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The lowest-order rescattering contribution~triangle amplitude! in three-body models of exchange reactions
with charged particles contains the off-shell two-bodyT matrix describing the intermediate-state Coulomb
scattering of charged subsystems. General properties of the exact exchange triangle amplitude, when the
incoming and outgoing particles are on the energy shell, are derived. This includes the analytic behavior, i.e.,
the positions and characters of its leading singularities, in the cosq plane, whereq is the scattering angle, in
the vicinity of the forward- and backward-scattering directions. Since for computational reasons the Coulomb
T matrix is usually replaced by the Coulomb potential, the effects of such an approximation on the analytic
properties are investigated. The theoretically established behavior of the exact and the approximate exchange
triangle amplitudes is then illustrated by numerical calculations, for both atomic and nuclear reactions, for
energies below and above the corresponding three-body dissociation thresholds, for elastic and inelastic ex-
change.@S1050-2947~96!06111-2#

PACS number~s!: 34.80.Bm, 34.90.1q, 25.55.Kr, 24.10.2i

I. INTRODUCTION

Exchange reactions in three-body systems with charged
particles are conveniently described within the framework of
the exact three-body theory either in terms of effective-two-
body integral equations in momentum space@1–3#, or in par-
ticular for applications at higher energies by means of the
multiple-scattering representation of the relevant three-body
transition operators~see, e.g.,@4#!. On the energy shell, there
exists a close correspondence between the contributions to
the effective potential occurring in the former approach, and
the matrix elements between channel states of the multiple-
scattering terms: in both formulations there occurs in lowest
order the familiar one-particle exchange~OPE!, followed by
the single- and higher-rescattering contributions.

Up to now, in theoretical calculations of particle-
exchange reactions, essentially only the single-rescattering
contribution, the so-called triangle amplitude, has been taken
into account, in addition to the OPE~however, there exist a
few attempts to investigate—in some approximate way—
also the influence of the double-scattering terms@5–7#; for a
recent review of methods used in ion-atom scattering, see
Ref. @8#!. This restriction is justified in either one of the
following situations:~i! one of the three particles is neutral
because in that case the~multiple-scattering-type! expansion
of the effective potential collapses to just these two terms
~provided the additional short-range interaction has been rep-
resented as a sum of separable terms; see@2#!, or ~ii ! the
energies are sufficiently high so that the first two terms in the
multiple-scattering representation of the effective potentials
or even of the exchange amplitudes themselves suffice to
provide a satisfactory description of the experimental data

~but still below the asymptotic regime dominated by the
double-rescattering contribution!.

The general feature of~most of! the terms beyond the
OPE, and in particular also of the triangle amplitude, is that
they contain the off-shell two-particleT matrix describing
intermediate-state Coulomb scattering of charged sub-
systems. As is evident, the complicated singularity structure
of the latter in momentum space makes the calculation of
such expressions rather difficult. Hence, in numerical appli-
cations~for a nuclear case, see, e.g., Ref.@9# and references
therein; for atomic reactions, see e.g., Refs.@10,11#! the Cou-
lombT matrix is usually replaced by its Born approximation,
namely, the Coulomb potential. In this way the analytic and
numerical effort required for their computation is drastically
reduced, but the quality of such an approximation, to be
called the Coulomb-Born approximation in the following, is
difficult to assess.

In fact, there exist only a few investigations in which the
exacton-shell triangle amplitude has been investigated theo-
retically @12–16#, and even fewer attempts to calculate it
numerically@17,18#. In particular, in Ref.@17# the exact am-
plitude was evaluated for a few atomic electron-transfer pro-
cesses, and compared with the corresponding Coulomb-Born
approximation. The conclusion was that the latter was ac-
ceptable for none of the reactions examined~though, because
of the use of analytical methods, it was restricted to hydro-
genic 1s bound-state wave functions, in addition to being
confined to such high energies that the zero-energy essential
singularity of the CoulombT matrix no longer gave rise to
any numerical problems!.

Studies of a certain off-shell continuation of the single-
rescattering part of the effective potential, as it occurs in the
integral equation approach, and its Coulomb-Born approxi-
mation have been performed in Refs.@19–23#. However,
there the total three-body energy was restricted to values
below the composite-particle breakup threshold, and only
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equal masses were considered. The finding was that at such
low energies the ratio of exact to approximate rescattering
contributions to the effective potential differs appreciably
from the value 1, in most cases which are relevant for atomic
exchange reactions, indicating that such a simplifying ap-
proximation is inappropriate. Only for parameter values per-
taining to nuclear exchange processes was the Coulomb-
Born approximation found to be reasonably accurate.

Recently, we exhaustively investigated@24# the behavior
of the ~numerically calculated! exact and approximate on-
shell triangle amplitudes for nonrearrangement scattering, as
functions of the energy~both below and above the bound-
state dissociation threshold!, the scattering angle, the masses,
and the magnitudes of the charges of the particles involved.
Bound-state excitation was also considered. For atomic reac-
tions the quality of the approximation, consisting of the re-
placement of the intermediate-state CoulombT matrix by the
Coulomb potential~only the repulsive case was considered!
turned out to be very poor in general over a wide range of the
parameters mentioned. In contrast, for the nuclear cases stud-
ied, this approximation was found to be very satisfactory,
making this substitution a reliable and simplifying tool for
performing such nuclear charged-composite-particle reac-
tions.

A similar investigation has now also been performed for
the on-shell, single-rescattering exchange contribution~ex-
change triangle amplitude! to the effective potential in the
integral-equation approach or to the multiple-scattering rep-
resentation of the three-body scattering amplitude. We con-
fine ourselves to the case where the particles that participate
in the intermediate-state rescattering have charges of equal
sign ~this is, however, not a severe restriction, since most of
the physically interesting reactions are included therein!. En-
ergies are considered from the reaction threshold up to very
high energies, and scattering angles over the whole range. In
addition, excitations of the incoming and/or outgoing bound
state are allowed for. Thus the numerically calculated exact
amplitude and its Coulomb-Born approximation can be com-
pared, and the quality of the latter be estimated.

We also study the analytic properties of the exchange tri-
angle amplitude in the cosq-plane, whereq is the scattering
angle. Comparison with the analogous singularity structure
of the Coulomb-Born approximation suggests another, more
appropriate approximation for the original amplitude, valid
for medium to high energies~tests of its quality and range of
validity for atomic reactions have already been communi-
cated in Ref.@25#!. Whenever applicable, the latter should
greatly simplify the calculation of exchange processes.

The plan of our paper is as follows. In Sec. II we intro-
duce some notation and, in particular, the triangle amplitude
relevant to exchange reactions. In Sec. III general properties
of this amplitude are discussed, both in its exact form as well
as when the intermediate-state CoulombT matrix is replaced
by the Coulomb potential. We first describe a rigorous bound
on the exact amplitude which involves its Coulomb-Born
approximation, and discuss the behavior at high energies. In
a next step the analysis of the singularity structure of the
triangle amplitude as a function of the cosine of the scatter-
ing angle near both the physical forward- and backward-
scattering regions is presented. The positions and characters
of the leading singularities are determined. We then discuss

under what circumstances the latter will be located so close
as to influence the amplitude behavior strongly even within
the physical region, and therefore be detectable experimen-
tally. As a further result we derive an approximation for the
exact amplitude. In Sec. IV, these theoretical properties of
the triangle amplitude are illustrated by numerical calcula-
tions. A first part contains tests of the accuracy of the
Coulomb-Born approximation for some selected atomic and
nuclear exchange reactions, both for energies below and
above the corresponding bound-state dissociation thresholds.
In a second part, the influence of the above-mentioned sin-
gularities on the angle behavior in the physical region
of the triangle amplitude is illustrated by means
of the processes H(nl m)(p,p8)H(n8l 8m8) and
H(nl m)(e,e8)H(n8l 8m8) for (nl m,n8l 8m8)P(1s,2s).
A summary is given in Sec. V.

