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Previous investigators have shown how the Birkhoff-Gustavson normal form~BGNF! procedure can be used
to develop an integrable Hamiltonian which approximates a nonintegrable Hamiltonian system. We discuss the
symmetry properties of these approximate Hamiltonians and how a certain flexibility inherent to the BGNF
procedure can be used to affect this symmetry. Because the BGNF procedure involves a transformation of the
coordinates, the symmetry issue has been somewhat neglected due to its complexity. The techniques we
demonstrate here with the He´non-Heiles Hamiltonian are easily generalized for use in molecular Hamiltonians
of arbitrary symmetry.@S1050-2947~96!09307-9#

PACS number~s!: 33.20.Tp

I. INTRODUCTION

The representation of physical systems as collections of
classical coupled oscillators is ubiquitous in theoretical
chemistry and physics, the vibrations of small molecules be-
ing an important example@1#. It is of considerable interest to
find the quantum~vibrational! energy levels of such systems
because knowledge of the vibrational ladder spacings would
allow for the prediction of a molecule’s spectroscopic tran-
sitions. It has long been recognized that semiclassical meth-
ods hold great promise for the determination of the quantum
vibrational energy levels of coupled oscillator systems@2#.
This promise is largely due to the fact that semiclassical
methods are not encumbered by the need for the very large
basis sets which make standard variational calculations in-
tractable. One of the oldest and most common of the semi-
classical methods, the EBK technique, due to Einstein, Bril-
louin and Keller @3#, is really an extension of the Bohr-
Sommerfeld quantization rule of the old quantum theory to
multidimensional integrable Hamiltonian systems. Unfortu-
nately, coupled oscillator systems are frequentlynoninte-
grable and therefore considerable effort has been expended
in an attempt to generalize semiclassical techniques to non-
integrable systems@3–7#. Another approach is to find an in-
tegrable system which closely approximates the noninte-
grable system of interest, and then use the EBK procedure to
find the quantum energy levels of the approximate integrable
system. This technique was developed by Swimm and Delos
@8# and Jaffe´ and Reinhardt@3#. These authors employed the
Birkhoff-Gustavson normal form~BGNF! procedure to gen-
erate the approximating Hamiltonian@9#. Algebraic quanti-
zation has also been used to quantize these Hamiltonians
from the BGNF procedure@10#.

Our current interest, and the subject which is addressed in
the present paper, lies in the determination of these approxi-
mating Hamiltonians. We have noted that these approximat-
ing Hamiltonians do not necessarily possess the same sym-
metry properties as the original nonintegrable system upon
which they are based. This has important implications for
quantization as the degeneracies of the quantum states are
determined by the symmetries of the Hamiltonian. This issue
of symmetry is more subtle than a cursory glance might sug-
gest because the BGNF method of producing the approxi-

mating Hamiltonian involves transformation of not only the
coordinates but also the momenta. In addition, we have also
noted, as did several previous authors, that there is some
flexibility in the BGNF transformation procedure. We will
demonstrate that this flexibility can be utilized to maintain
the symmetry properties of the full Hamiltonian in the ap-
proximating Hamiltonian expressed in the transformed coor-
dinates. We believe this procedure will be useful in approxi-
mating molecular Hamiltonians describing vibrational
motion as well as in other applications.

II. THE BIRKHOFF-GUSTAVSON NORMAL FORM
PROCEDURE

Consider a Hamiltonian of the form

H~x1 ,x2 ,p1 ,p2!5H2~x1 ,x2 ,p1 ,p2!1eH8~x1 ,x2 ,p1 ,p2!,
~1!

