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Photodetachment cross section of Hin electric and magnetic fields with any orientation
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In this paper we obtain the closed classical orbits of the detached electron frameiectric and magnetic
fields with any orientation that lies in three-dimensional space. Using closed-orbit theory, we calculated the
photodetachment cross section of Hvhich shows oscillations. These oscillations are correlated with three-
dimensional closed orbits. Finally, we discuss the similarities and differences between the easa/»fand
a#ml2 (a is the angle between the electric and magnetic fje[@1050-29476)05311-5

PACS numbgs): 32.80.Gc, 32.80.Fb, 03.65.Sq

[. INTRODUCTION is the angular distribution of the outgoing wavegcording
to the polarization of vector of the laser figldnd is given
In the past few years, the photodetachment cross sectidpy the following expressionéssuming that the light is po-
of H™ in external electric or magnetic fields has been studiedarized linearly in thex, y, or z direction:
by many researchefd—4]. Oscillations in the photodetach-
ment cross section have been observed in experiments or )
predicted theoretically. Large oscillations in parallel electric xx(0, )= \/T sing cosp,
and magnetic fields were predicted quantum mechanically by 7
Du [3], and were correlated with closed classical orbits given
by Peters, Jaffe, and Deld®]. Quantum-mechanical and
closed-orbit results describing the oscillations in crossed
electric and magnetic fields were given by Peters and Delos
[1], who derived a general formula for the photodetachment

1
xy(6,¢)= N sing cosp,

- ; . - : 1
cross section of H in electric and magnetic fields with any Y0, )= —— cosp. 3
orientation. The general formula displays that the cross sec- N
tion is a smooth background plus a sum of sinusoidal fluc- ) ) ) .
tuations: The angles ¢!, ¢4 and{ 6, ¢l refer to the outgoing

and returning directions of thgth closed orbit. J;(t) is the
_ Jacobian of thgth closed orbit, representing the divergence

o(E)=0o(E) + ZO ored E), (1) of adjacent trajectories in time. Thus 34/J;(to)/J;(t,ed| is

= the classical density of thgth closed orbit. S; is the clas-

where oy, is the cross section in the absence of fields. Thebic@l action of thgth closed orbit starting and ending at the
sum is over all closed classical orbitsl,(E) is the oscilla- o?gm andy; is the Maslov index[For more details about
tory contribution to the cross section arising from tita ore(E), refer to R?f'[l]'] ) ) )
closed orbits, and is given by Peters and Delos in the follow- N S€c. Il we discuss the closed orbits of kh electric

n

ing way: and magnetic fields with any orientation. Calculations show
that the closed orbits have an orderly pattern: at any given
j 3277'2Ep 1|3t 12 , energy, there is. always one closed orbit, and a set of b'o.und—
ol E)=— > 3 a (i ary energies exists. At each boundary energy, one additional
c J M out j( ret)

closed orbit is created, and with the slightest increase of
- energy, the newly created closed orbit splits into two closed
Sj(tre) — u E}' orbits. For each closed orbit, we calculate the following
quantities: (i) the classical actios; , which determines the
(20  phase of the returning wave relative to the outgoing wave,
(i) the Maslov indexy; , which is the number of caustics
The sum is over all closed orbits for a given enelgy E,  and foci through which thgth closed orbit passesii) the
is the photon energy, which is equal to the eneggf the  classical density of the neighbors of each closed orbit, which
detached electron plus the binding enekgy (E,=E,+E).  determines the amplitude of each returning wave.
The factorl,_; is a radial dipole integral between the initial  In Sec. lll the semiclassical photodetachment cross sec-
state(s statg and the outgoing wave statp statg. x(6,¢)  tion is calculated using the classical results of Sec. Il, and
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B_ e Yin 5
dt - C 0 ( )
H, It is convenient to define a set of scaled variables as was
i done by Peters and Deld4] in crossed electric and mag-
netic fields:
,_ 95
q - F]_ q7
X t, = ll)Bt,
FIG. 1. The magnetic fieleﬁo points in the positive direction, p’'= o8 p, (6)
and the electric fieldF lies in thex-z plane. The angle between the Fi

electric and magnetic fields is denoteddayThex or z components h is the electron’ lot f defined b
of the electric fieldF are denoted by, or F, (H,=0.6 T, F=18 Wherewg IS the electron's cyclotron irequency detined by

