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The lowest-order rescattering contributi@iiangle amplitudgin three-body models of exchange reactions
with charged particles contains the off-shell two-boHymatrix describing the intermediate-state Coulomb
scattering of charged subsystems. General properties of the exact exchange triangle amplitude, when the
incoming and outgoing particles are on the energy shell, are derived. This includes the analytic behavior, i.e.,
the positions and characters of its leading singularities, in thé ptene, whered is the scattering angle, in
the vicinity of the forward- and backward-scattering directions. Since for computational reasons the Coulomb
T matrix is usually replaced by the Coulomb potential, the effects of such an approximation on the analytic
properties are investigated. The theoretically established behavior of the exact and the approximate exchange
triangle amplitudes is then illustrated by numerical calculations, for both atomic and nuclear reactions, for
energies below and above the corresponding three-body dissociation thresholds, for elastic and inelastic ex-
change[S1050-294{®6)06111-2

PACS numbeps): 34.80.Bm, 34.90+q, 25.55.Kr, 24.10-i

[. INTRODUCTION (but still below the asymptotic regime dominated by the
double-rescattering contributinn
Exchange reactions in three-body systems with charged The general feature ofmost of the terms beyond the
particles are conveniently described within the framework ofOPE, and in particular also of the triangle amplitude, is that
the exact three-body theory either in terms of effective-two-they contain the off-shell two-particl& matrix describing
body integral equations in momentum spéte3], or in par-  intermediate-state Coulomb scattering of charged sub-
ticular for applications at higher energies by means of thesystems. As is evident, the complicated singularity structure
multiple-scattering representation of the relevant three-bodgf the latter in momentum space makes the calculation of
transition operatorésee, e.g.[4]). On the energy shell, there such expressions rather difficult. Hence, in numerical appli-
exists a close correspondence between the contributions tations(for a nuclear case, see, e.g., R&f and references
the effective potential occurring in the former approach, andherein; for atomic reactions, see e.g., REf6,11)) the Cou-
the matrix elements between channel states of the multipldemb T matrix is usually replaced by its Born approximation,
scattering terms: in both formulations there occurs in loweshamely, the Coulomb potential. In this way the analytic and
order the familiar one-particle exchan@@PB), followed by  numerical effort required for their computation is drastically
the single- and higher-rescattering contributions. reduced, but the quality of such an approximation, to be
Up to now, in theoretical calculations of particle- called the Coulomb-Born approximation in the following, is
exchange reactions, essentially only the single-rescatterindifficult to assess.
contribution, the so-called triangle amplitude, has been taken In fact, there exist only a few investigations in which the
into account, in addition to the OP@@owever, there exist a exacton-shell triangle amplitude has been investigated theo-
few attempts to investigate—in some approximate way—retically [12—-16, and even fewer attempts to calculate it
also the influence of the double-scattering teffis7]; fora  numerically[17,18. In particular, in Ref[17] the exact am-
recent review of methods used in ion-atom scattering, seplitude was evaluated for a few atomic electron-transfer pro-
Ref. [8]). This restriction is justified in either one of the cesses, and compared with the corresponding Coulomb-Born
following situations:(i) one of the three particles is neutral approximation. The conclusion was that the latter was ac-
because in that case thmultiple-scattering-typeexpansion  ceptable for none of the reactions examiifgaugh, because
of the effective potential collapses to just these two term®f the use of analytical methods, it was restricted to hydro-
(provided the additional short-range interaction has been remenic 1s bound-state wave functions, in addition to being
resented as a sum of separable terms;[8e or (i) the confined to such high energies that the zero-energy essential
energies are sufficiently high so that the first two terms in thesingularity of the Coulomi matrix no longer gave rise to
multiple-scattering representation of the effective potentialsany numerical problems
or even of the exchange amplitudes themselves suffice to Studies of a certain off-shell continuation of the single-
provide a satisfactory description of the experimental dataescattering part of the effective potential, as it occurs in the
integral equation approach, and its Coulomb-Born approxi-
mation have been performed in Refd9-23. However,
*Present address: Cyclotron Institute, Texas A&M University, there the total three-body energy was restricted to values
College Station, TX 77843. below the composite-particle breakup threshold, and only
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equal masses were considered. The finding was that at sucimder what circumstances the latter will be located so close
low energies the ratio of exact to approximate rescatterin@s to influence the amplitude behavior strongly even within
contributions to the effective potential differs appreciablythe physical region, and therefore be detectable experimen-
from the value 1, in most cases which are relevant for atomically. As a further result we derive an approximation for the
exchange reactions, indicating that such a simplifying apexact amplitude. In Sec. 1V, these theoretical properties of
proximation is inappropriate. Only for parameter values perthe triangle amplitude are illustrated by numerical calcula-
taining to nuclear exchange processes was the Coulomiiions. A first part contains tests of the accuracy of the
Born approximation found to be reasonably accurate. Coulomb-Born approximation for some selected atomic and
Recently, we exhaustively investigate24] the behavior ~nuclear exchange reactions, both for energies below and
of the (numerica”y Ca'cu|ateﬂexact and approxima‘[e on- above the Corl’espondllng bound-state dissociation t.hl’eSholldS.
shell triangle amplitudes for nonrearrangement scattering, 88 & second part, the influence of the above-mentioned sin-
functions of the energyboth below and above the bound- gularities on the angle behavior in the physical region
state dissociation threshgldhe scattering angle, the masses,0f the triangle amplitude is illustrated by means
and the magnitudes of the charges of the particles involve®f  the  processes  H¢'m)(p,p')H(n’/'m’)  and
Bound-state excitation was also considered. For atomic readi(n/m)(e,e’)H(n’/'m’) for (n/m,n’/'m’) e (1s,2s).
tions the quality of the approximation, consisting of the re-A summary is given in Sec. V.
placement of the intermediate-state Coulomimatrix by the Natural unitsi=c=1 are chosen. Furthermore, a con-
Coulomb potentialonly the repulsive case was considared ventional notation for two-body quantitie&,=Ag,, with
turned out to be very poor in general over a wide range of thet# 8% v, is adopted. Finally, unit vectors are denoted by a
parameters mentioned. In contrast, for the nuclear cases studat, i.e.,p=p/p.
ied, this approximation was found to be very satisfactory,
making this substitution a reliable and simplifying tool for
performing such nuclear charged-composite-particle reac- Il. THREE-PARTICLE MODEL OF EXCHANGE
tions. SCATTERING
A similar investigation has now also been performed for
the on-shell, single-rescattering exchange contributn Letm, ande,, »=1,2,3, be the masses and charges of
change triangle amplitudldo the effective potential in the thel three particles, respectively. We are mtere_stgd in the re-
integral-equation approach or to the multiple-scattering rep@ction a+(By)m— B+ (ya),, leading from an initial state
resentation of the three-body scattering amplitude. We con/here particlea, having a center-of-mass momentuy,
fine ourselves to the case where the particles that participafB'Pinges on the bound state of particlgsand y character-
in the intermediate-state rescattering have charges of equi€d by the set of quantum numbers to a final state where
sign (this is, however, not a severe restriction, since most of'OW particlesy and « are bound in a state with quantum
the physically interesting reactions are included théréin- ~ humbersn, and particleg, with the center-of-mass momen-
ergies are considered from the reaction threshold up to verym 0 is free. The wave function of the bound system
high energies, and scattering angles over the whole range. [87y), belonging to the binding energy,, is denoted by
addition, excitations of the incoming and/or outgoing bound| #,.,), and similarly for the outgoing bound state.
state are allowed for. Thus the numerically calculated exact The lowest-order contribution containing intermediate-
amplitude and its Coulomb-Born approximation can be comstate Coulomb rescattering, as it results either in the integral-
pared, and the quality of the latter be estimated. equation[1,2] or the multiple-scattering approacsee, e.g.,
We also study the analytic properties of the exchange triRef.[17]), to the exchange reaction amplitude is given on the
angle amplitude in the cdsplane, whered is the scattering energy shell, i.e., for
angle. Comparison with the analogous singularity structure
of the Coulomb-Born approximation suggests another, more
appropriate approximation for the original amplitude, valid qi - q’ﬁ2 -
for medium to high energie@ests of its quality and range of E=om TEem=5p~ T Epn: 1)
validity for atomic reactions have already been communi- “ A
cated in Ref[25]). Whenever applicable, the latter should
greatly simplify the calculation of exchange processes. by
The plan of our paper is as follows. In Sec. Il we intro-
duce some notation and, in particular, the triangle amplitude
relevant to exchange reactions. In Sec. lll general properties e . , c
of this amplitude are discussed, both in its exact form as well M am(95,92) =K enl THE D [ Yam)da).  (2)
as when the intermediate-state Coulomatrix is replaced
by the Coulomb potential. We first describe a rigorous bound
on the exact amplitude which involves its Coulomb-BornHere and in the following we always assume: S# y+# a.
approximation, and discuss the behavior at high energies. Ifhe quantityTS denotes the transition operator describing
a next step the analysis of the singularity structure of theCoulomb  scattering of particles ¢« and ;
triangle amplitude as a function of the cosine of the scatterM ,=m,(mg+m,)/(m,+mz+m,) is the a-channel re-
ing angle near both the physical forward- and backwardduced mass, and, . =E+i0.
scattering regions is presented. The positions and characters Let us explicitly write expressiof2) in momentum-space
of the leading singularities are determined. We then discusgepresentation,
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FIG. 1. Graphical representation of the exchange triangle ampli-

