PHYSICAL REVIEW A VOLUME 54, NUMBER 1 JULY 1996
Symmetry of approximate Hamiltonians generated in Birkhoff-Gustavson normal form
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Previous investigators have shown how the Birkhoff-Gustavson normal(®&NF) procedure can be used
to develop an integrable Hamiltonian which approximates a nonintegrable Hamiltonian system. We discuss the
symmetry properties of these approximate Hamiltonians and how a certain flexibility inherent to the BGNF
procedure can be used to affect this symmetry. Because the BGNF procedure involves a transformation of the
coordinates, the symmetry issue has been somewhat neglected due to its complexity. The techniques we
demonstrate here with the”ien-Heiles Hamiltonian are easily generalized for use in molecular Hamiltonians
of arbitrary symmetry[S1050-29476)09307-9

PACS numbdss): 33.20.Tp

I. INTRODUCTION mating Hamiltonian involves transformation of not only the
coordinates but also the momenta. In addition, we have also
The representation of physical systems as collections ofioted, as did several previous authors, that there is some
classical coupled oscillators is ubiquitous in theoreticalflexibility in the BGNF transformation procedure. We will
chemistry and physics, the vibrations of small molecules bedemonstrate that this flexibility can be utilized to maintain
ing an important exampleL]. It is of considerable interest to the symmetry properties of the full Hamiltonian in the ap-
find the quantunivibrationa) energy levels of such systems proximating Hamiltonian expressed in the transformed coor-
because knowledge of the vibrational ladder spacings woulélinates. We believe this procedure will be useful in approxi-
allow for the prediction of a molecule’s spectroscopic tran-mating molecular Hamiltonians describing  vibrational
sitions. It has long been recognized that semiclassical metfinotion as well as in other applications.
ods hold great promise for the determination of the quantum
vibrational energy levels of coupled oscillator systef@b Il. THE BIRKHOFF-GUSTAVSON NORMAL FORM
This promise is largely due to the fact that semiclassical PROCEDURE
methods are not encumbered by the need for the very large
basis sets which make standard variational calculations in- Consider a Hamiltonian of the form
tractable. One of the oldest and most common of the semi-
classical methods, the EBK technique, due to Einstein, Bril- H(X1,X2,P1,P2) =H2(X1,X2,P1,P2) + €H' (X1,X2,P1,P2),
louin and Keller[3], is really an extension of the Bohr- (1
Sommerfeld quantization rule of the old quantum theory to
multidimensional integrable Hamiltonian systems. Unfortu-where H, is an integrable, zeroth-order Hamiltonian, and
nately, coupled oscillator systems are frequentbyinte- H' is a perturbation which contains any nonintegrability.
grable and therefore considerable effort has been expendétere we represent a two-dimensional system with coordinate
in an attempt to generalize semiclassical techniques to nonvariablesx, ,x, and conjugate momenta,p,. The gener-
integrable systemg3—7]. Another approach is to find an in- alization to more than two dimensions is straightforward. It
tegrable system which closely approximates the nonintels assumed thatl, contains only quadratic terms in the four
grable system of interest, and then use the EBK procedure teariables and can be written as a sum of uncoupled harmonic
find the quantum energy levels of the approximate integrablescillators(e.g., normal mod@s |t is further assumed that
system. This technique was developed by Swimm and Delokl’ can be written as a sum of polynomials of degre® in
[8] and Jaffeand ReinhardE3]. These authors employed the the four variables, each term having a constant real coeffi-
Birkhoff-Gustavson normal fornBGNF) procedure to gen- cient. In the Birkhoff normal form{BNF) procedure, a series
erate the approximating Hamiltonid@]. Algebraic quanti- of canonical transformations is found which transforms the
zation has also been used to quantize these Hamiltoniaridamiltonian order-by-order into a “normal” form which is
from the BGNF procedurglQ]. integrable. Each successive transformation normalizes the
Our current interest, and the subject which is addressed iaxpression to one higher power in the perturbation parameter
the present paper, lies in the determination of these approxi. For systems which are nonintegrable, this series cannot
mating Hamiltonians. We have noted that these approximatonverge, but if it is truncated to some finite number of
ing Hamiltonians do not necessarily possess the same syrterms, the resulting expression is an integrable approxima-
metry properties as the original nonintegrable system upotion to the original Hamiltonian. Gustavson’s contribution to
which they are based. This has important implications forthe Birkhoff-Gustavson normal form procedure was to gen-
guantization as the degeneracies of the quantum states agealize the Birkhoff normal form procedure to cases where
determined by the symmetries of the Hamiltonian. This issu¢he zeroth-order HamiltoniaH, is resonanf9].
of symmetry is more subtle than a cursory glance might sug- The BGNF procedure has been discussed in detail several
gest because the BGNF method of producing the approxitimes before[3,8,9,11, so we will restrict our presentation
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here to a brief outline. The procedure is based on the equiva- oW
lence of the Liouville operator to the time derivative operator pi=Pi+¢€ ﬁ;
[12]. For a dynamical quantityy, '
N IW ®
da OH da JH Jda Xi=Aj—€—5.
—={ayH}—E (—————) 2 | P
dt dpi 49 9q; Ip;