Vicm). Ho

o _ . . =" - (7)
oscillations are displayed in the cross section. In Sec. IV, we
compare the similarities and differences of closed orbits beU
tweena=n/2 anda# /2 (a is the angle between the elec-
tric and magnetic fieldsand discuss their influences upon
the cross section. Atomic units are used throughout this p
per unless otherwise noted.

nits of time are chosen such that one cyclotron periodris 2
units and units of length are chosen such that the drift veloc-
ity [c(F1/Hg)] is 1. In these units, the position as a function

% time, i.e., the solution of Eqb), is

x(t)=12s[sin(t+ ¢) —sing],

y(t)=—\2e[cogt+ ¢) —cosp] —t,

Il. CLASSICAL MOTION

In this section, we examine the classical trajectories for an
electron in the electric and magnetic fields with any orienta-
tion. Let the magnetic fieldfi, point in the positivez direc- Z(t)=—
tion and the electric field lie in the x-z plane. The angle
between the electric and magnetic fields is denotedaby = These equations are the parametric representations of the
(Fig. 1). It is convenient to separate the electric fieldnto  motion of the electron: circular motion about a center su-

two components: one i, in the positivex direction, and ~ Perposed upon a translational motion in thg plane and a
the other isF, in the positivez direction. F, and F, are  uniform acceleration motion along tizeaxis. The radius of

F2

442
5 I:1t + Pt (8

given in the following way: the circular motion is given by the quantity2e, which is
the speed of the circular motion;is that part of the kinetic
F,=F sina, energy associated with the circular motion. The translation of
F,=F cox. 4 the electron (“ExH drift’ velocity) has a velocity

—(F{/wg), which in scaled units has a fixed value of..
With this done, the motion of the electron can be separated The initial conditions on the trajectories follow from the
into a motion of uniform acceleration along thexis and a  fact that the electron is detached from Hpy a laser: all
motion in thex-y plane. For closed orbits, triecomponent ~ €lectrons begin gx=0y=0,z=0} going outward in all di-
P, of the initial momentumP must be greater than zero. rections, all at the same speed determined by the photon
Motion in the x-y plane is a trochoid: a circular motion energy. From Eq(8), we can conclude for the closed orbits:

about a center superposed upon a translational motion alor{ﬁ at a# /2, the electric field= has one componertt; in
the y axis. For closed orbits, the linear spegor the thezaxis, so only WhenPZO is greater than zero is it possible
“ExH drift” velocity c¢(F,/Hy)] must be less than the cir- for the electron to return to the origirtii) at a# /2, the
cular speed. motion of electron in thex-y plane is the same as that at
a=m/2. Peters and Delogl] have pointed out that if the

“ExH drift’ velocity is less than the circular speed, the

) ) electron may return to the origin. Therefore, @t 7/2, the
Classically, once the electron is photodetached from H closed orbits must be in three-dimensional space.

by the laser light, it will have a uniform acceleration motion  Figure 2 shows a family of electron orbits for three dif-
along thez axis, and exhibit a trochoidal motion in they  ferent values of angle at low energyE. There is one closed
plane: circular cyclotron motion at constant speed relativeyrbit that allows the electron to return to the origin. After the
to a center moving at the fixeBx H drift velocity. The  trajectories leave the origin, they diverge from each other. At
motion equation of the electron in the electric and magneti¢he caustics or boundaries between classically allowed and
fields is described in many textboos): forbidden regions, the trajectories cross back over each other

A. Families of trajectories and returning orbits
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FIG. 2. Family of trajectories representing electrons moving
away from the H atom. As the trajectories leave the origin, they FIG. 3. The closed orbits at low scaled eneigy which are
diverge from one another. The trajectories continue until they crostabeled byj =0.
back over each other, giving rise to a caustic. After being turned
back by the fields, the trajectories pass close to the origin and then At low energyE there is only one closed orkiEig. 3). As
continue until they pass through a focustatl cyclotron time, e increase the scaled enerfyto a valueE®Y), Fig. 4
where they converge. This process repeats itself. shows that a new closed orbit arises. This eneEf? is

called the first boundary energy. With the increase of energy

and then, after being turned back by the fields, they pasaway fromE®Y), the newly arising closed orbit splits into a
close to the origin. The trajectories continue until they pasgair (Fig. 5. As we continue to increase the energy to the
through a focus at=1 cyclotron time, where they converge. second boundary enerd@f®?, Fig. 6 shows that again a new
This process repeats itself. closed orbit is created. As we continue to increase the energy
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. ) FIG. 5. As the scaled enerd@yincreases from the first boundary

