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We study the role of electron correlation during a high-energy ion-atom collision~dynamic correlation!. We
show how to define a reference calculation in which correlation is not included during the collision whereas it
is included in the initial and final states~frozen-correlation approximation!. Correlation may be characterized
by a typical timetcorr . The frozen-correlation approximation corresponds to the form of the transition ampli-
tude when assuming thattcorr is much larger than the collision time. We apply our theory to double excitation
and single ionization of helium and show that dynamic correlation may play a more important role in ioniza-
tion than in double excitation.@S1050-2947~96!03010-7#

PACS number~s!: 34.10.1x, 34.50.Fa

I. INTRODUCTION

Ion ~atom!–atom collision processes involving excitation
of more than one electron raise the question of the role of the
electron-electron interaction. Following common usage in
atomic collision processes, we shall name correlation the
whole electron-electron interaction. This definition of corre-
lation is at variance with the one commonly used in atomic
structure theory. In a sense, the present contribution will give
further justification for this convention.

The role of electron correlation is well established for the
case of low-energy ion~atom!–atom collisions. In the low-
energy regime, one makes use of the molecular theory of
atomic collisions based on adiabatic~Born-Oppenheimer!
molecular wave functions for the electronic states. The latter
are determined for nuclei fixed at a given internuclear dis-
tance. There is~at least in principle! no problem in account-
ing for electron correlation in these molecular states. The
dynamics arises, then, from the nuclear motion which in-
duces transitions between adiabatic states. Therefore correla-
tion is entirely embedded in the adiabatic molecular states.
The role of correlation during the collision has been made
explicit, e.g., by a change of representation in the basis of
adiabatic states~diabatic II processes@1#! or by using a basis
of molecular states not including correlation@2#. In sum, the
problem of correlation in this energy range is more a practi-
cal problem than one of principle.

Another simple situation occurs when the first order of
some perturbation series~Born or distorted wave! is valid.
Then transition amplitudes can be expressed as the matrix
element of an operator involving the projectile-target inter-
action between fully correlated initial and final states. Again,

the problem is basically a practical one: how well can we
describe the correlated atomic states and how can we calcu-
late the relevant matrix element?

A really intricate situation arises when neither approach
can be used. For example, if one wishes to go beyond the
first order of a perturbative series, one gets usually an evo-
lution operator which depends explicitly on the electron-
electron interaction. In this context the notion ofdynamic
correlationarises in relation with the fact that the exact evo-
lution operator contains the electron-electron interaction ex-
plicitly.

A breakthrough in allowing for dynamic correlation was
achieved in the work of Reading and Ford@3,4#. These au-
thors have been able to carry out a converged calculation,
using close-coupling techniques, for double ionization of he-
lium by ions. This tour de force relies on various clever
ingredients~like the solution of the so-calledinterpretation
problemallowing separation of single and double ionization
while using a basis ofL2 functions! out of which we single
out two points connected with the present discussion. First,
the algorithm used in@3,4# is based on the remark that during
a small enough time the evolution of the system can be de-
scribed in terms of an evolution operator not involving elec-
tron correlation. As we show later, this use of a time picture
to characterize correlation is an essential point. Second, the
results obtained in@3,4# for double ionization differ totally
from those of a so-called independent-electron method
~IEM!. This has been considered ever since as the most con-
vincing proof of the role of dynamic correlation since in the
IEM each electron is assumed to evolve independently in the
field of the projectile.

In the context of perturbation theory, important contribu-
tions were made by McGuire@5# and Stolterfoht @6#.
McGuire @5# has discussed in detail the relation between
electron correlation and the various orders of perturbation
theory in describing multiple excitation processes. He has
stressed the importance of using the intermediate picture to
develop approximations of dynamic correlation. Stolterfoht
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@6# has insisted on the difference of time scale associated
with correlation and the projectile-target interaction, respec-
tively.

Our objective here is to provide an answer to the still
pending question: what is the role of dynamic correlation? In
fact, Reading and Ford@3,4# make a complete calculation
fully including correlation. However, they do not define the
reference calculation excluding dynamic correlation andonly
dynamical correlation. The independent-electron model used
in @3,4# neglects correlation in the initial and final states as
well as during the collision. Defining an approximation ex-
cluding dynamic correlation but including correlation in the
initial and final states is not a straightforward problem in
general. We consider throughout this work the particular
case in which the correlated electrons are bound to the same
atom~the target or the projectile! in both the initial and final
state~a brief discussion of more general situations is given in
the conclusion!. This means that the electron-electron inter-
action cannot be treated as a perturbation since any perturb-
ing potential should go to zero before and after the collision.
We therefore show that an approximate treatment requires a
particular condition on the time associated with correlation.
Let tcorr be a typical time~to be defined later! associated with
correlation andtcoll the collision time~associated with the
projectile-target interaction!. Then we show that the evolu-
tion without dynamic correlation corresponds to the limit
tcorr/tcoll→`. In other terms, by looking at the form of the
evolution operator when lettingtcorr/tcoll go to infinity, we
obtain an approximate form which corresponds to neglecting
dynamic correlation.

Our theory is used to study the role of dynamic correla-
tion in double excitation and single ionization of helium. The
case of double excitation is particularly striking as final-state
correlation is essential to compare theory with experiment.
We are thus in a position to explore the role of dynamic
correlation in a multiple excitation process while accounting
for correlation in both the initial and final state.

A brief account of our work has already been published
@7#. Atomic units are used unless otherwise stated.

II. GENERAL THEORY

We treat the problem in the impact parameter method. It
has been known for many years that the latter provides an
accurate description of ion~atom!-atom collisions to first or-
der in the electron to proton mass ratio. Any formalism de-
veloped in the impact parameter method has an equivalent in
the full quantal theory. As we show below, the impact pa-
rameter method allows us to express our ideas in a more
intuitive and transparent form. In the impact parameter
method everything works as if one were solving a time de-
pendent Schro¨dinger equation~TDSE! for a straight line tra-
jectory of the projectile. The internuclear vectorR is given
by R5r1vt where r is the impact parameter andv the
~constant! projectile velocity. For simplicity we consider the
projectile to be a bare ion of chargeZP . We call H0 the
Hamiltonian of the isolated target,V(t) the interaction be-
tween the projectile and target electrons, andVee the whole
electron-electron interaction. We consider thatVee may be
split intoW11W, whereW1 is a sum of one-electron opera-
tors andW is a nonseparable two-electron operator. Then

H05h01W. ~1!

