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Electron correlation in ion-atom collisions
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We study the role of electron correlation during a high-energy ion-atom colligigmamic correlation We
show how to define a reference calculation in which correlation is not included during the collision whereas it
is included in the initial and final statéBozen-correlation approximationCorrelation may be characterized
by a typical timet.,,. The frozen-correlation approximation corresponds to the form of the transition ampli-
tude when assuming thay,,, is much larger than the collision time. We apply our theory to double excitation
and single ionization of helium and show that dynamic correlation may play a more important role in ioniza-
tion than in double excitatioS1050-294{@6)03010-7

PACS numbd(s): 34.10+x, 34.50.Fa

[. INTRODUCTION the problem is basically a practical one: how well can we
describe the correlated atomic states and how can we calcu-
lon (atom—atom collision processes involving excitation late the relevant matrix element?
of more than one electron raise the question of the role of the A really intricate situation arises when neither approach
electron-electron interaction. Following common usage incan be used. For example, if one wishes to go beyond the
atomic collision processes, we shall name correlation thdirst order of a perturbative series, one gets usually an evo-
whole electron-electron interaction. This definition of corre-lution operator which depends explicitly on the electron-
lation is at variance with the one commonly used in atomicelectron interaction. In this context the notion @ynamic
structure theory. In a sense, the present contribution will giveeorrelation arises in relation with the fact that the exact evo-

further justification for this convention. lution operator contains the electron-electron interaction ex-
The role of electron correlation is well established for theplicitly.
case of low-energy ioffatom)—atom collisions. In the low- A breakthrough in allowing for dynamic correlation was

energy regime, one makes use of the molecular theory ddchieved in the work of Reading and Fdi@i4]. These au-
atomic collisions based on adiabatiBorn-Oppenheimer thors have been able to carry out a converged calculation,
molecular wave functions for the electronic states. The latteusing close-coupling techniques, for double ionization of he-
are determined for nuclei fixed at a given internuclear disdium by ions. This tour de force relies on various clever
tance. There igat least in principlgno problem in account- ingredients(like the solution of the so-callethterpretation
ing for electron correlation in these molecular states. Theroblemallowing separation of single and double ionization
dynamics arises, then, from the nuclear motion which inwhile using a basis of ? functions out of which we single
duces transitions between adiabatic states. Therefore correladt two points connected with the present discussion. First,
tion is entirely embedded in the adiabatic molecular statesghe algorithm used ifi3,4] is based on the remark that during
The role of correlation during the collision has been madea small enough time the evolution of the system can be de-
explicit, e.g., by a change of representation in the basis ofcribed in terms of an evolution operator not involving elec-
adiabatic state@iabatic Il processefl]) or by using a basis tron correlation. As we show later, this use of a time picture
of molecular states not including correlatif?]. In sum, the to characterize correlation is an essential point. Second, the
problem of correlation in this energy range is more a practi+esults obtained if3,4] for double ionization differ totally
cal problem than one of principle. from those of a so-called independent-electron method
Another simple situation occurs when the first order of(IEM). This has been considered ever since as the most con-
some perturbation serig8orn or distorted waveis valid.  vincing proof of the role of dynamic correlation since in the
Then transition amplitudes can be expressed as the matriEM each electron is assumed to evolve independently in the
element of an operator involving the projectile-target inter-field of the projectile.
action between fully correlated initial and final states. Again, In the context of perturbation theory, important contribu-
tions were made by McGuird5] and Stolterfoht[6].
McGuire [5] has discussed in detail the relation between
*Permanent address: Departamento denfiea C-9, Universidad — electron correlation and the various orders of perturbation

Autonoma de Madrid, 28049-Madrid, Spain. theory in describing multiple excitation processes. He has
"Permanent address: Laboratoire de Physico-Chimieoflinee, ~ stressed the importance of using the intermediate picture to
CNRS and UniversitBordeaux |, 33405 Talence, France. develop approximations of dynamic correlation. Stolterfoht
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[6] has insisted on the difference of time scale associated Ho=ho+W. (1)
with correlation and the projectile-target interaction, respec-
tively. We call ,, the eigenfunction oH, with eigenenergyg, .

Our objective here is to provide an answer to the stillFor simplicity, we drop the internuclear potential from the
pending question: what is the role of dynamic correlation? Inequations and consider that the interaction with the projectile
fact, Reading and For{3,4] make a complete calculation s short range. The correct treatment of Coulomb potentials
fully including correlation. However, they do not define the jhvolves well documented modifications that we leave aside
reference calculation excluding dynamic correlation @nly  here to avoid obscuring the main objective of the present
dynamical correlation. The independent-electron model usegevelopmentwhich does not mean that it can be neglected
in [3,4] neglects correlation in the initial and final states asjn the treatment of a specific problgnunder these condi-
well as during the collision. Defining an approximation ex- tions, we have to solve the TDSE
cluding dynamic correlation but including correlation in the
initial and final states is not a straightforward problem in
general. We consider throughout this work the particular
case in which the correlated electrons are bound to the same
atom(the target or the projectilén both the initial and final  ith initial condition
state(a brief discussion of more general situations is given in
the conclusioh This means that the electron-electron inter- lim W,(t)=g;(t), 3)
action cannot be treated as a perturbation since any perturb- t——oo
ing potential should go to zero before and after the collision. B
We therefore show that an approximate treatment requires\ahere ;(t) =exp(—iE;t)¢;. The exact solution of Eq(2)
particular condition on the time associated with correlationcan be written in terms of the evolution operatd(t,t’)
Lett.or be a typical timgto be defined latg@rassociated with  associated withH (t):
correlation andt .y, the collision time(associated with the
projectile-target interaction Then we show that the evolu- Vi) =U(t)Wt" )= lim Utt)ygt"). @)
tion without dynamic correlation corresponds to the limit t'——o
teorr/tcoi— - INn other terms, by looking at the form of the
evolution operator when lettint.,,/t;o go to infinity, we

obtain an approximate form which corresponds to neglectin . ) ) .
bp P 9 antageous to work in the intermediate pict(see alsd5]).

dynamic correlation. o - ; . :
Our theory is used to study the role of dynamic correla-We label any quantity in the intermediate picture by a tilde.

tion in double excitation and single ionization of helium. The The wave function¥;(t) =e'Mo"Wi(t) is now a solution of

case of double excitation is particularly striking as final-statehe TDSE:

correlation is essential to compare theory with experiment.

