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The character of Raman dispersion is investigated for radiative and nonradiative resonant x-ray scattering of
systems with vibrational degrees of freedom. It is shown that the center of gravity of the resonantly scattered
x-rays and electrons of such systems is strongly dependent on frequency and spectral shape of the incoming
x-ray radiation and on the parameters defining the potential surfaces of the states involved in the scattering
event. Contrary to nonresonant x-ray and Auger emission, narrow band resonant excitation leads to a strong
nonlinear dependence of the center of gravity, with an asymmetrical frequency dependence for this quantity.
Contrary to atomic systems it is shown that resonant x-ray scattering of molecules often is guided by an
anti-Raman dispersion law.@S1050-2947~96!09611-4#

PACS number~s!: 33.20.Rm, 33.50.Dq, 33.70.2w

I. INTRODUCTION

Many of the general aspects of radiative and nonradiative
resonant x-ray scattering~RXS! are by now quite well un-
derstood on an electronic structure level of theory, see, e.g.,
Refs. @1–7#. The experimental progress in this field using
synchrotron radiation and high-resolution spectrometers
@8–12# has advanced to a point where the vibrational band
shapes and even individual vibronic transitions can be stud-
ied. The situation for RXS thus matches the situation some
20 years ago for nonresonant x-ray@13# and Auger @14#
emission, when vibrational structure was resolved in these
spectroscopies. However, the manifestation of vibrational
structure and of the nuclear dynamics is qualitatively very
different between the resonant and nonresonant spec-
troscopies. This goes not only for the build-up of the Franck-
Condon envelopes and for the special electronic interference
effects, but most important is the~nonadiabatic! vibronic
coupling between resonant core-excited states of different
symmetries that influences the RXS spectral shape quite sig-
nificantly @15–17# and that is strongly frequency dependent
@17,18#.

In the present work we investigate yet another feature of
resonant radiative or nonradiative emission, with no counter-
part in the nonresonant case, namely, the Raman dispersion
of energies of the scattered particles, more precisely how this
dispersion is manifested in molecules. Like other ‘‘Raman’’
related effects, such as resonance narrowing@19,2# and
Stokes doubling@3,20,6#, the Raman dispersion@19,2# has
been predicted and firmly established by observations in
atomic systems@1,12,11#. In contrast to atomic systems, for
which the Raman dispersion in general is linear~for inelastic
scattering with narrow band excitation!, the presence of vi-
brational degrees of freedom and closeness of many vibra-
tional sublevels make the energy dispersion of the scattered
particle a complicated function of the exciting photon en-
ergy. In molecules there is thus a strong complication of the
RXS spectral shape by the vibrational structure, and it is
convenient to study only a few quantities characterizing the
spectral band that can be determined by experiment; here we

focus on the center of gravity~CG! of the emission bands.
The main aim of our paper is thus to investigate how these
quantities depend on the frequency and spectral distribution
of exciting radiation and on the potential surfaces of the elec-
tronic states involved in the RXS process.

The strong dependence of the RXS spectral shape on the
spectral function of the exciting radiation has previously
been postulated@3,20,6,11#. The numerical experiment by
Armen and Wang@6# demonstrated the nonlinear dispersion
of the peak maxima and how the full width at half maximum
~FWHM! of the RXS resonances developed in the frame-
work of a three-level, atomic model. Cederbaum and Taran-
telli @5# used a time-dependent ansatz to investigate the first
two moments~CG and band width! of the nonresonant x-ray
emission complicated by vibrational structure. Since the
spectral distribution in Ref.@5# was assumed to be constant
the center of gravity and the width of nonresonant emission
bands did not depend on the frequency of the exciting x-ray
photon. Taking into account results from the investigation of
peak maxima dispersion@6# one can expect that also the
center of gravity of RXS will depend onv in a nonlinear
way.

The paper is organized as follows. A general time-
independent description of the CG is given in Sec. II. To
understand the main spectral features of the CG and the sec-
ond moment of RXS bands a three-level model is considered
in Sec. III. We show here that the spectral dependence of CG
in this three-level system reminds one qualitatively of the
dispersion of the peak maxima@6#, except for the region
where Stokes doubling operates@3,20,6,11#. Contrary to
peak maxima and widths~FWHMs! the spectral dependence
of the CG and the second moment can be given a fully ana-
lytical description. The following sections are devoted to the
investigation of the center of gravity of RXS signals for
electronic-vibrational~vibronic! transitions in the framework
of the harmonic approximation. In Sec. IV A we reproduce
by means of a time-independent approach the result in Ref.
@5# for broad band excitation. We show that the Raman dis-
persion of CG appears in this case only for tail excitation.
The narrow band excitation investigated in the following
section~Sec. IV C! demonstrates the strong nonlinear char-
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acter of the CG dispersion. In particular, the frequency de-
pendence of the center of gravity shows oscillatory behavior
if the incoming photon frequencyv is within the frequency
range given by the absorption band and if the lifetime broad-
ening is small in comparison with vibrational frequencies.
These oscillations are quenched when the lifetime broaden-
ing increases. All parameters for the CG are expressed
through the lifetime broadening, the vibrational frequencies,
and the equilibrium distances of the states involved in the
RXS process. A time-dependent approach~Sec. IV C 1!
demonstrates the strong influence of nuclear dynamics on the
asymptotic behaviour of the CG. Our findings are summa-
rized in the last section, Sec. V.