We call c̃n the eigenfunction ofH0 with eigenenergyEn .
For simplicity, we drop the internuclear potential from the
equations and consider that the interaction with the projectile
is short range. The correct treatment of Coulomb potentials
involves well documented modifications that we leave aside
here to avoid obscuring the main objective of the present
development~which does not mean that it can be neglected
in the treatment of a specific problem!. Under these condi-
tions, we have to solve the TDSE

FH01V~ t !2 i
d

dtGC i~ t !5FH~ t !2 i
d

dtGC i~ t !50, ~2!

with initial condition

lim
t→2`

C i~ t !5c i~ t !, ~3!

where c i(t)5exp(2iEit)c̃i . The exact solution of Eq.~2!
can be written in terms of the evolution operatorU(t,t8)
associated withH(t):

C i~ t !5U~ t,t8!C i~ t8!5 lim
t8→2`

U~ t,t8!c i~ t8!. ~4!

All the above equations are written in the so-called Schro¨-
dinger picture. For reasons that are apparent later, it is ad-
vantageous to work in the intermediate picture~see also@5#!.
We label any quantity in the intermediate picture by a tilde.
The wave functionC̃i(t)5eiH0tC i(t) is now a solution of
the TDSE:

S eiH0tV~ t !e2 iH0t2 i
d

dtD C̃i~ t !50, ~5!

with the initial condition limt→2`C̃i(t)5c̃ i .

A. The frozen-correlation approximation

The evolution ofC̃i(t) in time is given by the evolution
operator

Ũ~ t,t8!5eiH0tU~ t,t8!e2 iH0t8. ~6!

The evolution operatorsU and Ũ satisfy the equations

i
d

dt
U~ t,t8!5H~ t !U~ t,t8!, ~7a!

i
d

dt
Ũ~ t,t8!5eiH0tV~ t !e2 iH0tŨ~ t,t8!. ~7b!

Let us now introduce the evolution operatoru(t,t8) associ-
ated with the TDSE when we dropW from the Hamiltonian.
We define a corresponding intermediate picture in which the
evolution operator isũ(t,t8)5eih0tu(t,t8)e2 ih0t8. Note that
h0 @the target Hamiltonian without the nonseparable part of
the electron-electron interactions, see Eq.~1!# appears in this
definition instead ofH0. The operatorsu and ũ satisfy
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i
d

dt
u~ t,t8!5h~ t !u~ t,t8!, ~8a!

i
d

dt
ũ~ t,t8!5eih0tV~ t !e2 ih0tũ~ t,t8!, ~8b!

whereh(t)5h01V(t). A very simple relation can be found
betweenŨ and ũ when the collision time is vanishingly
small. Following Messiah@8#, we write

Ũ~ t,t8!5ũ~ t,t8!Ũ8~ t,t8! ~9!

and the operatorŨ8(t,t8) satisfies the equation

i
d

dt
Ũ8~ t,t8!5HI8~ t !Ũ8~ t,t8!,

HI8~ t,t8!5ũ†~ t,t8!H8~ t !ũ~ t,t8!,

H8~ t !5eiH0tV~ t !e2 iH0t2eih0tV~ t !e2 ih0t. ~10!

The structure of the operatorH8 is simple. As we have noted
above, the intermediate representation associated withH0 is
different from the one associated withh0. The operator
H8(t) is the difference between the form ofṼ(t), the pro-
jectile target interaction, in both representations. It differs
from zero only during the collision time, i.e., when the pro-
jectile target interaction is active@V(t)Þ0#. Since
H05h01W, it can be immediately seen thatH8(t) describes
the variation in the evolution due to the presence ofW during
the collision. From~9! we define the following approxima-
tion:

Ũ~ t,t8!→ũ~ t,t8!. ~11!

Since over asmall time intervald we have

Ũ8~ t1d,t !512 iH I8~ t !d10~d2!. ~12!

Equation ~11! corresponds to limd→0Ũ(t,t8)5ũ(t,t8), i.e.,
to a sudden approximation. Now, the time dependence of
Ũ8 is entirely due to the presence ofV(t) with which we
may associate a characteristic timetcoll . Therefore Eq.~11!
means that the typical time associated with the action of the
projectile target interaction is much shorter than the time
required forW to produce an appreciable change in the evo-
lution of the system during the collision. We make this state-
ment more quantitative later.

The operatorW̃ in the interaction picture satisfies the
equation

i
d

dt
W̃~ t !5@W̃,H0# ~13!

and is therefore constant ifW commutes withh0 ~e.g., if
W is a number!. Under the latter condition, one has exactly
H8(t)50 and thereforeŨ5ũ. For this reason we call ap-
proximation ~11! the frozen-correlation approximation
~FCA!.

It should be stressed that the sudden approximation~11!
takes the simple form we have obtained only by use of the

intermediate picture. No such limit exists for the operator
U(t,t8) in the Schro¨dinger picture. This can be immediately
verified by looking at the form ofU andu for a small time
interval:

U~ t1d,t !512 iH ~ t !d10~d2!, ~14a!

u~ t1d,t !512 ih~ t !d10~d2!. ~14b!

The difference between the generators ofU andu isW and
therefore it cannot be associated withtcoll . We shall discuss
this in more detail later.

B. Alternative derivation of the FCA

It is of interest to follow an alternative derivation that will
be helpful in the following discussion. We first introduce
some extra notations. We callf̃ j the eigenfunctions ofh0
with eigenvalue« j and f j (t)5exp(2i«jt)f̃j . The eigen-
functions ofH0 can be expressed in terms off̃ j as

c̃n5(
j
aj

~n!f̃ j . ~15!