Natural units\5c51 are chosen. Furthermore, a con-
ventional notation for two-body quantities;Aa[Abg , with
aÞbÞg, is adopted. Finally, unit vectors are denoted by a
hat, i.e.,p̂5p/p.

II. THREE-PARTICLE MODEL OF EXCHANGE
SCATTERING

Let mn anden , n51,2,3, be the masses and charges of
the three particles, respectively. We are interested in the re-
actiona1(bg)m→b1(ga)n , leading from an initial state
where particlea, having a center-of-mass momentumqa ,
impinges on the bound state of particlesb andg character-
ized by the set of quantum numbersm, to a final state where
now particlesg and a are bound in a state with quantum
numbersn, and particleb, with the center-of-mass momen-
tum qb8 is free. The wave function of the bound system
(bg)m belonging to the binding energyÊam is denoted by
ucam&, and similarly for the outgoing bound state.

The lowest-order contribution containing intermediate-
state Coulomb rescattering, as it results either in the integral-
equation@1,2# or the multiple-scattering approach~see, e.g.,
Ref. @17#!, to the exchange reaction amplitude is given on the
energy shell, i.e., for

E5
qa
2

2Ma
1Êam5

qb8
2

2Mb
1Êbn , ~1!

by

Mbn,am
TC ~qb8 ,qa!5^qb8 u^cbnuTg

C~E1!ucam&uqa&. ~2!

Here and in the following we always assumeaÞbÞgÞa.
The quantityTg

C denotes the transition operator describing
Coulomb scattering of particles a and b;
Ma5ma(mb1mg)/(ma1mb1mg) is the a-channel re-
duced mass, andE15E1 i0.

Let us explicitly write expression~2! in momentum-space
representation,
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Mbn,am
TC ~qb8 ,qa!

5E d3k

~2p!3
cbn* ~pb9 !T̂g

CS pg8 ,pg ;E12
k2

2Mg
Dcam~pa8 !.

~3!

The various subsystem momenta are defined as

pa85ebaS k1
ma

mb
qaD , pb95eabS k1

mb

ma
qb8 D ,

pg5egaS qa1
mg

mb
kD , pg85eagS qb81

mg

ma
kD . ~4!

Herema5mbmg /(mb1mg) is the reduced mass of the pair
(bg), and analogous expressions hold formb andmg . For
convenience, the antisymmetric symboleba52eab , with
eab511 if (a,b) is a cyclic ordering of~1,2,3!, is used.
Moreover, the CoulombT matrix when read in the two-
particle space is characterized by a hat,T̂C. The diagram-

matical representation ofMbn,am
TC is shown in Fig. 1. From

its form the name~exchange! triangle amplitude becomes
obvious.

Similarly we define the quantityMbn,am
VC (qb8 ,qa) which

follows from Eq.~3! by the replacementT̂g
C→Vg

C :

Mbn,am
VC ~qb8 ,qa!5E d3k

~2p!3
cbn* ~pb9 !Vg

C~pg8 ,pg!cam~pa8 !.

~5!

This will be referred to as the Coulomb-Born approximation
of Eq. ~3!. As is well known, for simple bound-state wave

functions,Mbn,am
VC (qb8 ,qa) can be calculated analytically

@26#. A useful quantity is the ratio of the exact amplitude to
its Coulomb-Born approximation

Rbn,am5
Mbn,am

TC ~qb8 ,qa!

Mbn,am
VC ~qb8 ,qa!

~6!

because it provides us with a measure of the quality of ap-
proximating the CoulombT matrix by the Coulomb potential
in the triangle amplitude.

III. PROPERTIES OF THE TRIANGLE AMPLITUDES

Mbn,am
TC AND Mbn,am

VC

A. Bounds on the ratioMbn,am
TC /Mbn,am

VC

Among the simplest properties are bounds on the ratio~6!.
They are similar to those described in Ref.@24# for the cor-
responding non-rearrangement scattering amplitude.

~i! For a repulsive Coulomb interaction,
Vg
C(p8,p)54peaeb /(p82p)2, with eaeb.0, which is the

only one we are considering presently; the two-bodyT ma-
trix is bounded by the potential as follows@21#:

0<T̂g
C~p8,p;Êg1 i0!<Vg

C~p8,p!,

; p,p8,p̂8•p̂ for Êg,0, ~7!

0<uT̂g
C~p8,p;Êg1 i0!u<Vg

C~p8,p!,

; p,p8,p̂8•p̂ for Êg.0. ~8!

From this one easily derives the following bounds for the
elastic exchange ratioRb0,a0, where the index 0 denotes a
state whose wave function has no nodes,

0,Rb0,a0<1, ;cosq, for E,0, ~9!

0,uRb0,a0u<1, ;cosq, for E.0. ~10!

Here cosq5q̂a•q̂b8 is the cosine of the scattering angle. The
implication is that for elastic exchange scattering off a target
in a nodelessS state, the Coulomb-Born approximation al-
waysoverestimatesthe exact amplitude. In other words, the
error made by approximating the two-body CoulombT ma-
trix in Eq. ~3! by the Coulomb potential is of known sign.
Note that no analogous bounds result if either one or both
bound pairs are in states whose wave functions have nodes.

~ii ! Since for large two-body subsystem energies,T̂g
C ap-

proaches the Born approximationVg
C , for elastic and inelas-

tic exchange scattering we expect

Rbn,am ——→
E→`

1. ~11!

However, it is obvious that forRbn,am to reach the value 1,
the energyE must be higher than that for which, on the
two-body level, we have Tg

C(Êg1)'Vg
C . In

Mbn,am
TC (qb8 ,qa) the Coulomb T matrix enters for all

g-subsystem energies fromE down to minus infinity, for
E>Êg5E2k2/2Mg.2`. Thus a behavior like Eq.~11!
can result only as a combined effect ofT̂g

C(E12k2/2Mg)
being approximately equal toVg

C over the whole range of
momentak for which the product of the momentum-space
bound-state wave functions differs appreciably from zero.

B. Analytic behavior ofMbn,am
TC

near the forward-scattering direction

In this subsection we investigate the singularity structure

of the exchange triangle amplitudeMbn,am
TC (qb8 ,qa), Eq. ~3!,

in the z plane, wherez5cosq is the cosine of the scattering
angle, in the vicinity of the forward-scattering direction, us-

FIG. 1. Graphical representation of the exchange triangle ampli-
tude ~3!. Semicircles represent the bound-state form factors.TC

denotes the two-body CoulombT matrix.
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ing the techniques developed in Ref.@27#. Forward scattering
~fs! is defined such that in the center-of-mass system particle
b, which is free in the final state, leaves the collision point in
the direction of incidence of the projectilea. With our nota-
tion for the momenta this is equivalent toq̂b85q̂a . Below, it

will be shown thatMbn,am
TC (qb8 ,qa) possesses a singularity

at

S mb

ma
qb82

ma

mb
qaD 21~kam1kbn!

250, ~12!

or equivalently atz5z (fs) with

z~ fs!5

S ma

mb
qaD 21S mb

ma
qb8 D 21~kam1kbn!

2

2
ma

mb

mb

ma
qaqb8

.1. ~13!

Here we have introduced kam5A2mauÊamu and
kbn5A2mbuÊbnu. It is apparent that this singular point lies
outside of the physical region. But, as will be discussed be-
low under certain circumstances it can be located so close to
its border that observable effects on forward differential
cross sections may result.

Quite generally we can write the bound-state wave func-
tion as

cam~pa8 !5
Gam~pa8 !

