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In this paper we obtain the closed classical orbits of the detached electron from H2 in electric and magnetic
fields with any orientation that lies in three-dimensional space. Using closed-orbit theory, we calculated the
photodetachment cross section of H2, which shows oscillations. These oscillations are correlated with three-
dimensional closed orbits. Finally, we discuss the similarities and differences between the case ofa5p/2 and
aÞp/2 ~a is the angle between the electric and magnetic fields!. @S1050-2947~96!05311-5#

PACS number~s!: 32.80.Gc, 32.80.Fb, 03.65.Sq

I. INTRODUCTION

In the past few years, the photodetachment cross section
of H2 in external electric or magnetic fields has been studied
by many researchers@1–4#. Oscillations in the photodetach-
ment cross section have been observed in experiments or
predicted theoretically. Large oscillations in parallel electric
and magnetic fields were predicted quantum mechanically by
Du @3#, and were correlated with closed classical orbits given
by Peters, Jaffe, and Delos@2#. Quantum-mechanical and
closed-orbit results describing the oscillations in crossed
electric and magnetic fields were given by Peters and Delos
@1#, who derived a general formula for the photodetachment
cross section of H2 in electric and magnetic fields with any
orientation. The general formula displays that the cross sec-
tion is a smooth background plus a sum of sinusoidal fluc-
tuations:

s~E!5s0~E!1(
j50

n

s ret
j ~E!, ~1!

wheres0 is the cross section in the absence of fields. The
sum is over all closed classical orbits,s ret

j (E) is the oscilla-
tory contribution to the cross section arising from thej th
closed orbits, and is given by Peters and Delos in the follow-
ing way:
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The sum is over all closed orbits for a given energyE. Ep
is the photon energy, which is equal to the energyE of the
detached electron plus the binding energyEb (Ep5Eb1E).
The factorI l51 is a radial dipole integral between the initial
state~s state! and the outgoing wave state~p state!. x~u,f!

is the angular distribution of the outgoing waves~according
to the polarization of vector of the laser field!, and is given
by the following expressions~assuming that the light is po-
larized linearly in thex, y, or z direction!:

xx~u,f!5
1

A4p
sinu cosf,

xy~u,f!5
1

A4p
sinu cosf,

xz~u,f!5
1

A4p
cosu. ~3!

The angles$uout
j ,fout

j % and $u ret
j ,f ret

j % refer to the outgoing
and returning directions of thej th closed orbit. Jj (t) is the
Jacobian of thej th closed orbit, representing the divergence
of adjacent trajectories in time. Thus 1/r out

2 uJj (t0)/Jj (t ret)u is
the classical density of thej th closed orbit. Sj is the clas-
sical action of thej th closed orbit starting and ending at the
origin andmj is the Maslov index.@For more details about
s ret
j (E), refer to Ref.@1#.#
In Sec. II we discuss the closed orbits of H2 in electric

and magnetic fields with any orientation. Calculations show
that the closed orbits have an orderly pattern: at any given
energy, there is always one closed orbit, and a set of bound-
ary energies exists. At each boundary energy, one additional
closed orbit is created, and with the slightest increase of
energy, the newly created closed orbit splits into two closed
orbits. For each closed orbit, we calculate the following
quantities: ~i! the classical actionSj , which determines the
phase of the returning wave relative to the outgoing wave;
~ii ! the Maslov indexmj , which is the number of caustics
and foci through which thej th closed orbit passes;~iii ! the
classical density of the neighbors of each closed orbit, which
determines the amplitude of each returning wave.

In Sec. III the semiclassical photodetachment cross sec-
tion is calculated using the classical results of Sec. II, and
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oscillations are displayed in the cross section. In Sec. IV, we
compare the similarities and differences of closed orbits be-
tweena5p/2 andaÞp/2 ~a is the angle between the elec-
tric and magnetic fields! and discuss their influences upon
the cross section. Atomic units are used throughout this pa-
per unless otherwise noted.

II. CLASSICAL MOTION

In this section, we examine the classical trajectories for an
electron in the electric and magnetic fields with any orienta-
tion. Let the magnetic fieldHW 0 point in the positivez direc-
tion and the electric fieldFW lie in the x-z plane. The angle
between the electric and magnetic fields is denoted bya

~Fig. 1!. It is convenient to separate the electric fieldFW into
two components: one isF1 in the positivex direction, and
the other isF2 in the positivez direction. F1 and F2 are
given in the following way:

H F15F sina,
F25F cosa. ~4!