FIG. 4. The energy increases to the first boundary energy. o, (1) the newly created closed orbit separates into two
E=E®Y, at which a new closed orbit is created. The newly created <o orbits. which are labeled by-1(a) and 1p). At this en-
closed orbit is called the first boundary orbit, labeled byl. At the ergy, there are three closed orbits, while fhe0 orbit is omitted.
boundary energy, there are two closed orbits.

away fromE®?), the newly created orbit then splits into a of a set of discrete boundary energies a new closed orbit is
pair (Fig. 7). Thus, as the energy continues to increase, thereated. The newly created orbit separates into two closed
number of the closed orbits increases steadily from 1 to 3 t@rbits when the energy increases away from the boundary
5, and so on. For any value of angle we conclude that at energy. For any given energy, which is not the boundary
any given energ¥ there is at least one closed orbit. At each energy, there ar€j +1) closed orbits.
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FIG. 7. As the scaled enerdy is larger than the second bound-

FIG. 6. The energy is increased to the second boundary enercffy energyE(®?), the second boundary orbit splits into two closed
E=E®2), at which again a new closed orbit is created and labele®'bits, which are labeled by=2(a) and 2¢). There are five
by j=2. At this energy, there are four closed orbits. Tjhe0,1

closed orbits at this energy. The=0,1 andb=1,2 orbits are omit-
orbits are omitted. ted.

B. Closed orbits—quantitative theory
In the following parts of this section, we will give the

o . . 1. Hamiltonian equation of motion
guantitative analysis of these facts. For any given closed or-
bit, we will give the formulas for the classical action, den-

The Hamiltonian of an electron in the electric and mag-
sity, and Maslov index. netic fields is given by
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1. AP .
HZE P—E +F1X+FZZ, (9) Sln(pz—,Z(Pyo'i‘l),
where—F, x—F,z is the scalar potential of the electric field; 1
F,A is the vector potential of the magnetic figfth, which is cos = N Py, (19
&

defined by
A=HX], (10)

where| is a unit vector directed along theaxis. Defining
the following quantities

e=3Pi+3 w5 x+i P i} 2 (11)
2 x " 2WB wg y wg
and
H,=3P;+Faz, (12)
the Hamiltonian can be reexpressed by
Heeo Tp _L(F)y 13
L N . z: 13

It is easy to prove that, P,, and H, are independently

Equation(19) implies that there is a relationship between the
initial direction of propagation of the electron and the radius
of the circular motion.
2. Initial coordinates for closed orbits
From energy conservation and Eq&5)—(17), we must
have

E=s—Py —3+3P; (20)
and
e=3P, +3[Py +1]% (21)

For closed orbits, we must have the following facts:

conserved. By making use of the scale change defined by Eq.

(6) and

-2
H’=(E) H, (14

wp

after omitting the primes, the Hamiltonian is given by

H=e—P,—3+H,, (15)
where
e=3P2+3[x+(P,+1)1% (16)
and
F
H,=1P2+ 2 2. (17)

Fy

X(tret) =0, (229
Y(trer) =0, (22b
Z(tre) =0, (229

wheret, is the returning time. With the help of Eq®), Eq.
(223 gives the returning timé;,
te=—2¢+(2j+1)m, (23

wherej is an integer. Equation®2b) and(22¢ can give the
following conditions:

So the dependence of the Hamiltonian on the field strength iEquations(23)—(25) also imply

removed, but the dependence on the anrghill remains.
As stated earlier, after detaching from Hthe electron

moves away from the origin in any direction with the fixed

initial momenta{P, ,P, ,P,}. Now, with the Hamiltonian

of the electron known, we obtain that the electron’s velocity

with time is described by the following expressions:
Px(t)=x(1),
Py(t) =y(t) =x(t) =Py,
P,(t)=2(t). (18)

From Eqgs.(8) and(18), we obtain thatp is related tce in the
following way:

1 1 ( 1)
Cosp+ — ¢— j+ 5| 7=0, 24)
Sp NS ¢ NS i+3 (
and
1F,
P20: E F_l tret- (25
t,o= 212 COSp (269
and
F2
PZOI F—l PXO' (26b)

Since the returning time,, is positive, Eqs(19) and (26)
display that cog and therPX0 and P,, must be positive, and