tude (3). Semicircles represent the bound-state form factdfs.
denotes the two-body Coulomb matrix.
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Here u,=mgm,/(mg+m,) is the reduced mass of the pair
(Bv), and analogous expressions hold fog and . For
convenience, the antisymmetric symbgj,=—¢€,z, with
€.5=11 if (a,B) is a cyclic ordering 0f(1,2,3, is used.
Moreover, the Coulombl matrix when read in the two-
particle space is characterized by a HBt, The diagram-

. . c . -
matical representation Of/l;n’am is shown in Fig. 1. From

its form the name(exchangg triangle amplitude becomes
obvious.

Similarly we define the quantity\/l\é;am(q’ﬁ,qa) which
follows from Eq.(3) by the replacemeriT— V< :
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lll. PROPERTIES OF THE TRIANGLE AMPLITUDES
M am AND M

Bn,am
A. Bounds on the ratio M}E,am/st,am

Among the simplest properties are bounds on the &jio
They are similar to those described in Rgf4] for the cor-
responding non-rearrangement scattering amplitude.

(i) For a repulsive  Coulomb interaction,
VS(p'.p)=4me,ez/(p’ —p)?, with e,ez>0, which is the
only one we are considering presently; the two-bddgna-
trix is bounded by the potential as folloy21]:

0=<TS(p',p:E,+i0)=<VS(p',p),

vV p,p.p-p for IA57<0, 7
0=[TS(p’,p:E,+i0)|<VE(P',p),
Y pp.p-p for IAEy>O. 8

From this one easily derives the following bounds for the
elastic exchange rati® 5 .0, Where the index O denotes a
state whose wave function has no nodes,

VYcosy, for E<O,

(€)
(10

0<Rgowos1,

0<|Rgoaol<1, Vcosd, for E>O0.

Here cost=q,,- 61;; is the cosine of the scattering angle. The
implication is that for elastic exchange scattering off a target
in a nodelessS state, the Coulomb-Born approximation al-
waysoverestimateshe exact amplitude. In other words, the
error made by approximating the two-body Coulomima-
trix in Eq. (3) by the Coulomb potential is of known sign.
Note that no analogous bounds result if either one or both
bound pairs are in states whose wave functions have nodes.
(i) Since for large two-body subsystem energfé%,ap—
proaches the Born approximatiMf, for elastic and inelas-
tic exchange scattering we expect

E—o

(11)

RBn,am — 1.

However, it is obvious that foR 4, ,m to reach the value 1,
the energyE must be higher than that for which, on the
C/E \/C
two-cbody level, we have T (E,;)~V]. In
M am(dj.0,) the Coulomb T matrix enters for all
y-subsystem energies frold down to minus infinity, for

This will be referred to as the Coulomb-Born approximationE=E,=E—k?/2M > —c. Thus a behavior like Eq(11)
of EqQ. (3). As is well known, for simple bound-state wave can result only as a combined effect Bf(EJ,—kZ/ZM y)

functions, Mzs,am(%,qa) can be calculated analytically

being approximately equal tkl‘; over the whole range of

[26]. A useful quantity is the ratio of the exact amplitude to momentak for which the product of the momentum-space

its Coulomb-Born approximation

C '
M;n,am(qﬁ 1qa)

()
M (9l G)

R,Bn,am:

bound-state wave functions differs appreciably from zero.

B. Analytic behavior of M;ﬁvam
near the forward-scattering direction

In this subsection we investigate the singularity structure

because it provides us with a measure of the quality of apef the exchange triangle amplitua‘el}iam(q’ﬁ,qa), Eq.(3),

proximating the Coulomi matrix by the Coulomb potential
in the triangle amplitude.

in the z plane, where=cosd is the cosine of the scattering
angle, in the vicinity of the forward-scattering direction, us-
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ing the techniques developed in REZ7]. Forward scattering The singularity of interest of the integral in E(L6) re-
(fs) is defined such that in the center-of-mass system particleults from the coincidence of the singularities of the inte-

B, which is free in the final state, leaves the collision point ingrand at
the direction of incidence of the projectite With our nota-

2
tion for the momenta this is equivalent@g=q, . Below, it P2+ k2 = ( k+&qa +Kk2.=0 (17)
. T€ ’ . . @ @ mﬁ @
will be shown thatM g, ,n(d;.d,) POssesses a singularity
at and
0 Pa |2 tp ,\°
, a "2 2 _ =k 4 2 _
(m_ﬁqﬁ_m_ﬁqa +(Kamt Kpn)*=0, (12 Pp™ T Kpn= k+maqﬁ) + k=0, (18)
or equivalently az= ¢, with while the momentum transfer in the intermediate-state Cou-
() lomb scattering amplitude remains different from zero:
2 2
Mo M f ! = !
(m_ﬁq“) +(m—ﬁqﬁ) +(Kam+K’Bn)2 Py~ Py= €ay(K+ 0+ #0. (19
L9 = . >1. (13)  |n sec. Il C it is shown that, if Eqg17) and(18) are satis-
2m—a m—ﬁqaq’ﬁ fied and simultaneously the momentum transfe®) van-

ishes,/\/lgﬁyam(q;,q_a) Qevelops another si_ngul_arity _which

Here we have introduced k=24 |E,. and govems its behavior in the backward direction, i.e., for
2 BT It is si int lies 95— G-