We define a dynamic basis$F̃n% in the following way:

lim
t→2`

F̃n~ t !5c̃n ~16!

andF̃n satisfies the TDSE

Feih0tV~ t !e2 ih0t2 i
d

dtGF̃n~ t !50. ~17!

In other terms, the functionF̃n(t) evolves under the influ-
ence ofh0 andV(t) only. Some comments are in order on
the signification of the functionF̃n(t).

First, it is essential at this level to work in the intermedi-
ate picture so that the limit~16! exists. This is so because the
asymptotic functions are time independent in the intermedi-
ate picture. Asymptotically, the functionF̃n(t) is time inde-
pendent as shown by Eq.~17! wheneverV(t) is zero. There
is no way to impose a limit fort tending to infinity of
Fn(t) in terms ofcn(t) because of the energy factors in
f j (t) and cn(t). No time independent correspondence be-
tweenfn(t) andcn(t) similar to ~15! exists.

Secondly, theevolution of F̃n(t) does not include any
effect ofW. The effect ofW enters only through the initial
condition ~16!. For this reason, we shall speak of an evolu-
tion with frozen correlation. What we mean through this
expression can be understood intuitively in the following
way. Consider the functionsF̃j

0(t) satisfying the same equa-
tion ~17! as F̃n(t) but with the initial condition
F̃j
0(t)→ t→2`f̃ j . The functionsF̃j

0(t) are the solution of a
problem in which the two electrons never interact. The set of
functions$F̃j

0(t)% is a complete orthonormal set~because of
the completeness and orthogonality of the asymptotic func-
tions f̃ j ). The functionsF̃n(t) can be expressedat any time
in terms ofF̃j

0(t) through
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F̃n~ t !5(
j
aj

~n!F̃j
0~ t !, ~18!

where the coefficientsaj
(n) are independent of time. This

property expresses what we mean by an evolution with fro-
zen correlation: the role ofW in F̃n(t) appears only through
the time independent coefficientsaj

(n) . This does not mean
that the average value ofW is constant in the course of the
collision when the evolution is given by~17!. Let us define
the average value ofW at time t as

W̄~ t !5^F̃n~ t !uWuF̃n~ t !&. ~19!

This quantity depends on time becauseF̃j
0 in ~18! depends

on time. This variation with time ofW̄(t) is only due to the
interaction with the projectile and not to any action ofW in
the course of the collision sinceW does not appear in the
TDSE ~17!. In other terms, a variation ofW̄(t) with time is
not in contradiction with the idea expressed earlier that cor-

relation is frozen. In particular, the evolution given by Eq.
~17! is compatible with a nonzero transition probability to a
given final correlated state.

It is important to realize the latter point to understand that
the difference betweenC̃n andF̃n can be characterized nei-
ther by the change inW̄(t) nor by its magnitude. As we
show later, the difference between both functions is of higher
order inW.

The set ofF̃n(t) functions is complete and orthonormal.
This comes out of the completeness and orthogonality of the
asymptotic setc̃n(t) as for the usual solutions of the time-
dependent Schro¨dinger equation.

Using theF̃n(t) functions as a basis, we may write

C̃i~ t !5(
n

cn~ t !F̃n~ t !, ~20!

with limt→2`cn(t)5dni . This gives the coupled equations

i
d

dt
cn~ t !5(

m
cm~ t !^F̃n~ t !ueiH0tV~ t !e2 iH0t2 id/dtuF̃m~ t !&5(

m
cm~ t !^F̃n~ t !ueiH0tV~ t !e2 iH0t2eih0tV~ t !e2 ih0tuF̃m~ t !&.

~21!

Until now everything is exact. Let us understand the signification of the above equations. The functionsF̃n(t) correspond to
the solution of the time dependent Schro¨dinger equation under the influence ofh0 and V(t) alone. Through the coupled
equations~21!, we measure how much the exact solutionC̃i(t) differs from F̃i(t). Note that the full~exact! dynamics due to
h01V is contained inF̃n . We may transform~21! into the integral equation

cn~ t !5dni2 i(
m

E
2`

t

dt8cm~ t8!^F̃n~ t8!ueiH0t8V~ t8!e2 iH0t82eih0t8V~ t8!e2 ih0t8uF̃m~ t8!&. ~22!

The two important features of this expression are that~i! the
coupling arises from the presence ofW since, in general,
@H0 ,W#Þ0, and~ii ! theW interaction is effective only over
the time interval whenV(t) is nonzero. Under the condition
tcoll→0, equivalent to saying thatV(t) is a d function, one
gets

cn~ t !5dni . ~23!

In other terms, the prescriptionC̃i(t)→F̃i(t) gives the solu-
tion of the problem in the limittcoll→0. Note that the fact
that V(t) is set equal to ad function in ~22! is compatible
with a nonzero transition probability for the reason explained
earlier.

C. Validity of the frozen-correlation approximation

We closely follow Messiah@8# ~Chap. XVII, Sec. II.8!.
For simplicity, we assume that the collision takes place over
a finite time starting fromt5t1. From Eqs.~4! and ~17! we
may write

C̃i~ t !5Ũ~ t,t1!c̃ i , ~24a!

F̃i~ t !5ũ~ t,t1!c̃ i . ~24b!

As we have noted above, the operatorW appears only
throughHI8 and therefore the action of the operatorW is
limited to the time interval over whichV(t) is active, i.e.,
HI850 before and after the collision. FurthermoreHI8 is zero
when the operatorW in the intermediate picture
(eiH0tWe2 iH0t or eih0tWe2 ih0t) is independent of time, i.e.,
W̃ commutes withh0 @see Eq.~13!#. Then, any deviation
from the frozen-correlated approximation must be accounted
for by HI8 in the time interval (t1 ,t11tcoll). Here we try to
analyze the validity of this approximation by considering
Ũ8 up to first order intcoll . For a small collision timetcoll we
can write from Eq.~10!