With this done, the motion of the electron can be separated
into a motion of uniform acceleration along thez axis and a
motion in thex-y plane. For closed orbits, thez component
Pz0

of the initial momentumPW must be greater than zero.
Motion in the x-y plane is a trochoid: a circular motion
about a center superposed upon a translational motion along
the y axis. For closed orbits, the linear speed@or the
‘‘ EW 3HW drift’’ velocity c(F1/H0)# must be less than the cir-
cular speed.

A. Families of trajectories and returning orbits

Classically, once the electron is photodetached from H2

by the laser light, it will have a uniform acceleration motion
along thez axis, and exhibit a trochoidal motion in thex-y
plane: circular cyclotron motion at constant speed relative
to a center moving at the fixedEW 3HW drift velocity. The
motion equation of the electron in the electric and magnetic
fields is described in many textbooks@5#:

dpW

dt
52S FW 1

VW

c
3HW 0D . ~5!

It is convenient to define a set of scaled variables as was
done by Peters and Delos@1# in crossed electric and mag-
netic fields:

q85
vB
2

F1
q,

t85vBt,

p85
vB

F1
p, ~6!

wherevB is the electron’s cyclotron frequency defined by

vB5
H0

C
. ~7!

Units of time are chosen such that one cyclotron period is 2p
units and units of length are chosen such that the drift veloc-
ity [ c(F1/H0)] is 1. In these units, the position as a function
of time, i.e., the solution of Eq.~5!, is

x~ t !5A2«@sin~ t1w!2sinw#,

y~ t !52A2«@cos~ t1w!2cosw#2t,

z~ t !52
1

2

F2

F1
t21pz0t. ~8!

These equations are the parametric representations of the
motion of the electron: circular motion about a center su-
perposed upon a translational motion in thex-y plane and a
uniform acceleration motion along thez axis. The radius of
the circular motion is given by the quantityA2«, which is
the speed of the circular motion;« is that part of the kinetic
energy associated with the circular motion. The translation of
the electron ~‘‘ EW 3HW drift’’ velocity ! has a velocity
2(F1/vB), which in scaled units has a fixed value of21.

The initial conditions on the trajectories follow from the
fact that the electron is detached from H2 by a laser: all
electrons begin at$x50,y50,z50% going outward in all di-
rections, all at the same speed determined by the photon
energy. From Eq.~8!, we can conclude for the closed orbits:
~i! at aÞp/2, the electric fieldFW has one componentF2 in
thez axis, so only whenPz0

is greater than zero is it possible
for the electron to return to the origin;~ii ! at aÞp/2, the
motion of electron in thex-y plane is the same as that at
a5p/2. Peters and Delos@1# have pointed out that if the
‘‘ EW 3HW drift’’ velocity is less than the circular speed, the
electron may return to the origin. Therefore, ataÞp/2, the
closed orbits must be in three-dimensional space.

Figure 2 shows a family of electron orbits for three dif-
ferent values of anglea at low energyE. There is one closed
orbit that allows the electron to return to the origin. After the
trajectories leave the origin, they diverge from each other. At
the caustics or boundaries between classically allowed and
forbidden regions, the trajectories cross back over each other

FIG. 1. The magnetic fieldHW 0 points in the positivez direction,
and the electric fieldFW lies in thex-z plane. The angle between the
electric and magnetic fields is denoted bya. Thex or z components
of the electric fieldFW are denoted byF1 or F2 ~H050.6 T, F518
V/cm!.
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and then, after being turned back by the fields, they pass
close to the origin. The trajectories continue until they pass
through a focus att51 cyclotron time, where they converge.
This process repeats itself.

At low energyE there is only one closed orbit~Fig. 3!. As
we increase the scaled energyE to a valueE(b1), Fig. 4
shows that a new closed orbit arises. This energyE(b1) is
called the first boundary energy. With the increase of energy
away fromE(b1), the newly arising closed orbit splits into a
pair ~Fig. 5!. As we continue to increase the energy to the
second boundary energyE(b2), Fig. 6 shows that again a new
closed orbit is created. As we continue to increase the energy

FIG. 2. Family of trajectories representing electrons moving
away from the H atom. As the trajectories leave the origin, they
diverge from one another. The trajectories continue until they cross
back over each other, giving rise to a caustic. After being turned
back by the fields, the trajectories pass close to the origin and then
continue until they pass through a focus att51 cyclotron time,
where they converge. This process repeats itself.

FIG. 3. The closed orbits at low scaled energyE, which are
labeled byj50.
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away fromE(b2), the newly created orbit then splits into a
pair ~Fig. 7!. Thus, as the energy continues to increase, the
number of the closed orbits increases steadily from 1 to 3 to
5, and so on. For any value of anglea, we conclude that at
any given energyE there is at least one closed orbit. At each

of a set of discrete boundary energies a new closed orbit is
created. The newly created orbit separates into two closed
orbits when the energy increases away from the boundary
energy. For any given energy, which is not the boundary
energy, there are~2 j11! closed orbits.