W is given by the solution of
We recognize this as the Poisson bracketvakith H. The
normal operator is the Poisson bracket with, the zeroth- DW=H—H. 9
order Hamiltonian,

At first glance, this would appear to be problematic because
(3y bothW andH are unknown. However, we can firtd by
using the condition from linear algebra that in order for a

solution of the above equation to exist— H_must be or-
Functions which are in the null space of the normal operatofhogonal to the null space @' [9,11]. With H known, the

da r?a)

Da={a,H,}= 2<p. q %ap )"

are then constants of the motion laf, . solution forW is straightforward.
The goal of the BNF procedure is to find a transformed tpe solutionW, however, is not unique sind# plus any
Hamiltonian,H, which can be written multiple of av; satisfying Eq.(5) would result in a solution
to Eq.( 9). Typically, in order to specify a unique solution,
= the extra condition is added thét contain no component in
H 2 vy, (4)

the null space ob [3,8,9,11. This is equivalent to requiring
W to have the smallest possible norm.

where The BGNF procedure is most easily carried out in vector
form. The direct product space of quadratic polynomials
Dv;=0 (5) composed of the monomialg ,p;,X5,p5 iS
for all v; . That is, the new Hamiltoniar, is to be a linear (X3,P% X1P1.X5,P5,X2P2, X1X2,P1P2, X1 P2, X2P1)

combination of the null-space vectors bf Thev; can be

shown to all commute with each oth@uch a set of vectors and has dimension 10. The space of cubic polynomials is,
is said to be “in involution”) and will therefore be constants

of the motion for the approximate Hamiltonia#, In a two- (x3,p3 %21, X1P7 X3, P35, X5P2, XoP5 , X5X s,
dimensional system, there will be one otirependenton-
stant of the motion in addition to the energy.

Gustavsorn9] showed that in the resonant case the dimen-
sion of the set of vectors which span the null spac®dé » 2 ) )
larger than in the nonresonant case, but this expanded set is X1X5,X5P1,X1X2P2,X2P1P2,X1P2,P1P2)
no longer in involution. Nevertheless, it is still possible to
construct a second independent constant of the motion. Thiand has dimension 20. Functions which span the space of

2 2 2
X1P2,X1XoP1,X1P1P2,X2P71,P1P2,

constant of the motioh can be taken to be fourth, fifth, and higher degree polynomials can also be ar-
ranged into similar vectors. The general dimension of the
T=H-H,. (6)  Vvector space ofith degree polynomials in the four variables
is
It follows from {v; ,H,}=0, that{ﬁ,Hz}zo. SinceH, is by
definition_already in normal form{H—H,,H}=0, and (n+1)(n+2)(n+3) (10)
thereforel is a constant of the motion of the approximate 6 '