whereH2 is an integrable, zeroth-order Hamiltonian, and
H8 is a perturbation which contains any nonintegrability.
Here we represent a two-dimensional system with coordinate
variablesx1 ,x2 and conjugate momentap1 ,p2 . The gener-
alization to more than two dimensions is straightforward. It
is assumed thatH2 contains only quadratic terms in the four
variables and can be written as a sum of uncoupled harmonic
oscillators ~e.g., normal modes!. It is further assumed that
H8 can be written as a sum of polynomials of degree>3 in
the four variables, each term having a constant real coeffi-
cient. In the Birkhoff normal form~BNF! procedure, a series
of canonical transformations is found which transforms the
Hamiltonian order-by-order into a ‘‘normal’’ form which is
integrable. Each successive transformation normalizes the
expression to one higher power in the perturbation parameter
e. For systems which are nonintegrable, this series cannot
converge, but if it is truncated to some finite number of
terms, the resulting expression is an integrable approxima-
tion to the original Hamiltonian. Gustavson’s contribution to
the Birkhoff-Gustavson normal form procedure was to gen-
eralize the Birkhoff normal form procedure to cases where
the zeroth-order HamiltonianH2 is resonant@9#.

The BGNF procedure has been discussed in detail several
times before@3,8,9,11#, so we will restrict our presentation
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here to a brief outline. The procedure is based on the equiva-
lence of the Liouville operator to the time derivative operator
@12#. For a dynamical quantity,a,

da

dt
5$a,H%5(

i
S ]H

]pi

]a

]qi
2

]H

]qi

]a

]pi
D . ~2!

We recognize this as the Poisson bracket ofa with H. The
normal operator is the Poisson bracket withH2 , the zeroth-
order Hamiltonian,

Da5$a,H2%5(
i

S pi ]a

]qi
2qi

]a

]pi
D . ~3!

Functions which are in the null space of the normal operator
are then constants of the motion ofH2 .

The goal of the BNF procedure is to find a transformed
Hamiltonian,H̃, which can be written

H̃5(
i
aiv i , ~4!

where

Dv i50 ~5!

for all v i . That is, the new Hamiltonian,H̃, is to be a linear
combination of the null-space vectors ofD. The v i can be
shown to all commute with each other~such a set of vectors
is said to be ‘‘in involution’’! and will therefore be constants
of the motion for the approximate Hamiltonian,H̃. In a two-
dimensional system, there will be one otherindependentcon-
stant of the motion in addition to the energy.

Gustavson@9# showed that in the resonant case the dimen-
sion of the set of vectors which span the null space ofD is
larger than in the nonresonant case, but this expanded set is
no longer in involution. Nevertheless, it is still possible to
construct a second independent constant of the motion. This
constant of the motionĨ can be taken to be

Ĩ5H̃2H̃2 . ~6!

It follows from $v i ,H2%50, that$H̃,H2%50. SinceH2 is by
definition already in normal form,$H̃2H̃2 ,H̃%50, and
thereforeĨ is a constant of the motion of the approximate
Hamiltonian,H̃.

The j th transformation to the new Hamiltonian is given
by the generating function@13#,

Sj5(
i
qiPi1e jWj12~qiPi ! ~7!

where the lower case indicates old ‘‘untransformed’’ vari-
ables, and upper case denotes new ‘‘transformed’’ variables.
Since there is a new transformation at each orderj , theQ
andP from the j th transformation are theq and p for the
( j11)st transformation. The following transformation rules
follow from this generating function:

pi5Pi1e j
]W

]xi
;

xi5Xi2e j
]W

]Pi
. ~8!

W is given by the solution of

DW5H̃2H. ~9!

At first glance, this would appear to be problematic because
bothW and H̃ are unknown. However, we can findH̃ by
using the condition from linear algebra that in order for a
solution of the above equation to exist,H̃2H must be or-
thogonal to the null space ofD† @9,11#. With H̃ known, the
solution forW is straightforward.

The solution,W, however, is not unique sinceW plus any
multiple of av i satisfying Eq.~5! would result in a solution
to Eq. ~ 9!. Typically, in order to specify a unique solution,
the extra condition is added thatW contain no component in
the null space ofD @3,8,9,11#. This is equivalent to requiring
W to have the smallest possible norm.

