !#2f̂~r !.

The first term in the above equation is ac number and the
second and third terms will vanish identically ifC~r ! satis-
fies the time-independent NLSE@8#

@H01U0uC~r !u2#C~r !5mC~r !. ~2.8!

The Bogoliubov-approximate grand canonical Hamiltonian
then takes the form

K̂B5z81E d3r f̂†~r !@H02m12U0uC~r !u2#f̂~r !

1
1

2
U0E d3r f̂†~r !@C~r !#2f̂†~r !1

1

2
U0E d3r f̂~r !

3@C* ~r !#2f̂~r !, ~2.9!

wherez8 is a c number.
The Bogoliubov Hamiltonian is a sum of a quadratic form

and ac number and can be cast into the form of a collection
of noninteracting quasiparticles by the Bogoliubov transfor-
mation
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f̂~r !5(
l

@ul~r !bl1vl* ~r !bl
†# ~2.10!

and

f̂†~r !5(
l

@ul* ~r !bl
†1vl~r !bl#, ~2.11!

where thebl are quasiparticle creation and destruction op-
erators and the implicit assumption is made that the conden-
sate wave function is not included in the sum~we shall show
later that the condensate wave function forms a special solu-
tion of the equations thatul andvl must satisfy!. The qua-
siparticle operators satisfy the usual commutation relations
for boson creation and destruction operators

@bl ,bl8
†

#5dll8 , @bl ,bl8#5@bl
† ,bl8

†
#50. ~2.12!

The reduction ofK̂B to a collection of noninteracting qua-
siparticles occurs if theul andvl satisfy the equations

Lul~r !1U0@C~r !#2vl~r !5Elul~r ! ~2.13!

and

Lvl~r !1U0@C* ~r !#2ul~r !52Elvl~r !, ~2.14!

where

L5H02m12U0uC~r !u2 ~2.15!

and theul andul are square-integrable functions. The form
of the Bogoliubov-approximate grand canonical Hamiltonian
after performing this transformation is, to within ac number,

K̂B5(
l

Elbl
†bl . ~2.16!

The details of deriving the above form are contained in Ref.
@7#. Note, however, that the definition of thevl in this paper
differs by a sign change from those contained in that refer-
ence.

This is a Hamiltonian describing a collection of noninter-
acting quasiparticles for which the condensate is the vacuum.
The condensate wave function and the quasiparticle mode
spectrum can therefore be completely determined by solving
the system of coupled equations

@H01N0U0ucg~r !u2#cg~r !5mcg~r !, ~2.17!

Lul~r !1N0U0@cg~r !#
2vl~r !5Elul~r !, ~2.18!

Lvl~r !1N0U0@cg* ~r !#2ul~r !52Elvl~r !, ~2.19!

where we have written the condensate wave function as
C~r !5N 0

1/2cg~r ! to make explicit the number of condensate
atoms.

2. The condensate linear response to weak perturbation
of the trap potential

Next we consider the effect of applying a weak, sinu-
soidal perturbation to the trap potential that confines the
equilibrium system described above. Applying such a pertur-

bation will cause the condensate to oscillate and its deformed
shape can be detected. The key to the connection between
the quasiparticle spectrum and the condensate linear re-
sponse is that the effect of the small thermal-atom compo-
nent on the large condensate can be neglected. Experimen-
tally, the thermal-atom component can be made smaller and
smaller~using evaporative cooling! without affecting the size
of the condensate linear response. Eventually, the system can
be brought to a state where the linear response, even though
it is small, will dominate the effect of the thermal-atom com-
ponent on the condensate. The linear-response behavior of
the condensate~for T!Tc! should then be well described by
the time-dependent, driven NLSE@4#

i\
]C

]t
5@H01U0uC~r ,t !u21 f1~r !e2 ivpt1 f2~r !eivpt#

3C~r ,t !. ~2.20!

The f6~r ! are the~possibly spatially dependent! amplitudes
of the sinusoidal perturbation andvp is the probe frequency.