Hamiltonian,H.
The jth transformation to the new Hamiltonian is given or
by the generating functiofL 3],
(j+3)(j+4)(j+5)
6 ,

) (11
SJ-:Z QP+ €W, 2(qiPy) (7)

for order /. The space of eighth degree polynomials, for
where the lower case indicates old “untransformed” vari- example, has dimension 165.
ables, and upper case denotes new “transformed” variables. The normal operator can also be written in matrix form.
Since there is a new transformation at each ofjdethe Q  This matrix will have the same effect on the vector represen-
and P from the jth transformation are thg andp for the tation of a polynomial that the derivative form of the opera-
(j +1)st transformation. The following transformation rules tor will have on the algebraic form of the polynomial. The
follow from this generating function: matrix form of D in the space of quadratic polynomials is
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0O 0 -1 0 O 0 0 O 0 0
0 O 1 0 O 0O 0 O 0 0
2 -2 0 0 O 0O 0 O 0 0
0 O 0O 0 0 -1 0 O 0 0
0 O 0 0 O 1 0 O 0 0
P=lo 0 0 2 -2 0 0 0 o0 o (12
0 O 0O 0 O 0O 0 0 -1 -1
0 O 0O 0 O 0O 0 O 1 1
0 O 0O 0 O 0 1 -1 0 0
0 O 0O 0 O 0 1 -1 0 0
|
Similar matricies can be developed fbr in the space of Each iteration will transform the Hamiltonian to the de-

third, fourth, fifth, and higher degree polynomials. Note thatsired “normal” form (ﬁ:Eiaivi) to one higher power in
the D operator is block diagonal. These blocks correspond t@. Once can use accelerated convergence techniques to nor-
subspaces of the vectors of polynomials and can be divideghalize to order?" in the nth transformatiod15], or use Lie
up according to the sum of the degrees of the monomialperturbation theory to obtain transformation equations which
with like subscriptd11]. Consider a polynomial of the form avoid the recursive substitutiof6—18, but the issues dis-
cussed below in Sec. lll appear in these variations also.
Xi‘xgp‘ip‘z’- (13 The Heon-Heiles Hamiltonian system has been the sub-
ject of considerable study over the past three decades, pre-
dominantly because it is one of the simplest Hamiltonian
systems to exhibit regulaand irregular motions and is a
prototype for nonintegrable coupled oscillator syst¢m9—
11,19-22. The form of the Hamiltonian is

In the matrix representation of th& operator in the space of
second degree polynomials shown above, the first blopk
per lefy) involves polynomials wherea+c=2 and
b+d=0. The secondmiddle) block involves polynomials
wherea+c=0 andb+d=2. The last block(lower right

. . - . 2 X2 2 2 3
involves polynomials whera+c=Db+d=1. This block di- H= Px +—|+ Py + Y + €| X2y — y_) (14)
agonal property is also present in theoperator in spaces of 2 2 2 2 3/

higher degree and can be used to improve computational
efficiency in the practical application of the BGNF proce- While the Heon-Heiles Hamiltonian is well known to be
dure. The maximum dimension of a block oth degree nonintegrable, extensive numerical experiments have shown
polynomials is (+2)%/4 for n even or o+3)(n+5)/4 for  that a considerable fraction of phase space is dense with
n odd [11]. Other block diagonalizations are also possible.regular trajectories, particularly at low enerf@7,9,11. The
One based on symmetry may prove particularly fruitful. results of these numerical experiments then suggest that the
We used theMATHEMATICA [14] algebraic manipulation Henon-Heiles system might be well approximated by an in-
software in this investigation. The full procedure for the tegrable Hamiltonian, particularly at low energies. This prop-
transformation is as follows. erty makes the Heon-Heiles Hamiltonian system ideal for
(i) ConstructD and D' in the space of polynomials of studying approximate Hamiltonians. The BGNF procedure
degreej+2 and find their respective null spaces and has been used to develop an approximate Hamiltonian for the
w;. (Dv;=0 andD'w;=0). Henon-Heiles system several times previou$8;8,9,11.
(i) Solve forH using the conditions thatl —H must be The form of the transformed BGNF Hamiltonian through
orthogonal to the null space & [i.e., (H—H) w,=0Vi], order€® is given in Refs[3,10,15 and is available from the

and thatH must be a linear combination of the. This  authors through order
gives a set of linear equations for the coefficients of the
Uj. _ [ll. DISCUSSION OF SYMMETRY