We are thus in a position to explore the role of dynamic

correlation in a multiple excitation process while accounting

for correlation in both the initial and final state. - -
A brief account of our work has already been publishedwith the initial condition lim_, _,W;(t) = ;.

[7]. Atomic units are used unless otherwise stated.

Ho V(D) —i =
0 (t)—lm

.d
‘I’i(t)={H(t)—la}‘I’i(t)=0, 2

All the above equations are written in the so-called Schro
@inger picture. For reasons that are apparent later, it is ad-

) ) d\~
e'Hoty/(t)e Hol—j ot W¥i(t)=0, (5)

A. The frozen-correlation approximation

Il. GENERAL THEORY The evolution of\ffi(t) in time is given by the evolution
. . operator
We treat the problem in the impact parameter method. It
has been known for many years that the latter provides an G(t t)=eoty(t,t")e Mot 6)

accurate description of igatom-atom collisions to first or-

der in thg elec_tron to proton mass ratio. Any formal?sm deThe evolution operators andU satisfy the equations
veloped in the impact parameter method has an equivalent in

the full quantal theory. As we show below, the impact pa-

rameter method allows us to express our ideas in a more iaU(t,t’)zH(t)U(t,t’), (79
intuitive and transparent form. In the impact parameter

method everything works as if one were solving a time de- q

pendent Schidinger equatiofTDSE) for a straight line tra- i—U(t,t")=eHotv(t)e HotU(t,t). (7b)
jectory of the projectile. The internuclear vectris given dt

by R=p+vt where p is the impact parameter and the ] ) )
(constank projectile velocity. For simplicity we consider the Let us now introduce the evolution operataft,t’) associ-
projectile to be a bare ion of chargg. We callH, the  ated with the TDSE when we drofy from the Hamiltonian.
Hamiltonian of the isolated targeY/(t) the interaction be- We define a corresponding |n;ermed|ate plcture in which the
tween the projectile and target electrons, ahd the whole  evolution operator igi(t,t")=eotu(t,t’)e "ot Note that
electron-electron interaction. We consider that, may be hg [the target Hamiltonian without the nonseparable part of
split into W;+W, whereW, is a sum of one-electron opera- the electron-electron interactions, see Hq] appears in this
tors andW is a nonseparable two-electron operator. Then definition instead oH,. The operatorsi andU satisfy



3992
H d ry — !
d_ ihot —ihotT
|Eu(t,t’)=e' o'V(t)e "Motu(t,t’), (8b)

whereh(t) =hy+V(t). A very simple relation can be found

betweenU and U when the collision time is vanishingly
small. Following Messiali8], we write

U(t,t)=T(t,tHU'(t,t") (9)
and the operato@’(t,t’) satisfies the equation
d~ ~
iaU’(t,t’)=H{(t)U’(t,t’),
H/(t,t")=T"(t,t")H' (t)u(t,t"),
H'(t)=eHotv(t)e Mot —ehaty(t)e M. (10)

The structure of the operatét’ is simple. As we have noted
above, the intermediate representation associatedhyjtts
different from the one associated witly,. The operator
H'(t) is the difference between the form ¥f(t), the pro-
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intermediate picture. No such limit exists for the operator
U(t,t") in the Schrdinger picture. This can be immediately
verified by looking at the form o) andu for a small time
interval:

U(t+8,t)=1—iH(t)6+0(5%), (143

u(t+38,t)=1—ih(t)5+0(5%). (14b)

The difference between the generatordJoaindu is W and
therefore it cannot be associated witl, . We shall discuss
this in more detail later.

B. Alternative derivation of the FCA

It is of interest to follow an alternative derivation that will
be helpful in the following discussion. We first introduce

some extra notations. We cafi; the eigenfunctions oh,
with eigenvaluee; and ¢;(t) =exp(—iet)¢;. The eigen-
functions ofH, can be expressed in terms ¢f as

jectile target interaction, in both representations. It differs

from zero only during the collision time, i.e., when the pro-
jectile target interaction is active[V(t)#0]. Since
Ho=ho+ W, it can be immediately seen thidt (t) describes
the variation in the evolution due to the presencébduring
the collision. From(9) we define the following approxima-
tion:

Ut t)—T(t,t"). (11
Since over asmalltime interval § we have
U’ (t+8,t)=1—iH|(t)5+0(5?). (12)

Equation(11) corresponds to Iirpﬂoa(t,t’)z'ﬁ(t,t’), ie.,

En=; aj"'e; . (15
We define a dynamic bas{&)n} in the following way:
lim @)=, (16)
t— —oo
and E)n satisfies the TDSE
_ . d]~
e'hoty/(t)e Mot —j i/ Pa(D=0. (17

In other terms, the functiod,(t) evolves under the influ-
ence ofhy andV(t) only. Some comments are in order on
the signification of the functiod®,(t).