To find the linear response of the condensate to the driv-
ing field, we shall assume thatC~r ,t! takes the form of a sum
of an undisturbed ground-state part and a response part that
oscillates at frequencies6v as

C~r ,t !5e2 imt/\@N0
1/2cg~r !1u~r !e2 ivpt1v* ~r !eivpt#.

~2.21!

Herem is interpreted as the chemical potential of the undis-
turbed ground state, which is represented by the~scaled! con-
densate orbitalcg~r !. The functionsu~r ! and v~r ! are the
Fourier components of the condensate’s linear response to
the external disturbance that oscillate at frequencies6vp .

After inserting Eq.~2.21! into ~2.20!, retaining only terms
up to first order inu~r !, v~r !, and f6 and equating like pow-
ers of e6 ivpt, three equations result that must be simulta-
neously solved forcg~r !, u~r !, v~r !, andm. These equations
have the form

@H01N0U0ucg~r !u2#cg~r !5mcg~r !, ~2.22!

@H02~m1\vp!12N0U0ucg~r !u2#u~r !

1N0U0@cg~r !#2v~r !52N0
1/2f1~r !cg~r !,

~2.23!

@H02~m2\vp!12N0U0ucg~r !u2#v~r !

1N0U0@cg* ~r !#2u~r !52N0
1/2f2~r !cg~r !.

~2.24!

These coupled equations were used for example by Pitae-
vskii in his treatment of the elementary excitations around a
vortex@6#. They are found in a very wide range of theory and
amount to theT50 version of the random-phase approxima-
tion for a finite system@7#. The second-quantized version of
this theory is discussed by Lee and Gunn@9#, who were
considering Bose condensation in a random inhomogeneous
medium~e.g., vycor glass!.

The condensate linear-response equations@Eqs.~2.23! and
~2.24!# can be solved by writing their solution as an expan-
sion in the condensate normal modes. We shall next develop
the equations that determine these modes and show how they
are used to find the linear-response solution. Most impor-
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tantly, however, we will see that the normal-mode equations
are identical to Eqs.~2.18! and ~2.19! that define the quasi-
particle mode energies.

3. Normal-mode solution of the linear-response equations

To find the normal modes of the condensate, we first set
f6~r ! to zero in Eqs.~2.23! and ~2.24!. It is clear that the
resulting equations will support square-integrable solutions
only for discrete values ofvp ~i.e., vl!. The normal-mode
equations thus have the form

@L2\vl#ul~r !1N0U0@cg~r !#
2vl~r !50 ~2.25!

and

N0U0@cg* ~r !#2ul~r !1@L1\vl#vl~r !50, ~2.26!

wherel represents a set of quantum numbers. These equa-
tions are identical to Eqs.~2.18! and ~2.19! if El5\vl . To
complete the connection between the quasiparticle excitation
spectrum and the condensate response we show below how
these normal modes describe the condensate linear response.

We define anormal modeas the two-component object

fl~r !5S ul~r !
vl~r ! D . ~2.27!

With this definition, Eqs.~2.25! and~2.26! can be cast in the
form

Hfl~r !5\vls3fl~r !, ~2.28!

where

H5S L V

V* LD , s35S 1 0

0 21D , ~2.29!

with V~r !5N0U0c g
2~r ! andL defined by Eq.~2.15!.

The $fl% constitute a complete basis set@10#, orthonormal
with respect to the inner product, defined by

^fl1
ufl2

&[E d3rfl1

† ~r !s3fl2
~r !5dl1l2

~2.30!

and the dagger denotes the transposed, complex-conjugated
matrix.

The linear response equations~2.23! and ~2.24! can be
written, using this notation, as

~H2\vs3!c~r !52s3g~r !, ~2.31!

where

c~r !5S u~r !
v~r ! D , g~r !5S N0

1/2f1~r !cg~r !
2N0

1/2f2~r !cg~r !
D .

~2.32!

The solution of the linear-response equations is found by
expanding bothc~r ! andg~r ! in the normal modes

c~r !5(
l

clfl~r !, g~r !5(
l

glfl~r !, ~2.33!

where thegl are given by the overlap integral

gl5E d3rfl
†~r !s3g~r !. ~2.34!