(iii) SolveDW=H—H for W makingW-v;=0 to mini-
mize the norm ofW.

(iv) Use the generating functidhto develop the transfor-
mation rules.

(v) Apply the transformation rules to the untransformed
Hamiltonian(or to the Hamiltonian resulting from the previ-
ous transformation Since the right-hand sides of Eq®)
involve old variables as well as new variables, this must be
done recursively.

(vi) Repeat the previous steps for the ngxt

Note that the zeroth-order Hamiltonidf,, has spherical
symmetry. The cubic terms in the Hien-Heiles Hamiltonian
introduce a threefold rotational symmetry like that of an
equilateral triangle. This threefold symmetry is easily seen
when the cubic term is written in polar coordinatd$where
it takes the form

H'(r,0)=

r3
§sin(3 a)} . (15
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symmetry operations, specifically, reflection throygixithe

time reversal, rotation by 2/3, and their product§23]. We will represent these operations with the operatB;sT, and

O, respectively.

RZ}(X_) —X,Px— — px)! (16)
T=(px— —Px Py—— py)a 17
—X 31/ 31/2X _ 31/2 31/2
o= X—>———2y,y—> —X,px—> px_ py, y—> px_& . (18)
2 2 2 2 2 2 2 2
|
In addition to those above, there are the following: rotation RH.—H¢=0, (21)
by (4m7/3) (0, reflection through the liney=(x/2)
(R'=0R), reflection through the Iline y=—(x/2)
(R"=0%R), TO, TO? TR, TR’, andTR". Of course there THF.—0 22
is also the trivial identity operatiok. These 12 operations s st
form a group which is the direct product of tl@&,, point
group with T and is isomorphic td34 or D4,. Note that -~
R, T, andO generate all group members. It is easily verified OHs—H¢=0. (23)

that

RH=H (19
and that similar equalities hold for the other operators.

It is easily demonstrated, however, th@H#H. This
means that the approximate Hamiltonidndoes not possess

the same symmetry properties as thenble-Heiles system

The other nine operators do not introduce any additional con-
straints since they can be expressed as products of these
three. Sinceﬁs is actually determinetefore)V at a given
order, the undetermined; coefficients which were intro-
duced by the transformation vectdV at orderj are set at
orderj+2, making this a “mixed-order” procedure.

when the standard BGNF procedure is applied. This is There are no linear terms in the  hten-Heiles Hamil-

readily seen in Eq.20) of Ref.[3]. If the threefold rotational
symmetry was maintained, the terms proportional to 69s2
and cos4#, would vanish.

We have noticed7] that in the BGNF procedure, there is
some flexibility in the choice o#. Note that in the solution
of DW=H—H for W, we can add any linear combination of
the null-space vectors @ to W and still have a valid solu-
tion to the equation. This flexibility only exists fgreven.
For j odd, there are no null-space vectorsf andW is
unique. Note that for polynomial degrget2 (orderj in
€) there are M null-space vectors ofD, where
M =(j+4)?/4 for j even, andVl =0 for j odd. SinceD only
involvesH,, it conserves only the full spherical symmetry.