Eq. (26b) also implies that for closed orbits the electron must
begin its motion in thex-z plane against the electric field

F. By solving Eq.(21), we obtain

P,,=[2e—(Py +1)%]"2 (27)
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Some additional manipulations reduce E(&3)—(25) to an  dious deduction we obtaiﬁy0+1 from energy conservation

equation involving onlye and the fixed total energf. By  and Eqs(26b) and(27). ForE<E,,
removing¢ andt, from these equations, we obtain
2

P, +1 P, +1 (Fl +[2 (F)Z ZE(Fl)2
+ yotl=—|= el —| —2E| =
[26—(Py,+1)?]**~cos™* Ry ° Fa F2 F,
\/Z F\2 F, 2112
+l=] | = , &1<e<g¢ (293
L(z)=]m, 29) Fz) Fz) } ' 2
whereL (¢) is the left-hand side of Eq28). By a long te- and forE=Ee,
|
Fl 2 F 2 Fl 2 F 2 Fl 211/2
Al |l ) el R (B | eomemes
Py, T1= RE: , E\2 . F, 2+ F\2(F,\2]2 (29b
- =] - —| —2E| = — | = <g<
F)  [“°IF; F) "\F) \Fy) |+ Faofn
|
whereE, e, ,8,,e5 are given in the following expressions: There is a set of energids®) that are called boundary
energies. At each enerdsf®, the curve oL () is tangent to
E - 1 the line defined by 7. So at this energy a new closed orbit is
a2 coda’ formed, and this newly formed closed orbit is called ilte
boundary orbit. By differentiatind-(¢) with respect toe,
(V2E-1)2 holding E fixed, we find that the maximum df(e) occurs
g=——F—, when
2
(2e,—1)Py ()= 2E, (32)
_(J2E+1)? "
£27 2 ’ where Py (g@))=—(F/F)?+[2e(F/F;)*—2E(F1/Fp)?

+ (FIF)2(F1/F)2]Y2
Substituting this value foPyO(sb) obtained from Eq(31)
into Eq. (28), we solve for the boundary enerds®) and
(30 £®) numerically. Table | gives some boundary energies for

. three different values of angke. Figure 9 shows the curves
Given the total energ§, Eqs.(28)—(30) can be used t0  f tne boundary energieE®Y) and E®?) as a function of

determine the value of; for which there is a closed orbit. apgleq. It is obvious that the smaller the angie the lower
Substitutinge; into Eq. (294 or (29b) according to the given  {he houndary energies. This fact implies that at a given en-
energyE, we can obtain the momentuf, or P; for that  ergyE  there may be more closed orbits for smaller values of
closed orbit. Withe; andP; determined for that closed orbit, anglee.

Egs. (26b and (27) give the values ofP, and P, . The

Fi\2_ 1(F;)\?
83:(_1) E__<F_z) =E sirfa—3 tarfa<eg;.

N

initial conditions for that closed orbit are then known. 4. The Jacobian {t)
_ The ratio of Jacobian$J(ty)/J(t,e)] in the oscillatory
3. Boundary orbits cross sectiofEqg. (2)] represents the divergence of trajecto-

In this part, we will determine the number of closed orbitsfies with time. In the following part we will give the calcu-
existing at any given energy and the boundary energiekation of the ratio of Jacobians.
where new closed orbits appear. For three different values of The Jacobian is given by]:
anglea, the left-hand sidé. () of Eq. (28) has been plotted
at several values of the total ener§\as a function ot (Fig. )= 9(X,y,2) (32)
8). The right-hand side has also been plottedjfe0 and 1. A, Oout, Powp)
For any given energ¥, L(s) has a single maximum. Since
the maximum ol (¢) is greater than zero at all energies, oneThe coordinatest,6,, ¢, are the coordinates for the fam-
solution always exists foy=0. At low energyE, the maxi- ily of trajectories. As the electron propagates into the exter-
mum ofL (&) is less thanr, so no solutions exist for=1. At nal region, the symmetry is broken by the external fields.
large enough values @&, L (¢) has a maximum that is greater Equation(8) shows thaft,\2¢,¢} becomes the convenient
than. In this case, there are two roots to Eg8) for j=1,  variables to express the motion of the electron in the electric
and therefore there are two closed orbits, which are labelednd magnetic fields. Therefore, we can rewrite the Jacobian
j=1(a) and Xb), respectively. in the following way:
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_dt2e,9)  A(xy.2)
2 - \ \ B IO = A(t, Oouts Pour) a(t, \/E,QD), (333
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er i The quantityg(e,¢) is the first determinant in Eq339.
=285 Peters and DeloEl] have pointed out thag(e,¢) is a geo-
‘r =1 k metrical factor, and is independent of time. From E), a
2 straightforward evaluation of the second determinant in Eq.
§ 2r 7 (33b) gives the result:
b
3 of 1= ]
< F t
0 { [ J(t):g(s,<p)’4\/£ PZO—F—Zt)sinZE
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FIG. 8. Graphical solutions of E¢28). The curves represent the 228 (Py0+ D] “sin 2
left-hand side of Eq(28), and the horizontal lines are the right-hand
side of Eq.(28). The intersections of the curves and lines are the.l_h. is the J bi f traiect t fi =
solution of Eq.(28). For any given energy larger than zero, one IS 1S Ih€ Jacobian for any trajectory at any tme. For