@pa8
21kam

2 #12ham
, ~14!

where

ham5
ebegma

kam
~15!

is the Coulomb parameter for the bound state (bg)m .
Gam(pa8 ) is the so-called reduced form factor which is non-
singular atpa8

252kam
2 . Introducing Eq.~14! into Eq. ~3!

yields

Mbn,am
TC ~qb8 ,qa!5E d3k

~2p!3
Gbn* ~pb9 !

@pb9
21kbn

2 #12hbn

3T̂g
CS pg8 ,pg ;E12

k2

2Mg
D

3
Gam~pa8 !

@pa8
21kam

2 #12ham
. ~16!

The singularity of interest of the integral in Eq.~16! re-
sults from the coincidence of the singularities of the inte-
grand at

pa8
21kam

2 5S k1
ma

mb
qaD 21kam

2 50 ~17!

and

pb9
21kbn

2 5S k1
mb

ma
qb8 D 21kbn

2 50, ~18!

while the momentum transfer in the intermediate-state Cou-
lomb scattering amplitude remains different from zero:

pg82pg5eag~k1qa1qb8 !Þ0. ~19!

In Sec. III C it is shown that, if Eqs.~17! and~18! are satis-
fied and simultaneously the momentum transfer~19! van-
ishes,Mbn,am

TC (qb8 ,qa) develops another singularity which
governs its behavior in the backward direction, i.e., for
q̂b8→2q̂a .

Recall that the two-body CoulombT matrix
T̂g
C(pg8 ,pg ;E12k2/2Mg) becomes singular if the relative ki-

netic energy of the particles in the initial (pg
2/2mg) and/or the

final (pg8
2/2mg) state approaches the energy variable~here

E12k2/2Mg) @28#. Taking into account the identities
pg8

2/2mg2(E12k2/2Mg)5(pb9
21kbn

2 )/2mb and pg
2/2mg

2(E12k2/2Mg)5(pa8
21kam

2 )/2ma , which follow from
definitions ~4! with the help of Eq.~1!, we can write this
near-~subsystem! energy-shell behavior as

T̂g
CS pg8 ,pg ;E12

k2

2Mg
D'@pb9

21kbn
2 # ihg@pa8

21kam
2 # ihgT̃g

C ,

~20!

with

T̃g
C : 5

4peaeb

~k1qa1qb8 !212ihg

3S mg
2

mamb
D ihg e2phguG~11 ihg!u2

@8mg~E12k2/2Mg!# ihg
~21!

being nonsingular at the positions~17! and ~18!. Here

hg5
eaebmg

A2mg~E12k2/2Mg!
~22!

is the relevant Coulomb parameter. Consequently, in the
neighborhood of these singular points we have

Mbn,am
TC ~qb8 ,qa!'Mbn,am

TC~ fs! ~qb8 ,qa!: 5E d3k

~2p!3
Gbn* ~pb9 !

@pb9
21kbn

2 #12hbn2 ihg
T̃g
C

Gam~pa8 !

@pa8
21kam

2 #12ham2 ihg

'Gbn* ~ ikbn!Gam~ ikam!E d3k

~2p!3
T̃g
C

F S k1
mb

ma
qb8 D 21kbn

2 G12hbn2 ihgF S k1
ma

mb
qaD 21kam

2 G12ham2 ihg
.

~23!
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In order to simplify the discussion we have in the last equal-
ity in Eq. ~23! assumed orbital angular momentum zero for
both bound states (bg)m and (ga)n ; thus the form factors
could be taken out from under the integral at the singular
points. Otherwise, only their radial parts can be taken out,
and the appropriate angular functions have to be retained in
the integrand.

The proof thatMbn,am
TC(fs) becomes singular at position~12!

is based on the close relation between the singularity of the
amplitude which is nearest to the physical region in thez
plane and the asymptotic behavior of its partial-wave projec-
tion for l →` ~see, e.g.,@29#!. It has, e.g., been used in@30#
to extract the leading singularity of the two-particle Coulomb
amplitude as the momentum transfer goes to zero.

The asymptotic evaluation of the partial-wave projection

of Mbn,am
TC(fs) makes use of saddle-point integration methods.

Before applying them, however, we simplify expression~23!
by taking out from under the integral the termT̃g

C with the
momenta fixed at their saddle-point values. This does not
alter the final result, sinceT̃g

C is nonsingular at, and smooth
in the neighborhood of, this point. In detail, we first note that
T̃g
C depends onk2 via the kinetic energyk2/2Mg of particle

g, cf. Eqs.~21! and~22!. Hencek2 is to be taken equal to its
saddle-point valuek(sp)

2 ~see below!

k~sp!
2 5

S ma

mb
qaD 2kbn1S mb

ma
qb8 D 2kam1kbnkam~kbn1kam!

~kbn1kam!
,

~24!

and thushg is equal to

hg
~sp! : 5hg~k~sp!!5

eaebmg

A2mg~E12k~sp!
2 /2Mg!

. ~25!

Here we have to assume that the three-body c.m. energy is
such thatEÞk(sp)

2 /2Mg . The corresponding dependence of
T̃g
C on the integration variablek is eliminated thereupon. But

T̃g
C also depends onk̂ via 1/(k1qa1qb8 )

212ihg
(sp)
. On ac-

count of condition~19! this latter factor is regular at that
point in thek plane where the singular points~17! and ~18!
coincide, thereby pinching the integration contour. Hence it
too can be taken out from under the integral overk. In order
to find the position where this can be done, different methods
can be employed. For instance, we can evaluate
(k1qa1qb8 )

2 by substituting fork•qa andk•qb8 the corre-
sponding expressions following from the conditions~17! and
~18!, respectively, and finally replacingk by k(sp) . Alterna-
tively we can proceed as follows. Rewrite Eq.~23! by intro-
ducing the integration variablep5eag(k1qa1qb8 ), and the
abbreviations

pa5eabS qb81
ma

mg
qaD , pb85ebaS qa1

mb

mg
qb8 D . ~26!

For later use we point out that taking into account the on-
shell condition~1! results in the identity

~pa
21kam

2 !/2ma5~pb8
21kbn

2 !/2mb . ~27!

Equation~23! then assumes the form

Mbn,am
TC~ fs! ~qb8 ,qa!'Gbn* ~ ikbn!Gam~ ikam!E d3p

~2p!3
T̃g
C

@~p2pb8 !21kbn
2 #12hbn2 ihg@~p1pa!21kam

2 #12ham2 ihg
, ~28!

with T̃g
C being now proportional to 1/p212ihg

(sp)
. Thus it is the coincidence of the singularities of the integrand of Eq.~28! at

~p2pb8 !21kbn
2 50 ~29!

and at

~p1pa!21kam
2 50, ~30!

which eventually leads to a singularity of the exchange amplitude at position~12! @note that condition~19! is equivalent to
p2Þ0#. By an argumentation which is similar to the one leading to the expression~24! for k(sp)

2 and will therefore not be given,

it follows from representation~28! that the term 1/p212ihg
(sp)

can be taken out from the integral at the saddle point

p~sp!
2 5

S qb81
ma

mg
qaD 2kbn1S qa1

mb

mg
qb8 D 2kam1kbnkam~kbn1kam!

~kbn1kam!
. ~31!

Note that here the quantityqa•qb8 still has to be replaced by the corresponding expressionqaqb8z (sp) following from condition
~12!, or equivalently Eq.~13!. As a consequence, the whole functionT̃g

C can be taken out of the integral with the momenta
fixed at their saddle-point values. The resulting quantity will simply be denoted byT̃g(sp)

C .

Thus, when attempting to derive the behavior ofMbn,am
TC(fs) at the coincidence of singularities of the integrand at positions

~17! and ~18!, it suffices to consider
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Mbn,am
TC~ fs! ~qb8 ,qa!'Gbn* ~ ikbn!Gam~ ikam!T̃g~sp!