FIG. 4. The energy increases to the first boundary energy
E5E(b1), at which a new closed orbit is created. The newly created
closed orbit is called the first boundary orbit, labeled byj51. At the
boundary energy, there are two closed orbits.

FIG. 5. As the scaled energyE increases from the first boundary
energyE(b1), the newly created closed orbit separates into two
closed orbits, which are labeled byj51(a) and 1(b). At this en-
ergy, there are three closed orbits, while thej50 orbit is omitted.
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In the following parts of this section, we will give the
quantitative analysis of these facts. For any given closed or-
bit, we will give the formulas for the classical action, den-
sity, and Maslov index.

B. Closed orbits—quantitative theory

1. Hamiltonian equation of motion

The Hamiltonian of an electron in the electric and mag-
netic fields is given by

FIG. 6. The energy is increased to the second boundary energy
E5E(b2), at which again a new closed orbit is created and labeled
by j52. At this energy, there are four closed orbits. Thej50,1
orbits are omitted.

FIG. 7. As the scaled energyE is larger than the second bound-
ary energyE(b2), the second boundary orbit splits into two closed
orbits, which are labeled byj52(a) and 2(b). There are five
closed orbits at this energy. Thej50,1 andb51,2 orbits are omit-
ted.
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H5
1

2
FPW 2

AW

c
G21F1x1F2z, ~9!

where2F1x2F2z is the scalar potential of the electric field;
FW ,AW is the vector potential of the magnetic fieldHW 0, which is
defined by

AW 5H0x jW, ~10!

where jW is a unit vector directed along they axis. Defining
the following quantities

«5 1
2Px

21 1
2vB

2Fx1
1

vB
S Py1

F1

vB
D G2 ~11!

and

Hz5
1
2Pz

21F2z, ~12!

the Hamiltonian can be reexpressed by

H5«2
F1

vB
Py2

1

2 S F1

vB
D 21Hz . ~13!

It is easy to prove that«, Py , and Hz are independently
conserved. By making use of the scale change defined by Eq.
~6! and

H85S F1

vB
D 22

H, ~14!

after omitting the primes, the Hamiltonian is given by

H5«2Py2
1
21Hz , ~15!

where

«5 1
2Px

21 1
2 @x1~Py11!#2, ~16!

and

Hz5
1
2Pz

21
F2

F1
z. ~17!

So the dependence of the Hamiltonian on the field strength is
removed, but the dependence on the anglea still remains.

As stated earlier, after detaching from H2, the electron
moves away from the origin in any direction with the fixed
initial momenta$Px0

,Py0
,Pz0

%. Now, with the Hamiltonian
of the electron known, we obtain that the electron’s velocity
with time is described by the following expressions:

Px~ t !5 ẋ~ t !,

Py~ t !5 ẏ~ t !2x~ t !5Py0
,

Pz~ t !5 ż~ t !. ~18!

From Eqs.~8! and~18!, we obtain thatw is related to« in the
following way:

sinw5
1

A2«
~Py0

11!,

cosw5
1

A2«
Px0

. ~19!

Equation~19! implies that there is a relationship between the
initial direction of propagation of the electron and the radius
of the circular motion.

2. Initial coordinates for closed orbits

From energy conservation and Eqs.~15!–~17!, we must
have

E5«2Py0
2 1

21 1
2Pz0

2 ~20!

and

«5 1
2Px0

2 1 1
2 @Py0

11#2. ~21!

For closed orbits, we must have the following facts:

x~ t ret!50, ~22a!

y~ t ret!50, ~22b!

z~ t ret!50, ~22c!

wheret ret is the returning time. With the help of Eqs.~8!, Eq.
~22a! gives the returning timet ret,

t ret522w1~2 j11!p , ~23!

wherej is an integer. Equations~22b! and~22c! can give the
following conditions:

cosw1
1

A2«
w2

1

A2«
S j1 1

2Dp50, ~24!

and

Pz0
5
1

2

F2

F1
t ret. ~25!

Equations~23!–~25! also imply

t ret52A2« cosw ~26a!

and

Pz0
5
F2

F1
Px0

. ~26b!