In order to satisfy the reduced symmetry which comes fronygtermine ei

the higher-order terms iH, additional symmetry constraints
must be imposed in the BGNF procedure artificially. We
have therefore defined an extend&dwhich we will denote

W=W-+ >, cu;. (20)

W is used in place ofV in the generating functio®s from

tonian, and so ndV; transformation is required. The second-
degree part of the Hwn-Heiles Hamiltonian is already in
normal form, and therefore thg, transformation is also
unnecessary. ThiV; transformation introduces no undeter-
mined coefficients becaus® has no null-space vectors. The
W, transformation vector introduces nine undetermined co-
efficients because the dimension of the null spac® pis
nine. These undetermined coefficients first appear in terms of
the transformed Hamiltonian having degree six. THg
transformation does not affect the terms of degree six and so
the undetermined; coefficients from thé/V, transformation
remain unspecified until it is necessary to find for the
sixth degree terms. The above symmetry equations uniquely
ght of the nine coefficients. The remaining coef-
ficient does not appear id¢ but does appear in the untrans-
formed terms of degree siXThese are the terms of degree
six following the first three iterations of the transformation
procedure, usingVs, W,, and Ws.) In order to proceed
with step(iii ) in the transformation procedure in the space of
sixth degree terms, we have found it necessary to give this
remaining coefficient a numerical valfi2g4] and we chose
zero for simplicity since its value is irrelevant to the symme-

which the transformation rules are derived. After the transtry of the transformed Hamiltonian. It is then possible to
formation rules are applied, the transformed Hamiltoniansolve forVg, which introduces 16 new undetermined coef-
contains the unknown coefficients. We then determine the ficients.(The dimension of the null space b, is 16) These
unknown coefficientg; in such a way that the symmetry of coefficients first appear in terms of the transformed Hamil-
the Henon-Heiles system is preserved in the approximatgonian of degree eight. Thig/; transformation does not af-
Hamiltonian which we will now denotél,. This is accom- fect the terms of degree eight. We found that 15 of the 16
plished by choosing the; coefficients so that the following undetermined coefficients are determined uniquely by the
equalities hold at orde¢! *2: symmetry equationg21)—(23). The remaining coefficient
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does not appear iﬁs but does appear in the untransformeddure], we would find it necessary to give this 16th coefficient

terms of degree eight. Since we did not proceed on to higher numerical value.
order, it was unnecessary to set this coefficient. In order to The symmetry-preserved transformed Hamiltonian

find Wy, however[step (iii) of the transformation proce- through terms of degree eight is

2 2 2 2 2
~ P1 P2 X3 X3 €
Ho="%+ 5 + 5 + 5 + 75(~5p1—10pip5 — 5p;— 10pix] + 18p3x] — 5X1— 56p1PX1X,+ 18p1X5 — 10p5X5 — 10Kix3

—5%3) + 35¢(101p] — 2721p’p5 + 23197p; — 23503+ 303p’x{ — 351(pip5x] + 2195x7+ 303n7x] —~ 78%5X;

+101x§— 386405 p X1 X, + 42000, p3X; X2 — 386401 PoX5x, — 78%7X5+ 253802 p3x5 — 70505%5 — 351003 Ix5

+ 253805x2x5— 272X x5+ 420001 pox1 X5+ 219p2X5 — 70505x5 + 231K3X5 — 235¢5) + %& 108 463
—2278 66@Sp5— 253 3747p5+ 1 940 82§2p5— 192 9255+ 433 86§ 5x5 — 6 862 35(Tp5x2—4 176 2042psx>
—1 702 25D5x3+ 650 80D7x; — 6 888 73D7p5x;+5 290 85@5x;+ 433 86%7x5— 2 305 03¢5x5+ 108 46 %5
+52 7523p,X1Xo+ 7 338 91D3pax; X+ 7 286 16®,p5X1X,+ 105 5043p,x3x,— 29 515 80®, pax3x,

+52 752, p,X3X,— 2 305 03®SX5— 4 176 2047p5x5+ 2 179 4042psx5— 771 70(5x5— 6 888 73D5x2x5

+46 929 67PIp5x3x5— 1 463 67HIX2X5— 6 862 35(2XX5— 4 176 205X x5— 2 278 66G5X3

—29 515 80§3p,x X3+ 14 572 320, p3x, x5+ 7 338 91D, px3x3+5 290 85@7 x5 — 1 463 67®3p5x5