solution always exists for Eq28), i.e., one closed orbit always closed orbits, the momentum in the direction I:)Zo

] . (39

exists. This solution is labeled Ly=0. At low energies, the maxi- = 1/2(F,/F )t If t=t, (initial time) or t=t, x andz are
mum of L(g) is less thanm, so there are no solutions fpe=1. As  small. So we can write the energy conservation in the fol-
the energy increases to the first boundary endtty), the maxi-  lowing way:

mum point ofL(g) is tangent to the horizontal line defined by

with.j =1 anc] then a new closed orbit is crgated. A§ the energy E—e—P, —1+ %PZ _ (35)
continues to increase frof(®Y), there are two intersections of the Y %

curve with the horizontal ling =1, and two solutions to Eq28)
exist. These two solutions correspond to two closed orbits, whichThen we can write the Jacobian for tjth closed orbit in the
have circular energies;(a) ande;(b), respectively. following expression:



4086 Z.Y. LIU, D. H. WANG, S. L. LIN, AND W. Z. SHI 54

F t ot _
I)=9g(e, )| 4\25]| P, — =" t|sir? = sin = =(—1)icosp,
o F, 2 2
\2¢; t t
+t 215 sin- | (2E— P2)2c0s~ F,
PZO 2 ° 2 Pz~ = tret= Py,
0 Fy 0
ot
—2[2ej=(Py+ 1)]Ysin 5| | (36) _ o o _
With the help of Eq(19) which give the definitions for sip

o ) ) and cos, the Jacobian at=t,, becomes
This is the Jacobian calculated at eitlterty or t=t,q. At

t=ty with ty small, expanding the trigonometric functions of

Eq. (36) and kgeping only the lowest order tf, we have (28,»)2 Py, t1 2 (pyo+1 1

that the Jacobian dt=t; is J(te)=0 P_ZO><4 1_( \/2_81 ) \/2_81 1+ 2_8]
J(to)=9g 5té(2E)- (37 _L[Z_F(E)Z 1_(Py0+1)2 ]) 9

At t=t,=—2¢+(2j +1)m, we have

t _ i i i
Cosﬁt:(_l)Jsimp, 38) With J(to) and J(t,p) Obtained, we have the ratio of the
2 Jacobians
|
J(to) \2e;t5(2E)
J(tred Py, 1\ “][Py,+1 1 1 E\° Py, +1)°
(2&))%x4| 1— 1+ —|——— {2+ —] | 1- (40)

Voo, | [\Nzey | 201 Nas |\ P Vs,

Coming out of the scaled variables and making use of thevhent= 2k, with t less than or equal tg (k is an inte-

following dimensionless variables: gen. Ast= 2k is a multiple of the cyclotron time, the elec-
tron passes through a focus. The Jacokié) is also zero
Fi/wg when
V= ,
! \/28]'
t t(sj - F>y0_ %)
1 Fl tanz E 2 1/F 2 .
i=— Py, +—|, 41 R P _ /
g V2¢; Yo wg “4D [(Fl) t 2 (Fl) tret|[ 28 (Pyo+1)2]12
(43

we rewrite Eq.(40) as

J(to) 2 Solutions of Eq(43) are times at which the electron passes
= — through caustics.

J(tre)  (F1/wp) Given the total energi, which is larger than the bound-

7 w2t2(2E) ary energies, there are two closed orbits for eaadf Eq.
17870 (28), which are labeled by(a) andj(b), respectively. The

number of caustics and foci can be counted from the closed
orbits (Figs. 3—7. We are able to conclude that the closed

42) orbit j(a) passes througf2j +1) caustics and foci, while the

closed orbitj (b) passes throughj2caustics and foci.