Since the returning timet ret is positive, Eqs.~19! and ~26!
display that cosw and thenPx0

andPz0
must be positive, and

Eq. ~26b! also implies that for closed orbits the electron must
begin its motion in thex-z plane against the electric field
FW . By solving Eq.~21!, we obtain

Px0
5@2«2~Py0

11!2#1/2. ~27!
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Some additional manipulations reduce Eqs.~23!–~25! to an
equation involving only« and the fixed total energyE. By
removingw and t ret from these equations, we obtain

@2«2~Py0
11!2#1/22cos21FPy0

11

A2«
G5 jp,

L~«!5 jp, ~28!

whereL~«! is the left-hand side of Eq.~28!. By a long te-

dious deduction we obtainPy0
11 from energy conservation

and Eqs.~26b! and ~27!. ForE<Ea ,

Py0
1152S F1

F2
D 21F2«S FF2

D 222ES F1

F2
D 2

1S FF2
D 2S F1

F2
D 2G1/2, «1<«<«2 ~29a!

and forE>Ea,

Py0
115H 2S F1

F2
D 21F2«S FF2

D 222ES F1

F2
D 21S FF2

D 2S F1

F2
D 2G1/2, «3<«<«2,

2S F1

F2
D 22F2«S FF2

D 222ES F1

F2
D 21S FF2

D 2S F1

F2
D 2G1/2, «3<«<«1,

~29b!

whereEa ,«1,«2,«3 are given in the following expressions:

Ea5
1

2 cos4a
,

«15
~A2E21!2

2
,

«25
~A2E11!2

2
,

«35S F1

F D 2E2
1

2 S F1

F2
D 25E sin2a2 1

2 tan
2a<«1 .

~30!

Given the total energyE, Eqs.~28!–~30! can be used to
determine the value of«j for which there is a closed orbit.
Substituting«j into Eq.~29a! or ~29b! according to the given
energyE, we can obtain the momentumPy0

or Pj for that
closed orbit. With«j andPj determined for that closed orbit,
Eqs. ~26b! and ~27! give the values ofPx0

and Pz0
. The

initial conditions for that closed orbit are then known.

3. Boundary orbits

In this part, we will determine the number of closed orbits
existing at any given energy and the boundary energies
where new closed orbits appear. For three different values of
anglea, the left-hand sideL~«! of Eq. ~28! has been plotted
at several values of the total energyE as a function of« ~Fig.
8!. The right-hand side has also been plotted forj50 and 1.
For any given energyE, L~«! has a single maximum. Since
the maximum ofL~«! is greater than zero at all energies, one
solution always exists forj50. At low energyE, the maxi-
mum ofL~«! is less thanp, so no solutions exist forj>1. At
large enough values ofE, L~«! has a maximum that is greater
thanp. In this case, there are two roots to Eq.~28! for j51,
and therefore there are two closed orbits, which are labeled
j51~a! and 1~b!, respectively.

There is a set of energiesE(bj ) that are called boundary
energies. At each energyE(bj ), the curve ofL~«! is tangent to
the line defined byjp. So at this energy a new closed orbit is
formed, and this newly formed closed orbit is called thej th
boundary orbit. By differentiatingL~«! with respect to«,
holding E fixed, we find that the maximum ofL~«! occurs
when

~2«b21!Py0
~«b!52E, ~31!

where Py0
(« (b))52(F/F2)

21@2«(F/F2)
222E(F1/F2)

2

1(F/F2)
2(F1/F2)

2#1/2.
Substituting this value forPy0

(«b) obtained from Eq.~31!

into Eq. ~28!, we solve for the boundary energyE(bj ) and
« (bj ) numerically. Table I gives some boundary energies for
three different values of anglea. Figure 9 shows the curves
of the boundary energiesE(b1) and E(b2) as a function of
anglea. It is obvious that the smaller the anglea, the lower
the boundary energies. This fact implies that at a given en-
ergyE, there may be more closed orbits for smaller values of
anglea.

4. The Jacobian J„t…

The ratio of Jacobians@J(t0)/J~t ret!# in the oscillatory
cross section@Eq. ~2!# represents the divergence of trajecto-
ries with time. In the following part we will give the calcu-
lation of the ratio of Jacobians.

The Jacobian is given by@1#:

J~ t !5
]~x,y,z!

]~ t,uout,fout!
. ~32!

The coordinates$t,uout,fout% are the coordinates for the fam-
ily of trajectories. As the electron propagates into the exter-
nal region, the symmetry is broken by the external fields.
Equation~8! shows that$t,A2«,w% becomes the convenient
variables to express the motion of the electron in the electric
and magnetic fields. Therefore, we can rewrite the Jacobian
in the following way:
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J~ t !5
]~ t,A2«,w!

]~ t,uout,fout!

]~x,y,z!

]~ t,A2«,w!
, ~33a!