Kpn= 2“B|Eﬁn|- It is apparent that this singular point lies i :

outside of the physical region. But, as will be discussed be“CRe,CE‘" _ thatk2 the two-body , CofloTth Ima_ltrlxk_

low under certain circumstances it can be located so close t-Bv(_pwpwE+_ 2m y)_ becgmes singular if the relative ki-

its border that observable effects on forward differential€tic energy of the particles in the initigh/2u,) and/or the

cross sections may result. final (Q;Z/Z,uy) state approaches the energy variaiiere
Quite generally we can write the bound-state wave funcE,+2_k f2M,) [2‘2]' Taking "2|nt0 2account the |c;ent|t|es
tion as Py 2y = (B4 —K72M ) =(pjs"+ kgn)2np and pif2u,
, —(E;—Kk%2M ) = (p.>+ k%m)/21,, Which follow from
o Gam(Pg) 14 definitions (4) with the help of Eq.(1), we can write this
Yam(Pa) = [pL2+ k2]t am’ (14 near-(subsystemenergy-shell behavior as
where ~ k? i in
TSPy py i B = 5y | =P+ k] P2+ ] 77T
Y
€481y (20
Tam=—T—" 1y
Kam with
is the Coulomb parameter for the bound sta@y),.
. S ~ 47-reaeﬁ
G,m(p,) is the so-called reduced form factor which is non- T‘;; = T
singular atp!?=—«? .. Introducing Eq.(14) into Eq. (3) (k+0,+0p) 7
yields pi \"r e T (1+in,)[? 2
©o, ¢k Gh(ps Hattp)  [8uy(EL—K2M )]y
Mgn,am(ApGa) = (2m)° [pgz+ Kfm]lf’fﬁn being nonsingular at the positioli7) and (18). Here
xT p!.p,:E —k—2 €aCptty
y yiMyr =+ ZMV ny: > (22)
V2, (E,—K?%2M )
IZG“”‘Z(p“I)f ] (16) is the relevant Coulomb parameter. Consequently, in the
[P+ Kgml™ 7em neighborhood of these singular points we have

dk 5n(Pp) ~c Gum(P)
(2m)3 [P+ K5l o0 1y Y[l ko] Tem Ty

c ! C ’
M;n,am(QB Ne ) %M;n(ffr)n(qﬁ o)t =

TC
T'Y
1- 7871774

. , a3k
%GBHUKﬁn)Gam('Kam)f (277_)3 Mﬁ 2 5 2 5 1777am7|77y'
k+—=0z| +xz, + K5

m,, m

Mo
k+-—q
mg "¢

(23
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In order to simplify the discussion we have in the last equal-and thusz,, is equal to
ity in Eq. (23) assumed orbital angular momentum zero for

both bound statesAy),, and (ya),; thus the form factors C €,Ea1

could be taken out from under the integral at the singular Ty = (5@)_\/2M (E,—KZ./2M )"
points. Otherwise, only their radial parts can be taken out, e e 7
and the appropriate angular functions have to be retained iHere we have to assume that the three-body c.m. energy is

the integrand. such thatE# k(zsp)/ZM,/. The corresponding dependence of

The proof thav\/t};(f,}] becomes singular at positigt2) T‘; on the integration variablk is eliminated thereupon. But
is based on the close relation between the singularity of th&"j also depends ok via 1(k+q,+ qb)2+2i " On ac-
amplitude which is nearest to the physical region in the count of condition(19) this latter factor is regular at that
plane and the asymptotic behavior of its partial-wave projecpoint in thek plane where the singular point$7) and(18)
tion for /— (see, e.g[29)). It has, e.g., been used[iB0]  coincide, thereby pinching the integration contour. Hence it
to extract the leading singularity of the two-particle Coulombtoo can be taken out from under the integral okem order
amplitude as the momentum transfer goes to zero. to find the position where this can be done, different methods
The asymptotic evaluation of the partial-wave projectioncan be employed. For instance, we can evaluate
of M}E(Sr)n makes use of saddle-point integration methods(k+a,+q)? by substituting fork-q, andk-qj the corre-
Before applying them, however, we simplify express(28) sponding expressions following from the conditid&¥) and
by taking out from under the integral the terR with the  (18), respectively, and finally replacing by k(. Alterna-
momenta fixed at their saddle-point values. This does nofively we can proceed as follows. Rewrite E83) by intro-
alter the final result, sinc&C is nonsingular at, and smooth ducing the integration variable= €,,(k+d,+dp), and the
in the neighborhood of, this point. In detail, we first note that@bbreviations
TS depends ork? via the kinetic energk?/2M ,, of particle L
v, cf. Egs.(21) and(22). Hencek? is to be taken equal to its pazeaﬂ( q;ﬁ m_qa)v p;3= €Ba
saddle-point valudx(zsp) (see below 4

(25

Mg,
qa+ myqﬁ) (26)

5 For later use we point out that taking into account the on-
Mg shell condition(1) results in the identity
— 04
2 Mg

2 2 _ 12 2
(sp~ (Kpnt Kam) : (Pat Kam)/24o=(Pp"+ Kign) 2115 (27)

(24 Equation(23) then assumes the form

K,8n+

2
B
m_q}}) Kaemt KﬂnKam(Kﬁn+ K am)

k

TC
T),

[(p—pp)?+ Kg]' ™ 70 (Pt Po) 2+ K]t Tam ™7y

c , . . d’p
M e @+ 0e) ~ G 3n) G (i K ) f @)° (28)

with ?‘; being now proportional to p?*? ’7(75')). Thus it is the coincidence of the singularities of the integrand of(E8). at
(P—pp)?+ K5,=0 (29
and at
(P+Pa)®+ K5m=0, (30)

which eventually leads to a singularity of the exchange amplitude at posit®)rnote that condition(19) is equivalent to
p2+0]. By an argumentation which is similar to the one leading to the expre&zior k(zsp) and will therefore not be given,

it follows from representatiof28) that the term g2+ ”(fp) can be taken out from the integral at the saddle point

Ba | wp )\

a

q,ﬁ+m_qa> Kgnt qa+m_q,,5’) Kom™ KBnKam(KBn+Kam)
Y Y

Plsp= (31)

(Kﬁn+ Kam)

Note that here the quantity,- q’B still has to be replaced by the corresponding expreaq;mjgg(sp) following from condition
(12), or equivalently Eq(13). As a consequence, the whole functfﬁﬁ can be taken out of the integral with the momenta
fixed at their saddle-point values. The resulting quantity will simply be denoteﬁig}{).