II. CENTER OF GRAVITY OF RXS BANDS

We consider in the following a RXS process taking place
in a diatomic molecule. This does not limit the generality for
the approach and the obtained results, but allows for crucial
simplifications in notation and tractability of expressions.
For ordinary temperatures the diatomic molecule is assumed
initially to be in the lowest vibrational levelvo/2 ~vibrational
wave functionuo&! of the ground state (o). By absorbing
incoming x-ray photons with frequencyv the molecule is
excited to the vibrational levelv i(m1 1

2 ) of the intermediate
electronic state (i ) with the vibrational wave functionum&.
Nuclear dynamics will be considered in the harmonic ap-
proximation. Due to the vacuum fluctuations this intermedi-
ate state decays emitting x-ray photons with the frequency
v8 to the vibrational levelv f(n1 1

2 ) with the wave function
un& of the final electronic state (f ). Except for this radiative
scattering channel, the core excited state can decay, nonra-
diatively emitting an Auger electron. The vibrational prob-
lem in radiative and nonradiative RXS is essentially the same
and both cases are covered by the theory presented below.
The spectral properties of RXS are guided by the double
differential cross section@3#

s~v,v8!5(
n

uF f u2F~v81v f o2v,g!, ~1!

convoluted with the unit normalized spectral function of the
excitation radiationF centered at frequencyv and having
the widthg. We will use here atomic units and the notation
s~v,v8! for the double differential cross section.v i j denotes
the frequency for a resonant transition between molecular
statesi and j :

v i j5Ei~Ri !1
v i

2
~ni1

1
2 !2Ej~Rj !2

v j

2
~nj1

1
2 !. ~2!

HereEi(Ri) is the electronic energy of thei th state at the
equilibrium geometryRi . In the following we leto, m, n
denote vibrational quantum numbers of the ground, interme-
diate, and final states, respectively.

The scattering amplitudeF f is given by the Kramers-
Heisenberg formula. According to the Franck-Condon prin-
ciple the RXS amplitude can be written as@3,21,22#

F f5(
m

^num&^muo&
v82v i f1 iG

, ~3!

whereG is the lifetime broadening@half width at half maxi-
mum ~HWHM!#. For the sake of transparency we have
dropped the nonessential constant multipliers on the right-
hand sides of Eqs.~1! and ~3!.

The position of the vibrational band in the RXS spectrum
is given by the center of gravity~CG! of the band:

e~v!5
s1~v!

so~v!
. ~4!

The CG is expressed through the zeroso(v) and firsts1~v!
and moments of the RXS cross section~1!:

s1~v!5E dv8v8s~v,v8!5Re (
n50

`

(
m,m150

` E
2`

` ^oum1&^m1un&^num&^muo&~j1v2v f o!

~j1v2v i1o
2 iG!~j1v2v io1 iG!

F~j,g!dj. ~5!

The area of the emission bandso(v) has an important prop-
erty, namely, that the interference contribution to the zero
moment is equal to zero@23#. This means that the integral
RXS cross section for a given electron transition

so~v!5E dv8s~v,v8!

5 (
m50

`

z^muo& z2E
2`

` F~j,g!

~j1v2v io!21G2 dj ~6!

coincides with the absorption cross section. As one can see
from Eqs.~4! and ~5! the CG depends strongly on the fre-
quency of excited radiationv and on the spectral functionF.

To see this in detail we consider two cases important in
applications: broad band excitation and narrow band excita-
tion.

III. THREE-LEVEL MODEL

To start we would like to understand the general proper-
ties of the frequency dependence of the CG. To do this we
neglect for a moment the vibrational structure of the elec-
tronic stateso, i , and f and consider RXS for a three-level
molecule with levelso, i , and f ~Fig. 1!. It is convenient to
present CG in the following form:

e~v!5v i f1w~V!, ~7!
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whereV5v2v io is the detuning of incoming photon fre-
quencyv relative to the absorption resonant frequencyv io .
We will see below that the resonant frequencyv i f of emis-
sion transitioni→ f has the meaning of the center of gravity
for broad band excitation~g/G→`!. The functionw~V! de-
scribes the deviation of exact CGe~v! from v i f for broad
band excitation and is defined by the following equation:

w~V!5V1

E
2`

`

dj
jF~j,g!