5g~«,w!U ]x

]t

]x

]A2«

]x

]w

]y

]t

]y

]A2«

]y

]w

]z

]t

]z

]A2«

]z

]w

U . ~33b!

The quantityg~«,w! is the first determinant in Eq.~33a!.
Peters and Delos@1# have pointed out thatg~«,w! is a geo-
metrical factor, and is independent of time. From Eq.~8!, a
straightforward evaluation of the second determinant in Eq.
~33b! gives the result:

J~ t !5g~«,w!H 4A2«S Pz0
2
F2

F1
t D sin2 t

2

1t
A2«

Pz0

2 sin
t

2 F2S «2Py0
2
1

2D cos t2
22@2«2~Py0

11!#1/2sin
t

2G J . ~34!

This is the Jacobian for any trajectory at any time. For
closed orbits, the momentum in thez direction Pz0
51/2(F2 /F1)t ret. If t5t0 ~initial time! or t5t ret, x andz are
small. So we can write the energy conservation in the fol-
lowing way:

E5« j2Py0
2 1

21 1
2Pz0

2 . ~35!

Then we can write the Jacobian for thej th closed orbit in the
following expression:

FIG. 9. The curves of the first and second boundary energies as
functions of the anglea. As thea becomes small, the boundary
energies decrease.

FIG. 8. Graphical solutions of Eq.~28!. The curves represent the
left-hand side of Eq.~28!, and the horizontal lines are the right-hand
side of Eq.~28!. The intersections of the curves and lines are the
solution of Eq.~28!. For any given energy larger than zero, one
solution always exists for Eq.~28!, i.e., one closed orbit always
exists. This solution is labeled byj50. At low energies, the maxi-
mum of L~«! is less thanp, so there are no solutions forj>1. As
the energy increases to the first boundary energyE(b1), the maxi-
mum point ofL~«! is tangent to the horizontal line defined byjp
with j51 and then a new closed orbit is created. As the energy
continues to increase fromE(b1), there are two intersections of the
curve with the horizontal linej51, and two solutions to Eq.~28!
exist. These two solutions correspond to two closed orbits, which
have circular energies«1(a) and«1(b), respectively.
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J~ t !5g~«,w!H 4A2« j S Pz0
2
F2

F1
t D sin2 t

2

1t
A2« j

Pz0

2 sin
t

2 F ~2E2Pz0
2 !2cos

t

2

22@2« j2~Py0
11!#1/2sin

t

2G J . ~36!

This is the Jacobian calculated at eithert5t0 or t5t ret. At
t5t0 with t0 small, expanding the trigonometric functions of
Eq. ~36! and keeping only the lowest order oft0, we have
that the Jacobian att5t0 is

J~ t0!5g
A2« j

Pz0

t0
2~2E!. ~37!

At t5t ret522w1~2 j11!p, we have

cos
t ret
2

5~21! jsinw, ~38!

sin
t ret
2

5~21! jcosw,

Pz0
2
F2

F1
t ret52Pz0

.

With the help of Eq.~19! which give the definitions for sinw
and cosw, the Jacobian att5t ret becomes

J~ t ret!5g
~2« j !

2

Pz0

34F12S Py0
11

A2« j
D 2GXPy0

11

A2« j
F11

1

2« j
G

2
1

A2« j
H 21S F2

F1
D 2F12S Py0

11

A2« j
D 2G J C . ~39!

With J(t0) and J~t ret! obtained, we have the ratio of the
Jacobians

J~ t0!

J~ t ret!
5

A2« j t0
2~2E!

~2« j !
234F 12S Py0

11

A2« j

D 2GXPy0
11

A2« j

F 11
1

2« j
G2

1

A2« j

H 21S F2

F1
D 2F 12S Py0

11

A2« j

D 2G J C . ~40!

Coming out of the scaled variables and making use of the
following dimensionless variables:

ñ j5
F1 /vB

A2« j

,

n j5
1

A2« j
FPy0

1
F1

vB
G , ~41!

we rewrite Eq.~40! as

J~ t0!

J~ t ret!
5

ñ j
2

~F1 /vB!2

3
ñ jvB

2 t0
2~2E!

4~12n j
2!H n j~11 ñ j

2!2 ñ jF21S F2

F1
D 2~12n j

2!G J .
~42!

This gives the classical density at the origin for thej th orbit.

5. The Maslov index

The Maslov indexmj is the number of caustics and foci
through which thej th closed orbit passes, and caustics and
foci are singular points where the JacobianJ(t) goes to zero.
Equation~34! shows that the Jacobian for thej th closed orbit
depends upon sin(t/2), so wededuce thatJ(t) goes to zero

when t52kp , with t less than or equal tot ret ~k is an inte-
ger!. As t52kp is a multiple of the cyclotron time, the elec-
tron passes through a focus. The JacobianJ(t) is also zero
when

tan
t

2
5

t~« j2Py0
2 1

2 !