Thus, when attempting to derive the behaviorfdf;iff,)n at the coincidence of singularities of the integrand at positions
(17) and (18), it suffices to consider
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TC(fs) /! % ; Tc d*k 1 1
Mﬁn,am(qﬁ’qa)%Gﬁn('Kﬁn)Gam('Kam)Ty(Sp) (2m)° “p 2 5 1-ngn—1m, o 2 5 1=7am=1ny"
Hker_a% +Kﬁn} k+m_q“ + K4m
(32
|
Denote the integral in Eq32) by _ K2+ G2+ K2, :k2+q_;32+ Kf;n 0
T 2Kka, p 2kqy
[ d%k 1
' (2m)* [(k+0p)2+ k5, M (K+G0) %+ k2™ and z,(zg) is the cosine of the angle betwedn and
(33)  qg.(qp). Introducing expansion&36) and (38) into Eq. (33),
one obtains
where the short-hand notations
N=1=nam=imy, N=1-ng—im,, (34 J=/§_)0 (2/+DPA2)3,, z=0,-05, (4D
—_HMao —_Hs with
er mB Qa 1 qB ma qB ' (35)

have been introduced. Next we apply the expansions

1 1 1
[(k+a.)2+ K2, N (2kg)N (LatZa)

= 2/+1
(2kg )M /=0 ( :

X P/( - Za)a/( ga)i (36)

with (see Ref[31], or Ref.[32], Eq. 7.229

, (t1dz,P(z,) i (1o
a/(ia)ZEJ_lmZE(l—ezw A=NHT(1-N))
X(£Z= 1) TN, (37
and similarly
L .l s
[k a7+ kB, (2Kag 2o
XP(=2zg)b,(Lp), (38
with
b ( )_I_ 1— 2ari(1—N\¢) | NG
Alp=5-(1-e I( )
X(LG=1)EMRQ Mgy, (39)

P,(z) are the Legendre polynomials, aq@g(¢) the associ-

1 - 2
J/:ﬁfo dk(qu_;;)”f(Zk@M bALpaL)- (42

In order to find the large? behavior of],, we make use
of the asymptotic formulag33]

—

/[ —0
Q;lJr)\(g) ~ eiw(*l+)\)/‘fl+kQ/(é«)'

(43

/o aT 172 e—/lnT 1
QA0 = Z ero \/—7 , (44)
r=1(0)={+P-1. (45

HereQ,({) are the Legendre functions of the second kind.
The order relation has the usual meanihx) =o(g(x)) for
X—Xo, if lim,_ £(x)/g(x)=0 (g(xo)#0). The intimate
connection between the positiorn({,) of the singularity of
1/(¢,+2z,)N and the large? behavior of the partial-wave
projectiona,({,) is made explicit by applying these asymp-
totic relations to Eq(37):

/[ —o0 \/; (é«i_ 1)(1—)\i)/2 e—/ Int,,
a, (L) =~ /327X T(\)) \/7_2_1

As is apparent{, can be read off, e.g., from the quantity
7.. =7(,), which occurs in the exponent on the right-hand
side of EqQ.(46), as{,=(7,+ 7, ')/2. Also the charactex;
of the singularity can be extracted directly, e.g., from the
corresponding power of’.

Introducing Eq.(46), and a similar expression fds,,

(46)

ated Legendre functions of the second kind. Furthermore, into Eq.(42) leads to
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e—/ In( ToTp) ,

(47

J/ ~ dek A(k) /)\i+)\f_3k2_)\i_)\f
' 0

with

A~YK):=m 28NN (V)T () (49)
and 75:=7({g). Note that {,>1, which also entails
7,>1. The same holds true fdt; and 7.

Since the dominart” dependence of the integrand of Eq.
(47) resides in the exponential, faf— the contribution to
the integral comes from the region around the saddle poin
which can be found from the equation

d
a('ﬂ(TaTB):O. (49

Its solutionk?=k¢,,, Eq. (24), the derivation of which is

somewhat tedious but straightforward, was givef2n| (for
the case of two charged and one neutral particles; see al
Ref.[35]). Thus, when attempting to calculate this integral,

all k-dependent factors which are nonsingular at the saddle

point can be taken out from under the integrakatk .
The remaining integration can be performed, and yields

/o A(Ksp)
/ (sp
J =~ 277-//(3/27A)k_A
: (sp)
(52— 1) AN fisp2 1) (1N P2
VP2 1)(£5P7 - 1)

(sp)_(sp
e—/ Ir‘I(Tap’er)

X = .
VnT,7g) |k:k<sp)

(50

V(re—1) (75— 1)

Our goal is to deduce, from such a highbehavior of the
partial-wave projectiord /, the singularity of the integral
in thez plane which is nearest to the physical region. For this
purpose we define a quantity

Sp) Tgp) , (54)

Tsp- =T,
and a correspondinyss) = ( 7sp)+ 7(epp/2 [CF. EQ.(45)]. The
{atter has already been given explicitly in E¢3). Herewith
We rewrite Eq.(50) as (in the following we assume\
#-—n,n=0,1.2,...)

Var

/@21

/[ —

(g(zfs)_ l)(l—A)/Z ef/ InT(sp)
2
I'(A) \/T(Sp)_ 1

J/%

(59

with the abbreviation
SO

_ V2Aksp)T(A)
kf\sp) \/(lnTaTﬁ)”|k=k(sp)

(¢sP2_ 1)(1—x§5">>/2( g;}sp)z_ 1)<1_A<fsp>),2
o
X 2 -
(f(fs)_l)(l Az
v —
Tsp~ L

VPP =D -1)

(56)

In the wavy brackets we have combined all terms containing
/in such a form that, when inserted into E@1), the
partial-wave summation can be performed, thereby yielding
essentially the singular factor I/((S)—Z)A [cf. Egs.(46) and
(36)]. Hence we arrive at the following behavior of the inte-

The double prime means a second derivative. Here quantitiegral J:

(&P and {§P defined as in Eq(40) occur, but withk re-
placed bykgp:

2 ~Z 2
k(Sp)+qa+ Kam

2 =72, 2
(sp):k(Sp)+q/3 T K

(5P = —2 (51)
2k(sp s

o )

Similarly, 5P and T%Sp) are given in terms ofZ*P and
4“(;”), respectively, as in Eq45). Furthermore,

(sp

NP =N i(k=K(sp) = 1= Zgm—1 7 (52)

with an analogous definition for{s?). Finally, the abbrevia-
tion
Ar=NP NP —2=— 07— 20 7P, (63

has been introduced.

B (29,9p)'B

J=~ = — .
9= [( U= 002+ (ki )21

(57)

Now inserting Eq.(57) into expressior(32) and taking into
account Egs(21), (31), and(56), we have the final result that
in the vicinity of the singular poin€12), which is nearest to
the physical forward-scattering region, the leading singular
part of the exact amplituded) behaves as

TC(fs)

Mﬁn,am(qlﬂ lqa)
C
_ Nirs
2 ~ am— a2 75
IU'B ’ Mo 2 Y
[(m_aqﬁ_m_ﬁqa) +(K,Bn+Kam) }
(58)
with



4098 E. O. ALT, A. S. KADYROV, AND A. M. MUKHAMEDZHANOV 54

2\ ipsP 1+ 7 +inSP
. E— T Y S R P (1+ npntin,™)
Nig = — 5 me 7 [IT(A+iggP)[H —~
\/Ep 7]7 Iu’ouu“ﬁ Mo
(sp
(1+7 +i1](5p>) * (i ; k(nam+7]5n+2i77(75p))
( ma) am Y Bn(l KBn)Gam(l Kam) 1 (sp
e NEY . (sp :
Mg [81(E . = ke /oM )T \In7o70) Tk 3 70075 g1 1 i)
. i (sp) i (sp)
[(= Zam= 70— 21 75") Vitp=1 (P21 (02— 1) 1,2
X : _ _
T(1= 7am =i 7yP) T (1= mpa—i55P) (73P2— 1) (#5972 1) (L2 1) am® 7 202

(59

measuring the strength of the triangle amplitude at the sinwe point out that for lower energies wheﬂfp) is purely

gularity. Hence we have the important result that in thejmaginary, ngfﬁ),aml is a more complicated function. Several

neighborhood of the singular poifit2), the leading angular  comments are fitting.

behavior of/\/l;iffr%(qg .q,) is defined by the denominator (i) The results derived above are, in fact, valid for attrac-

in Eq. (58). tive and repulsive Coulomb scattering in the intermediate
The leading behavior of the approximate amplitudestate.