~j1V!21G2

E
2`

`

dj
F~j,g!

~j1V!21G2

5V1g
Re@zw~z!#

Re@w~z!#
. ~8!

Herez5( iG2V)/g. This function is antisymmetric:w~2V!
52w~V! ~Fig. 2!. As the most important limiting case we
approximated in Eq.~8! the spectral function of incoming
x-ray photons by a Gaussian:F~V,g!}exp@2~V/g!2#. Prop-
erties of the error function for a complex argumentw(z) @24#
then yield the following asymptotic values for thew~V! func-
tion:

w~V!5V5
2G

Apg
.0, if AV21G2!g

12
g2

V21G2 .1, if AV21G2@g.

~9!

This allows us to understand the general spectral features of
the center of gravitye~v!.

A. Broad band excitation

We will refer to broad band excitation when the width of
the spectral function is large in comparison with the lifetime
broadening

g@G. ~10!

Contrary to intuition the CG depends on the frequencyv in
this limiting case. Indeed, in accordance with Eqs.~7! and
~9!, this dependence is given as

e~v!55 v i f1V
2G

Apg
.v i f , if uVu!g

v i f1V2
g2

V
,.v i f1V, if uVu@g.

~11!

Equation~11! shows that the slope ofe~v! increases strongly
from 2G/(Apg) to 1 if uVu passes throughuVu;g ~see solid
lines in Fig. 2!. When uVu,g, the center of gravity is very
close to the resonant emission frequencyv i f , and will follow
the Raman law

e~v!5v i f1V5v2v f o ~12!

if uVu considerably exceedsg. The linear dispersion~12! is
known as the Raman-Stokes or the Raman law. The center of
gravity is independent on the frequencyv only if the spectral
functionF~V,g! is constant,g/G→` ~dotted line in Fig. 2!.

B. Narrow band excitation

The frequency dependence of CG is qualitatively different
when x-ray fluorescence is induced by a narrow band x-ray
beam

g!G. ~13!

In the considered limit CG follows the second equation~9!
with the following asymptotic behavior:

e~v!5v i f1VS 12
g2

V21G2D

5v i f1H VF12S g

G D 2G , if uVu!G

V2
g2

V
, if uVu@G.

~14!

FIG. 1. Three-level model for RXS.
FIG. 2. The dispersion of center of gravity~7!, ~8! for the three-

level model. The relative CG and relative detunings are
[ e(v)2v i f ]/g andV/g. The broad band case was calculated ac-
cording to Eq.~8! for G/g50.1, while the narrow-band excitation
was calculated forG/g52. The dispersion of CG for a frequency
independent spectral function~g5`! is depicted by a dotted line.
The slope of CG under broad band excitation was calculated ac-
cording to Eq.~11!.
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The slope of CGe~v! increases slowly when the magnitude
of detuninguVu increases. In the considered limit CG follows
closely the Raman law~12! ~dashed line, Fig. 2!. So both
broad band and narrow band excitations lead to the same
result, namely, to the Raman law~12!, when the incoming
photon frequency is tuned sufficiently far from the x-ray ab-
sorption resonanceuVu@G,g.

C. Spectral width of RXS bands

The spectral widthG~v! of the emission band is the sec-
ond important characteristic quantity of the RXS profile.
This quantity can be introduced in two different ways. First,
by definingG~v! the FWHM of the spectral band@6#. Here
we use the second alternative, namely, we defineG~v! as the
second moment of the RXS profile

G~v!5S E
2`

`

dv8@v82e~v!#2
s~v,v8!

so~v! D 1/2. ~15!

The main advantage of using the second moment compared
to the FWHM is given by the simpler analytical properties of
this quantity. The three-level model with a Gaussian spectral
functionF~V,g!}exp@2~V/g!2# allows to calculate the spec-
tral width ~15! explicitly as

G~v!5S gG

Ap Rew~z!
2w2~V!2G2D 1/2. ~16!

The dependences of the second moment~16! on detuning
and on width of the spectral function are depicted in Fig. 3.
To understand the properties ofG~v! it is useful to consider
the limiting cases of narrow band and broad band excita-
tions. As for the CG we can use the properties of thew
function and the error function for a complex argument. The
following asymptots are then obtained:

G~v!55 S gG

Ap
D 1/2, if AV21G2!g

g

A2
, if AV21G2@g.

~17!