F S FF1
D 2t2 1

2 S F2

F1
D 2t retG@2« j2~Py0

11!2#1/2
.

~43!

Solutions of Eq.~43! are times at which the electron passes
through caustics.

Given the total energyE, which is larger than the bound-
ary energies, there are two closed orbits for eachj of Eq.
~28!, which are labeled byj (a) and j (b), respectively. The
number of caustics and foci can be counted from the closed
orbits ~Figs. 3–7!. We are able to conclude that the closed
orbit j (a) passes through~2 j11! caustics and foci, while the
closed orbitj (b) passes through 2j caustics and foci.

6. The classical action

The classical actions(q) is given by the following inte-
gral from the initial pointq0 to the final pointq:

s~q!5E
q0

q

pW •d qW 5E
q0

q

pW •
dqW

dt
dt. ~44!
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Since s(q0) is an arbitrary factor, we take it to be zero.
Using Eqs.~8! and~18!, we calculate the integral in Eq.~44!
and obtain the classical action in the following way:

s~E!5s~ t ret!52
1

vB
F F1

vB
G2 1

ñ j
2 ~12n j

2!1/2Fn j2
1

ñ j
G . ~45!

This is the classical action for thej th closed orbit.

III. PHOTODETACHMENT CROSS SECTION

Using the results of the preceding sections, we obtain the
oscillatory part of the photodetachment cross sectionsret in
electric and magnetic fields with any orientations

s ret5s0(
j

F 6vB

F1 /vB
G p

A2E

3U ñ j
2

~12n j
2!H n j~11 ñ j

2!2 ñ F21S F2

F1
D 2~12n j

2!G JU
1/2

3@x~uout
j ,fout

j !x* ~u ret
j ,f ret

j !#

3sinF 1vB
S F1

vB
D 2 1

ñ j
2 ~12n j

2!1/2S n j2
1

ñ j
D 1m j

p

2 G .
~46!

Let $u ret
k ,f ret

k % represent the direction of motion of the return-
ing electron att5t ret, and $u ret

j ,f ret
j % be the direction from

which the electrons come. The relationship of$u ret
k ,f ret

k % and
$u ret

j ,f ret
j % is @6#

u ret
k 5p2u ret

j ,

f ret
k 5p1f ret

j . ~47!

From Eqs.~8! and ~18!, we obtain that the initial momenta
$Px0

,Py0
,Pz0

% at t5t0 and the final momenta
$Px~t ret!,Py~t ret!,Pz~t ret!% at t5t ret can be expressed in the fol-
lowing way:

Px0
5A2E sinuout

j cosfout
j ,

Py0
5A2E sinuout

j sinfout
j ,

Pz0
5A2E cosuout

j , ~48a!

and

Px~ t ret!5A2E sinu ret
k cosf ret

k 52Px0
,

Py~ t ret!5A2E sinu ret
k sinf ret

k 5Py0
,

Pz~ t ret!5A2Ecosu retk 52Pz0
. ~48b!

Therefore, from Eqs.~26!, ~47!, and ~48! we give the
relationship between$uout

j ,fout
j % and$u ret

j ,f ret
j %,

uout
j 5u ret

j 5a,

fout
j 52f ret

j . ~48c!

With the help of Eqs.~47! and ~48!, we write for various
linear polarizations

xx~uout
j ,fout

j !xx* ~u ret
j ,f ret

j !5
1

4p
sin2uout

j cos2fout
j ,

xy~uout
j ,fout

j !xy* ~u ret
j ,f ret

j !52
1

4p
sin2uout

j sin2fout
j ,

xz~uout
j ,fout

j !xz* ~u ret
j ,f ret

j !5
1

4p
cos2uout

j

5
1

4p S F2

F1
D 2sin2uoutj cos2fout

j .

~49a!

TABLE I. The boundary energies fromj51 to 6 for three different values of the anglea.

Boundary
orbit
j

a55° a545° a585°

E(bj )

~scaled
units!

E(bj )

~1025 a.u.!
« (bj )

~scaled
units!

« (bj )

~1025

a.u.!

E(bj )

~scaled
units!

E(bj )

~1025

a.u.!

« (bj )

~scaled
units!

« (bj )

~1025

a.u.!

E(bj )

~scaled
units!

E(bj )

~1025

a.u.!

e (bj )

~scaled
units!

« (bj )

~1025

a.u.!