The BGNF procedure is most easily carried out in vector
form. The direct product space of quadratic polynomials
composed of the monomialsx1 ,p1 ,x2 ,p2 is

~x1
2 ,p1

2 ,x1p1 ,x2
2 ,p2

2 ,x2p2 ,x1x2 ,p1p2 ,x1p2 ,x2p1!

and has dimension 10. The space of cubic polynomials is,

~x1
3 ,p1

3 ,x1
2p1 ,x1p1

2 ,x2
3 ,p2

3 ,x2
2p2 ,x2p2

2 ,x1
2x2 ,

x1
2p2 ,x1x2p1 ,x1p1p2 ,x2p1

2 ,p1
2p2 ,

x1x2
2 ,x2

2p1 ,x1x2p2 ,x2p1p2 ,x1p2
2 ,p1p2

2)

and has dimension 20. Functions which span the space of
fourth, fifth, and higher degree polynomials can also be ar-
ranged into similar vectors. The general dimension of the
vector space ofnth degree polynomials in the four variables
is

~n11!~n12!~n13!

6
, ~10!

or

~ j13!~ j14!~ j15!

6
, ~11!

for order e j . The space of eighth degree polynomials, for
example, has dimension 165.

The normal operator can also be written in matrix form.
This matrix will have the same effect on the vector represen-
tation of a polynomial that the derivative form of the opera-
tor will have on the algebraic form of the polynomial. The
matrix form ofD in the space of quadratic polynomials is
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D51
0 0 21 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

2 22 0 0 0 0 0 0 0 0

0 0 0 0 0 21 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 2 22 0 0 0 0 0

0 0 0 0 0 0 0 0 21 21

0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 1 21 0 0

0 0 0 0 0 0 1 21 0 0

2 . ~12!

Similar matricies can be developed forD in the space of
third, fourth, fifth, and higher degree polynomials. Note that
theD operator is block diagonal. These blocks correspond to
subspaces of the vectors of polynomials and can be divided
up according to the sum of the degrees of the monomials
with like subscripts@11#. Consider a polynomial of the form

x1
ax2

bp1
cp2

d . ~13!

In the matrix representation of theD operator in the space of
second degree polynomials shown above, the first block~up-
per left! involves polynomials wherea1c52 and
b1d50. The second~middle! block involves polynomials
wherea1c50 andb1d52. The last block~lower right!
involves polynomials wherea1c5b1d51. This block di-
agonal property is also present in theD operator in spaces of
higher degree and can be used to improve computational
efficiency in the practical application of the BGNF proce-
dure. The maximum dimension of a block ofnth degree
polynomials is (n12)2/4 for n even or (n13)(n15)/4 for
n odd @11#. Other block diagonalizations are also possible.
One based on symmetry may prove particularly fruitful.

We used theMATHEMATICA @14# algebraic manipulation
software in this investigation. The full procedure for the
transformation is as follows.

~i! ConstructD and D† in the space of polynomials of
degree j12 and find their respective null spacesv i and
wi . (Dv i50 andD†wi50).

~ii ! Solve for H̃ using the conditions thatH̃2H must be
orthogonal to the null space ofD† @i.e., (H̃2H)•wi50; i #,
and thatH̃ must be a linear combination of thev i . This
gives a set of linear equations for the coefficients of the
v i .

~iii ! SolveDW5H̃2H for W makingW•v i50 to mini-
mize the norm ofW.

~iv! Use the generating functionS to develop the transfor-
mation rules.

~v! Apply the transformation rules to the untransformed
Hamiltonian~or to the Hamiltonian resulting from the previ-
ous transformation!. Since the right-hand sides of Eqs.~8!
involve old variables as well as new variables, this must be
done recursively.

~vi! Repeat the previous steps for the nextj .

Each iteration will transform the Hamiltonian to the de-
sired ‘‘normal’’ form (H̃5( iaiv i) to one higher power in
e. Once can use accelerated convergence techniques to nor-
malize to ordere2n in thenth transformation@15#, or use Lie
perturbation theory to obtain transformation equations which
avoid the recursive substitutions@16–18#, but the issues dis-
cussed below in Sec. III appear in these variations also.