C E d3k

~2p!3
1

F S k1
mb

ma
qb8 D 21kbn

2 G12hbn2 ihg

1

F S k1
ma

mb
qaD 21kam

2 G12ham2 ihg
.

~32!

Denote the integral in Eq.~32! by

J:5E d3k

~2p!3
1

@~k1q̄b8 !21kbn
2 #l f@~k1q̄a!21kam

2 #l i
,

~33!

where the short-hand notations

l i512ham2 ihg , l f512hbn2 ihg , ~34!

q̄a5
ma

mb
qa , q̄b85

mb

ma
qb8 , ~35!

have been introduced. Next we apply the expansions

1

@~k1q̄a!21kam
2 #l i

5
1

~2kq̄a!l i

1

~za1za!l i

5
1

~2kq̄a!l i
(
l 50

`

~2l 11!

3Pl ~2za!al ~za!, ~36!

with ~see Ref.@31#, or Ref. @32#, Eq. 7.229!

al ~za!5 1
2 E

21

11dzaPl ~za!

~za2za!l i
5

i

2p
~12e2p i ~12l i !!G~12l i !

3~za
221!~12l i !/2Q

l

211l i~za!, ~37!

and similarly

1

@~k1q̄b8 !21kbn
2 #l f

5
1

~2kq̄b8 !l f
(
l 50

`

~2l 11!

3Pl ~2zb!bl ~zb!, ~38!

with

bl ~zb!5
i

2p
~12e2p i ~12l f !!G~12l f !

3~zb
221!~12l f !/2Q

l

211l f~zb!. ~39!

Pl (z) are the Legendre polynomials, andQl
l (z) the associ-

ated Legendre functions of the second kind. Furthermore,

za5
k21q̄a

21kam
2

2kq̄a

, zb5
k21q̄b8

21kbn
2

2kq̄b8
, ~40!

and za(zb) is the cosine of the angle betweenk and
q̄a(q̄b8 ). Introducing expansions~36! and ~38! into Eq. ~33!,
one obtains

J5 (
l 50

`

~2l 11!Pl ~z!Jl , z5q̂a•q̂b8 , ~41!

with

Jl 5
1

2p2E
0

`

dk
k2

~2kq̄b8 !l f~2kq̄a!l i
bl ~zb!al ~za!. ~42!

In order to find the large-l behavior ofJl , we make use
of the asymptotic formulas@33#

Ql
211l~z! '

l →`

eip~211l!l 211lQl ~z!, ~43!

Ql ~z! 5
l →`S p

l D 1/2 e2l lnt

At221
1oS 1

Al D , ~44!

t5t~z!5z1Az221. ~45!

HereQl (z) are the Legendre functions of the second kind.
The order relation has the usual meaning:f (x)5o„g(x)… for
x→x0, if lim x→x0

f (x)/g(x)50 „g(x0)Þ0…. The intimate

connection between the position (2 za) of the singularity of
1/(za1za)

l i and the large-l behavior of the partial-wave
projectional (za) is made explicit by applying these asymp-
totic relations to Eq.~37!:

al ~za! '
l →` Ap

l 3/22l i

~za
221!~12l i !/2

G~l i !

e2l lnta

Ata
221

. ~46!

As is apparent,za can be read off, e.g., from the quantity
ta : 5t(za), which occurs in the exponent on the right-hand
side of Eq.~46!, asza5(ta1ta

21)/2. Also the characterl i

of the singularity can be extracted directly, e.g., from the
corresponding power ofl .

Introducing Eq.~46!, and a similar expression forbl ,
into Eq. ~42! leads to
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Jl '
l →`E

0

`

dk A~k! l l i1l f23k22l i2l f
~za

221!~12l i !/2~zb
221!~12l f !/2

A~ta
221!~tb

221!
e2l ln~tatb!, ~47!

with

A21~k!:5p 2l i1l f11 q̄a
l i q̄b8

l fG~l i !G~l f ! ~48!

and tb :5t(zb). Note that za.1, which also entails
ta.1. The same holds true forzb andtb .

Since the dominantl dependence of the integrand of Eq.
~47! resides in the exponential, forl →` the contribution to
the integral comes from the region around the saddle point,
which can be found from the equation

d

dk
ln~tatb!50. ~49!

Its solutionk25k(sp)
2 , Eq. ~24!, the derivation of which is

somewhat tedious but straightforward, was given in@27# ~for
the case of two charged and one neutral particles; see also
Ref. @35#!. Thus, when attempting to calculate this integral,
all k-dependent factors which are nonsingular at the saddle
point can be taken out from under the integral atk5k(sp) .
The remaining integration can be performed, and yields

Jl '
l →`

A2p
A~k~sp!!

l ~3/22L!k~sp!
L

3
~za

~sp!221!~12l i
~sp!!/2~zb

~sp!221!~12l f
~sp!!/2

A~ta
~sp!221!~tb

~sp!221!

3
e2l ln~ta

~sp!tb
~sp!!

A~ lntatb!9uk5k~sp!

. ~50!

The double prime means a second derivative. Here quantities
za
(sp) and zb

(sp) defined as in Eq.~40! occur, but withk re-
placed byk(sp) :

za
~sp!5

k~sp!
2 1q̄a

21kam
2

2k~sp!q̄a

, zb
~sp!5

k~sp!
2 1q̄b8

21kbn
2

2k~sp!q̄b8
. ~51!

Similarly, ta
(sp) and tb

(sp) are given in terms ofza
(sp) and

zb
(sp) , respectively, as in Eq.~45!. Furthermore,

l i
~sp! :5l i~k5k~sp!!512ham2 ihg

~sp! , ~52!

with an analogous definition forl f
(sp) . Finally, the abbrevia-

tion

L:5l i
~sp!1l f

~sp!2252ham2hbn22ihg
~sp! , ~53!

has been introduced.

Our goal is to deduce, from such a high-l behavior of the
partial-wave projectionJl , the singularity of the integralJ
in thez plane which is nearest to the physical region. For this
purpose we define a quantity

t~sp! :5ta
~sp!tb

~sp! , ~54!

and a correspondingz ( f s)5(t (sp)1t (sp)
21 )/2 @cf. Eq.~45!#. The

latter has already been given explicitly in Eq.~13!. Herewith
we rewrite Eq. ~50! as ~in the following we assumeL
Þ2n, n50,1,2,. . . )

Jl '
l →`

BH Ap

l ~3/22L!

~z~ f s!
2 21!~12L!/2

G~L!

e2l lnt~sp!

At~sp!
2 21

J ,
~55!

with the abbreviation

B5
A2A~k~sp!!G~L!

k~sp!
L A~ lntatb!9uk5k~sp!

3
~za

~sp!221!~12l i
~sp!!/2~zb

~sp!221!~12l f
~sp!!/2

~z~ fs!
2 21!~12L!/2

3
At~sp!

2 21

A~ta
~sp!221!~tb

~sp!221!
. ~56!

In the wavy brackets we have combined all terms containing
l in such a form that, when inserted into Eq.~41!, the
partial-wave summation can be performed, thereby yielding
essentially the singular factor 1/(z (fs)2z)L @cf. Eqs.~46! and
~36!#. Hence we arrive at the following behavior of the inte-
gral J:

J'
B

~z~ f s!2z!L 5
~2q̄aq̄b8 !LB

@~ q̄b82q̄a!21~kbn1kam!2#L
. ~57!

Now inserting Eq.~57! into expression~32! and taking into
account Eqs.~21!, ~31!, and~56!, we have the final result that
in the vicinity of the singular point~12!, which is nearest to
the physical forward-scattering region, the leading singular
part of the exact amplitude~3! behaves as

Mbn,am
TC~ fs! ~qb8 ,qa!