For broad band excitation(AV21G2!g) the second mo-
ment of the RXS band diverges asAg wheng tends to in-
finity ~17!. This divergency is caused by the slowly decaying
Lorentzian tail of the scattering amplitude~3! @5#. Contrary
to the second moment this divergency is absent for the
FWHM. As is well known the FWHM tends to the lifetime
broadening 2G for broad band excitation.

Going to thenarrow band excitation(AV21G2@g), Eq.
~17! and Fig. 3~a! show thatG~v! depends slowly on the
detuningV and thatG~v! tends to zero asg/& wheng→0.
This is the basis for ‘‘resonance narrowing’’ of RXS spec-
troscopy when the spectral resolution goes below the lifetime
broadening@19,2#.

IV. CENTER OF GRAVITY OF VIBRONICALLY
BROADENED RXS RESONANCES

The presence of vibrational structure complicates the
RXS cross section~1! quite considerably. The concept of
moments of the cross section is very useful for the analysis
of spectral features of RXS given by experiment and for
receiving information on potential energy surfaces of states
involved in the RXS process. In the spirit of the ‘‘atomic’’
three-level model we will calculate CG for a many-level sys-
tem ~Fig. 4! that simulates molecules, using the general Eqs.

FIG. 3. The second moment@spectral width,
G~v!# of RXS band for the three-level model.~a!
The dispersion ofG~v!. ~b! The dependence of
G~v! ~15! on spectral widthg of incident radia-
tion. A thin line shows the asymptote ofG~v!
~17! for largeg (g@AV21G2).

FIG. 4. Scheme for electronic and vibrational levels involved
in RXS.
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~4!–~6!. Also, in this context we analyze the two important
limiting cases of broad band and narrow band excitations.

A. Broad band excitation

We first consider the case with a photon function having a
large widthg

g@Geff , uv2v iou. ~18!

HereGeff is the effective width of the envelope formed by the
vibronic transitions within the x-ray absorption resonance.

This condition allows us to consider the spectral function as
constant @F(v81v f o2v,g)5const#. Thus, according to
Eqs.~5! and~6! the center of gravity does not depend on the
frequencyv

e~v!5const ~19!

under broad-band excitation~18! @5#. According to Eq.~6!
now so(v)5pF/G. Thus the center of gravity~4! reads

e~v!54G2 (
m,m150

`
^oum1&^m1u~Ei~Ri !2Ef~Rf !1Hi2Hf !um&^muo&

v i
2~m2m1!

214G2 . ~20!

The vibrational HamiltoniansHi and Hf of the electronic
statesi and f are connected with each other in the harmonic
approximation by the equation

Hf5Hi1
1
2mv f

2~Ri2Rf !
21V,

~21!

V5
m

2
~v f

22v i
2!j21mv f

2~Ri2Rf !j,

where j5R2Ri is the displacement from the equilibrium
internuclear distance of the core excited state andm is the
reduced mass.

Taking into account Eq.~21! and the sum rules~44! one
finally obtains the following expression for CG under broad
band excitation~18!

e~v!5e i f
S1e i f

D . ~22!

Two qualitatively different terms

e i f
S5Ei~Ro!2Ef~Ro!1

v i
22v f

2

4vo
,

~23!

e i f
D5

v f
22v i

2

4v i
2 S mv i

2~Ro2Ri !
21

v i
22vo

2

2vo
D v i

2

v i
21G2

1mv f
2~Ro2Ri !~Ri2Rf !

v i
2

v i
214G2

contribute both to the center of gravity~22!. The first term
e i f
S is due to the vertical or sudden transition, while the sec-

ond onee i f
D is purely of dynamical origin@5#. Indeed the

dynamical contributione i f
D tends to zero when the core ex-

cited state is short-lived (G@v i). Equations~22! and ~23!
were received first by Cederbaum and Tarantelli@5# in the
framework of a time-dependent approach. Here we used the
connection between the electronic energyEi(R) at the point
R and its equilibrium value Ei(Ri): Ei(R)5Ei(Ri)

1mv i
2(R2Ri)

2/2. It is relevant to point out thate io
S defined

by Eq.~23! is the center of gravity of the vibronic absorption
bando→ i .

B. Tail excitation

Let us now tune the incoming photon frequencyv far
from the x-ray absorption resonance:

uv2v iou@g, G, vo ~24!

in which case the x-ray photons core excite the molecule by
the tails of the absorption line. For tail excitation~24! the
denominators on the right-hand side of Eqs.~5! and ~6! can
be removed from the integrals overz, and hence we obtain

e~v!5 (
n50

`

^oun&~v2v f o!^nuo&. ~25!

A method outlined in the preceding subsection leads to the
Raman law

e~v!5v2e f o
S . ~26!