Ũ8~ t11tcoll ,t1!.12 i E
t1

t11tcoll
HI8~ t8!dt8. ~25!

Notice that in the frozen-correlation approximation,Ũ851,
which is the zero order solution of the previous equation.
Accordingly, small deviations from this approximation will
be accounted for by the first-order term includingHI8:
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Ũ8~ t11tcoll ,t1!.12 i t collH̄I8~ t11tcoll ,t1!, ~26!

where

H̄I8~ t11tcoll ,t1!5
1

tcoll
E
t1

t11tcoll
HI8~ t8!dt8 ~27!

is an average operator over the collision time. The best way
to measure the validity of the sudden approximation~11! to
Ũ is to calculate the deviation betweenF̃i(t11tcoll) and
C̃i(t11tcoll) through their overlap:

w512 z^C̃i~ t11tcoll!uF̃i~ t11tcoll!& z2

5^C̃i~ t11tcoll!uQ̃C̃i~ t11tcoll!&, ~28!

where

Q̃512uF̃i~ t11tcoll!&^F̃i~ t11tcoll!u. ~29!

If the frozen-correlation approximation is exact, thenw50,
becauseC̃i(t11tcoll)5F̃i(t11tcoll). In the general case, us-
ing Eqs.~9! and ~24!, w can be written

w5^c̃ i uŨ8†~ t11tcoll ,t1!ũ
†~ t11tcoll ,t1!Q̃ũ~ t11tcoll ,t1!Ũ8~ t11tcoll ,t1!uc̃ i&. ~30!

Substituting~26!, we obtain

w5tcoll
2 ^c̃ i uH̄I8

†~ t11tcoll ,t1!ũ
†~ t11tcoll ,t1!Q̃ũ~ t11tcoll ,t1!H̄I8~ t11tcoll ,t1!uc̃ i&

5tcoll
2 $^c̃ i zuH̄I8~ t11tcoll ,t1!u2zc̃ i&2 z^c̃ i uH̄I8~ t11tcoll ,t1!uc̃ i& z2%5tcoll

2 @DH̄I8#2. ~31!

We may now introduce the definition

tcorr5
1

DH̄I8
. ~32!

The termDH̄I8 is the root mean square deviation from the
mean value ofH̄I8(t). The latter is the average over time of
the energy fluctuations caused by the operatorW in the exact
propagation with respect to the average whenW is neglected
in the evolution. Then, the characteristic time 1/DH̄I8 for
these average energy fluctuations can be interpreted as the
correlation timetcorr. Notice that, as expected, we get the
correct limit tcorr→` whenW is a constant in the interme-
diate picture~i.e., whenHI850).

From Eqs.~28!, ~31!, and ~32!, tcorr/tcoll may be calcu-
lated readily when the exact solution is known since

tcoll
tcorr

5w1/25@12 z^C̃i~ t11tcoll!uF̃i~ t11tcoll!& z2#1/2.

~33!

In sum, we have defined a timetcorr characterizing the action
of the operatorW during the collision andonly during the
collision. This time is associated with the root mean square
of the energy fluctuations, averaged over the collision time,
caused by the operatorW with respect to an evolution that
neglects it. Coming back to our initial equations establishing
the relation betweenŨ and ũ, we see that the sudden ap-
proximation on Ũ8 has the desirable properties since the
term neglected goes to zero whentcoll /tcorr goes to zero.
Therefore Eq.~11! is the form for the evolution operator in
the absence of dynamic correlation.

D. Generality of the FCA

To conclude this section, we would like to note the gen-
erality of our formalism. The termW that we wish to treat
approximately may be the whole electron-electron interac-
tion Vee. It is quite clear that nothing is changed formally if
we split the Hamiltonian in a different way. A first possibil-
ity would be to approximate only part ofVee. The potential
Vee would be split into sayW11W andW1 would be in-
cluded in h0 whereasW would be treated approximately
along the line developed above. For example, one could
think, in the spirit of the Hartree-Fock approximation, of
definingW1 as an averaged screening potential whereas the
complementW would correspond to something that could be
called correlation. It is not clear how one can perform such a
division ofVee as exemplified by the difficulties encountered
in the time-dependent Hartree-Fock method. What we want
to stress here is that an approximate treatment ofW can
always be done along the line developed above.

Another class of approximations could be built by adding
part ofV(t) toW and freezing the combination of both. We
just mention this option in passing as a full discussion is not
the objective of our present work.

III. APPLICATIONS

A. Relation with the independent-electron model

In the independent-electron model the electron-electron
interactionVee is approximated by a sum of one-electron
potentials for the definition of the initial state as well as for
the time evolution of the system:

W15(
n

Wn
i . ~34!

Here the indexn means that the corresponding operator acts
only on functions of the electronn. The evolution operator in
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the IEM includes the effect ofW1 and because of~34! it can
be written as a product of one-electron operators:

Ũ IEM~ t,t8!5)
n

Ũn
IEM~ t,t8!, ~35!

whereŨn
IEM(t,t8) is acting only on functions of electronn.

The same property applies in the FCA:

ũ~ t,t8!5)
n

ũn~ t,t8!. ~36!

In the IEM the initial and final states are described by a
single Slater determinant. In contrast, the initial and final
states used in the FCA fully include electron correlation and
therefore they are written as linear combinations of Slater
determinants@see Eq.~15!#.

To be more specific, we consider the case of two electrons
with different spins when spin dependent forces are ne-
glected. In the IEM, the initial and final states take the form

c̃ I ,F
IEM5w i

I ,F~1!w j
I ,F~2! ~37!

so that

t IF
IEM5 lim

t→`

lim
t8→2`

^wk
F~1!uŨ1

IEM~ t,t8!uw i
I~1!&

3^w l
F~2!uŨ2

IEM~ t,t8!uw j
I~2!& ~38!

whereas in the FCA

c̃ I ,F5(
i j

a i j
I ,Fw i

I ,F~1!w j
I ,F~2! ~39!

and

t IF5 lim
t→`

lim
t8→2`

(
i jkl

a i j
I akl

F ^wk
F~1!uũ1~ t,t8!uw i

I~1!&

3^w l
F~2!uũ2~ t,t8!uw j

I~2!&. ~40!