'
N~ fs!
TC

F S mb

ma
qb82

ma

mb
qaD 21~kbn1kam!2G2ham2hbn22ihg

~sp! ,

~58!

with
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N~ fs!
TC :5

eaeb

A2p
~sp!

212ihg
~sp! e

2phg
~sp!

uG~11 ihg
~sp!!u2S mg

2

mamb
D ihg

~sp!Smb

ma
D ~11hbn1 ihg

~sp!!

3Sma

mb
D ~11ham1 ihg

~sp!! Gbn* ~ ikbn!Gam~ ikam!

@8mg~E12k~sp!
2 /2Mg!# ihg

~sp!

1

A~ lntatb!9uk5k~sp!

k
~sp!

~ham1hbn12ihg
~sp!!

q
a

~11hbn1 ihg
~sp!!

qb8
~11ham1 ihg

~sp!!

3
G~2ham2hbn22ihg

~sp!!

G~12ham2 ihg
~sp!!G~12hbn2 ihg

~sp!!

At~sp!
2 21

A~ta
~sp!221!~tb

~sp!221!

~za
~sp!221!~ham1 ihg

~sp!!/2~zb
~sp!221!~hbn1 ihg

~sp!!/2

~z~ fs!
2 21!~11ham1hbn12ihg

~sp!!/2

~59!

measuring the strength of the triangle amplitude at the sin-
gularity. Hence we have the important result that in the
neighborhood of the singular point~12!, the leading angular

behavior ofMbn,am
TC(fs) (qb8 ,qa) is defined by the denominator

in Eq. ~58!.
The leading behavior of the approximate amplitude

Mbn,am
VC(fs) (qb8 ,qa), which in the intermediate state contains the

Coulomb potential instead of the off-shell Coulomb ampli-
tude, is obtained from Eqs.~58! and ~59! by settinghg

(sp)

equal to zero everywhere@provided that neitherham nor
hbn equals a positive integer nor both vanish simultaneously.
The latter happens, e.g., in deuteron-induced nuclear reac-
tions of the typeA(d,p)B, with B being a bound state of
A1n; see below.# Then for hg

(sp) real, i.e., for
E2k(sp)

2 /2Ma.0, for the magnitude of ratio~6! at singular-
ity ~12! we find the simple result

uRbn,amu'uRbn,am
~ fs! u: 5C0

2U G~2ham2hbn22ihg
~sp!!

G~2ham2hbn!

3
G~12ham!

G~12ham2 ihg
~sp!!

G~12hbn!

G~12hbn2 ihg
~sp!!

U,
~60!

with C0
252phg

(sp)/(e2phg
(sp)

21) being the Coulomb penetra-
tion factor. For atomic reactions with hydrogenic bound
states, one has

ham52nam , hbn52nbn , ~61!

wherenam andnbn are the principal quantum numbers of the
incoming and outgoing bound states, respectively. Hence this
ratio specializes to

uRbn,am
~ fs! u5C0

2U G~nam1nbn22ihg
~sp!!

G~nam1nbn!

3
G~11nam!

G~11nam2 ihg
~sp!!

G~11nbn!

G~11nbn2 ihg
~sp!!

U.
~62!

We point out that for lower energies whenhg
(sp) is purely

imaginary,uRbn,am
(fs) u is a more complicated function. Several

comments are fitting.
~i! The results derived above are, in fact, valid for attrac-

tive and repulsive Coulomb scattering in the intermediate
state.

~ii ! From Eq.~25! it can be seen that only for sufficiently
large energies,hg

(sp) becomes so small thatuRbn,am
(fs) u ap-

proaches the value 1, implying that the Coulomb-Born ap-
proximation be reliable in the immediate vicinity of the sin-
gular point z (sp) . This supplements result~11! derived for
physical values ofz5cosq.

~iii ! Near the singular point~12!, the dependence on the
scattering angle of the leading nonregular parts of the mag-

nitudes uMbn,am
TC(fs) (qb8 ,qa)u and uMbn,am

VC(fs) (qb8 ,qa)u are the
same~with one exception to be discussed below!. However,

as mentioned above, their strengths atz5z (sp) , N(fs)
TC and

N~ fs!
VC 5N~ fs!

TC uh
g
~sp!50 , ~63!

are different. Hence, in some region around that point one
has the following relation between the exact amplitude and
the Coulomb-Born approximation:

uMbn,am
TC~ fs! ~qb8 ,qa!u'uRbn,am

~ fs! u•uMbn,am
VC~ fs! ~qb8 ,qa!u. ~64!

This holds true forE2k(sp)
2 /2Mg.0 whenhg

(sp) is purely
real. In contrast, for lower energies, and in particular for
E,0, i.e., below the bound-state dissociation threshold, their
angular behavior is different, and Eq.~64! has to be modi-
fied.

~iv! Relation~64! has been derived forz in the vicinity of
z (sp) . However, provided the latter is located not too far
from the physical region, we may expect the same propor-
tionality to hold between the moduli of the physical ampli-

tudesMbn,am
TC (qb8 ,qa) andMbn,am

VC (qb8 ,qa), viz.

uMbn,am
TC ~qb8 ,qa!u'uRbn,am

~ fs! u•uMbn,am
VC ~qb8 ,qa!u. ~65!

In fact, the range of the validity of Eq.~65! has already been
explored for atomic reactions in Ref.@25#. As was shown
there, for elastic exchange scattering of electrons and protons
off hydrogen atoms~not necessarily in their ground states!,
the right-hand side of Eq.~65! represents an excellent ap-
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proximation for the exchange amplitude over a wide range of
~medium to high! energies and scattering angles~including
the forward-scattering direction!.

~v! Taking into account the slight difference in the

scattering-angle dependence ofMbn,am
TC(fs) (qb8 ,qa) and

Mbn,am
VC(fs) (qb8 ,qa), as can be derived from Eq.~58!, a relation

of type ~65! even between the original amplitudes them-
selves~and not only between their moduli! suggests itself:

Mbn,am
TC ~qb8 ,qa!

'
N~ fs!
TC /N~ fs!

VC

F S mb

ma
qb82

ma

mb
qaD 21~kbn1kam!2G22ihg

~sp!

3Mbn,am
VC ~qb8 ,qa!. ~66!

Although the Coulomb-Born approximation

Mbn,am
VC (qb8 ,qa) is purely real, the right-hand side of rela-

tion ~66! could be shown in Ref.@25# to represent a very
good and easy-to-calculate approximation to the exact ex-
change amplitude, for sufficiently high energies and out to
rather large scattering angles. Hence, whenever applicable,
its use should greatly simplify the calculation of exchange
cross sections.

~vi! For atomic processes, the bound-state Coulomb pa-
rameters are negative, i.e.,ham,0 andhbn,0; hence, near
Eq. ~12!, the angular dependence will become divergent. In
particular, in reactions with hydrogenic bound states the sin-
gularity is very strong. For example, for elastic exchange
scattering from the ground state, i.e., forna05nb051, tak-
ing into account Eq.~61! one has

uMb0,a0
TC~ fs!~qb8 ,qa!u;

1

F S mb

ma
qb82

ma

mb
qaD 21~kb01ka0!

2G2 ,
~67!

and thus the cross section has a pole of fourth order,

sex
~ fs!~1s→1s!;

1

F S mb

ma
qb82

ma

mb
qaD 21~kb01ka0!

2G4 .
~68!

For inelastic exchange scattering the singularity becomes
more and more pronounced asnbn increases. For instance,

for excitation from anna051s to an nb152s level, one
obtains a cross-section pole behavior of the type

sex
~ fs!~1s→2s!;

1

F S mb

ma
qb82

ma

mb
qaD 21~kb11ka0!