A comparison with Eq.~23! shows that the frequency

e f o
S 5Ef~Ro!2Eo~Ro!1

v f
22vo

2

4vo
~27!

has the meaning of the center of gravity of a sudden or ver-
tical ‘‘absorption transition’’o→ f .

Comparing with the general expression for the RXS am-
plitude ~3! one receives now a deeper interpretation of this
result. Indeed, according to condition~24! the RXS ampli-
tude is proportional to the overlap integral^nuo& between the
ground- and final-state vibrational wave functions, which
leads directly to the following result for the RXS amplitude:

F f}^nuo&. ~28!
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Thus a sudden~vertical! transition from the initialuo& to the
final u f & states takes place. This expression forF f coincides
with the short lifetime limit~G→`! @22#.

The time-dependent representation for the RXS amplitude
@4# leads to the same result~28! when the core excited state
is short-lived~1/G is small! or if the detuningVo is large~see
also Sec. IV C 1!. Indeed, the wave packet excited from the
ground stateuo& at time t50 decays to the final molecular
stateu f & at different times (0<t<`). The partial RXS am-
plitude corresponding to the timet is proportional to the
phase factor exp(iVot2Gt). When the lifetime broadening
or detuningVo5v2v io is large, only a partial amplitude of
the sudden transition (t50) gives a significant contribution
to F f . Indeed, the contributions of decay events attÞ0 are
negligibly small due to the damping factor exp(2Gt) if G is
large or when the exp(iVot) factor oscillates strongly, as it
does when the frequency is tuned far away from the absorp-
tion resonance. In the latter case the RXS process can also be
considered as a sudden process because the interference sup-
pression of the decay contributions toF f for different times
t. The same effect is given also by the three-level model@see
lower Eq. ~11!#. So contrary to Eq.~22! the detuning ofv
outside of absorption banduVu,g restores the frequency de-
pendence of CG according to the Raman law~26!.

Figure 2 gives a qualitative summary of the results ob-
tained in Secs. IV A and IV B. When the detuning from the
absorption resonance is smaller than the width of the spectral
function, uVu,g, the center of gravity~22! depends slowly
on v for broad band excitation. Strong frequency depen-
dence appearing nearuVu;g tends to become linear~26! if
uVu@g.

C. Narrow band excitation

As it was shown for the three-level model~see Sec. III!
the frequency dependence of the center of gravity under nar-
row band excitation

g!Geff ~29!

qualitatively differs from the case of broad band excitation.
In this subsection we consider the corresponding narrow
band case for a system with vibronic transitions. Since the
spectral function now can be approximated by ad function
@F~V,g!.d~V!# the area of the RXS band~6! associated with
the particular electronic transition is given by

so~v!5 (
m50

` u^muo&u2

~V2mv i !
21G2 . ~30!

HereV5v2[Ei(Ri)2Eo(Ro)1(v i2vo)/2] is the detun-
ing of incoming photon frequency from the resonant fre-
quency of the adiabatic transitiono→ i . This adiabatic fre-
quency constitutes the lowest one for the absorption
transition, andV has therefore also the meaning of a fre-
quency of detuning from the bottom of the corresponding
emission band.

In accordance with Eq.~2!, the first moment~5! of the
absorption cross section is changed to

s1~v!5Re (
m,m15o

` ^oum1&^m1u$v2@Ef~Rf !2Eo~Ro!2 1
2vo#2Hf%um&^muo&

~V2m1v i2 iG!~V2mv i1 iG!
, ~31!

It is convenient to presente~v! ~4! relative to the frequencyẽ i f
S of the sudden~or vertical! emission transitioni→ f from the

lowest vibrational level (m50) of the core excited statei : ẽ i f
S5Ei(Ri)2Ef(Ri)1(v i

22v f
2)/(4v i). The replacement of the

final-state vibrational HamiltonianHf by that of the core excited stateHi ~21! yields the following final result:

e~v!2 ẽ i f
S5V1de~v!,

de~v!52D1 f ~v!2D f 1~v!2D2 f 2~v!, ~32!

where

D65
v f
26v i

2

2v i
, D5S 2m

v i
D 1/2v f

2~Ri2Rf !. ~33!