The potential neglected in the IEM~in both the initial state
and the evolution operator! is

W5Vee2W1 . ~41!

Now, as discussed at the end of Sec. II, the FCA can also
include the effect ofW1 in the evolution of the system
throughh0 ~hence freezing onlyW instead ofVee!. In this
case,ũn(t,t8)5Ũn

IEM(t,t8), and therefore the IEM can be
obtained from the FCA by restricting the sum in Eq.~39! to
a single term. It is important to note that correlation may be
neglected in the dynamics while being fully included in the
initial and final states~as in the FCA! but that the converse is
not true. If the channel Hamiltonians do not include correla-
tion, then it makes no sense to include correlation in the
collision since otherwise the interaction potential would not
go to zero at infinity. Any approximation on the definition of
the asymptotic states must be consistent with the Hamil-
tonian describing the time evolution.

In spite of the similarity between the IEM and the FCA,
the physical content of the two approximations is different.
In one case~the IEM! W is neglected throughout, i.e., one
assumes that the neglected part isweak. In the other case~the
FCA! we assume nothing on thestrengthof W but thatW̃
evolves slowly in time. From the previous analysis, it is clear
that the IEM is the particular form taken by the FCA when
an independent-electron approximation is valid for both the
initial and final states.

B. Perturbation theory and multiple excitation processes

A lot of work has been devoted to the interpretation of
multiple-electron processes at high energies using the pertur-
bative approach and the IEM picture because the latter gives
simple interpretations of the mechanisms involved in multi-
electron processes. Consider again for simplicity the case of
two electrons with different spins. If we neglect completely
the interaction of, say, electron 1 with the projectile, then

t IF
IEM5 lim

t→`

lim
t8→2`

^wk
F~1!uw i

I~1!&^w l
F~2!uŨ2

IEM~ t,t8!uw j
I~2!&.

~42!

The excitation of electron 1 arises only from the overlap
between the initial and final orbitals, which is usually called
shakeoff@9#. This result is independent of any approximation
made onŨ2

IEM . In particular, the first order of perturbation
theory gives

t IF
1 @ IEM#5t IF

1 ~ i j ;kl !52 i H ^wk
F~1!uw i

I~1!&E
2`

1`

dt^w l
F~2!uṼ2~ t !uw j

I~2!&1^w l
F~2!uw j

I~2!&E
2`

1`

dt^wk
F~1!uṼ1~ t !uw i

I~1!&J ,
~43!

which shows, as is well known, that shakeoff is necessary to
produce a many-electron excitation to first order of perturba-
tion theory.

To exciteN electrons by ‘‘independent’’ interactions with
the projectile, one needs to evaluate theNth order of pertur-
bation theory of the fullN-electron problem. Thus the latter

processes decay faster with energy asN increases. To second
order we get

t IF
2 @ IEM#5ta

2~ i j ;kl !1tb
2~ i j ;kl !, ~44!

where
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ta
2~ i j ;kl !52H ^wk

F~1!uw i
I~1!&E

2`

1`

dtE
2`

t

dt8^w l
F~2!uṼ2~ t !Ṽ2~ t8!uw j

I~2!&

1^w l
F~2!uw j

I~2!&E
2`

1`

dtE
2`

t

dt8^wk
F~1!uṼ1~ t !Ṽ1~ t8!uw i

I~1!&J ,
tb
2~ i j ;kl !52H E

2`

1`

dt^wk
F~1!uṼ1~ t !uw i

I~1!&E
2`

1`

dt8^w l
F~2!uṼ2~ t8!uw j

I~2!&J . ~45!

The termta corresponds to a second order transition for one
electron associated with a shake-off for the other, i.e., only
one-electron interacts with the projectile. The termtb corre-
sponds to a product of one-electron amplitudes in first order
of perturbation theory. Their relative importance, and their
variation with energy in particular, depends on all parameters
of the transition considered.

We turn now to the FCA approximation. The main result
of Sec. II is thatW andV(t) cannotbe treated on an equal
footing: it is not possible to carry out a multiple scattering
picture based on a perturbation expansion in bothW and
V(t). Our theory shows that there is ahierarchy in approxi-
matingW and V(t) since an approximate treatment ofW
requirestcorr@tcoll and therefore it is onlywithin the time
interval tcoll that an approximation toV(t) can be introduced.
If we neglect completely the interaction of electron 1 with
the projectile, then

t IF
FCA5 lim

t→`

lim
t8→2`

(
i jkl

a i j
I akl

F ^wk
F~1!uw i

I~1!&

3^w l
F~2!uũ2~ t,t8!uw j

I~2!&. ~46!

The approximation on the dynamics is exactly the same as in
the shakeoff case derived earlier in the IEM: electron 2 gets
excited as a result of the role ofW in the initial and/or final
state. We do not see any reason not to call the corresponding
process a shakeoff process. The fact that we describe the
states of electron 1 in a Hartree-Fock or fully correlated man-
ner is not relevant to the approximation made on the dynam-
ics.

The first Born approximation is in the FCA:

t IF
1 @FCA#5(

i jkl
a i j
I akl

F t IF
1 ~ i j ;kl !. ~47!

For higher orders of the perturbation series the FCA leads to
a great simplification with respect to the fully correlated cal-
culation. A straightforward generalization of~45! shows that
the evaluation of the second Born approximation reduces to
the calculation of one-electron amplitudes:

t IF
2 @FCA#5(

i j
(
kl

a i j
I akl

F $ta
2~ i j ;kl !1tb

2~ i j ;kl !%. ~48!

The same holds for higher orders of the perturbation expan-
sion. In particular, this way of writing the Born series allows
a simple interpretation of the cross sections in terms of the
value and the sign of the projectile charge. A very good

example, concerning projectile charge sign effects on proton-
helium and antiproton~electron!-helium collisions, has been
reported recently@7#.