2G6 .
~69!

However, in a genuine calculation of excitation cross sec-
tions it must be expected that such a singular power behavior
will partly be counterbalanced by the orthogonality of the
initial and the final bound-state wave functions, which, in the
full amplitude Eq. ~3! tends to suppress the forward-
scattering region. This orthogonality effect is lost in the deri-
vation of expression~58! for z near the singular point.

~vii ! For nuclear reactions where all particles either have
charges of equal sign or are neutral, both bound-state Cou-
lomb parameters are positive or zero. In this case the angular
part of uMbn,am

TC(fs) (qb8 ,qa)u will not diverge at all, forhg
(sp)

real; on the contrary, it even goes to zero when approaching
Eq. ~12!. If, in particular, particleg is neutral~e.g., the neu-
tron in deuteron-proton, or more generally in deuteron-
nucleus, exchange scattering!, the initial- and final-state Cou-
lomb parameters are zero,ham5hbn50. Thus, in the
vicinity of Eq. ~12! the angular behavior~58! simplifies to

Mbn,am
TC~ fs! ~qb8 ,qa!;F S mb

ma
qb82

ma

mb
qaD 21~kbn1kam!2G2ihg

~sp!

.

~70!

That is, in the main orderuMbn,am
TC(fs) (qb8 ,qa)u is independent

of the scattering angle forE.k(sp)
2 /2Mg and even vanishes

for smaller energies. As has been mentioned above, in this
case the behavior of the Coulomb-Born approximation
Mbn,am

VC(fs) cannot be extracted from Eqs.~58! or ~70! by sim-
ply settinghg

(sp) equal to zero. However, an explicit consid-
eration of the integral~33! ~with hg50) reveals that
Mbn,am

VC(fs) diverges logarithmically as point~12! is ap-
proached.

The decisive question is whether the angular behavior of
the triangle amplitude, derived for the cosine of the scatter-
ing angle outside the physical region@cf. Eq. ~13!#, has ob-
servable consequences in the form of a~more or less sharp!
rise of the differential cross section in the forward direction.
The above discussion has made it evident that no noteworthy
experimental signatures are to be expected for nuclear reac-
tions. For atomic reactions the situation can be different,
depending on the distance of the singular point~13! to the
physical region, which for its part depends on the process
considered.

We confine our discussion to the important special case
that the masses of the particles which are unbound both in
the initial and in the final state are equal, i.e.,ma5mb . Then
expression~13! for the singular point simplifies to

z~ fs!5
qa
21qb8

21~11ma /mg!2~kam1kbn!
2

2qaqb8
5

E1S 11
ma

mg
D ~ uÊamu1uÊbnu!1S 112

ma

mg
DAuÊamÊbnu

A~E1uÊamu!~E1uÊbnu!
, ~71!
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where the on-shell condition~1! has been used. It is apparent
that for asymptotic energiesE or momentaqa and qb8 ,
z (fs) approaches the value 1, independent of the masses of the
particles and of the binding energies, and hence a forward-
scattering peak should occur~although our nonrelativistic
theory is certainly no longer valid in this case!. For non-
asymptotic energies, if the mass of particleg, which does not
participate in the intermediate-state Coulomb scattering, is
much smaller than the other mass, i.e., ifmg!ma , z (fs) is
located rather far from the border of the physical region; thus
the singularity will not manifest itself in a striking angular
behavior. This situation prevails, e.g., in (p,p8) reactions off
hydrogen atoms withma5mp andmg5me wheremp(me) is
the proton ~electron! mass. In the opposite case, i.e. for
mg@ma , as realized, e.g., in (e,e8) exchange scattering off
hydrogen atoms withma5me and mg5mp , the singular
point lies close to the physical region, provided that the en-
ergy, and hence the on-shell momentum, is not very small.
Thus, the chances for distinct observable effects at interme-
diate energies are much more favorable. Analogous com-
ments also apply to the region of validity of the approximate
relations~65! and ~66!.

For elastic exchange, i.e., forqb85qa , n5m, and
kbm5kam , we find

z~ fs!5112S 11
ma

mg
D 2kam

2

qa
2 5112S 112

ma

mg
D uÊamu

E1uÊamu
.

~72!

Clearly, for fixed energy and fixed mass ratioma /mg , the
singular point is located more closely to the physical region
the smalleruÊamu is, i.e., the looser bound the composite
particle is, enhancing the prospects for strong experimental
signatures. This has, in fact, been verified in Ref.@25# for the
elastic (p,p8) and (e,e8) exchange reactions with hydrogen
atoms in the 2s-state as compared to hydrogen atoms in the
1s state.

We mention that, e.g., for elastic exchange

hg
~sp!5

ea
2

2
AS ma

~2ma1mg!E/2~ma1mg!1Êam
D 1/2.

~73!

Thus, energiesE of the order of the incoming massma @but
always much larger than 2(ma1mg)uÊamu/(2ma1mg) so
that hg

(sp) be real# are sufficient to makehg
(sp) rather small,

practically independent ofmg , leading to values of
Rbm,am

(fs) close to 1. Since forma!mg the singular point
z (fs) lies close to the physical forward-scattering region, we
can expect alsoRbm,amucosq'1'1; in other words, for small
scattering angles and for such energies, one expects

Mbm,am
TC (qb8 ,qa)'Mbm,am

VC (qb8 ,qa).
Let us finally look at this situation in theD plane, with

Da5qb82qa . From Eq. ~58!, with ma5mb , we conclude
that here the singularity is located atD2'Ds

2 with

Ds
252~11ma /mg!2~kam1kbn!

2. ~74!

It is evident that forpp-intermediate-state scattering in the
reactionH(p,p8)H (ma /mg5mp /me) this is very far from

the physical region~for which D2>0). However, for
intermediate-stateee scattering inH(e,e8)H, it is located
closer to its border. In fact, in the latter reaction for elastic
exchange, wherekam5kbn and ma /mg5me /mp!1, we
have

Ds
2'24kam

2 , ~75!

while, for inelastic exchange withkbn,kam ,

Ds
2'2~kam1kbn!

2. ~76!

That is, for inelastic exchange the singularity lies even closer
to the physical region than for elastic exchange.

C. Analytic behavior ofMbn,am
TC near the backward direction

In this subsection we derive the analytic behavior of the
triangle amplitude~16! in thez(5cosq) plane in the vicinity
of the backward-scattering~bs! direction. It represents a gen-
eralization of the results obtained in Ref.@34# ~see also Ref.
@35#!, where it had been assumed that one of the three par-
ticles is neutral. Similar techniques will now be used to show

thatMbn,am
TC (qb8 ,qa) possesses a further singularity which

lies at

S qb81
ma

mg
qaD 21kam

2 5S qa1
mb

mg
qb8 D 21kbn

2 50, ~77!

or equivalently atz5z (bs) with

z~bs!52

S ma

mg
qaD 21qb8

21kam
2

2
ma

mg
qaqb8

,21 ~78!

outside of the physical backward-scattering region. This re-
sults from the coincidence of the singularities of the inte-
grand at Eqs.~17! and ~18!, and at the forward-scattering
singularity of the intermediate-state CoulombT matrix
which occurs at

pg82pg5eag~k1qa1qb8 !50. ~79!