X

Fa

2
— 2
F, (1 V])

2+

4(1—vf)(vj(1+$f)—';j

This gives the classical density at the origin for flie orbit.
6. The classical action

5. The Maslov index The classical actios(q) is given by the following inte-

The Maslov indexy; is the number of caustics and foci gral from the initial pointq, to the final pointq:
through which thejth closed orbit passes, and caustics and
foci are singular points where the Jacobiiih) goes to zero. q q dEI
Equation(34) shows that the Jacobian for thih closed orbit S(q):J 5-d q= ,5 — dt. (44)
depends upon sitf2), so wededuce thafl(t) goes to zero do o dt
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TABLE |I. The boundary energies frofn=1 to 6 for three different values of the angle
a=5° a=45° a=85°
Boundary  E®) E(b)) &) &) E(b) E(b) NCh) R E(by) E(by) £ &)
orbit (scaled (10%a.u) (scaled (10°° (scaled (1075 (scaled (10°° (scaled (10°° (scaled (107°
j units) units) a.u) units) a.u) units) a.u) units) a.u) units) a.u)
1 830.0 1.185 76.31 0.1089 18.53 1.74 11.96 1.123 9.72 1.81 11.10 2.0669
2 3043.0 4.345 183.11 0.2614 57.84 5.431 32.21 3.0245 29.59 5.510 30.90 5.754
3 6599.65 9.4224 304.128 0.4342 116.98 10.984 61.59 5.7834 59.5 11.079 60.52 11.269
4 11481.0 16.391 447.21 0.6384 19583 18.388 101.31 9.5131 99.23 18.478 99.95 18.612
5 17691.0 25.2576 594.38 0.8486 294.53 27.657 150.66 14.147 149.01 27.747 149.35 27.811
6 25241.0 36.0368 761.72 1.0875 413.0 38.781 210.1 19.728 208.65 38.853 208.55 38.835
Since s(qy) is an arbitrary factor, we take it to be zero. Py, = J2E siné. cospl .,
Using Egs.(8) and(18), we calculate the integral in E¢44)
and obtain the classical action in the following way: _ _
Py,=V2E sing’ singl
1 21 1
S(E)=s(te) =~ — | —| =2 (1 ﬁﬂ”m—=+ (45) |
@B l®B] Vi Vi P, = V2E costhy, (489
This is the classical action for thjigh closed orbit. and
Ill. PHOTODETACHMENT CROSS SECTION Py(tre) = \2E sme t00~°¢ret Py
Using the results of the preceding sections, we obtain the
oscillatory part of the photodetachment cross sectigpin P.(t.)=2E siné* sinak =
. o . ; - = 2E sing . sing,..~= P, ,
electric and magnetic fields with any orientations y(tred reSNPre= Py,
2 6(.05 T Z(tret) V C099ret (48b)
Oret— 00 F /wB E
~> 2 Therefore, from Eqs(26) (47), and (48) we give the
% Vi relationship betweefé. ,,¢) } and{ 6., 4.},

2+

}

a

2 ~2  ~ F2 ’ 2
(I=v)vi(1+vi)—v F_l (1-vj)

X[ x( eouta d’out)X ( ereta ¢£et)]

1 [F\21
w

2 1
wsin— (72" 2 1o p, L
Slr{wB B) ij (1-7vj) (VJ >

(46)

Let{6K,,p ) represent the direction of motion of the return-
ing electron at=t,, and{6, ¢l be the direction from
which the electrons come. The relationshig 6f.,, ¢} and

{Olet, ledt 15 [6]

K — g
gret_ﬂ' aretv

Proi= T+ Pler- (47)
From Egs.(8) and (18), we obtain that the initial momenta
{Px,:Py, Pzt at t=t; and the final momenta

{Px(tred,Py(tred,P,(trep} att =t can be expressed in the fol-
lowing way:

i _
Oou= ¢9ret «,

(b{)ut: - ¢£et' (480

With the help of Eqs(47) and (48), we write for various
linear polarizations

Xx( eoub ¢out)Xx ( 0reta ¢ret) szg]cmtcosz‘ﬁoutv

Xy( ai)ut’ ¢ ut)Xy ( Hret’ ¢ret) =T a4 S|n2elt)u15|nz¢out’