The conclusion of this section is that, in order to study the
order in the interactionV(t), onedoes notneed to work with
the IEM or, in other words, one does not have to assume that
electron correlation is weak, but thattcorr@tcoll . Therefore
the validity of this kind of analysis is not restricted to the
case of smallW. Whereas the FCA represents a further step
with respect to the IEM, it still allows us to use the termi-
nology developed for the IEM~shakeoff, number of electron-
projectile interactions, etc!. In other terms, this terminology
makes sense whenever the FCA is valid, i.e., whenever dy-
namic correlation is not important, independently of the ap-
proximation used for the initial and final states.

C. Close coupling

In the FCA, multielectron transition amplitudes can be
written in terms of single-electron transition amplitudes and,
as a consequence, FCA close-coupling calculations are much
easier than the fully correlated ones. To illustrate this point,
we consider a two-electron system. The eigenstates ofh0 are
products of one-electron orbitalsw j . The two-electron basis
functionsc̃n can be expressed in terms of these as

c̃n5(
jk

a jk
n w jwk . ~49!

Under the action ofũ(t,t i) the previous form is conserved
during the collision becauseũ can be written as a product of
one-electron operators@see Eq.~36!#. Therefore the one-
electron orbitals evolve in time~because of the interaction
with the projectile! whereas the coefficientsa jk

n are time in-
dependent~frozen correlation!. In particular, at the end of the
collision, the initial function has evolved into

lim
t f→`

lim
t i→2`

ũ~ t f ,t i !c̃ I5 (
j ,k,l ,m

a jk
I ajl akmw lwm , ~50!

where the one-electron amplitudesajl describe transitions
between one-electron orbitalsw j andw l under the action of
the projectile. It is this mixing between the one-electron or-
bitals by the projectile field which allows us to produce a
final correlated statec̃F having a configuration mixing that
may differ significantly from that of the initial statec̃ I .
From ~50! it follows that the transition amplitude between
initial and final correlated states can be written in terms of
the one-electron amplitudesajl :
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t IF5 (
j ,k,l ,m

a jk
I a lm

F Ajk
lm5 (

j ,k,l ,m
a jk
I a lm

F ajl akm . ~51!

Then, in practice, one only needs to perform one-electron
close-coupling calculations to evaluate the two-electron am-
plitude.

As discussed in Sec. II, the FCA is also useful because it
provides the reference calculation in which dynamic correla-
tion is neglected. Then, the importance of dynamic correla-
tion could be assessed by simply comparing with the corre-
sponding fully correlated calculation. As the fully correlated
problem cannot be exactly solved in practice, one has to
restrict this comparison to a finite configuration space. The
close-coupling formalism allows us to perform such a com-
parison in a meaningful way.

Let us callP the projection operator onto the basis set
used to solve the close-coupling equations in the fully corre-
lated case. Then, the close-coupling method consists in re-
placing Eq.~2! by

PSH01V~ t !2 i
d

dtDPCP~ t !50, ~52!

which can be solved exactly. Now, as we have already
pointed out in a previous work@10#, all formal expressions
written above in Sec. II can be extended to the solution of
~52! if we replace H0 ~or h0) by H0

P5PH0P ~or
h0
P5Ph0P) and the evolution operatorU ~or u) associated

with ~2! by the operatorUP ~or uP) associated with~52!. In
other terms, we are able to calculate exactly the operators
ŨP and ũP by restricting our problem to theP space. The
sameP space is used in both cases so the only difference
between calculations withŨP or ũP is thatW is frozen in the
latter.

D. Relation with the forced impulse method

It is of interest to contrast our frozen-correlation approxi-
mation with the forced impulse method~FIM! of Reading
and Ford @3,4#. There is some connection between both
methods in the sense that they both make use of an evolution
operator that does not includeW. We will show, however,
that there are important differences.

Let us callUFIM(t,t1) the approximate operator~in the
Schrödinger picture! used in the FIM method in the time
interval @ t1 ,t#. From Eq.~8! of @4#, it can be defined, in our
notations, through the differential equation

i
d

dt
ŨFIM~ t,t1!5eiH0tV~ t !e2 ih0tũ~ t,t1!e

ih0te2 iH0t. ~53!

Comparing with Eq.~7!, we see that FIM replaces the opera-
tor U in the right-hand side of~7! by

ŨF~ t,t1!5eiH0te2 ih0tũ~ t,t1!e
ih0te2 iH0t. ~54!

In the Schro¨dinger picture, one gets

UF~ t,t1!5u~ t,t1!e
@ ih0~ t2t1!#e@2 iH0~ t2t1!# ~55!

and

i
d

dt
UFIM~ t,t1!5H~ t !UF~ t,t1!. ~56!

We look at Eq.~55! over the small interval@ t1 ,t11d#

UF~ t11d,t1!5@12 ih~ t !d10~d2!#@11 ih0d10~d2!#

3@12 iH 0d10~d2!#

512 iH ~ t !d10~d2!5U~ t11d,t1!10~d2!.

~57!

Comparing with~56!

U~ t11d,t1!5UFIM~ t11d,t1!10~d2!. ~58!

So the FIM operator is correct up to first order ind which
should be contrasted with approximation~11! which is only
correct to zero order. So the FIM method provides an algo-
rithm for the calculation of theexactevolution operator: by
cutting the collision time in small enough intervals, the exact
operator can be calculated to any prescribed accuracy. The
big advantage is that, in each interval, the time evolution due
to the projectile interaction enters only through the operator
u which is much simpler to evaluate. This most remarkable
property has been named by Reading and MacKeller@11# the
response theorem. So the FIM method provides an algorithm
in which the evolution under the action ofV(t) andW is
completely separated over the intervald. The use of this
clever scheme is not restricted to the particular problem con-
sidered here@separation ofV(t) andW#. It can be general-
ized to any truncation of the full HamiltonianH(t). Of
course the constraint on the value ofd will depend on how
this splitting ofH(t) is done.