Equivalently, if the integration variablep5eag(k1qa

1qb8 ) is introduced, it is the coincidence of the singularities
at Eqs.~29! and ~30!, and at

p50 ~80!

which gives rise to the singularity ofMbn,am
TC (qb8 ,qa) con-

sidered presently. Making use of condition~80! and recalling
Eq. ~27!, we can rewrite Eqs.~29! and~30! for the positions
of the singularities of the integrand of Eq.~16! as

pa
21kam

2 5pb8
21kbn

2 50, ~81!

which coincides with Eq.~77! @recall definitions~26!#.
The following observation is instructive. Consider the

pole diagram of Fig. 2, which describes the one-particle-
exchange~OPE! contribution to the full exchange amplitude.
Note that the momentapa andpb8 introduced in Eq.~26! are
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nothing but the on-shell relative momenta at the initial and
the final bound state vertex, respectively. It is easily seen that
Eq. ~81! describes the locus of the singularity of the corre-
sponding amplitude; that is, forpa

21kam
2 →0, or equiva-

lently for z→z (bs) , it behaves like

Mbn,am
OPE ~qb8 ,qa!'Mbn,am

OPE~bs!~qb8 ,qa!

:5
N~bs!
OPE

~pa
21kam

2 !12ham2hbn
,

~82!

with N(bs)
OPE522maGbn* (p̂b8 ,ikbn)Gam(p̂a ,ikam) @recall Eq.

~14!#. Thus the assertion is that the near-backward-scattering

singularity of the triangle amplitudeMbn,am
TC (qb8 ,qa) is lo-

cated at exactly the same position as the singularity of the
pole amplitude. In fact, not only the location but also the
character~pole, cut, etc.! of these singularities of the two
amplitudes coincide.

This can be seen as follows. Similarly to what was found
in Sec. III B for the forward-scattering singularity, the loca-
tion of the backward-scattering singularity can also be ex-
tracted from the~much simpler! Coulomb-Born approxima-
tion ~5!, and in the present case even its type; see Ref.@27#.
In order to simplify the discussion we again assume that both
bound states (bg)m and (ga)n have a zero internal orbital
angular momentum. Thus the corresponding bound-state
form factors can be taken out from under the integral at the
singular pointspa85 ikam andpb95 ikbn , respectively. Using
the integration variablep introduced above, in the vicinity of
Eq. ~81! the amplitude~5! becomes

Mbn,am
VC~bs!~qb8 ,qa!:54peaebGbn* ~ ikbn!Gam~ ikam!J8,

~83!

with

J85E d3p

~2p!3
1

p2
1

@~p2 pb8 !21kbn
2 #12hbn

3
1

@~p1pa!21kam
2 #12ham

. ~84!

If Eq. ~81! is satisfied, the integrand of Eq.~84! is singular at
the origin p50, which gives rise to a singularity
of the whole integral. In fact, substituting

p5(pa
21kam

2 )v/2ma5(pb8
21kbn

2 )v/2mb @recall Eq. ~27!#,
one can read off the behavior ofJ8 directly, and accordingly

also that ofMbn,am
VC(bs)(qb8 ,qa), in the vicinity of Eq.~81!:

Mbn,am
VC~bs!~qb8 ,qa!'

N~bs!
VC

~pa
21kam

2 !12ham2hbn

5
N~bs!
VC

F S qb81
ma

mg
qaD 21kam

2 G12ham2hbn
.

~85!

Consequently, for the full triangle amplitude we arrive at

Mbn,am
TC~bs! ~qb8 ,qa!'

N~bs!
TC

F S qb81
ma

mg
qaD 21kam

2 G12ham2hbn
,

~86!

where, of course, the residual strength factorN(bs)
TC differs

from the corresponding factorN(bs)
VC of the Coulomb-Born

approximation. This singular behavior, indeed, coincides
with that of the pole amplitude, Eq.~82!. Let us add the
following remarks.

~i! This derivation is valid for attractive as well as repul-
sive Coulomb interactions between the particles experienc-
ing intermediate-state scattering.

~ii ! For nuclear reactions, where the bound-state Coulomb
parametersham and hbn are positive semidefinite, the
backward-scattering singularity will either be very weak or
even lead to the vanishing of the triangle~and of course also
of the OPE! amplitude at this point. This is to be contrasted
with the situation pertaining to atomic reactions, where
ham,0 andhbn,0. Here the singularity will in general be
rather strong. In fact, if the initial and final bound states are
described by hydrogenic wave functions, the amplitude be-
havior looks like

Mbn,am
TC~bs! ~qb8 ,qa!;

1

F S qb81
ma

mg
qaD 21kam

2 G11nam1nbn
,

~87!

wherenam andnbn are the corresponding principal quantum
numbers. However, whether an experimentally detectable
cross section peak in the backward direction will result from
such a pole behavior of Eq.~87! depends on the distance of
this singularity to the physical region@and, of course, of
Eq. ~82!#.

As is well known and can be inferred from Eq.~78!, the
backward-scattering exchange singularity quite generally lies
closer to the physical region the smaller the massmg of the
exchanged particle which is noninteracting in the intermedi-
ate state is, for sufficiently high energies. However, in order
to simplify the discussion, we again consider in more detail
only the case when the masses of the particlesa and b,
which are unbound in initial and final states, respectively, are
equal, i.e.,ma5mb . Expression~78! for the locus of the
singularity reduces to

FIG. 2. Graphical representation of the one-particle-exchange
amplitude~82!. Semicircles represent the bound state form factors.

54 4101TRIANGLE AMPLITUDE WITH OFF-SHELL COULOMBT . . .



z~bs!52
1

2

S 11
mg

ma

1
1

11mg /ma
DE2S 11

mg

ma
D ~Êam1Êbn!

A~E2Êam!~E2Êbn!
, ~88!

where the on-shell condition~1! has been used. Several lim-
iting cases are of interest.

~i! For a fixed ratiomg /ma of the mass of the particleg
which is bound in initial and finals state to the other mass, if
the energy becomes very large the location of the singular
point is at

z~bs! 5
E→`

2S 11
mg
2

2ma~ma1mg!
D 1O~E21!. ~89!

That is, even asymptotically the backward-scattering singu-
larity never reaches the border of the physical region~for
mgÞ0), although the smaller the mass ratio is, the closer it
will come to it.

~ii ! For fixed energy, if mg@ma one has
z (bs);2mg /ma!21; thus the singularity lies very far from
the physical region, and hence will not result in a noticeably
peaking of the backward-scattering cross section. For in-
stance, for electron elastic exchange scattering off hydrogen
atoms in the state with quantum numbers$nl m%,
e1H(nl m)→e81H(nl m), where the heavy proton is the
exchanged particleg, Eq. ~88! specializes up to terms of the
orderO(me /mp) to

z~bs!'2
mp

2me
S 11

uÊnu
Ei

D !21. ~90!

HereÊn is the binding energy in the state with the principal
quantum numbern, andEi is the projectile bombarding en-
ergy in the center of mass. Thus the position of the singular-
ity depends only weakly on the energy, and for all energies
including very large ones lies far off the physical region;
hence it will not exert any influence on physical scattering
observables.

~iii ! For a light exchanged massmg(!ma), one finds

z~bs!52
E2Êam2Êbn

A~E2Êam!~E2Êbn!
1OSmg

ma
D , ~91!

which, for sufficiently large energy, can come close to 1, i.e.,
to the border of the physical region@although according to
Eq. ~89! it will never reach it#. Consequently, the triangle
amplitude will contribute to the OPE in yielding a striking
backward-scattering peaking of differential cross sections.
Consider as an example proton elastic exchange scattering
with hydrogen atoms in the state $nl m%,
p1H(nl m)→p81H(nl m). Up to terms of higher order in
me /mp , one finds

z~bs!5212
me

mp

uÊnu
Ei

1OSme
2

mp
2D . ~92!

Hence the singularity is located in the immediate vicinity of
the physical region, in fact, the closer it is, the higher the
projectile energy and/or the smaller the binding energy are.