The Hénon-Heiles Hamiltonian system has been the sub-
ject of considerable study over the past three decades, pre-
dominantly because it is one of the simplest Hamiltonian
systems to exhibit regularand irregular motions and is a
prototype for nonintegrable coupled oscillator systems@4,9–
11,19–22#. The form of the Hamiltonian is

H5S px22 1
x2

2 D 1S py22 1
y2

2 D 1eS x2y2
y3

3 D . ~14!

While the Hénon-Heiles Hamiltonian is well known to be
nonintegrable, extensive numerical experiments have shown
that a considerable fraction of phase space is dense with
regular trajectories, particularly at low energy@3,7,9,11#. The
results of these numerical experiments then suggest that the
Hénon-Heiles system might be well approximated by an in-
tegrable Hamiltonian, particularly at low energies. This prop-
erty makes the He´non-Heiles Hamiltonian system ideal for
studying approximate Hamiltonians. The BGNF procedure
has been used to develop an approximate Hamiltonian for the
Hénon-Heiles system several times previously@3,8,9,11#.
The form of the transformed BGNF Hamiltonian through
ordere6 is given in Refs.@3,10,15# and is available from the
authors through ordere10.

III. DISCUSSION OF SYMMETRY

Note that the zeroth-order Hamiltonian,H2 , has spherical
symmetry. The cubic terms in the He´non-Heiles Hamiltonian
introduce a threefold rotational symmetry like that of an
equilateral triangle. This threefold symmetry is easily seen
when the cubic term is written in polar coordinates@4# where
it takes the form

H8~r ,u!5F r 33 sin~3u!G . ~15!
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This means that the Hamiltonian is invariant under certain symmetry operations, specifically, reflection through they axis,
time reversal, rotation by 2p/3, and their products@23#. We will represent these operations with the operators,R, T, and
O, respectively.

R⇒~x→2x,px→2px!, ~16!

T⇒~px→2px ,py→2py!, ~17!

O⇒S x→2x

2
2
31/2y

2
,y→

31/2x

2
2
y

2
,px→

2px
2

2
31/2py
2

,py→
31/2px
2

2
py
2 D . ~18!

In addition to those above, there are the following: rotation
by (4p/3) (O2), reflection through the liney5(x/2)
(R85OR), reflection through the line y52(x/2)
(R95O2R), TO, TO2, TR, TR8, andTR9. Of course there
is also the trivial identity operationE. These 12 operations
form a group which is the direct product of theC3v point
group withT and is isomorphic toD3d or D3h . Note that
R, T, andO generate all group members. It is easily verified
that

RH5H ~19!

and that similar equalities hold for the other operators.
It is easily demonstrated, however, thatOH̃ÞH̃. This

means that the approximate HamiltonianH̃ does not possess
the same symmetry properties as the He´non-Heiles system
when the standard BGNF procedure is applied. This is
readily seen in Eq.~20! of Ref. @3#. If the threefold rotational
symmetry was maintained, the terms proportional to cos2u2
and cos4u2 would vanish.

We have noticed@7# that in the BGNF procedure, there is
some flexibility in the choice ofW. Note that in the solution
of DW5H̃2H forW, we can add any linear combination of
the null-space vectors ofD toW and still have a valid solu-
tion to the equation. This flexibility only exists forj even.
For j odd, there are no null-space vectors ofD, andW is
unique. Note that for polynomial degreej12 ~order j in
e) there are M null-space vectors of D, where
M5( j14)2/4 for j even, andM50 for j odd. SinceD only
involvesH2 , it conserves only the full spherical symmetry.
In order to satisfy the reduced symmetry which comes from
the higher-order terms inH, additional symmetry constraints
must be imposed in the BGNF procedure artificially. We
have therefore defined an extendedW which we will denote

W5W1(
i
civ i . ~20!

W is used in place ofW in the generating functionS from
which the transformation rules are derived. After the trans-
formation rules are applied, the transformed Hamiltonian
contains the unknown coefficientsci . We then determine the
unknown coefficientsci in such a way that the symmetry of
the Hénon-Heiles system is preserved in the approximate
Hamiltonian which we will now denoteH̃s . This is accom-
plished by choosing theci coefficients so that the following
equalities hold at ordere j12:

RH̃s2H̃s50, ~21!

TH̃s2H̃s50, ~22!

OH̃s2H̃s50. ~23!

The other nine operators do not introduce any additional con-
straints since they can be expressed as products of these
three. SinceH̃s is actually determinedbeforeW at a given
order, the undeterminedci coefficients which were intro-
duced by the transformation vectorW at order j are set at
order j12, making this a ‘‘mixed-order’’ procedure.