The nonlinear frequency dependence of CG~32! originates entirely from the functions

f ~v!5
1

so~v! (
m50

`
mu^muo&u2

~V2mv i !
21G2 ,

f 1~v!5
1

so~v! (
m50

` Am11^oum&^m11uo&$~V2mv i !@V2~m11!v i #1G2%

@~V2mv i !
21G2#$@V2~m11!v i #

21G2%
, ~34!

f 2~v!5
1

so~v! (
m50

` A~m11!~m12!^oum&^m12uo&$~V2mv i !@V2~m12!v i #1G2%

@~V2mv i !
21G2#$@V2~m12!v i #

21G2%
.
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The typical frequency dependence of CG is shown in Fig. 5
for different lifetime broadeningsG. The parameters used in
these calculations correspond to oxygenK emission of the
CO molecule. Spectroscopic constants (Rj ,v j ,G) collected
in Table I are given for the following electronic states of CO:
uo&5X 1S1, u i &5O 1s212p1 1P, u f &51p212p1 1D @25#.
At this and forthcoming figures the center of gravity is given
as a function of a shifted detuning relative to ‘‘vertical’’
emission frequencyẽ i f

S ~32!:

Ṽ5V2D,

D5S vo2v i

4 D S 12
v f
2

vov i
D 1

m f
2

2
@~Ro2Rf !

22~Ri2Rf !
2#.

~35!

With this definition for the detuningṼ the relative CG
e(v)2 ẽ i f

S ~32! is equal to zero whenṼ50 in the Raman
limiting case~26!. Now the true dispersion line is no longer
antisymmetrical relative to the Raman dispersion line~12!;
compare Figs. 2 and 5.

When the lifetime broadening is small,

G!vo , v i , v f ~36!

the CG oscillates in the region of photoabsorption but fol-
lows closely the Raman law outside of this region~Fig. 5!. A
comparison of these oscillations with the photoabsorption
profile ~Fig. 6! shows that the minima of the CG positions
correspond approximately to the maxima of the absorption
cross section. When the lifetime broadeningG increases, the
oscillations of the CG disappear and the deviation from the
Raman law ~26! also disappears in the limitAV21G2

@Geff ~Fig. 5!. If one ignores the oscillation of CG in the

region of photoabsorption one can roughly approximate the
behavior of the center of gravity in this region by a straight
line,

e~v!2 ẽ i f
S.VS v i

22v f
2

2v i
2 D ~37!

but with a slope that is different from the Raman law~26!
~we note that this estimation for the slope is good only for a
small lifetime broadening!.

Figure 6~b! demonstrates theanti-Ramanbehavior of the
dispersion law. In this case, contrary to Fig. 6~a! the vibra-
tional frequency of the final state is larger than the one for
the core excited state (v f.v i) and the slope~37! becomes
negative. Numerical investigations show that the slope of Eq.
~37! is useful and leads to correct qualitative conclusions
only if the functionr @see Eq.~40!# is positive.

1. Asymptotic behavior of CG. Time-dependent approach

Numerical results~Figs. 5 and 6! obtained with help of
Eqs. ~32! and ~34! clearly demonstrate that the frequency
dependence of CG is strongly nonlinear and that this depen-
dence qualitatively differs from the three-level model~Fig.
2!. Unfortunately, the strict Eqs.~32! and ~34! are too com-
plex to obtain simple rules useful for a qualitative analysis of
the dispersion. However, one useful parameter was found in
Sec. IV C, namely, the slope defined by Eq.~37!. The as-
ymptotical behavior of CG gives another useful parameter
for the qualitative analysis of the dispersion in the photoab-
sorption region.

FIG. 5. Dependence of center of gravity on lifetime broadening
for narrow band excitation~29!. Input data correspond to OK emis-
sion of the CO molecule~Table I!.

TABLE I. Vibrational frequenciesv j , equilibrium internuclear distancesRj ( j5o,i , f ), and lifetime
broadeningsG for ground (o), core-excited (i ), and final (f ) states of the CO molecule.

State v j ~eV! Rj ~Å! G ~eV!

Ground (o):X 1S1 0.27 1.128 0
Core-excited~i!:O1s212p1 1P 0.18 1.280 0.09
Final (f ):1p212p1u&1D 0.14 1.399 .0

FIG. 6. Influence of vibrational structure on CG slope. X-ray
absorption profile is given forG50.001 eV.~a! Data for OK emis-
sion of CO molecule~Table I!. Slope ~37! is positive. ~b! Anti-
Raman behavior (v f.v i). Input data are the same with~a! except
v f50.23 eV. Slope~37! is negative.

3966 54FARIS GEL’MUKHANOV AND HANS ÅGREN



Let us investigate how the exact dispersion law~32! re-
lates to the Raman law~12! when the frequency detuningV
is large or when the lifetime broadeningG is large. To ac-
complish this we start from a time-dependent representation
of CG given in the Appendix@Eq. ~A6!#. According to the
method of stationary phase~A8! the frequency dependence
of CG follows very closely the ordinary Raman law~12!

e~v!'v2e f o
S 2

Vv i

V21G2 r, ~38!

when the lifetime broadening and/or the detuning frequency
is large,

uVuv i

V21G2 !1. ~39!