IV. NUMERICAL RESULTS

The various theoretical results derived in Sec. III will now
be illustrated by means of several examples from atomic and
nuclear physics. To begin with, we investigate under what
circumstances the Coulomb-Born approximation might be a
good approximation for the exact exchange triangle ampli-
tude, a question of considerable practical relevance. For this
purpose we numerically calculated both amplitudes as func-
tions of the center-of-mass kinetic energy of the projectile
and the scattering angle~for some numerical details we refer
to @24#!. Figure 3 contains the absolute value of their ratio
~6! for the elastic exchange reactione1H(1s)→e8
1H(1s), with the two electrons undergoing Coulomb scat-
tering in the intermediate state. It obviously satisfies the gen-
eral bounds~9! and ~10!. Furthermore, it approaches the
value 1 at about 100 keV for all angles, in accordance with
Eq. ~11!. An angle-independent value, albeit clearly smaller
than 1, is also reached when approaching the reaction thresh-
old. For energies less than, say, 10 keV, the Coulomb-Born
approximation considerably overestimates the exact ampli-
tude, in particular in the forward-scattering hemisphere for
some intermediate-energy region. This situation resembles
the one for the nonrearrangement triangle amplitude consid-
ered in@24#, except that there the overestimation was most
pronounced for backward scattering but practically absent at
threshold. Furthermore, in the physical region for backward
scattering the magnitude of the ratio depends on the energy
and differs markedly from 1.

FIG. 3. Absolute value of the ratio of the exact triangle ampli-
tude to the Coulomb-Born approximation, Eq.~6!, for the elastic
exchange reaction H(1s)(e,e8)H(1s), as function of the c.m. pro-
jectile kinetic energy and of the scattering angle.
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The mass effect in the intermediate-state Coulomb scat-
tering strongly influences the quality of the Coulomb-Born
approximation. This can, e.g., be verified by looking at Fig.
4, which contains the results for the magnitude of ratio~6!
for the elastic exchange reactionp1H(1s)→p81H(1s),
with the two heavy particles undergoing intermediate-state
Coulomb scattering. The Coulomb-Born approximation fails
completely except, of course, at very high energies which
are, however, not shown in this figure. On the whole, the
situation is rather similar to the nonrearrangement case stud-
ied in Ref. @24#, except that again forward- and backward-
scattering regions exchange their roles. Finally, we draw at-
tention to the remarkable fact that the threshold value of
Rp8p(1s) is very close to the one for electron-hydrogen ex-
change scattering discussed above.

An interesting, somewhat intermediate example is pro-
vided by the positronium-formation reactione11H(1s)
→Ps(1s)1H1, since here the masses of the two particles
~positron and proton! scattering in the intermediate state lie
on different scales, in contrast to the previous cases. For this
case the magnitude of the ratio~6! is depicted in Fig. 5. As is
apparent, the region where the Coulomb-Born approximation
fails has become rather large but remains still smaller than
for the proton-reaction discussed above.

The situation is, however, much more favorable for the

nuclear reactiond1p→p81d, shown in Fig. 6. Except for
projectile energies between 1 and 10 MeV for fairly small
scattering angles, the Coulomb-Born approximation is found
to be good to within 5%, similarly to the nonexchange case
~cf. Ref. @24#!. Hence for this reaction the latter provides a
reliable approximation for taking into account the particle
exchange rescattering.

The effect of the presence of the forward- and backward-
scattering singularities on the exact exchange triangle ampli-
tude is shown in Fig. 7 for the reactions
e1H(nl m)→e81H(n8l 8m8), for (nl m,n8l 8m8)
P(1s,2s), at 100-keV electron kinetic energy. Obviously,
the former completely dominates the forward-scattering re-
gion, the smaller the magnitudes of the binding energies in
the initial and final states are, in accordance with the discus-
sion at the end of Sec. III B. For excitation, the forward-
scattering peak is, however, somewhat suppressed by the
near orthogonality of the initial and final bound-state wave
functions for small~but nonzero! momentum transfer. Nev-
ertheless, at such a high-energy scattering for all three reac-

FIG. 4. Same as in Fig. 3, but for the reaction
H(1s)(p,p8)H(1s).

FIG. 5. Same as in Fig. 3, but for the reaction
e11H(1s)→Ps(1s)1H1.

FIG. 6. Same as in Fig. 3, but for the nuclear reaction
d1p→p81d.

FIG. 7. Exact triangle amplitude~3! ~in a.u.! for the reaction
H(nl m)(e,e8)H(n8l 8m8) at 100-keV projectile energy, as a func-
tion of the scattering angle. Solid line: elastic exchange 1s→1s;
long-dashed line: target excitation 1s→2s; short-dashed line: elas-
tic exchange 2s→2s.
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tions is confined to rather small angles. Furthermore, because
the exchanged particle is the heavy proton, there is no
backward-scattering peak: as discussed in Sec. III C the cor-
responding backward-scattering singularity is too far away
from the physical region to have any influence on the differ-
ential cross sections.

The situation is rather different in the case of the reactions
p1H(nl m)→p81H(n8l 8m8), for (nl m,n8l 8m8)
P(1s,2s), depicted in Fig. 8. Though there exists a forward-
scattering peak in all three amplitudes considered, that is in
fact again larger for elastic exchange scattering off hydrogen
atoms in the 2s state than in the 1s state, with the amplitude
for excitation from 1s to 2s being reduced by the orthogo-
nality effect described above. But the peak is generally re-
duced in comparison with the electron reaction. This is un-
derstandable since for (p,p8) the forward-scattering
singularity is farther away from the physical region than for
(e,e8). In contrast to the latter, however, we have a very
pronounced and sharp backward-scattering peaking of all
three amplitudes. As discussed in Sec. III C, this is a conse-
quence of the closeness of the backward-scattering singular-
ity resulting from the small mass of the exchanged electron.
This corroborates the well-known fact that for small ex-
changed mass the triangle amplitude contributes essentially
to backward scattering only.

V. SUMMARY

We investigated theoretically and numerically the~on-
shell! rescattering contribution which appears in the effective

potential in the integral-equation approach and in the
multiple-scattering representation of the reaction amplitude,
pertaining to exchange processes in three-charged-particle
systems. We have found the following interesting results.

~i! If in the exact exchange triangle amplitude the Cou-
lomb T matrix describing the intermediate-state rescattering
of the particles of a given pair is replaced by the Coulomb
potential, the resulting approximate triangle amplitude in
general fails dramatically for the atomic reactions investi-
gated; for the nuclear reaction considered, however, this ap-
proximation is very good for practically all energies from
reaction threshold to infinity, for nearly all scattering angles.

~ii ! By investigating the analytic properties in the vicinity
of the forward-scattering region, we extracted the leading
singularity of the exact triangle amplitude. This enabled us
first to identify the conditions under which the latter will
induce a forward-scattering peak in the physical amplitudes
and thus be observable. Second, it suggested another ap-
proximate triangle amplitude which is not much more diffi-
cult to calculate than the Coulomb-Born approximation, but
is vastly superior to the latter for atomic processes for me-
dium to high energies, in a wide range of scattering angles
including the forward direction.

~iii ! An analogous investigation of the leading backward-
scattering singularity clarified the conditions under which the
latter will result in a backward-scattering peak of the exact
triangle amplitude.

~iv! These theoretical results have been illustrated by
means of typical exchange reactions from the fields of
atomic and nuclear physics.

We finally note that similar approximation formulas can
also be derived for direct triangle amplitudes, as will be
shown in a forthcoming paper. Both these results are pres-
ently being applied to the calculation of cross sections for
electron and proton scattering off hydrogen atoms by solving
three-body integral equations where, as mentioned in Sec. I,
the various triangle amplitudes occur as contributions to the
effective potentials. This fact makes it clear that such calcu-
lations will include all iterations of the triangle amplitudes,
and thus not be confined to terms of first order in the Cou-
lomb amplitude, in constrast to their use in the multiple-
scattering representation of the exchange amplitude.
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