There are no linear terms in the He´non-Heiles Hamil-
tonian, and so noW1 transformation is required. The second-
degree part of the He´non-Heiles Hamiltonian is already in
normal form, and therefore theW2 transformation is also
unnecessary. TheW3 transformation introduces no undeter-
mined coefficients becauseD3 has no null-space vectors. The
W4 transformation vector introduces nine undetermined co-
efficients because the dimension of the null space ofD4 is
nine. These undetermined coefficients first appear in terms of
the transformed Hamiltonian having degree six. TheW5
transformation does not affect the terms of degree six and so
the undeterminedci coefficients from theW4 transformation
remain unspecified until it is necessary to findH̃s for the
sixth degree terms. The above symmetry equations uniquely
determine eight of the nine coefficients. The remaining coef-
ficient does not appear inH̃s but does appear in the untrans-
formed terms of degree six.~These are the terms of degree
six following the first three iterations of the transformation
procedure, usingW3 , W4 , andW5 .) In order to proceed
with step~iii ! in the transformation procedure in the space of
sixth degree terms, we have found it necessary to give this
remaining coefficient a numerical value@24# and we chose
zero for simplicity since its value is irrelevant to the symme-
try of the transformed Hamiltonian. It is then possible to
solve forW6 , which introduces 16 new undetermined coef-
ficients.~The dimension of the null space ofD6 is 16.! These
coefficients first appear in terms of the transformed Hamil-
tonian of degree eight. TheW7 transformation does not af-
fect the terms of degree eight. We found that 15 of the 16
undetermined coefficients are determined uniquely by the
symmetry equations~21!–~23!. The remaining coefficient
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does not appear inH̃s but does appear in the untransformed
terms of degree eight. Since we did not proceed on to higher
order, it was unnecessary to set this coefficient. In order to
find W8 , however @step ~iii ! of the transformation proce-

dure#, we would find it necessary to give this 16th coefficient
a numerical value.

The symmetry-preserved transformed Hamiltonian
through terms of degree eight is

H̃s5
p1
2

2
1
p2
2

2
1
x1
2

2
1
x2
2

2
1

e2

48
~25p1

4210p1
2p2

225p2
4210p1

2x1
2118p2

2x1
225x1

4256p1p2x1x2118p1
2x2

2210p2
2x2

2210x1
2x2

2

25x2
4!1

e4

3456
~101p1

622721p1
4p2

212319p1
2p2

42235p2
61303p1

4x1
223510p1

2p2
2x1

21219p2
4x1

21303p1
2x1

42789p2
2x1

4

1101x1
623864p1

3p2x1x214200p1p2
3x1x223864p1p2x1

3x22789p1
4x2

212538p1
2p2

2x2
22705p2

4x2
223510p1

2x1
2x2

2

12538p2
2x1

2x2
222721x1

4x2
214200p1p2x1x2

31219p1
2x2

42705p2
2x2

412319x1
2x2

42235x2
6!1

e6

2 488 320
~108 467p1

8

22 278 660p1
6p2

22253 374p1
4p2

411 940 828p1
2p2

62192 925p2
81433 868p1

6x1
226 862 356p1

4p2
2x1

224 176 204p1
2p2

4x1
2

21 702 252p2
6x1

21650 802p1
4x1

426 888 732p1
2p2

2x1
415 290 850p2

4x1
41433 868p1

2x1
622 305 036p2

2x1
61108 467x1

8

152 752p1
5p2x1x217 338 912p1

3p2
3x1x217 286 160p1p2

5x1x21105 504p1
3p2x1

3x2229 515 808p1p2
3x1

3x2

152 752p1p2x1
5x222 305 036p1

6x2
224 176 204p1

4p2
2x2

212 179 404p1
2p2

4x2
22771 700p2

6x2
226 888 732p1

4x1
2x2

2

146 929 672p1
2p2

2x1
2x2

221 463 676p2
4x1

2x2
226 862 356p1

2x1
4x2

224 176 204p2
2x1

4x2
222 278 660x1

6x2
2

229 515 808p1
3p2x1x2

3114 572 320p1p2
3x1x2

317 338 912p1p2x1
3x2

315 290 850p1
4x2

421 463 676p1
2p2

2x2
4

21 157 550p2
4x2

424 176 204p1
2x1

2x2
412 179 404p2

2x1
2x2

42253 374x1
4x2

417 286 160p1p2x1x2
521 702 252p1

2x2
6

2771 700p2
2x2

611 940 828x1
2x2

62192 925x2
8!. ~24!