Equation~48! shows directly that in this limit the main con-
tribution to the frequency dependence of CG is given by
sudden transitions (t50). The nuclear dynamics influences
strongly the asymptotic behavior of CG through the param-
eter

r5
mv f

2v i

vo
~Ro2Ri !~Ro2Rf !1

~vo
22v i

2!~vo
22v f

2!

4vo
2v i

.

~40!

This parameter can be positive, negative and equal to zero
depending on the precise relation between frequencies and
positions of the potential surfaces of the electronic states
involved. The asymptot of CG is antisymmetric relative to
the Raman-Stokes law~12! if rÞ0. Whenr50 we have to
take into account a correction to the Raman law of higher
order. One can understand that this correction is proportional
to 1/~V21G2!, and, therefore, that the asymptot of CG de-
fines a symmetrical function of detuning for the caser50
@see Fig. 7~b!#. Figure 7 shows that knowledge of the asymp-
totic behavior allows a prediction of the behaviour of CG in
the photoabsorption region using a very simple analysis of
ther function~40!. The change of sign of ther function~40!
leads to inversion of the CG frequency dependence relative
to the Raman dispersion line@compare Figs. 7~a! and 7~b!#.
Let us note two special important cases for whichr50. This
function is equal to zero for example if the potentials of
ground and core excited states coincide~Ro5Ri , vo5v i! or
if the potentials of ground and final states coincide~Ro5Rf ,
vo5v f!. The last case takes place for elastic scattering, as
further discussed below.

2. Role of interference

Let us now look at the structure of the expression for the
CG ~32! from the point of view of interference effects. The
functions f 1(v) and f 2(v) @Eqs. ~32! and ~34!# are caused
by lifetime-vibrational interference contributions to the RXS
cross section@19,21,26,22#, while f (v) is the direct term.
Figure 8 shows that the lifetime-vibrational interference ef-
fect plays a very important role in the dispersion law for the
x-ray Raman effect.

3. Elastic scattering

Until now we considered inelastic x-ray scattering with
different initial- and final-state potential surfaces. In the case
of elastic RXS these potential surfaces coincide. The disper-
sion law for elastic RXS is depicted in Figs. 7~b! and 9 using
data for the CO molecule. Since herevo.v i this dispersion
law shows anti-Raman behavior@see Eq.~37!#. The conver-
gence of the dispersion~32! with respect to the Raman law
~12! when the detuning tends tò is presented in Figs. 7 and
8. As can be seen in these figures the convergence is slow
~}1/V! in the general case~Fig. 7! but quite fast~}1/V2! in
the case of elastic scattering~Fig. 8!.

V. SUMMARY

We have presented theory for Raman frequency disper-
sion of x-ray scattering spectra of molecules. Analytical ex-
pressions for the frequency dependence of the center of grav-
ity and the width of RXS bands for electron-vibrational
transitions have been given and numerically evaluated for
different limiting conditions. It has been demonstrated that
the RXS dispersion strongly depends on the spectral distri-
bution of the incident light beam and that the RXS dispersion
differs qualitatively for broad band and narrow band excita-
tions. In the first case the Raman dispersion of the center of
gravity appears only for tail excitation, while for narrow
band excitation the dispersion can adopt several characteris-
tic features depending on the precise relation between the
parameters of the interatomic surfaces of the electronic states
involved.

Our investigations thus show that the RXS dispersion is
strongly influenced by nuclear dynamics when the spectral
width g of the incident light beam is small. We found that
this influence is important in a broad region of incoming
photon frequenciesv. Whenv lies outside the absorption
band the RXS dispersion follows closely the ordinary Raman
law for linear dispersion. The convergence to this Raman

FIG. 7. Influence of nuclear dynamics on the CG spectral shape.
Thick solid curves show exact calculations according to Eqs.~32!
and ~34!. Raman law~12! is depicted by dashed lines. Thin solid
curves show asymptotical behavior of the center of gravity~38!.
G50.09 eV. ~a! r.0. Data for OK emission of CO molecule
~Table I!. ~b! r50. Input data are the same as for~a! except data for
the final state which coincide with the ground-state data
v f5vo50.27 eV,Rf5Ro51.128 Å. ~c! r,0. vo5v f50.27 eV,
v i50.22 eV,Ro51.128 Å,Ri51.05 Å,Rf51.399 Å.
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law for tail excitation depends, however, strongly on the pa-
rameters of the potential surfaces of the states involved in the
RXS event. In general, the nuclear dynamics leads to a quali-
tatively different convergence to the ordinary Raman law in
comparison with the atomic case, and ifv lies within the
region of photoabsorption, it totally dictates the spectral
shape and the CG. Contrary to the atomic three-level ap-
proximation of RXS with an antisymmetrical dispersion law,
the vibrational structure leads to an asymmetrical frequency
dependence of the CG.