Substituting these expansions into Eq.~2.31! yields a system
of completely uncoupled equations to be solved for thecl .
The final solution is written as

c~r !52(
l

gl /\

vl2v
fl~r !. ~2.35!

Note that thelinear responsediverges when the condensate
is driven exactly on resonance. This unphysical behavior re-
sults from our neglect of loss processes and nonlinear effects.
The actual condensate on-resonance response is very sensi-
tive to nonlinear effects, as will be seen later in this paper.

B. Normal-mode solutions for an illustrative case

The problem of computing the normal modes can be cast
in the form of a generalized-eigenvalue problem within a
truncated basis set of trap eigenfunctions. The numerical so-
lution can then be found using standard techniques. In this
subsection we present the results of normal-mode calcula-
tions for an illustrative experimental case~in which the trap
potential is isotropic! and demonstrate their convergence as a
function of basis-set size~Nbasis!. Details of the computa-
tional method are reported in a separate paper@11#.

We have computed the normal frequencies and normal-
mode solutions for the case of Cs atoms contained in a
magneto-optic trap whose parameters are those of a pub-
lished experimental arrangement@12#, for which the ground-
state solution of the NLSE has been calculated previously by
both time-independent@13# and time-dependent methods
@14#. The mass of a Cs atom is taken to bem52.2310225 kg
and the scattering length is taken to bea53.18 nm. The
value of U0 from Eq. ~2.2! then becomesU052.0310251

J m3. The potential Vtrap~r ! is that of an isotropic
harmonic oscillator with a frequency of 10 Hz. This is
associated with a harmonic-oscillator length scale ofrHO
5~\/2mv trap!

1/251.9531026 m. The number of condensate
atoms used in this example isN0510546 and the value of the
chemical potential ism54.3\vtrap.

Table I lists thel50 normal frequencies for the above
case where 10, 20, and 40 basis-set elements have been used.
Note that only 20 basis-set functions are sufficient to obtain
frequencies that have converged to four significant figures.
Another feature of the normal-frequency spectrum exhibited
by the table is that even a small basis-set produces nearly
converged normal frequencies. Only the largest-n frequen-
cies for a given set size do not match the corresponding ones
found when the set size is increased. Increasing the basis-set
size allows us, in effect, merely to obtain a larger portion of
the infinite normal-frequency spectrum. This aspect of the
convergence of the normal frequencies with respect to basis-
set size occurred for all angular momenta for which frequen-
cies were obtained~up to l510!.

Table II contains the lowest ten normal frequencies for
l50, . . . ,4. Twenty basis-set wave functions were used in
the calculation of all values and each value was rounded so
as to match the value obtained when 40 wave functions were
used. The frequencies given in the table are expressed in
units of vtrap. These normal frequencies were also verified
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by solving the time-dependent NLSE in the limit of weak
driving. This is described in Sec. III.

The main result of the condensation is the appearance of
elementary excitations with frequencies shifted away from
that of the uncondensed atoms in the trap. This shift is illus-
trated in Fig. 1, which contains a plot ofvn00 for n51, . . . 7
as a function ofb5m/\vtrap. This shift in frequency is a very
convenient observable for experiments that rely on laser
cooling and trapping techniques where the translational mo-
tion of the atoms can be easily observed. Note that thevnlm
in the figure are referenced tob and that both the vertical and
horizontal scales are graduated in units of\vtrap. The dotted
horizontal lines indicate the excitation frequencies of the
bare-trapping potential.

C. The proposed experiment

It is possible to measure directly the quasiparticle excita-
tion of a condensate–thermal-atom system whose condensate

fraction is large~;90%! and whose temperature is well be-
low the transition point (T!Tc). The steps that would be
performed are as follows. First, evaporatively cool the atoms
until the number of condensate atoms is much larger than the
number of thermal atoms. Second, apply a very weak har-
monic perturbation to the trapping potential at probe fre-
quencyvp at the end of the cooling cycle. Next, probe the
condensate shape~e.g., allow the condensate to expand bal-
listically and take a flash picture!. Finally, repeat the above
steps with an incremented value ofvp until the maximum
distortion of the condensate~relative to the case where no
perturbation was applied! is found.