1 830.0 1.185 76.31 0.1089 18.53 1.74 11.96 1.123 9.72 1.81 11.10 2.0669
2 3043.0 4.345 183.11 0.2614 57.84 5.431 32.21 3.0245 29.59 5.510 30.90 5.754
3 6599.65 9.4224 304.128 0.4342 116.98 10.984 61.59 5.7834 59.5 11.079 60.52 11.269
4 11481.0 16.391 447.21 0.6384 195.83 18.388 101.31 9.5131 99.23 18.478 99.95 18.612
5 17691.0 25.2576 594.38 0.8486 294.53 27.657 150.66 14.147 149.01 27.747 149.35 27.811
6 25241.0 36.0368 761.72 1.0875 413.0 38.781 210.1 19.728 208.65 38.853 208.55 38.835
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Coming out of the scaled variables and using Eq.~48! and
the dimensionless variables defined by Eq.~41!, we rewrite
Eq. ~49a! in ñ j , andnj ,

xx~uout
j ,fout

j !xx* ~u ret
j ,f ret

j !5
1

4p S F1

vB
D 2 1

2E

12n j
2

ñ j
2 ,

xy~uout
j ,fout

j !xy* ~u ret
j ,f ret

j !52
1

4p S F1

vB
D 2 1

2E

~n j2 ñ j !
2

ñ j
2 ,

xz~uout
j ,fout

j !xz* ~u ret
j ,f ret

j !5
1

4p S F1

vB
D 2S F2

F1
D 2 1

2E

12n j
2

ñ j
2 .

~49b!

Finally, we calculate the photodetachment cross section for
x-polarized light in the following way:

~2E!3/2Usx2s0

s0
U5(

j
cj
x~E!sin@F j~E!#, ~50a!

wherec j
x(E) is given by

cj
x~E!5

3

2

F1

ñ j U ñ j~12n j
2!

n j~11 ñ j
2!2 ñ jF21S F2

F1
D 2~12n j

2!GU
1/2

.

~50b!

Similar equations hold fory- or z- polarized light, andc j
y(E)

andc j
z(E) are

cj
y~E!5

3

2

F1

ñ j U ñ j~12n j
2!

n j~11 ñ j
2!2 ñ jF21S F2

F1
D 2~12n j

2!GU
1/2

3
~n j2 ñ j !

2

~12n j
2!1/2

, ~50c!

cj
z~E!5

3

2 FF2

F1
G2 F1

ñ j

3U ñ j~12n j
2!

n j~11 ñ j
2!2 ñ jF21S F2

F1
D 2~12n j

2!GU
1/2

.

~50d!

We have removed the cross sections0 in the absence of
fields and kept only the oscillatory part of the spectrum. Di-

viding by s0 and multiplying by the factor (2E)3/2 does not
change the nature of the oscillations, but only changes the
amplitude.

Evaluation of the semiclassical cross section for the pa-
rameters shown in Fig. 10 is given in the following process:
First, we find out the number of the closed orbits for any

FIG. 10. With light linearly polarized in thex, y, or z directions,
the semiclassical oscillations of the photodetachment cross sections
are displayed. Forx- or z-polarized light, the amplitude of the os-
cillations decreases with increasing energy, while fory-polarized
light, it increases. As the value of the anglea becomes small, forx
or y-polarized light, the amplitude of oscillations decreases, while
for z-polarized light, the amplitude increases. Asa tends to zero,
the amplitude of thez-polarized light increases sharply.
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given energyE by solving Eq.~28!. The total scaled energy
is given by

E85F F1

vB
G22

E. ~51!

So from Table I, the number of the closed orbits can be
determined easily. Second, for a given energyE, « j for
each closed orbit is calculated by solving Eq.~28!. With «j
known,Pj ~or Py0

! for that closed orbit can be evaluated by
Eq. ~29!. Then two dimensionless quantitiesñ j andnj can be
determined by Eq.~41!, and the photodetachment cross sec-
tion can be calculated.

Following the preceding process of calculation, the right-
hand side of Eq.~50a! is calculated for the range of atomic
energies 0.0–8.031025 a.u. The results are shown in Fig. 10.

IV. SIMILARITIES AND DIFFERENCES BETWEEN
THE CASE OF a5p/2 and aÞp/2

For H2 in crossed electric and magnetic fields~a5p/2!,
the classical motion of the detached electron has been ob-
tained by Peters and Delos@1#. In that case, due to no electric
field in the z axis for closed orbits,Pz0

must be zero. The
closed orbits can exist only in thex-y plane. But in our case,
the anglea between the electric and magnetic fields is less
thanp/2, the electric fieldFW has one componentF2 in thez
direction ~Fig. 1!, so for closed orbitsPz0

must be greater
than zero. The closed orbits cannot exist in thex-y plane,
except in three-dimensional space.