Interestingly, we have found that the same result forH̃s8 can
be found by taking symmetry-adapted linear combinations of
the terms of degree eight produced by Jaffe´ and Reinhardt
@3#. ~ThroughH̃6 Jaffé’s transformed Hamiltonian is identi-
cal to ours.! with the standard BGNF procedure. The appro-
priate linear combination is given by

H̃s85
1

12(N51

12

sNH̃8 . ~25!

Here the index on the summationN runs over the 12 opera-
tors in the symmetry group, thesN being the 12 operators.

It is straightforward to demonstrate that the equalities
~21!–~23! hold for our H̃s at all orders but not for theH̃ of
Jafféand Reinhardt.@see Eq.~20! of Ref. @3#.# We conclude
that the flexibility inW can be used to impose certain sym-
metry restrictions on the transformed HamiltonianH̃ in the
transformed coordinate system.

While it may be desirable~for quantization, for example!
to constrain the transformed Hamiltonian to have the same
symmetry properties as the original Hamiltonian, there are
other constraints which could lead to a different choice for

the undetermined coefficientsci in W which might be re-
quired for purposes different than those considered here.

Consider that the variablesx1 ,x2 ,p1 ,p2 upon which the
original Hamiltonian depends define the axes of an orthogo-
nal rectilinear coordinate system in a four-dimensional
space. The new transformed variables,X1 ,X2 ,P1 ,P2 define
the axes of a new coordinate system which is curvilinear
with respect to the untransformed coordinates~although the
two coordinate systems become identical near the phase
space origin!. The exact nature of this distortion is contained
in the transformation rules~8!. We have demonstrated how
to constrain the transformed Hamiltonian in the transformed
coordinates to obey the same mathematical symmetry opera-
tors that the original Hamiltonian does in the untransformed
coordinates.

In related work, Finkler, Jones, and Sowell@23# have
sought to find an approximate constant of the motion,K,
independent of the energy for the He´non-Heiles system.
Their procedure employs a power series with unknown co-
efficients for the desired conserved quantity,K. To deter-
mine the coefficients, they require the Poisson bracket ofK
with the Hamiltonian to be zero,$K,H%50. Some arbitrari-
ness in the determination of the coefficients is removed by
using the symmetries of the He´non-Heiles Hamiltonian. Fin-
kler, Jones, and Sowell@25# note that if the nonuniqueness is
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removed in some arbitrary manner at a given order, the equa-
tions which specify the expansion coefficients ofK at higher
order will in general have no solution. This raises some con-
cern about our procedure. Recall that the nine unspecified
constants introduced byW4 are set by applying the symme-
try conditions to H̃6 . These symmetry constraints only
specify eight of the nine coefficients, however. Since the
ninth coefficient does not appear inH̃6 , we set it to zero for
simplicity. We do so because it is practically~though not
mathematically! necessary to pick a particular numerical
value for this coefficient in order to utilizeW6 . It is possible
that in making this somewhat arbitrary choice for the remain-
ing unspecified coefficient, we may be preventing the pres-
ervation of symmetry at some higher order, although no such
problem was encountered through terms of degree eight. We
assume that if this occurs, some value of the coefficient can
be found to satisfy the latter condition. We always found
adequate flexibility in the transformed Hamiltonian to pre-
serve the desired symmetry properties to the order that we
have extended our work.

The Finkler, Jones, and Sowell@23,25# procedure does
not involve any transformation of the coordinate system and
therefore there is no question of the symmetry properties in a
transformed representation. The resulting constant of the mo-
tion K is expressed in the same variables as the original
Hamiltonian. Unfortunately, their procedure does not yield
an integrable approximate Hamiltonian and so no advantage
is gained for quantization. It is also interesting to note that
the Finkler, Jones, and Sowell@23,25# procedure is a mixed-
order procedure like ours.