In practice, the number of condensate atoms will vary
from shot to shot so that the resonance lines will be blurred
somewhat. For the time-averaged orbiting potential trap of
Ref. @1# this should amount to no more than 10%@15#, and it
is possible to collect cloud images for many condensates that

TABLE I. Excitation frequencies as a function of basis-set size, for the atom trap parameters given in Sec.
II B. The frequencies are given as multiples of the trap frequency,vtrap. Only the positive excitation fre-
quencies are listed and the eigenvalue for the spurious state has been omitted. Note that the last two
frequencies in each column are unreliable because of the truncated basis.

n ~radial quantum number! Nbasis510 Nbasis520 Nbasis540

1 2.199 2.193 2.193
2 3.879 3.873 3.872
3 5.839 5.598 5.598
4 9.175 7.384 7.383
5 9.208 9.207
6 11.07 11.06
7 12.98 12.95
8 14.89 14.85
9 18.46 16.76
10 18.69
11 20.62
12 22.57
13 24.52
14 26.47
15 28.43
16 30.40
17 32.36
18 34.36
19 37.63

TABLE II. Lowest ten positive normal frequencies, in units ofvtrap, for l50–4, for the atom trap
parameters given in Sec. II B.

n ~radial quantum number! l50 l51 l52 l53 l54

0 0.000 1.000 1.526 2.065 2.660
1 2.193 2.872 3.510 4.156 4.828
2 3.872 4.636 5.373 6.104 6.844
3 5.598 6.422 7.223 8.014 8.807
4 7.383 8.244 9.088 9.921 10.75
5 9.207 10.10 10.97 11.83 12.69
6 11.06 11.97 12.87 13.76 14.64
7 12.95 13.87 14.78 15.69 16.59
8 14.85 15.78 16.71 17.63 18.54
9 16.76 17.71 18.64 19.57 20.49
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are all perturbed by the same frequency while simulta-
neously measuring the condensate fraction. The cloud im-
ages could then be binned so that only systems with the same
condensate fractions could be compared.

A related experiment can also be performed to measure
the damping time of the quasi-particle modes directly in the
time domain. Once the mode energies have been measured, a
single mode can be excited by applying the perturbation at
the proper frequency and following the mode’s decay by
probing after successively longer delay times. These experi-
ments may, however, be affected by two- and three-body
inelastic scattering processes for long delay times@15#.

III. CONDENSATE NONLINEAR RESPONSE

A. Solving the time-dependent NLSE

To study the general nonlinear response of the condensate
to external probes we have solved the time-dependent, driven
NLSE by direct numerical integration. For this purpose, we
write the NLSE in the form

i\
]c~r ,t !

]t
5F2

\2

2m
¹21

1

2
mv trap

2 r 21N0U0uc~r ,t !u2

1Vp~r ,t !Gc~r ,t !, ~3.1!

whereVp~r ,t! represents an arbitrary time-dependent probe.
We consider only radially symmetric solutions and write

the radial part of the wave function in the form

c~r !5A
f~r !

r
, ~3.2!

whereA is a constant used to ensure proper normalization.
With this substitution and the transformation to harmonic-
oscillator units

r5S \

2mv trap
D 21/2

r , t5v trapt ~3.3!

the three-dimensional~3D! NLSE becomes an effectively 1D
equation

i
]f~r,t!

]t
5F2

]2

]r2
1
1

4
r218A2N0pa

uf~r,t!u2

r2

1Vp~r,t!Gf~r,t!. ~3.4!

BecauseN0 appears as part of the nonlinear potential, we
require the norm ofc~r ! to be one, i.e.,

4pS \

2mv trap
D 1/2A2E

0

`

uf~r,t!u2dr51. ~3.5!

During our calculations, we maintain a normalization of
*0

`uf~r!u2dr51. This means that the values of the nonlinear
coefficient that we quote are forCNL52N0a~2mv trap/\!1/2 in
order to satisfy Eq.~3.5!.