MXE(L%(%,%), which in the intermediate state contains the (1) From Eq.(25) it can be seen that only for sufficiently

Coulomb potential instead of the off-shell Coulomb ampli-large energiesz(P becomes so small thaR{? .| ap-
tude, is obtained from Eqg¢58) and (59) by setting 77(ﬂ/sp) proaches the value 1, implying that the Coulomb-Born ap-

equal to zero everywherfprovided that neithery,,, nor proximation be reliable in the immediate vicinity of the sin-
70 €quals a positive integer nor both vanish simultaneouslydular Point (). Tr_us supplements resuit.1) derived for
The latter happens, e.g., in deuteron-induced nuclear reaPhysical values og=cosd.

tions of the typeA(d,p)B, with B being a bound state of (iii) Near the singular pointl2), the dependence on the

A+n; see below. Then for 7P real, ie. for scattering angle of the leading nonregular parts of the mag-
! : Y oy ; TC(f / VE(fs) (!

E—kZp/2M >0, for the magnitude of ratiéé) at singular- ~ Nitudes IMEnom(d5.,00)] and [ Mz (2 (ay,0,)] are the

ity (12) we find the simple result same(with one exception to be discussed beloowever,

. . C
as mentioned above, their strengthzat{ (s, N(Tfs) and

T(= Dam= 70— 20 7P)

VC _ TC
IR gn,aml = |R(Bfrs1)am : =C} N ts)=Nts)| 7P=0, (63

F'(=nom— nﬁn)
T(1— 7.0 T(1— ) are different. Hence, in some region around that point one
Dam = pn 5| has the following relation between the exact amplitude and
T(1= 9am—i757) T(1=ng,—inSP) the Coulomb-Born approximation:

(60) c , c ,
| M (0, 0 | =~ | Rl - | MG (0 G0) | (64)

with C3= 24 (€277;”~ 1) being the Coulomb penetra- This holds true forE—kZ,/2M ,>0 when 7 is purely
tion factor. For atomic reactions with hydrogenic boundreal. In contrast, for lower energies, and in particular for

states, one has E<O0, i.e., below the bound-state dissociation threshold, their
angular behavior is different, and E(4) has to be modi-
Nam™ ~Nams  7gn= —Ngn, (61) fied.

(iv) Relation(64) has been derived faf in the vicinity of

o {(sp)- However, provided the latter is located not too far
wheren,,,, andng, are the principal quantum numbers of the from the physical region, we may expect the same propor-
incoming and outgoing bound states, respectively. Hence thigonality to hold between the moduli of the physical ampli-

ratio specializes to c , c , .
P tUdeSMgn,am(qB 1qa) anszn,am(qB !qa)! VIZ.

. C , C ,
(N g+ Ngn—2i 7P) M om0 |~ RS ool - | M i am(05, G| (65)
T(Nam+Ngn)

| Rignraml = C3
In fact, the range of the validity of E65) has already been
I'(1+n,m) T(1+ng,) explored for atomic reactions in Refl25]. As was shown
TA+n.—i7) T(1+n, iy | there, for elastic exchange scattering of electrons and protons
am™ 1 7y a7y off hydrogen atomsgnot necessarily in their ground states
(62  the right-hand side of Eq65) represents an excellent ap-
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proximation for the exchange amplitude over a wide range ofor excitation from ann,,=1s to anng, =2s level, one
(medium to high energies and scattering angl@scluding  obtains a cross-section pole behavior of the type

the forward-scattering direction . 1
(v) Taking into account the slight difference in the ol (1s—2s)~ m P 2 5-
C ’ a
scattering-angle  dependence oM () (q;,q,) and (m—ﬁqﬁ—m—ﬁqa +(Kp1T Kap)?
C a
M8 (a5.0,), as can be derived from E¢B9), a relation (69)

of type (65 even between the original amplitudes them-yy,\vever, in a genuine calculation of excitation cross sec-

selves(and not only between their moduuggests itself:  {jons it must be expected that such a singular power behavior
will partly be counterbalanced by the orthogonality of the

MTC (95.0.) initial and the final bound-state wave functions, which, in the
n,amiHp Ha full amplitude Eq. (3) tends to suppress the forward-
NTC /NVC scattering region. This orthogonality effect is lost in the deri-
~ (s’ () - vation of expressiorni58) for z near the singular point.
g, Mo \? ) —2in (vii) For nuclear reactions where all particles either have
m_aqﬁ_m_ﬂq“ +(Kgnt Kam) charges of equal sign or are neutral, both bound-state Cou-

lomb parameters are positive or zero. In this case the angular

XMXE,am(q’B,qa). (66)  part of |M;EF§%(q;;,qq)| will not diverge at all, for %
real; on the contrary, it even goes to zero when approaching
. EQ.(12. If, in particular, particley is neutral(e.g., the neu-
Although the Coulomb-Born approximation yon in deuteron-proton, or more generally in deuteron-
M m(0p.0,) is purely real, the right-hand side of rela- nucleus, exchange scatterinthe initial- and final-state Cou-
tion (66) could be shown in Refl25] to represent a very lomb parameters are zeroy,m=7,=0. Thus, in the
good and easy-to-calculate approximation to the exact exvicinity of Eq. (12) the angular behavio{58) simplifies to
change amplitude, for sufficiently high energies and out to (s
rather large scattering angles. Hence, whenever applicablg\/l;ﬁfr)n(ql’;,qa){( !
its use should greatly simplify the calculation of exchange '
cross sections. (70
(vi) For atomic processes, the bound-state Coulomb pafhat is, in the main ordqm;ﬁ(f%(q;g,qaﬂ is independent
rameters are negative, i.6,,<<0 and#;,<0; hence, near '

: . of the scattering angle fde> k(zsp)/ZM,/ and even vanishes
Eq.t_(12|), the angut!ar depﬁ]nﬁegce W'I.I bt()acorr:je ?'\tler%ﬁm' .I or smaller energies. As has been mentioned above, in this
particufar, in réactions with hydrogenic bound states IN€ SiNg o4 the pehavior of the Coulomb-Born approximation

gularity is very strong. For example, for elastic exchange ~\cq,

Kp o _Ha
maqﬁ mﬁqa

2iny
+(Kﬁn+ Kam)z}

scattering from the ground state, i.e., fofo=ngo=1, tak- Bn,am can(nsg)t be extracted from Eq&8) or (70) by sim-
ing into account Eq(61) one has ply setting ;™ equal to zero. However, an explicit consid-
eration of the integral(33 (with #,=0) reveals that
. 1 MXEFLS% diverges logarithmically as poin{12) is ap-
| Mola(al.00) |~ . proached. o |
' Mg Ha " n 2 The decisive question is whether the angular behavior of
m, s Mg e (Kgot Ka0) the triangle amplitude, derived for the cosine of the scatter-