First, it is essential at this level to work in the intermedi-
ate picture so that the lim{iL6) exists. This is so because the

to a sudden approximation. Now, the time dependence cdsymptotic functions are time independent in the intermedi-

U’ is entirely due to the presence wf{t) with which we
may associate a characteristic tipg,. Therefore Eq(11)

ate picture. Asymptotically, the functiai,(t) is time inde-
pendent as shown by E¢L7) wheneveV(t) is zero. There

means that the typical time associated with the action of thgs no way to impose a limit foit tending to infinity of
projectile target interaction is much shorter than the timed (t) in terms of ,(t) because of the energy factors in

required forW to produce an appreciable change in the evo

;(t) and ¢,(t). No time independent correspondence be-

lution of the system during the collision. We make this statetween ¢,,(t) and ,(t) similar to (15) exists.

ment more quantitative later.
The operatorW in the interaction picture satisfies the

equation

d~ o

g W =[W.Ho] (13)
and is therefore constant W commutes withh, (e.g., if
W is a numbey. Under the latter condition, one has exactly
H'(t)=0 and thereford) =U. For this reason we call ap-
proximation (11) the frozen-correlation approximation

(FCA).
It should be stressed that the sudden approximatidn

Secondly, theevolution of ®,(t) does not include any
effect of W. The effect ofW enters only through the initial
condition (16). For this reason, we shall speak of an evolu-
tion with frozen correlation What we mean through this
expression can be understood intuitively in the following
way. Consider the functior@jo(t) satisfying the same equa-
tion (17) as ®,(t) but with the initial condition
®Y(t)—_ ;. The functionsd(t) are the solution of a
problem in which the two electrons never interact. The set of
functions{db?(t)} is a complete orthonormal séiecause of
the completeness and orthogonality of the asymptotic func-
tions ¢;). The functionsb,(t) can be expresseat any time

takes the simple form we have obtained only by use of then terms ofCDIQ(t) through
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relation is frozen. In particular, the evolution given by Eqg.

D,(1)=2 alVo(1), (18)  (17) is compatible with a nonzero transition probability to a
) given final correlated state.
where the Coefﬁcienmj(n) are independent of timeThis It is important to realize the latter point to understand that

property expresses what we mean by an evolution with frothe difference betweet, and®, can be characterized nei-

zen correlation: the role v in ®,(t) appears only through ther by the change iW(t) nor by its magnitude. As we
the time independent coefficierdd™ . This does not mean show later, the difference between both functions is of higher

that the average value &¥ is constant in the course of the Order inW.

collision when the evolution is given byl7). Let us define The set of®(t) functions is complete and orthonormal.

the average value oV at timet as This comes out of the completeness and orthogonality of the
_ - - asymptotic sety,(t) as for the usual solutions of the time-
W(t) =(Dn(t)|W|Dp(1)). (199  dependent Schdinger equation.

) . ) = Using thed, (t) functions as a basis, we may write
This quantity depends on time be@@% in (18) depends
on time. This variation with time ofV(t) is only due to the _ _
interaction with the projectile and not to any actionWfin Wi(t) =2, ca(t)Dy(t), (20
the course of the collision sinc®/ does not appear in the n

TDSE (17). In other terms, a variation ai/(t) with time is

not in contradiction with the idea expressed earlier that corwith lim,_, _..c,(t) = 6,;. This gives the coupled equations

i%cn(t) => cm(t)(ff)n(t)|e‘H0tV(t)e*‘H0‘— id/dt|Ef>m(t)> => cm(t)(ff)n(t)|e‘H0‘V(t)e*iHot— eihotv(t)efihot@')m(t))_
(21

Until now everything is exact. Let us understand the signification of the above equations. The fuax;,wnsorrespond to
the solution of the time dependent Sdtimger equation under the influence lof and V(t) alone. Through the coupled

equationg21), we measure how much the exact soluﬂBr(t) differs from (T)i(t). Note that the fulllexacy dynamics due to
hy+V is contained in®,. We may transforn{21) into the integral equation

Ch(t)=8y—i > ﬁ dt’ c(t' )(Dp(t')]| Mot V(") e Hot —eihot'v/(t7) e~ Mot | (t')). (22)

The two important features of this expression are thathe (1) =T(t,ty) . (24b)
coupling arises from the presence Vf since, in general,
[Ho,W]+#0, and(ii) the W interaction is effective only over
the time interval wherV(t) is nonzero. Under the condition
teoi— 0, equivalent to saying that(t) is a & function, one
gets

As we have noted above, the operat appears only
throughH, and therefore the action of the operatt is
limited to the time interval over whicN(t) is active, i.e.,
H/ =0 before and after the collision. Furthermdte is zero
when the operatorW in the intermediate picture
Cn(t)=dy; . (23 (eMotwe Mot or eiMotwe Mot is independent of time, ie.,
_ _ W commutes withh,y [see Eq.(13)]. Then, any deviation
In other terms, the prescriptiol;;(t) — ®;(t) gives the solu- from the frozen-correlated approximation must be accounted
tion of the problem in the limit,,— 0. Note that the fact for by H{ in the time interval {; ,t; +ty). Here we try to
that V(t) is set equal to & function in (22) is compatible ~analyze the validity of this approximation by considering
with a nonzero transition probability for the reason explainedJ’ up to first order irt ;. For a small collision time,; we

earlier. can write from Eq(10)
C. Validity of the frozen-correlation approximation G’(tl“‘tcou t)=1—i Jt1+tC°||H,’(t’)dt’. (25)
We closely follow Messialj8] (Chap. XVII, Sec. I1.8. g

For simplicity, we assume that the collision takes place over

a finite time starting fromt=t,. From Eqgs.(4) and(17) we  Notice that in the frozen-correlation approximatid#, =1,
may write which is the zero order solution of the previous equation.