We begin with ground-state condensate wave functions,
which can be found using a number of methods@13,14#. We
then apply the NLSE to these solutions and propagate them
through time using the Crank-Nicolson numerical method for
diffusive, initial value, partial differential equations@16#. At
each time step, we can change the value ofVp in order to
simulate a time-dependent probe.

One of our aims is to determine the excitation resonance
frequencies, that is, those frequencies at which the conden-
sate responds most strongly to the probe and compare these
with those determined by the linear-response theory. This
frequency response spectrum can be found directly from the
time-dependent wave function as follows. At each time step
we record the value of the wave function at a given spatial
point. The resulting array provides a map of the condensate’s
motion as a function of time. It describes the temporal re-
sponse of the condensate, and as such, may be Fourier trans-
formed to yield a spectrum of the frequencies at which vari-
ous components of the condensate are oscillating. This
spectrum thus shows the frequencies of the vibrational exci-
tations on the condensate. We will discuss its characteristics
in more detail later on.

B. Weak-probe response

First, consider a weak, single-frequency probe of the form

Vp5K cos~kpr2vpt!, ~3.6!

wherekp andvp are the probe wave number and frequency,
respectively, andK is the amplitude. By varyingvp and
monitoring the response of the wave function, we are able to
determine the condensate’s resonance frequencies using the
Fourier transform method described above. In general, a
probe will most efficiently drive a given resonance~identi-
fied by the indexl! if vp andkp match well withvl andkl ,
respectively. However, we find that the location of the peaks
in the excitation spectrum has virtually no dependence on the
probe wave number. Thus we setkp51 in all cases described
in this section.

In order to compare the results of this method to those
from the linear-response theory, we apply a very weak probe.
By weak we mean thatK is much less than the nonlinear
coefficient. Specifically, in the examples discussed in this
section,K50.15 andCNL534.5. This nonlinearity corre-
sponds to parameters that match those used in the previous

FIG. 1. Plot of the lowest seven excitation frequencies~exclud-
ing the spurious state! for the casel5m50 as a function of ground-
state energy~chemical potential expressed in units of\vtrap!.
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linear-response calculations. Since the results depend only
onCNL , they can be scaled to include a number of different
experimental configurations, including a trap withvtrap525
Hz and containing 440087Rb atoms.~For 87Rb, a'6 nm
@17#.!

Whenvp matches one of the resonance frequencies listed
in the l50 column of Table II,vl , the frequency response
spectrum shows marked differences from the off-resonance
case. Figure 2~a! shows the off-resonance response, for
vp51.8, and for an integration time oft550. @Unless other-
wise noted, all times, frequencies, and wave numbers are
quoted in harmonic-oscillator trap units, as defined in Eq.
~3.3!.# The vast majority of the response appears at zero fre-
quency, which corresponds to the ground vibrational state of
the trap. We interpret the relative strength of this peak as an
indication that very little of the condensate has been excited
into higher vibrational modes. Only a very weak response is
visible at the probe frequency and also at the first resonance
frequencyv1'2.2. However, whenvp5v1, significant exci-
tation of the condensate occurs, as shown in Fig. 2~b!. In this
case, spectral features corresponding to the ground state and
to the first excited mode appear with nearly equal intensities.
This suggests that the the first excited mode has a population
similar to the ground state. The other peaks in the spectrum
are at integer multiples ofv1: they are harmonics of the
probe and will be discussed in more detail in Sec. III C.

This distinctive behavior allows us to identify the reso-
nance frequencies fairly straightforwardly. The first six ex-
cited modes, as determined with this method, are
v152.20~6!, v253.90~6!, v355.67~6!, v457.35~6!,
v559.22~6!, andv6511.10~6!. These agree to within uncer-
tainty to the radially symmetric~i.e., l50! excitation fre-
quencies listed in Table II. The normal modes method is, of
course, limited to weak response, but is capable of much
higher precision with less computational effort than the tech-
nique presented in this section. The method just outlined
requires a fairly time-consuming search through various val-
ues ofvp in search of resonances, which in turn must be
identified somewhat subjectively from the response spectra.
Furthermore, the resolution of the Fourier transform is deter-
mined by the propagation time of the simulation: high reso-
lution requires long integration times.