1
co§ 6

out
Fa
F1

X( ajout’ ut) Xz 7 ( 0ret’ d’ret)

1

)
47 ) Slnz‘9outcosz¢out

(493
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Coming out of the scaled variables and using @8) and 50 | 1 T
the dimensionless variables defined by Efl), we rewrite a=5
Eq. (498 in 7;, andy;, o
g a=x
) ) : 0 e A A AN NN AN ANSAASAA A A
o o Fi\2 1 1—v ~L_ 200 | |
j I Vv (gl Bl = |1 = j — 4=y
XX(HOUU out)Xx(Hretid’ret) A (‘UB) 2E ’;}'12 ’ IUO .
IS 20 VA VAVAsVAsVAsVAcVaaVAcVAVAVAVS
bb.
< 500 = .
2 2 x:-\ e
(9] ¢J' ) *(01' ¢J ):_i E iw IS
Xy\ outs Pout) Xy  Urets Pret A wg 2E ‘;;]2 ' =, 0
—500 I | 1
) ) 5 0 2 4 6 8
y i x (gl j Fiq F, 1 l—VJ- total enery E (107%au)
X out? out)Xz( ret!¢ret)_ﬂ w_B F_l E';}'—JZ R | ] ]
(490 = 300 o =45 o=

0 A A s A s A IVAMA AV
Finally, we calculate the photodetachment cross section for r¥300
x-polarized light in the following way:

0o

Oy— =
(2E)¥1——1=3 cXE)siN®(E)], (508 . -z
] T A e MY
7300 | 1 L
o 0 2 4 6 8
wherec(E) is given by total enery E (10-%a.1)
Fi ’;j(l—ij) v =85 | |
X — —
Ci(E)=5 =~ 300 |- o=x

Y

Fa\* .,
e o

vi(1+75) =7 2+

[(2E)%(Gq _o, ] /00 (a. 0
ﬁ
:
H

(50b)

[N

o

@]
T

q=y —

Similar equations hold foy- or z- polarized light, ana{(E)
andc{(E) are

N
T
i

gq=z

y Fi ;j(l—v-z) vz oL ! ! !
cj(E)=—7 F,2 0 2 4 ( _Sau)es 8
j VJ(1+V) 2+ (1 V2) total enery 107°a.
] |:l
_=2
(vj—y)) (500 FIG. 10. With light linearly polarized in the, y, or z directions,
(1— ij)l/z, the semiclassical oscillations of the photodetachment cross sections
are displayed. Fox- or z-polarized light, the amplitude of the os-
cillations decreases with increasing energy, while Yepolarized
3[F,]2F light, it increases. As the value of the angldecomes small, fax
7 1 . : ) - .
CJ-(E)_ A or y-polarized light, the amplitude of oscillations decreases, while
Y for z-polarized light, the amplitude increases. Agends to zero,
T(1- Vz) 1/2 the amplitude of the-polarized light increases sharply.
j
X

~2 ~ F2 2 2
vi(1+v)—vj| 2+ F_) (1=vj) - o o
1 viding by o, and multiplying by the factor (£)~'“ does not
(50¢)  change the nature of the oscillations, but only changes the
amplitude.
Evaluation of the semiclassical cross section for the pa-
We have removed the cross secti@nin the absence of rameters shown in Fig. 10 is given in the following process:

fields and kept only the oscillatory part of the spectrum. Di-First, we find out the number of the closed orbits for any
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given energyE by solving Eq.(28). The total scaled energy x-polarized light is largest near the boundary energy and then
is given by decreases with increasing energy, while the amplitude for
y-polarized light increases with increasing energy. An expla-
nation of these facts can be given in the following way.
E. (51) Equation(493 shows that fox-polarized light the amplitude
is proportional to sifd L cog¢ L, while for y-polarized
light it is proportional to siRg ! sirf¢ | ,. Equation(480

; T
So from Table |, the number of the closed orbits can bedISpIayS that the angular factere, is equal to the angle.