_ _ _ Accordingly, small deviations from this approximation will
i(t)=U(t,ty) ¢, (249 be accounted for by the first-order term includidg:
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U,(tl"'tcollrtl)zl_itcollHl/(tl"'tcollutl)a (26) W:1_|<{I}i(t1+tcoll)|&3i(t1+tcoll)>|2
where = (W;(ty + toon) | QWi(t1+ teon)), (29)
— 1 ty+teon s , where
Hl(tl+tcollvt1):t_” t Hy(t")dt (27
CO! 1 ~ ~ ~
Q=1—|D;(ty+teo) ) Pi(ty+teon)|- (29

is an average operator over the collision time. The best way

to measure the validity of the sudden approximafid) to  If the frozen-correlation approximation is exact, ther-0,

U is to calculate the deviation betweeh(ti+1tcy) and  becausel;(t;+teo) =P;i(ty+teo). In the general case, us-
Wi(ty+teo) through their overlap: ing Eqgs.(9) and(24), w can be written

W= (51U (g oo, t) T (t - toon 1) QU(t +teon 1)U (t1+ teon ) [#4). (30
Substituting(26), we obtain
W:tcz:oll<"Zi|H_|,T(tl+tcoll AT (b + teon £ QU(ty + togy atl)H_{(tlthcon )] %)
ztgou{(%”"'_((tﬁ‘tcou1t1)|2|Zi>_|<Ei|H_((t1+tco|| ,t1)|Ei>|2}=t§0”[AH_,']2. (31)
We may now introduce the definition D. Generality of the FCA

To conclude this section, we would like to note the gen-
erality of our formalism. The termW that we wish to treat
approximately may be the whole electron-electron interac-
tion Ve It is quite clear that nothing is changed formally if
we split the Hamiltonian in a different way. A first possibil-
ity would be to approximate only part &f... The potential

7 I Vee would be split into sayw; +W and W; would be in-
The termAH, '—S/ the root mear? square deviation frgm the cluded in hy, whereasW would be treated approximately
mean value oH/(t). The latter is the average over time of along the line developed above. For example, one could
the energy fluctuations caused by the operifdn the exact  think, in the spirit of the Hartree-Fock approximation, of
propagation with respect to the average wki¢is neglected  definingW, as an averaged screening potential whereas the
in the evolution. Then, the characteristic timeAH| for ~ complemenw would correspond to something that could be
these average energy fluctuations can be interpreted as thalled correlation. It is not clear how one can perform such a
correlation timet.,,. Notice that, as expected, we get the division of V. as exemplified by the difficulties encountered
correct limitt.,,— whenW is a constant in the interme- in the time-depgndent Hartree-Fo_ck method. What we want
diate picture(i.e., whenH; =0). to stress here is that an approximate treatmenWotan

Iways be done along the line developed above.
From Egs.(28), (31), and (32), teor/tcon May be calcu- a S ; .

; i ; Another class of approximations could be built by adding
lated readily when the exact solution is known since

YW xact soltion 1s wn sl part of V(t) to W and freezing the combination of both. We

just mention this option in passing as a full discussion is not
the objective of our present work.

1

AR (32

oo™

tc:oII = =~
t—:Wm:[l—|<‘I’i(t1+tco||)|q’i(t1+tcon)>|z]1/2-
corr (33) I1l. APPLICATIONS
A. Relation with the independent-electron model
In sum, we have defined a tintg,, characterizing the action In the independent-electron model the electron-electron

of the operatoW during the collision andnly during the  interactionVe, is approximated by a sum of one-electron
collision. This time is associated with the root mean squardotentials for the definition of the initial state as well as for
of the energy fluctuations, averaged over the collision timethe time evolution of the system:

caused by the operat® with respect to an evolution that
neglects it. Coming klack to our initial equations establishing
the relation bet\Lveeth andUu, we see that the sudden ap-
proximation onU’ has the desirable properties since the
term neglected goes to zero wheg, /te,, goes to zero.
Therefore Eq(11) is the form for the evolution operator in Here the indexn means that the corresponding operator acts
the absence of dynamic correlation. only on functions of the electram. The evolution operator in

W= W, (34)
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the IEM includes the effect oV, and because aB4) it can W=V~ W;. (41

be written as a product of one-electron operators:
Now, as discussed at the end of Sec. Il, the FCA can also

S ~EM . ) include the effect ofW; in the evolution of the system
USM(t,t )=1;[ Uy (t,t'), (39 throughh, (hence freezing onlyV instead ofVe,). In this
case,Un(t,t')=UEM(t,t’), and therefore the IEM can be
whereU/EM(t,t") is acting only on functions of electrom.  obtained from the FCA by restricting the sum in Eg9) to
The same property applies in the FCA: a single term. It is important to note that correlation may be
neglected in the dynamics while being fully included in the
initial and final statesas in the FCA but that the converse is
Tty =11 Uyt.t). (36)  not true. If the channel Hamiltonians do not include correla-
4 tion, then it makes no sense to include correlation in the
In the IEM the initial and final states are described by gCollision since otherwise the interaction potential would not

single Slater determinant. In contrast, the initial and final9° (© Zero at infinity. Any approximation on the definition of

states used in the FCA fully include electron correlation anc}he_ as;(/jmptqtti)g staﬁes. must ble ponsistent with the Hamil-
therefore they are written as linear combinations of Slatefonian describing the time evolution.
determinant§see Eq(15)]. In spite of the similarity between the IEM and the FCA,

To be more specific, we consider the case of two electrone Physical content of the two approximations is different.

with different spins when spin dependent forces are nell one casethe IEM) W is neglected throughout, i.e., one

glected. In the IEM, the initial and final states take the form@SSumes that the neglected pamesak In the other caséthe
FCA) we assume nothing on tterengthof W but thatW
JIEM_ IF I,F evolves slowly in time. From the previous analysis, it is clear
=¢;i" (Dei (2 3 y
hip=eim(Dem(2) S that the IEM is the particular form taken by the FCA when
so that an independent-electron approximation is valid for both the
initial and final states.