We can see immediately the basic difference between the
FIM approach and the frozen-correlation method. In the lat-
ter we do not get an algorithm for the calculation of the exact
evolution operator. This must be expected sinceW does not
appear at all in our approximate evolution operator@whereas
it appears explicitly throughH0 in the FIM, see Eq.~53!#. In
fact, it can be easily verified that the results are unchanged
when chopping the collision in small time intervals. The fro-
zen correlation is an approximation to the exact evolution
operator which can only be accurate whentcorr@tcoll . It is
useful in two different circumstances.

~i! It provides a reference on what is the result of an
evolution without dynamic correlation. This is of interest
particularly when it is not valid since dynamic correlation
will be precisely the difference between the exact result and
the one given by the frozen-correlation calculation. To make
our point clear, let us make an analogy with the Born ap-
proximation. It is often very useful to compare the exact
results with those obtained in the first Born approximation
since it allows us to sort out the contribution of higher orders
of the Born series. So a Born calculation may be of great
value for comparison purposes when it is not accurate. The
frozen-correlation calculation plays the role of such a refer-
ence as far as dynamic correlation is concerned.

~ii ! It is useful in its own stand to allow calculations with-
out dynamic correlation when the exact calculation is not
possible. It provides a well defined approximation in which
correlation in the initial and final states can be fully included.
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It is particularly suited to cases when correlation cannot be
neglected in the final state, e.g., when the latter is a multiply
excited state, as we show later.

IV. RESULTS FOR DOUBLE EXCITATION

We apply the above formalism to double excitation of He
with W5Vee in our FCA calculations. We concentrate here
on the first three singlet resonances1Se(2s2),1Po(2s2p),
and 1De(2p2) located around an electron energy of 33 eV.
We have used a close-coupling method to solve the TDSE
with a basis of 104 correlated two-electron states. The initial
and final states, as well as the most relevant intermediate
states included in our basis, are accurately described~see
@10,13# for details!. The description of the resonant states
makes use of the Feschbach formalism in which one splits

the whole Hilbert space into two subspaces with correspond-
ing projection operatorsP andQ. The doubly excited states
correspond to bound eigenstates ofQH0Q and the con-
tinuum states to eigenstates ofPH0P. Electron correlation is
included in bothQ and P states. They are coupled by the
nondiagonalPH0Q operator. From our calculations, we may
obtain the probability of exciting the doubly excitedQ states
as a function of impact parameter. Results are given in Fig. 1
for 2 MeV proton impact in both the fully correlated and
frozen-correlated calculations. The difference between both
calculations is very small. Similar results were obtained
down to 0.5 MeV. These results show that double excitation
does not require dynamic correlation in the corresponding
energy range.

However, double excitation cannot be observed as such: it
shows up as a resonance effect in the spectrum of electrons

FIG. 1. Excitation probability of the first~a! 1Se, ~b! 1Po, and~c! 1De doubly excited state of He by 2-MeV protons as a function of
impact parameter. The full curves correspond to calculations including dynamic correlation and the dashed curves to the frozen-correlation
approximation.
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ejected from the target. The electron yield as a function of
electron energy shows a characteristic structure above a
smooth background that can be fitted for each resonance by

Y~e!5@A~ k̂!e1B~ k̂!#/~11e2!, ~59!

wheree52(Eel2Er)/G r , Er andG r are the resonance posi-
tion and width, andEel is the electron energy. The param-
etersA and B ~Shore parameters! depend on the electron
ejection directionk̂ and characterize the shape of the reso-
nance~in particular, the asymmetry is determined by the ra-
tio A/B). The resonance shape~59! corresponds to an inter-
ference pattern due toPH0Q involving the effect of electron
correlation over a time much larger thantcoll . Consequently,
as the very definition of the Shore parameters involves elec-

tron correlation, no observable quantity can be determined
without incorporating electron correlation in the final state.

In Fig. 2 we show the Shore parametersA andB corre-
sponding to the lowest singlet resonances of He excited by 2-
MeV protons obtained with the FCA and fully correlated
calculations. A detailed comparison with the experiments of
Bordenave-Montesquieuet al. @12# has been performed ear-
lier and we have already shown@12,13# that our fully corre-
lated coupled-state calculations describe well the experimen-
tal findings under impact of protons with energies 0.1–3
MeV. In the case of the1Se and 1De resonances, one can
observe good agreement between the frozen-correlated and
fully correlated results. This implies that, although electron
correlation is very important fort@tcoll in describing the
interference between double excitation and ionization, it
does not play a significant roleduring the collision. This is

FIG. 2. Shore parameters for excitation of the first~a! 1Se, ~b! 1Po, and~c! 1De resonance of He by 2-MeV protons as a function of
electron ejection angle. Circles: experiments of@12# for theA parameter~closed circles! andB parameter~opened circles!. The full curves
correspond to calculations including dynamic correlation and the dashed curves to the frozen-correlation approximation.
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further confirmed by the valuetcoll /tcorr.0.02 resulting from
Eq. ~33! for r50.121.0 au. For the1Po resonance, the
agreement between the two calculations is slightly worse
~see also Fig. 1! because the long-range dipole interaction
between the initial (1Se) and final (1Po) states makestcoll
larger than for the other resonances~in fact, our calculations
show thattcoll /tcorr increases slowly withr). The fact that
the agreement between the two calculations is worse in Fig.
2 than in Fig. 1 is due to two related factors. First, the inter-
ference patterns described by the Shore parameters are very
sensitive to any detail in the calculation. Second, the ioniza-
tion amplitude is sensitive to dynamic correlation particu-
larly in the forward and backward directions as discussed in
the next section.

One expects the difference between the fully correlated
and frozen-correlated results to decrease with increasing col-
lision energy becausetcoll decreases. This is indeed the case
as proved by our results for 10 MeV given in Fig. 3. The
difference is still relatively small at 0.5 MeV~Fig. 4!. In fact,
the collision time does not vary significantly at high impact
energies because the effective range of impact parameters
where double excitation takes place is.v/DE ~whereDE is
the excitation energy!.