We turn now to a brief discussion of these linear excita-
tions. Figure 3 shows the condensate wave function in its
ground state~dashed line! and after the application of a probe
with frequencyvp57.35 for t525 ~solid line.! The excita-
tions are clearly visible as radial density variations on the
ground-state background.

The excitation frequencies show a distinct difference from
those expected for the noninteracting case, that is, from un-
condensed atoms in a 3D harmonic trap. In that case, the
vibrational energy levels are well known to be separated by
\vtrap. However, in the case of radially symmetric~zero an-
gular momentum! solutions, excitations are only allowed be-
tween alternating energy levels of the harmonic oscillator.
This means that the peaks in the frequency spectrum of a
noninteracting oscillator are separated by 2vtrap. The results
in the interacting case differ from this by up to 10%, even at
the modest value ofCNL used here. These frequency shifts
arise as a result of several changes in the gas following con-
densation. First, the speed of propagation of a disturbance on

the condensate increases as the nonlinear term in Eq.~3.1!
becomes larger@4#, which in turn causes an increase in the
resonance frequencies. However, as the nonlinearity in-
creases, the condensate expands~assuminga.0!, which
tends to shift the resonance frequencies down. These consid-
erations have different relative importances to higher- or
lower-frequency excitations and indeed some of the reso-
nances listed above are upshifted while others are down-
shifted from the uncondensed values~see Fig. 1!.

C. Strong-probe response

The appearance of the harmonics in Fig. 2~b! is a clear
indication of a nonlinear response. This excitation of har-
monics is not predicted in the linear-response theory and is
significantly stronger than in a noninteracting gas. By non-
linear response we mean effects due to the coupling between
the excited modes and the ground state due to the presence of
condensation. Such coupling is expected as a result of the
nonlinear potential in Eq.~3.1!. Any perturbation in the over-
all potential causes a corresponding time-dependent change
in the wave function. This change in the wave function in
turn causes further variation in the nonlinear potential, and
so on. This process can eventually lead to the population of
modes with a variety of momenta and to the generation of

FIG. 2. Condensate response following driving with a single-
frequency sinusoidal probe fort550. ~a! Response to an off-
resonance probe~vp51.8! showing most of the condensate in the
vibrational ground state, labeled g.s. The first resonance frequency
is atv1. ~b! Response whenvp5v1. In this case, the response at
the first resonance frequency is as strong as that of the ground state,
and a number of harmonics have been excited.
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harmonics of the input frequency. The nonlinear response is
magnified when the probe matches a resonance frequency,
because in this case the initial variation in the condensate
wave function is the strongest. Harmonics of the probe fre-
quency appear even away from resonances; however, in this
case they are several orders of magnitude weaker than the
first order response atvp .

A frequency response consisting of equally spaced exci-
tations is also expected in an uncondensed harmonic oscilla-
tor, but there the physical description is qualitatively and
quantitatively different from the condensed case. Because
the energy level structure of the linear harmonic oscillator
consists of equally spaced levels, driving the system at the
proper resonance frequency, i.e.,vp52.0, will cause transi-
tions to the first excited level, from which excitation can
occur to the second level, and so forth. These higher-order
components will be very small. For a nonlinear oscillator, the
energy levels are not equally spaced and so a similar process
can only occur with a much lower efficiency. The equally
spaced peaks in the condensate spectrum are harmonics
caused by nonlinear response. We find that the excitation to
higher modes is much weaker in an uncondensed system
than is the production of harmonics in a condensate: the
strength of the respective responses differs by a factor of
about 100 for equal probe amplitudes.