tEM=lim  lim (ef(D]UEM(Lt)]el(1)

tow t' - B. Perturbation theory and multiple excitation processes
< oF(NTEMt 1) 0 (2 A lot of work has been devoted to the interpretation of
(o1 (U2, )|(PJ( ) (38) multiple-electron processes at high energies using the pertur-
whereas in the FCA bative approach and the IEM picture because the latter gives

simple interpretations of the mechanisms involved in multi-
— electron processes. Consider again for simplicity the case of
=2 alfelF(LeF(2) (39 two electrons with different spins. If we neglect completely
4 the interaction of, say, electron 1 with the projectile, then

and . . ~ ,
tE'=1lm lim (ef(D)]e{(1))(ef (2IUFM(t,)]¢](2)).
t—ow t' -
te=tim lim 3 aljaf(ef(DITL)]l(1) 42
oo U ) The excitation of electron 1 arises only from the overlap
X<¢|F(2)|Gz(t,t,)|¢}(2)>. (40) between the |n_|t|al and .flr!al orbitals, which is usually cal]ed
shakeoff9]. This result is independent of any approximation
The potential neglected in the IENN both the initial state made onU'ZEM. In particular, the first order of perturbation
and the evolution operatpis theory gives

tie[IEM]=tie (i] ;kl>:—i[<¢E<1>|qo:<1>>f_:dt<sor<2>|\72<t>|go}<2>>+<¢F(2>|go}<2>>J_:dt<¢5<1>|\71<t>|¢:<1>> :
(43

which shows, as is well known, that shakeoff is necessary t@processes decay faster with energyNaisicreases. To second
produce a many-electron excitation to first order of perturbaorder we get
tion theory.

To exciteN electrons by “independent” interactions with t2[IEM]=t2(ij;Kkl) +t2(ij ; k), (44)
the projectile, one needs to evaluate Mt order of pertur-
bation theory of the fulN-electron problem. Thus the latter where
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2 +oo t ~ ~
ta(ij ;k|>=—[<<p5<1>|<p:<1>>fw dtLdt%¢F<2>|vz<t>v2<t')|cp,'-<2>>
F I o ! FOaVIV. (1)
s @ld@) | o oeEoRoboeldm),

t2(ij ;kl)=—

| aefTaolelan | _:dt'<¢r(2>|§72<t’>|¢}<2>>]. (@5)

The termt, corresponds to a second order transition for oneexample, concerning projectile charge sign effects on proton-
electron associated with a shake-off for the other, i.e., onljnelium and antiprotalectron-helium collisions, has been
one-electron interacts with the projectile. The tefcorre-  reported recently7].
sponds to a product of one-electron amplitudes in first order The conclusion of this section is that, in order to study the
of perturbation theory. Their relative importance, and theirorder in the interactiov(t), onedoes noneed to work with
variation with energy in particular, depends on all parameterghe IEM or, in other words, one does not have to assume that
of the transition considered. electron correlation is weak, but that,,>t., . Therefore
We turn now to the FCA approximation. The main resultthe validity of this kind of analysis is not restricted to the
of Sec. Il is thatW andV(t) cannotbe treated on an equal case of smalW. Whereas the FCA represents a further step
footing: it is not possible to carry out a multiple scattering with respect to the IEM, it still allows us to use the termi-
picture based on a perturbation expansion in bathand  nology developed for the IENshakeoff, number of electron-
V(t). Our theory shows that there ishierarchyin approxi-  projectile interactions, efcIn other terms, this terminology
mating W and V(t) since an approximate treatment Wf  makes sense whenever the FCA is valid, i.e., whenever dy-
requirest.,>t., and therefore it is onlywithin the time  namic correlation is not important, independently of the ap-
intervalt,,, that an approximation t¥/(t) can be introduced. proximation used for the initial and final states.
If we neglect completely the interaction of electron 1 with

the projectile, then C. Close coupling
In the FCA, multielectron transition amplitudes can be
tieA=lim  lim X afaf(ef(1)]e](1)) written in terms of single-electron transition amplitudes and,
too t'——o 1Kl as a consequence, FCA close-coupling calculations are much

Fonn i~ b easier than the fully correlated ones. To illustrate this point,
X( (2)[uy(t,t")]¢j(2)). 46) e consider a two-electron system. The eigenstatég afe

The approximation on the dynamics is exactly the same as iRrOdl_JCtS of one-electron orb'ta‘lﬁ - The two-electron basis
the shakeoff case derived earlier in the IEM: electron 2 getfunctionsy;, can be expressed in terms of these as
excited as a result of the role @¥ in the initial and/or final

state. We do not see any reason not to call the corresponding ;/}n: E ajnk(pj()pk_ (49)
process a shakeoff process. The fact that we describe the ik

states of electron 1 in a Hartree-Fock or fully correlated man-

ner is not relevant to the approximation made on the dynamym.jer the action ofi(t,t;) Lhe previous form is conserved
ics. during the collision because can be written as a product of

The first Born approximation is in the FCA: one-electron operatorgsee EQ.(36)]. Therefore the one-
electron orbitals evolve in timébecause of the interaction

L DR with the projectilé whereas the coefficients], are time in-
ti[FCA]= % ajjatig(ijKl). (47 dependentfrozen correlation In particular, at the end of the
b collision, the initial function has evolved into