—1 157 55Q@3x3— 4 176 2043x3x5+ 2 179 4043x2x5— 253 3744x5+7 286 16(®,p,x;,x5— 1 702 252X}

— 771 70@3x5+ 1 940 8283x5— 192 9258). (24)

Interestingly, we have found that the same resultHgg can  the undetermined coefficients in W which might be re-
be found by taking symmetry-adapted linear combinations ofjuired for purposes different than those considered here.
the terms of degree eight produced by Jaffed Reinhardt Consider that the variables ,X,,p;,p, upon which the
[3]. (ThroughH¢ Jaffés transformed Hamiltonian is identi- original Hamiltonian depends define the axes of an orthogo-
cal to ours) with the standard BGNF procedure. The appro-pg| rectilinear coordinate system in a four-dimensional
priate linear combination is given by space. The new transformed variabl¥s,X,,P;,P, define
the axes of a new coordinate system which is curvilinear
with respect to the untransformed coordinataiéhough the
two coordinate systems become identical near the phase
- 12 space origii The exact nature of this distortion is contained
Hssz—zNE_l oyHsg. (25 in the transformation rule€8). We have demonstrated how
to constrain the transformed Hamiltonian in the transformed
coordinates to obey the same mathematical symmetry opera-
Here the index on the summatidhruns over the 12 opera- tors that the original Hamiltonian does in the untransformed
tors in the symmetry group, they being the 12 operators. coordinates.

It is straightforward to demonstrate that the equalities In related work, Finkler, Jones, and Sowgi3] have
(21)—(23) hold for ourHg at all orders but not for thél of  sought to find an approximate constant of the motikin,
Jaffeand Reinhardt{see Eq(20) of Ref.[3].] We conclude independent of the energy for the mm-Heiles system.
that the flexibility inW can be used to impose certain sym- Their procedure employs a power series with unknown co-
metry restrictions on the transformed Hamiltonidnin the  efficients for the desired conserved quantity, To deter-
transformed coordinate system mine the coefficients, they require the Poisson bracke of

While it may be desirabléfor quantization, for example  with the Hamiltonian to be zerdK,H}=0. Some arbitrari-
to constrain the transformed Hamiltonian to have the samaess in the determination of the coefficients is removed by
symmetry properties as the original Hamiltonian, there areising the symmetries of the’"Hen-Heiles Hamiltonian. Fin-
other constraints which could lead to a different choice forkler, Jones, and Sowd25] note that if the nonuniqueness is
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removed in some arbitrary manner at a given order, the equ&owell can therefore be found in Table | of RéR5],
tions which specify the expansion coefficients<ofit higher  where they make a comparison with thef Gustavsor{9]
order will in general have no solution. This raises some conthrough terms of degree six[26]. (Note that
cern about our procedure. Recall that the nine unspecifiegustavson’s Hamiltonian and constant of motion are the
constants introduced by, are set by applying the symme- same as those found by Jaffed Reinhard{3], the only

try conditions toHg. These symmetry constraints only difference being that the coefficients were found
specify eight of the nine coefficients, however. Since thenumerically in Gustavson’s work and algebraically
ninth coefficient does not appearlity, we set it to zero for in the work of Jaffe and Reinhardt[3].) Apparently,
simplicity. We do so because it is practicalfhough not  constraining the symmetry of the approximate Hamiltonian
mathematically necessary to pick a particular numerical in the transformed coordinates domet lead to the same
value for this coefficient in order to utiliz&s. It is possible  gpproximate constant of the motion as the procedure of
that in making this somewhat arbitrary choice for the remain-Fink|er, Jones, and SowdI23,25. While one coefficient in
ing unspecified coefficient, we may be preventing the Presyy, was set in a somewhat arbitrary way, this can only

ervation of symmetry at some higher order, although no suc ffect terms of degree7. Since ourH, is unique through
problem was encountered through terms of degree eight. We N

o e terms of degree six, we see that determining a symmetry
assume that if this occurs, some value of the coefficient can : L
be found to satisfy the latter condition. We always foundcorreCt approxmate constant_ of the motion in the untrans.-
adequate flexibility in the transformed Hamiltonian to pre_formed Va”ables. and _generatmg a symmetry correct approxi-
serve the desired symmetry properties to the order that wiate Hamiltonian in the transformed variables are
have extended our work. incompatible goals. , _