The advantage of the BGNF procedure is that it yields not
only an approximate Hamiltonian but also an approximate
constant of the motion. In the transformed coordinates, this
quantity is typically chosen using Eq.~6! @9,11#,

Ĩ5H̃2H̃2 . ~26!

Other choices are possible. The constant of motion,I , in
original untransformed variables can be generated fromĨ by
applying to Ĩ the reverse of the transformations used to find
H̃ from H. To determine the reverse transformation rules,
Eqs. ~8! are simply reversed to give the new transformed
variables in terms of the old untransformed variables instead
of vice versa. We have made such an inversion on

Ĩ s5H̃s2H̃2 . ~27!

Interestingly, the approximate constant of the motion in
untransformed variables,I s , does not satisfy the sym-
metry operations of the He´non-Heiles system~21!–~23!,
however.

Through terms of degree six, our transformed
Hamiltonian,H̃s , and approximate constant of motion in un-
transformed variables,I s , are identical to those of Jaffe´ and
Reinhardt@3#. A comparison of ourI s in untransformed co-
ordinates to the constantK found by Finkler, Jones, and

Sowell can therefore be found in Table I of Ref.@25#,
where they make a comparison with theI of Gustavson@9#
through terms of degree six @26#. ~Note that
Gustavson’s Hamiltonian and constant of motion are the
same as those found by Jaffe´ and Reinhardt@3#, the only
difference being that the coefficients were found
numerically in Gustavson’s work and algebraically
in the work of Jaffe´ and Reinhardt @3#.! Apparently,
constraining the symmetry of the approximate Hamiltonian
in the transformed coordinates doesnot lead to the same
approximate constant of the motion as the procedure of
Finkler, Jones, and Sowell@23,25#. While one coefficient in
W4 was set in a somewhat arbitrary way, this can only
affect terms of degree>7. Since ourH̃s is unique through
terms of degree six, we see that determining a symmetry
correct approximate constant of the motion in the untrans-
formed variables and generating a symmetry correct approxi-
mate Hamiltonian in the transformed variables are
incompatible goals.

It might be possible to invert the transformation procedure
before specifying the undetermined coefficientsci in H̃.
These unspecified constants could then be chosenafter the
reverse transformation in such a way thatI possessed the
same symmetry properties as the Hamiltonian. In this case,
I would presumably have to be identical to the expression for
I found by Finkler, Jones, and Sowell. While conceptually
reasonable, we have not been able to perform the reverse
transformation onH̃ before specifying the undetermined co-
efficients.

One can argue that the ‘‘correct’’ transformed
Hamiltonian is the one which produces an untransformed
approximate constant of the motionI which possesses the
same symmetry properties as the original Hamiltonian.
Certainly a ‘‘true’’ constant of the motion must possess the
same symmetry properties as the Hamiltonian system to
which it belongs. It is important to note, however, that such
an approximate Hamiltonian, when quantized, may not give
the proper degeneracies for the eigenvalues of the system
which it describes because it may not have the correct sym-
metries. In the case considered here, the He´non-Heiles sys-
tem, the approximate Hamiltonian in transformed variables
H̃s which possesses the same symmetry properties as the
Hénon-Heiles system does not have an associated untrans-
formed approximate constant of the motion which is symme-
try correct.

The procedures demonstrated here for the two-
dimensional He´non-Heiles Hamiltonian can be used
on the more interesting Hamiltonians describing molecular
vibrations. For example, ammonia has a vibrational potential
in which two oscillators are degenerate, methane has a
vibrational potential with twofold and threefold degenera-
cies, and Buckminsterfullerene~C60) has a vibrational poten-
tial with threefold, fourfold, and fivefold degeneracies. In
all of these cases, the molecular Hamiltonian will therefore
have a high degree of symmetry. Thus, a symmetry-adapted
BGNF for the Hamiltonian should provide a description
of the system which can be quantized semiclassically to
produce information about the high energy spectrum of
molecules which are not accessible by quantum
basis set methods.
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