To extend the results obtained above with single-
frequency probe, we now consider the effects of a stronger,
broadband probe. By applying a probe with a wide range of
frequency components, we hope to excite a number of vibra-
tional modes simultaneously and to observe effects due to
their coupling. We drive the condensate with ‘‘white noise’’
by multiplying the trap potential by a random number be-
tween 1 andh, whereh is of order 5, at each time step. After
several hundred time steps, the driving stops and the excited
wave function evolves in the usual, time-independent, trap
potential. During this evolution, we record the value of the
wave function at a given spatial point at each time step and
Fourier transform the resulting time profile as before. Be-
cause the driving process is random, we must average the
results of several runs in order to get a more accurate view of
the condensate response. However, the broadband method is
more efficient for finding the frequency spectrum than the
single-frequency technique, because all of the resonances
will appear in a single computation.

Figure 4 shows an example of this response, averaged
over four runs for whichh53.5 andCNL534.5. The driv-
ing duration wast51.8 and the unperturbed evolution time
was t5198.2. During the driving time, 300 computational
time steps elapsed.

A large number of excitations are visible~Fig. 4!; these
are identified individually in Table III.~The contribution of
the ground state at zero frequency has been removed for
clarity.! It is possible to identify features corresponding to
the first four resonance frequencies found in Sec. III B. As in
the case of the single-frequency probe, a number of harmon-
ics of the resonance modes appear. Furthermore, features
whose frequencies correspond to sums and differences of the
resonances and the harmonics are also evident. This fre-
quency mixing is a further indication that nonlinear pro-
cesses are present in the condensate’s response.

The relative strengths of the spectral features in Fig. 4
merit some discussion. The maximum intensity of several of
the features is beyond the scale of Fig. 4; in fact, the height
of featureb is about 500 on this scale and the contribution of
the ground state is a factor of 100 larger again. Clearly, the
broadband probe is not as effective at exciting the resonance
modes as is a single-frequency, on-resonance probe. Further-
more, the harmonic generation and frequency mixing pro-
cesses produce responses that are relatively weak, especially
at the higher frequencies. Changes to the duration of the
driving stage, the size of the time step, and the value ofh
have only a minor effect on the relative strengths of the
various spectral features.

Both the harmonic generation and frequency mixing are
the matter-wave equivalents of the corresponding processes
in conventional~light! optics. The possibility of nonlinear
atom optics in a number of other systems has also been pro-
posed recently@18# and the availability of condensates adds
another platform for observing such effects with coherent
matter waves.

IV. DISCUSSION

In summary, we have proposed an experiment to probe
the quasiparticle mode spectrum of a system consisting of a
large Bose-Einstein condensate plus a relatively smaller
component of thermal atoms. This experiment consists of
applying a weak, sinusoidal perturbation to the trap potential
at the end of the evaporative cooling cycle and then measur-
ing the disturbance this produces on the condensate relative
to the case where no disturbance is applied. We have also
demonstrated that the frequencies of the applied perturbation
at which the linear response of the condensate is maximal are
exactly the quasiparticle mode energies. In an actual experi-
ment, exciting only the condensate’s linear response on reso-
nance will be very difficult due to the dominance of nonlin-
ear effects even for very weak driving. We have seen,
however, that there is a significant difference in the nonlinear
condensate response between on- and off-resonance driving.
The difference should serve as a clear signature of the posi-
tions of the modes in the quasiparticle spectrum.

We have also seen that it should be possible to observe
nonlinear effects in the response of a dilute atomic Bose-

FIG. 3. The dotted line shows the wave function for a conden-
sate in its ground state, while the solid line is the same wave func-
tion following the application of a resonant single-frequency probe
~vp57.35!. The excitation due to the probe shows up as radial
density fluctuations.
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Einstein condensate to even a very modest external probe.
These effects are due, of course, entirely to the presence of
the nonlinear mean-field term in Eq.~3.1!. The experimental
observation of harmonic generation or frequency mixing
would therefore be a good diagnostic of the presence of a
mean field.