(67)  ing angle outside the physical regigef. Eq. (13)], has ob-
servable consequences in the form ahzore or less shajp

rise of the differential cross section in the forward direction.
The above discussion has made it evident that no noteworthy
experimental signatures are to be expected for nuclear reac-

and thus the cross section has a pole of fourth order,

) 1 tions. For atomic reactions the situation can be different,
Ty (15— 18)~ M m 7 depending on the distance of the singular pgii8) to the
ZB =20, | T (Kot Kuo)? physical region, which for its part depends on the process
m B m, @ B0 a0 .
a B considered.
(68) We confine our discussion to the important special case

_ _ _ . _ that the masses of the particles which are unbound both in
For inelastic exchange scattering the singularity becomethe initial and in the final state are equal, il,=mg. Then
more and more pronounced Bg, increases. For instance, expression(13) for the singular point simplifies to

E+ (|Eaml+[Epgnl) +

ma
1+ —
m'}’

m,\ ~——=
1+ 2m_) v | EamEBnl

Q5+ a2+ (1+Me /M) 2(Kgm+ K ) ,

{9 = , (71)

29,0 VE+|E ) (E+|Epn)
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where the on-shell conditiofi) has been used. It is apparent the physical region(for which A?>0). However, for
that for asymptotic energieE or momentaq, and q/’g, intermediate-state e scattering inH(e,e’)H, it is located
{(1s) approaches the value 1, independent of the masses of tisdoser to its border. In fact, in the latter reaction for elastic
particles and of the binding energies, and hence a forwardexchange, wherec,m= g, and m,/m,=m./m,<1, we
scattering peak should occualthough our nonrelativistic have

theory is certainly no longer valid in this casé-or non- ) )

asymptotic energies, if the mass of partiglewhich does not As~—4kom, (79
participate in the intermediate-state Coulomb scattering, is | . _ ) )

much smaller than the other mass, i.e.mif<m,, (g iS while, for inelastic exchange witk gn<xam,

located rather far from the border of the physical region; thus
the singularity will not manifest itself in a striking angular

behavior. This situation prevails, e.g., ip,p’) reactions off 4t js; for inelastic exchange the singularity lies even closer
hydrogen atoms witm,=m, andm, =m, wherem,(me) is {5 the physical region than for elastic exchange.
the proton (electron mass. In the opposite case, i.e. for

m,>m,, as realized, e.g., ine(e’) exchange scattering off
hydrogen atoms wittm,=m, and m,=m,, the singular
point lies close to the physical region, provided that the en- In this subsection we derive the analytic behavior of the
ergy, and hence the on-shell momentum, is not very smalkriangle amplitud€16) in the z(= cos9) plane in the vicinity
Thus, the chances for distinct observable effects at intermesf the backward-scatterings) direction. It represents a gen-
diate energies are much more favorable. Analogous coneralization of the results obtained in RE34] (see also Ref.
ments also apply to the region of validity of the approximate[35]), where it had been assumed that one of the three par-

AZ~ — (Kom™ Kpn)?. (76)

C. Analytic behavior of M}E,am near the backward direction

relations(65) and (66). ticles is neutral. Similar techniques will now be used to show
. . , c . . .
For elastic exchange, ie., fogz=q,,n=m, and that M}, ,n(dj;.0,) possesses a further singularity which
Kpgm= Kam, We find lies at
2.2 - 2 2
ma am ma |Eam| 2 Mo 2 'U'.B ’ 2
{9=1+2| 1+ — =1+2|1+2—|——F—. Ot —0o| TK5m=|0at —0z| +k5,=0, (77)
(fs) m, ‘21 m, E+|E, | B m, m m, B Bn

(72 . :
or equivalently az= {s) with

Clearly, for fixed energy and fixed mass ratig,/m,,, the )

singular point is located more closely to the physical region (& 12, .2
il . . . qa +q/3 + Kam
the smaller|E,| is, i.e., the looser bound the composite _ m,
particle is, enhancing the prospects for strong experimental Cbg =~ Mg -1 (78)
signatures. This has, in fact, been verified in R2§] for the Zm—qa%
elastic (,p’) and (e,e’) exchange reactions with hydrogen 4
atoms in the 2-state as compared to hydrogen atoms in theputside of the physical backward-scattering region. This re-
1s state. sults from the coincidence of the singularities of the inte-
We mention that, e.g., for elastic exchange grand at Eqs(17) and (18), and at the forward-scattering
) singularity of the intermediate-state Coulomb matrix
(sp_ Ca m, 12 which occurs at
7y _?\/((2m Tm)ER(m. Am)+E. ]
@ CUTT 79 Py~ P,= €ay(K+0,+0p)=0. (79

Thus, energieg of the order of the incoming mass, [but ~ Eauivalently, if the integration variablep=e,,(k+0,

always much larger than &(,+m.)|E,.|/(2m,+m,) so +0p) is introduced, it is the coincidence of the singularities
Y. am a V.

that 5> be rea] are sufficient to make;* rather small, at Egs.(29) and(30), and at

practically independent ofm,, leading to values of

Rgﬁ{am close to 1. Since fom,<m, the singular point

{(1s) lies close to the physical for-ward-scattering region, Weyhich gives rise to the singularity OMEE am(%,qa) con-
can expect als® gm,qmlcoss~1~1; in other words, for small  gigered presently. Making use of conditie0) and recalling
scattering angles and for such energies, one expec}§q_(27)' we can rewrite Eq29) and (30) for the positions

p=0 (80)

c ’ C ’ . .y .
M a9 80) =~ M am(9 . 0a).- of the singularities of the integrand of E(L.6) as
Let us finally look at this situation in thA plane, with .
A,=qz—q,. From Eq.(58), with m,=mg, we conclude Pet Kam= pg2+ Kf;n=0, (81

that here the singularity is located ﬂ?~A§ with . o ) o
which coincides with Eq(77) [recall definitions(26)].