determined easily. Second, for a given enefgy ¢; for S0 for a given value of angle, the angular factoﬁ L,Ut IS a
each closed orbit is calculated by solving E28). With z; f:onstant and then cannot change the amApllt'ude with increas-
known, P; (or P, ) for that closed orbit can be evaluated by ing energy. However, the angl)Jlar fact¢r{)u.t Is at a mini-
Eq.(29). Then two dimensionless quantitiesand »; can be mum at .the boundary enerdj;i(;.), and then Increases as the
determined by Eq(41), and the photodetachment cross sec-€Nergy increases away frof™’. Then the amplitude for
tion can be calculated. x-polarized light decreases, while the amplitude for
Following the preceding process of calculation, the right-y-polarized light increases. The amplitude fpipolarized
hand side of Eq(50a is calculated for the range of atomic light is the multiplication of the one fox-polarized light by
energies 0.0—8010"° a.u. The results are shown in Fig. 10. a factor F,/F;)? [Eq. (493], and they have similar chang-
ing tendencies with increasing energy. The only difference is
that their oscillations have different amplitudes.
IV. SIMILARITIES AND DIFFERENCES BETWEEN In the case otx=7/2, the photodetachment cross section
THE CASE OF a=m/2 and a= /2 for x or y-polarized light is similar to the case af* #/2, but
for z-polarized light, the cross sections for two ca&es 7/2
and a#7/2) are different. Ata=/2, the oscillatory cross

For H™ in crossed electric and magnetic fields=7/2), . . Lo S
. . section forz-polarized light is equal to zero. This is because
the classical motion of the detached electron has been of)- o . !
e closed orbits lie only in the-y plane, and with

tained by Peters and Delps]. In that case, due to no electric z-polarized light there is no outgoing wave in they plane

field in thgz axis for closed_ orbitsP,, must be_ zero. The [Eq. (4.2 in Ref.[1]]. Thus, the closed orbits have no influ-
closed orbits can exist only in they plane. Butin our case, ence and the cross section has no oscillations. As the value of
the anglea between the electric and magnetic fields is 'essanglea reduces away frona=/2, the closed orbits cannot
than#/2, the electric field= has one componerft; inthez  eyist in thex-y plane, except in three-dimensional space.
direction (Fig. 1), so for closed orbltsPZO must be greater Therefore, though there is no outgoing wave in they
than zero. The closed orbits cannot exist in #ig plane, plane, the closed orbits still have an effect on the cross sec-
except in three-dimensional space. tion, giving rise to the oscillations in the cross section. At
In our case otv#7/2, calculations show that at any given a#/2, Eq. (498 shows that the amplitude of the oscilla-
energyE there is at least one closed orbit, and there is a sedons forz-polarized light is proportional to cé8. ,, and the
of boundary energie&(’). At each boundary enerds®’, a  angular factow |, is equal to the angle; so, as the value of
new closed orbit is created, and with the slightest increase Qfngle o decreases, the angular facter , decreases, and
energy, the newly created closed orbit separates into tWghen the amplitude increases. As angleapproaches zero,
closed orbits, labeled bj(a) and j(b), respectively. Each ihe amplitude increases sharply.
closed orbit is described by a paramefef(a) ande;(b), The photodetachment cross section and other results of
and withe;(a) <e;(b)], which represents the circular kinetic the casex=mn/2 given by Peters and Deld4] can be ob-
energy of the electron’s trochoidal motion in they plane.  tained easily from the results in this paper just by taking
For any given energ¥, other than the boundary energies, . /2 or F,—0. But the results of the case=0 given by
the number of closed orbits {€j +1) (Table ). The Maslov  peterset al. [2] cannot be obtained directly from our results
index u; is (2j +1) for the j(a) orbit, while it is 2 for the  j,st by takinga—0 or F,—0. This is due to the following
j(b) orbit. These results are the same as those obtained yyse. In parallel electric and magnetic fields=0), the
Peters and Delogl] in the case otv=m/2. Our calculations  forces acting on the detached electron are cylindrically sym-
also show that th¢th boundary energf®) reduces with @ metric. So, each closed orbit given in REZ] actually rep-
decreasing value of angte(Fig. 9 and Table)l As the value  yesents a cylindrical family of orbits and the number of
of « tends to zero, the boundary ener§f®) decreases closed orbits is infinite. However, in our caf@<a<m/2),
sharply, approaching the boundary energy in parallel electrighjs symmetry does not exist, so each closed orbit is isolated,
and magnetic field§2]. Therefore, for a given energ,  and the number of closed orbits is finite. As-0, the evo-

there may be more closed orbits for the smaller value ofytion of our results to the case af=0 needs to be studied
anglea. This fact is shown clearly in Table I. More closed fyrther. This is planned for the future.

orbits can give rise to more complicated oscillations in the
cross-section spectrum.

F,]°?

wp

E'=
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