For higher orders of the perturbation series the FCA leads to

a great simplifi(_:ation with respect to the fully correlated cal- lim lim u(t; ,ti)%:_ 2 a}ka”akm(p,gom, (50
culation. A straightforward generalization @5) shows that tg—oe tj——o Lk l,m

the evaluation of the second Born approximation reduces to . _ .
the calculation of one-electron amplitudes: where the one-electron amplitudes describe transitions

between one-electron orbitagg and ¢, under the action of
) A 5. the projectile. It is this mixing between the one-electron or-
t|F[FCA]:i2 % ajjayita(ii; kD +to(ij kD}. (48)  pitals by the projectile field which allows us to produce a
J final correlated statg/ having a configuration mixing that

The same holds for higher orders of the perturbation expanmay differ significantly from that of the initial state .
sion. In particular, this way of writing the Born series allows From (50) it follows that the transition amplitude between
a simple interpretation of the cross sections in terms of thénitial and final correlated states can be written in terms of
value and the sign of the projectile charge. A very goodthe one-electron amplitudes; :
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d

te= X ol A= X ajefmajam. (51 i—UFM(t,t) =H(t)UF(t,ty). (56)
jknLm jknLm dt

Then, in practice, one only needs to perform one-electronVe look at Eq.(55 over the small intervaty,t; + 5]
close-coupling calculations to evaluate the two-electron am- _ > ) )
UF(ty+ 8,t) =[1—ih(t) 5+ 0( ) |[1+ihos+0( )]

plitude.
As discussed in Sec. Il, the FCA is also useful because it X[1—iH g6+ 0(6%)]
provides the reference calculation in which dynamic correla-
tion is neglected. Then, the importance of dynamic correla- =1—iH(t)8+0(5%)=U(t;+ 8,t;)+0(5%).
tion could be assessed by simply comparing with the corre- (57)

sponding fully correlated calculation. As the fully correlated
problem cannot be exactly solved in practice, one has t@€omparing with(56)
restrict this comparison to a finite configuration space. The
close-coupling formalism allows us to perform such a com- U(t;+6,t))=U"M(t,+ 8,t;)+0(5%). (59
parison in a meaningful way.

Let us callP the projection operator onto the basis setS0 the FIM operator is correct up to first order drwhich
used to solve the close-coupling equations in the fully correshould be contrasted with approximati@it) which is only

lated case. Then, the close-coupling method consists in r&orrect to zero order. So the FIM method provides an algo-
placing Eq.(2) by rithm for the calculation of thexactevolution operator: by

cutting the collision time in small enough intervals, the exact
.d operator can be calculated to any prescribed accuracy. The

Ho+ V()i a) PWF(t)=0, (52 big advantage is that, in each interval, the time evolution due

to the projectile interaction enters only through the operator
which can be solved exactly. Now, as we have already! Which is much simpler to evaluate. This most remarkable
pointed out in a previous workL0], all formal expressions Property has been named by Reading and MacKEllgfthe
written above in Sec. Il can be extended to the solution ofésponse theoren$o the FIM method provides an algorithm
(52) if we replace Hy (or hg) by HE=PHGP (or N which the evolution under thg action df(t) and W is
hP=PhyP) and the evolution operatdy (or u) associated completely separated over the intervél The use of this
with (2) by the operatot)® (or uP) associated witt52). In clever scheme is not restricted to the particular problem con-

other terms, we are able to calculate exactly the operatorddered heréseparation ob/(t) and W]. It can be general-

UP andGP by restricting our problem to the space. The ized to any truncation of the full Hamiltoniahkl(t). Of

sameP space is used in both cases so the only differenc ourse the constraint on the value &Will depend on how

. ~b  ~p. . . is splitting of H(t) is done.
lk;et:(\;vreen calculations witd™ or u™ is thatW is frozen in the We can see immediately the basic difference between the

FIM approach and the frozen-correlation method. In the lat-
_ _ _ ter we do not get an algorithm for the calculation of the exact
D. Relation with the forced impulse method evolution operator. This must be expected sii¢e&oes not

It is of interest to contrast our frozen-correlation approxi-appear at all in our approximate evolution operatohereas
mation with the forced impulse methd@IM) of Reading it appears explicitly throughi, in the FIM, see Eq(53)]. In
and Ford[3,4]. There is some connection between bothfact, it can be easily verified that the results are unchanged
methods in the sense that they both make use of an evolutioMhen chopping the collision in small time intervals. The fro-
operator that does not includ®. We will show, however, Z€n correlation is an approximation to the exact evolution
that there are important differences. operator which can only be accurate whigg>tcq. It is

Let us callUFM(t,t,) the approximate operatdin the  useful in two different circumstances.
Schralinger picture used in the FIM method in the time (1) It provides a reference on what is the result of an

interval[t,,t]. From Eq.(8) of [4], it can be defined, in our €volution without dynamic correlation. This is of interest
notations, through the differential equation particularly when it is not valid since dynamic correlation

will be precisely the difference between the exact result and
M Mt - Bt Mt the one given by the frozen-correlation calculation. To make
atY (Lt =eoV(te Mou(t ty)eloe e, (53 our point clear, let us make an analogy with the Born ap-

proximation. It is often very useful to compare the exact
Comparing with Eq(7), we see that FIM replaces the opera- results with those obtained in the first Born approximation

P

tor U in the right-hand side of7) by since it allows us to sort out the contribution of higher orders
of the Born series. So a Born calculation may be of great
GF(t,tl):eiHote*ihot’u(t,tl)eihote*iHot_ (54)  value for comparison purposes when it is not accurate. The
frozen-correlation calculation plays the role of such a refer-
In the Schrdinger picture, one gets ence as far as dynamic correlation is concerned.
(ii) It is useful in its own stand to allow calculations with-
UF(t,t;)=u(t,ty)elMottlgl=Ho(t=ty)] (55  out dynamic correlation when the exact calculation is not

possible. It provides a well defined approximation in which
and correlation in the initial and final states can be fully included.