The theoretical approach used here relies on a zero-
temperature, mean-field approximation and does not include
a mechanism for damping or dissipation of excitations within
the condensate. We believe that a mean-field method can
closely model the condensates that are currently experimen-
tally accessible, because a similar calculation@19# has
achieved a very good match with the experimental results in
@1#. We should, however, address the effects of dissipation
on the excitations we study. A finite excitation lifetime
would mean that condensate vibrations would need to be
observed fairly quickly after the probe was applied. The ex-
citations would also acquire a frequency width inversely pro-
portional to their lifetime. The lack of any damping means
that the fundamental width of the peaks in the response spec-
tra we present is zero, although the peaks are broadened by
the imperfect resolution of the Fourier transform. In the case

of the real condensates currently under experimental study,
the main damping will be from two loop corrections to the
mean field~i.e., collisions!. This is because one loop effects
such as Landau damping@20# should not be effective in a
small trap. A full calculation of the two loop diagram is
under way for a condensate in a trap@21#, but quantitative
results are not available at the moment. We know, however,
that in a recent experiment@1#, collisions occur at a rate of
approximately 1/10 of the trap oscillation frequency@22#.
The resulting damping rate should thus be small enough that
it should be possible to resolve many of the features pre-
dicted here.

The widths of the mode frequencies could hinder a clean
measurement of the excitation spectrum. These widths will
be determined by the lifetimes of the excitations caused by
the applied disturbance and the lifetimes will, in turn, be
limited by losses due to either interaction of the condensate
with the thermal atoms or interaction of the condensate at-
oms with themselves. The theory we have presented in this
paper does not account for these processes and indeed the
condensate linear response diverges exactly at resonance.

If the lifetime of the excitation is too long, then the width
of the peaks in the frequency spectrum could become more
narrow than the experimental resolution. There is some de-
gree of experimental control that can be exercised over this
lifetime. If the condensate fraction is reduced, then the en-
hanced thermal component should limit the lifetime and thus
increase the resonance widths. If the condensate fraction is
too small, however, the theory presented in this paper will
not be valid and a more sophisticated treatment~in which the
effect of the thermal-atom component on the condensate is
accounted for! must be used@23#. This can be achieved by
solving the finite-T Hartree-Fock-Bogoliubov equations@24#.
Even under the conditions assumed in this paper, the excited
atoms will affect the mode energies. We expect this effect to
be minimal due to the modest size of the thermal-atom com-
ponent assumed. It has been shown by several authors that
excited atoms merely shift and damp the quasi-particle
modes as long as the condensate is not too close to the region
of critical fluctuations. For the homogeneous case, the domi-
nant damping mechanism is Landau damping of the motion
of the condensate as has been shown by Payne and Griffin
@20#.

The elementary excitations also have characteristic shapes
that will influence the efficiency with which we can drive
them. This is because the coupling to a given mode will
depend on the overlap of the mode with the shape of the
driving potential, a fact that one can exploit in examining the
dynamics of the condensate. We expect them to be long lived
as soon as we are out of the narrowed region for critical
fluctuations in the trap.

In order to model exactly the current generation of atomic
traps, it will be necessary to extend this technique to con-
figurations that are not spherically symmetric. Such an ex-
tension would require a full 2D or 3D treatment, but would
allow us to consider rotational excitations and possibly even
vortices. In addition, several recent proposals have suggested
that condensates created from atoms with negative scattering
lengths may be stable or metastable@13,25#. An analysis of
the excitation spectra of such systems should help clarify this
question and is planned to be addressed in a future paper.

FIG. 4. Condensate response following the application of a
broadband probe. The features labeled in this spectrum are identi-
fied in Table III. The first four resonance frequencies, some of their
harmonics, and several sum and difference frequencies are visible.
The harmonic generation and frequency mixing indicate the pres-
ence of nonlinear coupling between the vibrational modes. The con-
tribution of the ground state at zero frequency has been subtracted
from this spectrum.

TABLE III. Spectral features shown in Fig. 4. All frequencies
are in units ofvt . The uncertainty in the frequencies is60.02, and
results primarily from the resolution of the Fourier transform.

Label Frequency Description

a 1.67 v22v1

b 2.19 v1

c 3.38 v32v1

d 3.86 v2

e 4.38 2v1

f 5.17 v42v1

g 5.57 v3

h 6.05 v11v2

i 6.57 3v1

j 7.36 v4

k 7.72 2v2

l 8.24 2v11v2

m 9.55 v11v4
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