Agz_(1+ malmy)z(Kaer Kﬁn)% (74) The following observation is instructive. Consider the
pole diagram of Fig. 2, which describes the one-particle-
It is evident that forpp-intermediate-state scattering in the exchang€OPE) contribution to the full exchange amplitude.
reactionH(p,p’)H (m,/m,=m,/mg) this is very far from  Note that the momentg, and p,’g introduced in Eq(26) are
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(By) B p=(Po+ KoV o= (P2 + k5 )VI2u 5 [recall Eq. (27)],
m > one can read off the behavior &f directly, and accordingly
C
also that of MY, (*(q5,q,), in the vicinity of Eq.(81):
N,
¥ M3 ()00~ b -
Mpnsan( G 0)™ (72 ) T am 70
x (xy) , Ma |5, [P TemT a0
n { qﬁ+ m_yqa) + Kam
FIG. 2. Graphical representation of the one-particle-exchange (85)

amplitude(82). Semicircles represent the bound state form factors.
Consequently, for the full triangle amplitude we arrive at

nothing but the on-shell relative momenta at the initial and

the final bound state vertex, respectively. It is easily seen that TS N(bs
Eq. (81) describes the locus of the singularity of the corre- M n,am(dz:8a) = 2 T 7am™ 7pn
sponding amplitude; that is, fop?+ «2,—0, or equiva- [ Op'+ —Ua| +Kym

lently for z— ¢, , it behaves like (86)

OPE

OPHbS) (7
Mign,am(g+8a) = Mgn, am’ (05, 0a) where, of course, the residual strength fadttirgcs) differs
NOPE from the corresponding factdkl(bs) of the Coulomb-Born

— approximation. This singular behavior, indeed, coincides
(pa+’< ) Tem hn’ with that of the pole amplitude, Eq82). Let us add the

(82 following remarks.
(i) This derivation is valid for attractive as well as repul-

* A A H
with N(bs)_ 210G pn(Pg i K gn) Gam(Pa i Kam) [recall Eq. sive Coulomb interactions between the particles experienc-

}4] Thus the assgrtlon is that. the ni%r—backwardTscatterlnglg intermediate-state scattering.
singularity of the triangle amplitudéA g, ,m(dg.d.) is lo- (ii) For nuclear reactions, where the bound-state Coulomb
cated at exactly the same position as the singularity of th@arametersz,, and 7z, are positive semidefinite, the
pole amplitude. In fact, not only the location but also thebackward-scattering singularity will either be very weak or
character(pole, cut, etq. of these singularities of the two even lead to the vanishing of the triangénd of course also
amplitudes coincide. of the OPE amplitude at this point. This is to be contrasted
This can be seen as follows. Similarly to what was foundwith the situation pertaining to atomic reactions, where
in Sec. Il B for the forward-scattering singularity, the loca- 5,,,<0 and74,<0. Here the singularity will in general be
tion of the backward-scattering singularity can also be eXfather strong. In fact, if the initial and final bound states are

tracted from thegmuch simpler Coulomb-Born approxima-
tion (5), and in the present case even its type; see [Ré&1.

described by hydrogenic wave functions, the amplitude be-
havior looks like

In order to simplify the discussion we again assume that both

bound statesfy),, and (ya),, have a zero internal orbital

angular momentum. Thus the corresponding bound-state
form factors can be taken out from under the integral at the

singular pointg, =i« ., andpz=ixg,, respectively. Using
the integration variablp introduced above, in the vicinity of
Eq. (81) the amplitude5) becomes

M0l ,0,): = 477€,4G 50 (i 1) Goam(i Ka) I

(83
with
J'_J dp 1 1
) @m)P P [(p— pp)?t K]t 7
X ! 84
[P po) 2 K2l 7o e

If Eq. (81) is satisfied, the integrand of E(4) is singular at

1
2

+ Kim

c
M;n(gﬁq(qk 10a) ~ [(

1+n,m+ngp*

Mo
m, J

Y

dpt

(87)

wheren,,, andng, are the corresponding principal quantum
numbers. However, whether an experimentally detectable
cross section peak in the backward direction will result from
such a pole behavior of E487) depends on the distance of
this singularity to the physical regiofand, of course, of
Eq. (82)].

As is well known and can be inferred from E{.8), the
backward-scattering exchange singularity quite generally lies
closer to the physical region the smaller the mimssof the
exchanged particle which is noninteracting in the intermedi-
ate state is, for sufficiently high energies. However, in order
to simplify the discussion, we again consider in more detail
only the case when the masses of the partieteand g3,
which are unbound in initial and final states, respectively, are

the origin p=0, which gives rise to a singularity equal, i.e.,m,=mg. Expression(78) for the locus of the

of the whole integral. In fact,

substituting singularity reduces to
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14 - 1+ ) (ot B

+—t—|E—|1+— +

1 m, 1+m,/m, m, (Eam* Egn)

Z(bs):—a = = , (88)
V(E—E ) (E—Epp)

where the on-shell conditiofl) has been used. Several lim- Hence the singularity is located in the immediate vicinity of
iting cases are of interest. the physical region, in fact, the closer it is, the higher the

(i) For a fixed ratiom, /m, of the mass of the particle  projectile energy and/or the smaller the binding energy are.
which is bound in initial and finals state to the other mass, if

the energy becomes very large the location of the singular
point is at IV. NUMERICAL RESULTS

The various theoretical results derived in Sec. Ill will now
be illustrated by means of several examples from atomic and
nuclear physics. To begin with, we investigate under what
circumstances the Coulomb-Born approximation might be a
That is, even asymptotically the backward-scattering singugood approximation for the exact exchange triangle ampli-
larity never reaches the border of the physical regifum  tude, a question of considerable practical relevance. For this
m,#0), although the smaller the mass ratio is, the closer ipurpose we numerically calculated both amplitudes as func-
will come to it. tions of the center-of-mass kinetic energy of the projectile

(i) For fixed energy, if m>m, one has and the scattering angléor some numerical details we refer
L(bsy~ — M, /m,<—1; thus the singularity lies very far from to [24]). Figure 3 contains the absolute value of their ratio
the physical region, and hence will not result in a noticeably(6) for the elastic exchange reactioe+H(1s)—e’
peaking of the backward-scattering cross section. For in+H(1s), with the two electrons undergoing Coulomb scat-
stance, for electron elastic exchange scattering off hydrogetering in the intermediate state. It obviously satisfies the gen-
atoms in the state with quantum numbefsi/m}, eral bounds(9) and (10). Furthermore, it approaches the
e+H(n/m)—e’+H(n/m), where the heavy proton is the value 1 at about 100 keV for all angles, in accordance with
exchanged particle, Eq. (88) specializes up to terms of the EQ. (11). An angle-independent value, albeit clearly smaller
orderO(m/m,) to than 1, is also reached when approaching the reaction thresh-
A old. For energies less than, say, 10 keV, the Coulomb-Born
|E,| approximation considerably overestimates the exact ampli-
E <"1 (90)  tude, in particular in the forward-scattering hemisphere for

! some intermediate-energy region. This situation resembles
A o . . .. the one for the nonrearrangement triangle amplitude consid-
HereE, is the binding energy in the state with the principal ered in[24], except that there the overestimation was most

guantum numben, andE; is the projectile bombarding en- ; )
ergy in the center of mass. Thus the position of the Singularpronounced for backward scattering but practically absent at

. . threshold. Furthermore, in the physical region for backward
ity depends only weakly on the energy, and for all ener |e§ X ; ;
ir?/clud[i)ng very I}(/';lrge or?les lies far ofcfwthe physical regign;scatterlng the magnitude of the ratio depends on the energy

hence it will not exert any influence on physical sca’cteringand differs markedly from 1.
observables.
(i) For a light exchanged mass,(<m,), one finds

E—ox 2

Loy = — 14— +O(E™Y). (89
(b9 2m,(m,+m,) '

My

omo| 1+

g(bs)%_

E_ éam_ éﬁl"l

\/(E_ I’éam)(E_ I’éﬁn)

m,

—) N XY

ma

g(bs): +0

which, for sufficiently large energy, can come close to 1, i.e.,
to the border of the physical regidalthough according to

Eq. (89 it will never reach it. Consequently, the triangle
amplitude will contribute to the OPE in yielding a striking
backward-scattering peaking of differential cross sections.
Consider as an example proton elastic exchange scattering
with  hydrogen atoms in the state {n/m},
p-+H(n/m)—p’+H(n/m). Up to terms of higher order in
me/m,, one finds

FIG. 3. Absolute value of the ratio of the exact triangle ampli-
|‘ | (mZ) tude to the Coulomb-Born approximation, E®), for the elastic
n e

me |E
Libg=—1— m—e E — (92 gxchange rfeaction HE)(e,e’)H(1s), as .function of the c.m. pro-
p L m jectile kinetic energy and of the scattering angle.