The Finkler, Jones, and SowdR3,25 procedure does It might be possible to invert the transformation progedure
not involve any transformation of the coordinate system andefore specifying the undetermined coefficiemtsin H.
therefore there is no question of the symmetry properties in dhese unspecified constants could then be chasten the
transformed representation. The resulting constant of the mdeverse transformation in such a way thapossessed the
tion K is expressed in the same variables as the originaggame symmetry properties as the Hamiltonian. In this case,
Hamiltonian. Unfortunately, their procedure does not yield! would presumably have to be identical to the expression for
an integrable approximate Hamiltonian and so no advantage found by Finkler, Jones, and Sowell. While conceptually
is gained for quantization. It is also interesting to note thateasonable, we have not been able to perform the reverse
the Finkler, Jones, and Sow¢#3,25 procedure is a mixed- transformation orH before specifying the undetermined co-
order procedure like ours. efficients.

The advantage of the BGNF procedure is that it yields not One can argue that the “correct” transformed
only an approximate Hamiltonian but also an approximateHamiltonian is the one which produces an untransformed
constant of the motion. In the transformed coordinates, thispproximate constant of the motidnwhich possesses the
guantity is typically chosen using E) [9,11], same symmetry properties as the original Hamiltonian.

Certainly a “true” constant of the motion must possess the
same symmetry properties as the Hamiltonian system to
which it belongs. It is important to note, however, that such
:g_ﬁz_ (26) an approximate Hamiltonian, when quantized, may not give
the proper degeneracies for the eigenvalues of the system
Other choices are possible. The constant of motignin which it describes because it may not have the correct sym-

original untransformed variables can be generated ﬁ?dtm metries. In the case consid.ered' here, thedteHeiles Sys-
~ tem, the approximate Hamiltonian in transformed variables

applying tol the reverse of the transformations used to l‘ind—|_v| which possesses the same svmmetry properties as the
H from H. To determine the reverse transformation rules, ,? b y y prop

Egs. (8) are simply reversed to give the new transformedHénon—Heiles system does not have an associated untrans-
as. ) Ply 9 . ) formed approximate constant of the motion which is symme-
variables in terms of the old untransformed variables instea

) . . correct.
of vice versa. We have made such an inversion on y
The procedures demonstrated here for the two-

dimensional Haon-Heiles Hamiltonian can be used
on the more interesting Hamiltonians describing molecular
-~ vibrations. For example, ammonia has a vibrational potential
s=Hs—Has. (27 in which two oscillators are degenerate, methane has a
vibrational potential with twofold and threefold degenera-

Interestingly, the approximate constant of the motion incies, and Buckminsterfullerer{€ ¢o) has a vibrational poten-
untransformed variablesls, does not satisfy the sym- tial with threefold, fourfold, and fivefold degeneracies. In
metry operations of the Hwen-Heiles system21)—(23),  all of these cases, the molecular Hamiltonian will therefore
however. have a high degree of symmetry. Thus, a symmetry-adapted

Through terms of degree six, our transformedBGNF for the Hamiltonian should provide a description
Hamiltonian,H¢, and approximate constant of motion in un- of the system which can be quantized semiclassically to
transformed variables, are identical to those of Jafend  produce information about the high energy spectrum of
Reinhard{3]. A comparison of out in untransformed co- molecules which are not accessible by quantum
ordinates to the constar€ found by Finkler, Jones, and basis set methods.
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