We have also studied the validity of the frozen-correlation
approximation when increasingZP , at a fixed impact veloc-
ity. Our results for 1.5 MeV/amu F91 impact ~Fig. 5! show
that the frozen-correlation approximation is less accurate
than for proton impact. The reason is thattcoll increases with
ZP because of contributions from an increasing range of in-
ternuclear distances~we get tcoll /tcorr.0.1). Therefore our
results confirm that the relevant parameter is not the correla-
tion strength~which should be relatively smaller with in-
creasingZP) but the correlation time. This observation to-
gether with our earlier discussion on the dependence of the
Shore parameters on the projectile charge sign@7# calls for a

reassessment of the role of dynamic correlation in explaining
theZP behavior of multiple-electron excitation.

V. IONIZATION

The results given in the preceding section have shown
that the effect of dynamic correlation is much stronger on the
resonance shape that on the resonance yield and that the
resonance shape is more sensitive to correlation in the for-
ward and backward directions than around 90°. This can be
understood by looking at ionization. Our discrete representa-
tion of the continuum allows us to evaluate accurately the
ionization cross section as a function of electron angle. Re-
sults have been given for an ejected electron energy in the
resonance region@13,14# or for the ejection of low-energy
electrons@15#. We have also proved that our calculations
account for thetwo-center effectdue to the fact that the
ejected electron moves in the field of two Coulomb centers:
that of the ionized target and that of the projectile@13–15#.
The two-center effect enhances the emission of electrons in
the forward direction and decreases it in the backward direc-
tion @16#.

We give in Fig. 6 our results for the ionization cross sec-
tion as a function of electron ejection angle for both the
frozen-~with W5Vee! and fully-correlated calculations. The
ejected electron energy is 33 eV, i.e., that corresponding to
the first resonances. It is immediately seen that the largest
difference between the two calculations appears in the for-
ward and backward directions. These are precisely the re-
gions for which the two-center effect is stronger@16#. That
there is a strong relation between dynamic correlation and
the two-center effect can be easily understood. The two-
center effect is related to a long-range interaction with the
projectiles which introduces, in a close-coupling calculation,
a coupling between the various angular momenta in the final
channel. The screening of the target nuclear charge by the
bound electron felt by the ejected electron differs appreciably
from the screening in the initial bound state. The absence of
dynamic correlation does not allow a variation of this screen-

FIG. 3. Shore parametersA and B for excitation of the first
1Se resonance of He by 10-MeV protons as a function of electron
ejection angle. The full curves correspond to calculations including
dynamical correlation and the dashed curves to the frozen-
correlation approximation.

FIG. 4. Same as Fig. 3 for 0.5-MeV protons.
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ing during the collision as in fully correlated calculation. It is
therefore not surprising that the two-center effect be reduced
by comparison with the fully correlated calculation. Ou-
ranalysis can be confirmed by looking at the ratio between
the frozen and correlated calculations as a function ofZP as
shown in Fig. 7. For 30,u,120, both calculations yield
similar results. Forward scattering is dominated by the two-
center effects and it can be seen that the difference between
the two calculations decreases when the projectile charge
increases, as expected. The situation is slightly more com-
plex in the backward direction: the decrease of the cross
section in the backward direction is due to a destructive in-
terference between the amplitudes for the various angular
momenta, which make the results sensitive to any approxi-
mation. However, it can be checked that the cross-section

ratio ~Fig. 7! increases whenZP increases and becomes
larger than one forZP56 and 9. In the latter case, the two-
center effect is strong and therefore the decrease in the target
nucleus screening induces an increase in the electron yield
~an effect opposite to the one seen in the forward direction!.

To summarize, we can say that the two-center effect am-
plifies the role of dynamic correlation. This is totally consis-
tent with the theory developed in the previous sections: the
long-range interaction between the projectile and target elec-
tron is associated with a much longer collision time.

VI. CONCLUSION

We have shown that the theory not including dynamic
correlation corresponds to the limittcorr/tcoll→`. It does not

FIG. 5. Shore parameters for excitation of the first~a! 1Se, ~b! 1Po, and~c! 1De resonance of He by 1.5-MeV/amu F91 ions as a function
of electron ejection angle. The full curves correspond to calculations including dynamic correlation and the dashed curves to the frozen-
correlation approximation.
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correspond to any assumption on the strength of correlation
but only to its time evolution. The FCA provides the refer-
ence calculation in which dynamic correlation is neglected.
We have carried out calculations for double excitation and
single ionization of helium with and without dynamic corre-
lation. We have thus obtained a rigorous evaluation of the
specific role of dynamic correlation in these collisions. We
have shown in particular that the role of dynamical correla-
tion is more important for single ionization of helium in the
forward and backward direction than for double excitation.

The frozen-correlation approximation provides a conve-
nient generalization of the independent-electron model since
the former includes correlation in the initial and final states.
The structure of the FCA is quite close to that of the IEM
and it cannot be excluded that it may be the explanation for
the success of the IEM in various cases. The FCA improves
over the IEM while still allowing us to use the terminology
of many-electron ion~atom!-atom collisions originally set up
in the context of the IEM~shake off, number of interactions
with the projectile, etc.!. Finally the frozen-correlation ap-
proximation allows us to do calculations in a simple way for
processes like double capture for which the inclusion of dy-
namic correlation is extremely difficult.

We have considered specifically cases in which the corre-
lated particles are on the same atom~target or projectile!
before and after the collision, like double excitation of he-
lium or double capture from helium. In these cases, a pertur-
bative approach of correlation is not appropriate because cor-
relation does not go to zero asymptotically. The situation is
different in a case like

H~1s!1H~1s!→H~1s!1H~2p!. ~60!

Obviously correlation goes to zero asymptotically so pertur-
bation theory, if valid, may be applied without contradiction
@17#.
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