©
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FIG. 6. Same as in Fig. 3, but for the nuclear reaction
FIG. 4. Same as in Fig. 3, but for the reaction d+p—p’+d.

H(1s)(p,p’)H(1s).
(19)(p.pIA(LS) nuclear reactiord+ p—p’+d, shown in Fig. 6. Except for

. . . projectile energies between 1 and 10 MeV for fairly small
The mass effect in the intermediate-state Coulomb SCalgqaitering angles, the Coulomb-Born approximation is found

tering strongly influences the quality of the Coulomb-Bornq pe good to within 5%, similarly to the nonexchange case
approximation. This can, e.g., be verified by looking at Fig. ¢ Ref. [24]). Hence for this reaction the latter provides a

4, which contains the results for the magnitude of rd6b  (g|iaple approximation for taking into account the particle
for the elastic exchange reactigm+H(1s)—p’+H(1s), exchange rescattering.

with the two heavy particles undergoing intermediate-state  Thg effect of the presence of the forward- and backward-
Coulomb scattering. The Coulomb-Born approximation failSgcattering singularities on the exact exchange triangle ampli-

completely except, of course, at very high energies which,4e  is shown in Fig. 7 for the reactions
are, however, not shown in this figure. On the whole, the, H(n/m)—e'+H(n'/'m’) for (n/mn’/'m’)

situation is rather similar to the nonrearrangement case studé(ls 2s), at 100-keV electron kinetic energy. Obviously

ied in Ref.[24], except that again forward- and backward- e former completely dominates the forward-scattering re-
scattering regions exchange their roles. Finally, we draw at: ion, the smaller the magnitudes of the binding energies in
tention to the remarkable fact that the threshold value ofyg jnjtial and final states are, in accordance with the discus-

Rprp(1s) is very close to the one for electron-hydrogen ex-gjon at the end of Sec. Il B. For excitation, the forward-

change scattering discussed above. , scattering peak is, however, somewhat suppressed by the
_An interesting, somewhat intermediate _exa+1mple IS Prohear orthogonality of the initial and final bound-state wave
vided by the positronium-formation reactioa” +H(1S)  fnctions for small(but nonzerd momentum transfer. Nev-

—Ps(Is)+H", since here the masses of the two particlesgtheless, at such a high-energy scattering for all three reac-
(positron and protonscattering in the intermediate state lie

on different scales, in contrast to the previous cases. For this
case the magnitude of the rati@) is depicted in Fig. 5. As is
apparent, the region where the Coulomb-Born approximation
fails has become rather large but remains still smaller than
for the proton-reaction discussed above.

The situation is, however, much more favorable for the

J [ degree]

FIG. 7. Exact triangle amplitudé€3) (in a.u) for the reaction
H(n/m)(e,e’)H(n’/"m’) at 100-keV projectile energy, as a func-
tion of the scattering angle. Solid line: elastic exchange-1s;

FIG. 5. Same as in Fig. 3, but for the reaction long-dashed line: target excitatiors-t 2s; short-dashed line: elas-
e"+H(1s)—Ps(1s)+H". tic exchange 28— 2s.
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potential in the integral-equation approach and in the
- 61 multiple-scattering representation of the reaction amplitude,
pertaining to exchange processes in three-charged-particle
systems. We have found the following interesting results.
- 8- (i) If in the exact exchange triangle amplitude the Cou-
lomb T matrix describing the intermediate-state rescattering
of the particles of a given pair is replaced by the Coulomb
potential, the resulting approximate triangle amplitude in
general fails dramatically for the atomic reactions investi-
gated; for the nuclear reaction considered, however, this ap-
proximation is very good for practically all energies from
reaction threshold to infinity, for nearly all scattering angles.
(i) By investigating the analytic properties in the vicinity
of the forward-scattering region, we extracted the leading
T singularity of the exact triangle amplitude. This enabled us
first to identify the conditions under which the latter will
0 [degree] induce a forward-scattering peak in the physical amplitudes
and thus be observable. Second, it suggested another ap-
proximate triangle amplitude which is not much more diffi-
cult to calculate than the Coulomb-Born approximation, but
tions is confined to rather small angles. Furthermore, becaus vastly superior tq the. Iatter.for atomic Processes for me-
the exchanged particle is the heavy proton, there is n ium t.o high energies, in a wide range of scattering angles
backward-scattering peak: as discussed in Sec. Ill C the coFf":'H_d'”g the forward 'dlrect!on.. '
responding backward-scattering singularity is too far away (iii) An analogous investigation of the leading backward-
from the physical region to have any influence on the differ-Scattering singularity clarified the conditions under which the

A T 1T T T T T T T T [ T T 7
0 30 60 9% 120 150 180

FIG. 8. Same as in Fig. 7, but for the reaction
H(n/m)(p,p’)H(n'/"'m’").

ential cross sections. latter will result in a backward-scattering peak of the exact
The situation is rather different in the case of the reactiondriangle amplitude.
p+H(n/m)—p’'+H(n'/'m"), for (n/mn’/'m’) (iv) These theoretical results have been illustrated by

e (1s,2s), depicted in Fig. 8. Though there exists a forward-means of typical exchange reactions from the fields of
scattering peak in all three amplitudes considered, that is iatomic and nuclear physics.

fact again larger for elastic exchange scattering off hydrogen We finally note that similar approximation formulas can
atoms in the 2 state than in the 4 state, with the amplitude also be derived for direct triangle amplitudes, as will be
for excitation from & to 2s being reduced by the orthogo- shown in a forthcoming paper. Both these results are pres-
nality effect described above. But the peak is generally reently being applied to the calculation of cross sections for
duced in comparison with the electron reaction. This is unelectron and proton scattering off hydrogen atoms by solving
derstandable since for p(p’) the forward-scattering three-body integral equations where, as mentioned in Sec. |,
singularity is farther away from the physical region than forthe various triangle amplitudes occur as contributions to the
(e.€’). In contrast to the latter, however, we have a veryeffective potentials. This fact makes it clear that such calcu-
pronounced and sharp backward-scattering peaking of ajhions will include all iterations of the triangle amplitudes,

three amplitudes. As discussed in Sec. Il C, this is & consesng thus not be confined to terms of first order in the Cou-
quence of the closeness of the backward-scattering singulags amplitude, in constrast to their use in the multiple-

ity _resultmg from the small mass of the exchanged eIeCtronscattering representation of the exchange amplitude.
This corroborates the well-known fact that for small ex-

changed mass the triangle amplitude contributes essentially

to backward scattering only. ACKNOWLEDGMENTS
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