In our case ofaÞp/2, calculations show that at any given
energyE there is at least one closed orbit, and there is a set
of boundary energiesE(bj ). At each boundary energyE(bj ), a
new closed orbit is created, and with the slightest increase of
energy, the newly created closed orbit separates into two
closed orbits, labeled byj (a) and j (b), respectively. Each
closed orbit is described by a parameter@« j (a) and « j (b),
and with« j (a),« j (b)#, which represents the circular kinetic
energy of the electron’s trochoidal motion in thex-y plane.
For any given energyE, other than the boundary energies,
the number of closed orbits is~2 j11! ~Table I!. The Maslov
indexmj is ~2 j11! for the j (a) orbit, while it is 2j for the
j (b) orbit. These results are the same as those obtained by
Peters and Delos@1# in the case ofa5p/2. Our calculations
also show that thej th boundary energyE(bj ) reduces with a
decreasing value of anglea ~Fig. 9 and Table I!. As the value
of a tends to zero, the boundary energyE(bj ) decreases
sharply, approaching the boundary energy in parallel electric
and magnetic fields@2#. Therefore, for a given energyE,
there may be more closed orbits for the smaller value of
anglea. This fact is shown clearly in Table I. More closed
orbits can give rise to more complicated oscillations in the
cross-section spectrum.

For three different values of anglea, Fig. 10 gives the
oscillatory parts of the photodetachment cross sections for
linearly polarized light on thex, y, or z axis. For a given
value of anglea, the amplitude of the oscillations for

x-polarized light is largest near the boundary energy and then
decreases with increasing energy, while the amplitude for
y-polarized light increases with increasing energy. An expla-
nation of these facts can be given in the following way.
Equation~49a! shows that forx-polarized light the amplitude
is proportional to sin2u out

j cos2f out
j , while for y-polarized

light it is proportional to sin2u out
j sin2f out

j . Equation~48c!
displays that the angular factoru out

j is equal to the anglea.
So for a given value of anglea, the angular factoru out

j is a
constant and then cannot change the amplitude with increas-
ing energy. However, the angular factorf out

j is at a mini-
mum at the boundary energyE(bj ), and then increases as the
energy increases away fromE(bj ). Then the amplitude for
x-polarized light decreases, while the amplitude for
y-polarized light increases. The amplitude forz-polarized
light is the multiplication of the one forx-polarized light by
a factor (F2/F1)

2 @Eq. ~49a!#, and they have similar chang-
ing tendencies with increasing energy. The only difference is
that their oscillations have different amplitudes.

In the case ofa5p/2, the photodetachment cross section
for x or y-polarized light is similar to the case ofaÞp/2, but
for z-polarized light, the cross sections for two cases~a5p/2
and aÞp/2! are different. Ata5p/2, the oscillatory cross
section forz-polarized light is equal to zero. This is because
the closed orbits lie only in thex-y plane, and with
z-polarized light there is no outgoing wave in thex-y plane
@Eq. ~4.2! in Ref. @1##. Thus, the closed orbits have no influ-
ence and the cross section has no oscillations. As the value of
anglea reduces away froma5p/2, the closed orbits cannot
exist in thex-y plane, except in three-dimensional space.
Therefore, though there is no outgoing wave in thex-y
plane, the closed orbits still have an effect on the cross sec-
tion, giving rise to the oscillations in the cross section. At
aÞp/2, Eq. ~49a! shows that the amplitude of the oscilla-
tions forz-polarized light is proportional to cos2u out

j , and the
angular factoru out

j is equal to the anglea; so, as the value of
angle a decreases, the angular factoru out

j decreases, and
then the amplitude increases. As anglea approaches zero,
the amplitude increases sharply.

The photodetachment cross section and other results of
the casea5p/2 given by Peters and Delos@1# can be ob-
tained easily from the results in this paper just by taking
a→p/2 or F2→0. But the results of the casea50 given by
Peterset al. @2# cannot be obtained directly from our results
just by takinga→0 or F1→0. This is due to the following
cause. In parallel electric and magnetic fields~a50!, the
forces acting on the detached electron are cylindrically sym-
metric. So, each closed orbit given in Ref.@2# actually rep-
resents a cylindrical family of orbits and the number of
closed orbits is infinite. However, in our case~0,a,p/2!,
this symmetry does not exist, so each closed orbit is isolated,
and the number of closed orbits is finite. Asa→0, the evo-
lution of our results to the case ofa50 needs to be studied
further. This is planned for the future.
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