3998 F. MARTIN AND A. SALIN 54

T 5 R T T
| ] x10°t ST
121 @ - (b)
><105 F
41 _|

s _
2z 2 3L -
2 B
2 8
£ 1 £

S resonance A
r 2 MeV ] ok g
P resonance
2 MeV
ol L : 1 . L . | . | .
0.0 0.5 1.0 1.5 0.0 05 1.0 1.5 2.0
Impact parameter (au.) Impact parameter (a.u.)
5 |
<10° PN
[ (c)

Probability

I 1
1+ D resonance
2 MeV

Impact parameter (au.)

FIG. 1. Excitation probability of the firsta) *S®, (b) 'P°, and(c) ‘D¢ doubly excited state of He by 2-MeV protons as a function of
impact parameter. The full curves correspond to calculations including dynamic correlation and the dashed curves to the frozen-correlation

approximation.

It is particularly suited to cases when correlation cannot behe whole Hilbert space into two subspaces with correspond-
neglected in the final state, e.g., when the latter is a multiplyng projection operator® andQ. The doubly excited states
excited state, as we show later. correspond to bound eigenstates @H,Q and the con-
tinuum states to eigenstates®HyP. Electron correlation is
IV. RESULTS FOR DOUBLE EXCITATION inclugied in bothQ and P states. They are co'upled by the
nondiagonaP HyQ operator. From our calculations, we may
We apply the above formalism to double excitation of Heobtain the probability of exciting the doubly excit€lstates
with W=V, in our FCA calculations. We concentrate here as a function of impact parameter. Results are given in Fig. 1
on the first three singlet resonancés®(2s?),'P°(2s2p),  for 2 MeV proton impact in both the fully correlated and
and 'D&(2p?) located around an electron energy of 33 eV.frozen-correlated calculations. The difference between both
We have used a close-coupling method to solve the TDSEalculations is very small. Similar results were obtained
with a basis of 104 correlated two-electron states. The initiatHown to 0.5 MeV. These results show that double excitation
and final states, as well as the most relevant intermediatdoes not require dynamic correlation in the corresponding
states included in our basis, are accurately descrilsed energy range.
[10,13 for detaily. The description of the resonant states However, double excitation cannot be observed as such: it
makes use of the Feschbach formalism in which one splitshows up as a resonance effect in the spectrum of electrons
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FIG. 2. Shore parameters for excitation of the fi@t 1S®, (b) 1P°, and(c) 'D® resonance of He by 2-MeV protons as a function of
electron ejection angle. Circles: experimentg 1] for the A parametekclosed circlesandB parametefopened circles The full curves
correspond to calculations including dynamic correlation and the dashed curves to the frozen-correlation approximation.

ejected from the target. The electron yield as a function otron correlation, no observable quantity can be determined
electron energy shows a characteristic structure above without incorporating electron correlation in the final state.
smooth background that can be fitted for each resonance by In Fig. 2 we show the Shore parametérsand B corre-
sponding to the lowest singlet resonances of He excited by 2-
L - P MeV protons obtained with the FCA and fully correlated
Y(e)=[A(k)e+B(K)J/(1+€7), (59 calculations. A detailed comparison with the experiments of
Bordenave-Montesquieet al. [12] has been performed ear-
wheree=2(Eq—E;)/T, E; andI', are the resonance posi- |ier and we have already showWh2,13 that our fully corre-
tion and width, ancE, is the electron energy. The param- |ated coupled-state calculations describe well the experimen-
etersA and B (Shore parametersiepend on the electron tal findings under impact of protons with energies 0.1-3
ejection directionk and characterize the shape of the reso-MeV. In the case of thé'S® and 'D® resonances, one can
nance(in particular, the asymmetry is determined by the ra-observe good agreement between the frozen-correlated and
tio A/B). The resonance shap®9) corresponds to an inter- fully correlated results. This implies that, although electron
ference pattern due ®H(Q involving the effect of electron correlation is very important fot>t.,, in describing the
correlation over a time much larger thig, . Consequently, interference between double excitation and ionization, it
as the very definition of the Shore parameters involves eleadoes not play a significant roléuring the collision. This is
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FIG. 4. Same as Fig. 3 for 0.5-MeV protons.

further confirmed by the valug, /t.,,~=0.02 resulting from V- IONIZATION

Eqg. (33) for p=0.1-1.0 au. For the'P° resonance, the The results given in the preceding section have shown
agreement between the two calculations is slightly worsehat the effect of dynamic correlation is much stronger on the
(see also Fig. JLbecause the long-range dipole interactionresonance shape that on the resonance yield and that the
between the initial {S°) and final ¢P°) states makes.,;  resonance shape is more sensitive to correlation in the for-
larger than for the other resonand@sfact, our calculations ward and backward directions than around 90°. This can be
show thatt., /t increases slowly wittp). The fact that understood by looking at ionization. Our discrete representa-
the agreement between the two calculations is worse in Figion of the continuum allows us to evaluate accurately the
2 than in Fig. 1 is due to two related factors. First, the inter-ionization cross section as a function of electron angle. Re-
ference patterns described by the Shore parameters are vaylts have been given for an ejected electron energy in the
sensitive to any detail in the calculation. Second, the ionizaresonance regiofil3,14 or for the ejection of low-energy
tion amplitude is sensitive to dynamic correlation particu-electrons[15]. We have also proved that our calculations
larly in the forward and backward directions as discussed imccount for thetwo-center effecdue to the fact that the
the next section. ejected electron moves in the field of two Coulomb centers:
One expects the difference between the fully correlatednhat of the ionized target and that of the projecfil8—15.
and frozen-correlated results to decrease with increasing cofFhe two-center effect enhances the emission of electrons in
lision energy becausk, decreases. This is indeed the casethe forward direction and decreases it in the backward direc-
as proved by our results for 10 MeV given in Fig. 3. Thetion [16].
difference is still relatively small at 0.5 MelFig. 4). In fact, We give in Fig. 6 our results for the ionization cross sec-
the collision time does not vary significantly at high impacttion as a function of electron ejection angle for both the
energies because the effective range of impact parametefi®zen-(with W=V, and fully-correlated calculations. The
where double excitation takes placesi®/AE (whereAE is  ejected electron energy is 33 eV, i.e., that corresponding to
the excitation energy the first resonances. It is immediately seen that the largest
We have also studied the validity of the frozen-correlationdifference between the two calculations appears in the for-
approximation when increasirip , at a fixed impact veloc- ward and backward directions. These are precisely the re-
ity. Our results for 1.5 MeV/amu ¥ impact (Fig. 5 show  gions for which the two-center effect is strondée]. That
that the frozen-correlation approximation is less accuratg¢here is a strong relation between dynamic correlation and
than for proton impact. The reason is thgj increases with the two-center effect can be easily understood. The two-
Zp because of contributions from an increasing range of incenter effect is related to a long-range interaction with the
ternuclear distance@ve gett.y /tcor=0.1). Therefore our projectiles which introduces, in a close-coupling calculation,
results confirm that the relevant parameter is not the correlaa coupling between the various angular momenta in the final
tion strength(which should be relatively smaller with in- channel. The screening of the target nuclear charge by the
creasingZp) but the correlation time. This observation to- bound electron felt by the ejected electron differs appreciably
gether with our earlier discussion on the dependence of thifom the screening in the initial bound state. The absence of
Shore parameters on the projectile charge §ijrcalls fora  dynamic correlation does not allow a variation of this screen-
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of electron ejection angle. The full curves correspond to calculations including dynamic correlation and the dashed curves to the frozen-
correlation approximation.

ing during the collision as in fully correlated calculation. It is ratio (Fig. 7) increases wherZp increases and becomes
therefore not surprising that the two-center effect be reducetarger than one foZ,=6 and 9. In the latter case, the two-

by comparison with the fully correlated calculation. Ou- center effect is strong and therefore the decrease in the target
ranalysis can be confirmed by looking at the ratio betweemucleus screening induces an increase in the electron yield
the frozen and correlated calculations as a functiod@ois  (an effect opposite to the one seen in the forward diregtion
shown in Fig. 7. For 3&#<120, both calculations yield To summarize, we can say that the two-center effect am-
similar results. Forward scattering is dominated by the two-lifies the role of dynamic correlation. This is totally consis-
center effects and it can be seen that the difference betwedant with the theory developed in the previous sections: the
the two calculations decreases when the projectile chargleng-range interaction between the projectile and target elec-
increases, as expected. The situation is slightly more comntron is associated with a much longer collision time.

plex in the backward direction: the decrease of the cross
section in the backward direction is due to a destructive in-
terference between the amplitudes for the various angular
momenta, which make the results sensitive to any approxi- We have shown that the theory not including dynamic
mation. However, it can be checked that the cross-sectionorrelation corresponds to the lintjg,,,/t.,— . It does not

VI. CONCLUSION
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FIG. 6. lonization cross section for the ejection of a 33-eV elec- FIG. 7. Ratio of the He ionization cross section in the frozen-
tron from He by bare ions of chargé,=1, 3, 6 and energy 1.5 correlation approximation to the fully correlated result as a function
MeV/amu as a function of electron ejection angle. The full curvesof electron ejection angle. The ejected electron energy is 33 eV and
correspond to calculations including dynamic correlation and theghe projectiles are bare ions of chaige=1, 3, 6, 9 and energy 1.5
dashed curves to frozen correlation. MeV/amu.

We have considered specifically cases in which the corre-
correspond to any assumption on the strength of correlatiopyted particles are on the same atdtarget or projectilg
but only to its time evolution. The FCA provides the refer- pefore and after the collision, like double excitation of he-
ence calculation in which dynamic correlation is neglectedjiym or double capture from helium. In these cases, a pertur-
We have carried out calculations for double excitation anchative approach of correlation is not appropriate because cor-

single ionization of helium with and without dynamic corre- rejation does not go to zero asymptotically. The situation is
lation. We have thus obtained a rigorous evaluation of thejifferent in a case like

specific role of dynamic correlation in these collisions. We

have shown in particular that the role of dynamical correla- H(1s)+H(1s)—H(1s)+H(2p). (60)

tion is more important for single ionization of helium in the

forward and backward direction than for double excitation.
The frozen-correlation approximation provides a conve

nient generalization of the independent-electron model sincgﬂ'

the former includes correlation in the initial and final states.

The structure of the FCA is quite close to that of the IEM

and it cannot be excluded that it may be the explanation for The authors wish to thank J.F. Reading for useful discus-

the success of the IEM in various cases. The FCA improvesions. A.S. wishes to thank P. Echenique and the members of

over the IEM while still allowing us to use the terminology the Department of Material Physics of the Euskal Herriko

of many-electron iofatom-atom collisions originally set up Unibertsitatea for their hospitality while this work was per-

in the context of the IEMshake off, number of interactions formed. F.M. acknowledges financial support from the Min-

with the projectile, etg. Finally the frozen-correlation ap- isterio de Educacioy Ciencia for a sabbatical leave at the

proximation allows us to do calculations in a simple way for University of Chicago and A.S. has been partially supported

processes like double capture for which the inclusion of dyby the Conseil Rgional d’Aquitaine and the Iberdrola foun-

namic correlation is extremely difficult. dation.

Obviously correlation goes to zero asymptotically so pertur-
_bation theory, if valid, may be applied without contradiction
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