The behavior of the CG in the region of photoabsorption
depends strongly on vibrational frequencies and equilibrium
geometries of the states involved in RXS. It then shows os-
cillatory behaviour when the lifetime broadening is small in
comparison with vibrational frequencies. These oscillations
are quenched when the lifetime broadening increases. The
slope of the CG is a striking manifestation of the nontrivial
behavior of this quantity. The slope is positive for the ordi-
nary Raman dispersion, but as shown here it can be equal to
zero or be negative~anti-Ramandispersion!, directly corre-
lating with the sign of the difference between vibrational
frequencies of the core-excited and final states (v i2v f).

There is another parameter except for the slope that gov-
erns the dispersion of the CG, namely, the ‘‘potential’’ pa-
rameterr ~40!, which depends in a simple way on the vibra-
tional frequencies and equilibrium distances of the potentials
involved. We found three qualitatively different dispersion
dependences of CG that correspond to three different values
for this parameter:r,0, r50, andr.0. Ther parameter is
exactly equal to zero for elastic RXS, while for inelastic
RXS it is usually different from zero. The dispersion rela-
tions for elastic and inelastic RXS bands are, therefore,
qualitatively different.

In addition to the width of the spectral function of excit-
ing radiation, the experimental possibilities to observe the
proposed dispersion laws evidently also depend on the reso-
lution of the spectrometer. This resolution is guided by a
convolution function that must be tested in each particular
experimental situation. At present it seems that the compara-
tively high intensity of nonradiative RXS gives a better pos-
sibility than radiative RXS to reach sufficient resolution in
order to test the dispersion effects. In radiative RXS there is
also the serious experimental problem of self-absorption for

the elastic band, which may strongly disturb the predicted
dispersion law. To observe the true dispersion for an elastic
band it will thus be necessary to use an optically thin target.
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APPENDIX

To calculate the center of gravity we use the following
formula for the matrix elements of the operatorV ~21!

^m1uVum&5S m

2v i
D 1/2v f

2~Ri2Rf !@Amdm1 ,m21

1Am11dm1 ,m11#1
v f
22v i

2

4v i
@~2m11!dm1 ,m

1Am~m21!dm1 ,m22

1A~m12!~m11!dm1 ,m12# ~A1!

FIG. 9. Influence of nuclear dynamics on the center of gravity of
elastic RXS. Data for OK emission of CO molecule~Table I!.
Potential surfaces of initial ground and final states coincide.

FIG. 8. Influence of lifetime-vibrational inter-
ference on center of gravity. Input data for OK
emission of CO molecule~Table I!.
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and the expression for the Franck-Condon~FC! factors
^muo& between the ground-state vibrational wave function
uo& and the vibrational wave functionum& of the core excited
intermediate statei of the diatomic molecule. This FC factor
is expressed in the harmonic approximation through the Her-
mite polynomialHm(z):

^muo&5z
qm/2

Am!
Hm~z!. ~A2!

The parameters defining the FC factor

z5
~4vov i !

1/4

~vo1v i !
1/2 expS 2

mvov i

vo1v i
~Ro2Ri !

2D ,
~A3!

q5
1

2

vo2v i

vo1v i
, z5~Ro2Ri !S mv i

@12~v i /vo!
2# D

1/2

,

depend on the vibrational frequencies (vo ,v i) and the equi-
librium internuclear distances (Ro ,Ri) of groundo and core
excitedi states.

To evaluate the asymptotic behavior of the CG the fol-
lowing summations are needed:

(
m50

`

mu^muo&u25
1

2 S mv i~Ro2Ri !
21

~vo2v i !
2

2vov i
D ,

(
m50

`

A~m11!~m12!^oum&^m12uo&

5
1

2 S mv i~Ro2Ri !
22

~vo2v i !
2

2vov i
D , ~A4!

(
m50

`

A~m11!^oum&^m11uo&5~Ro2Ri !Amv i

2
.

These expressions are obtained in accordance with the fol-
lowing equation@27#:

(
k50

`
tk

k!
Hk1m~x!Hk1n~x!

5~124t2!2~m1n11!/2 expS 4tx

112t D3 (
k5o

min~m,n!

22kk! Smk D
3S nkD tkHm2kH xS 122t

112t D
1/2

Hn2kFxS 122t

112t D
1/2G J .

~A5!

Time-dependent representation of the center of gravity

Here we give some equations which are necessary for the
evaluation of the asymptote of the center of gravity for large
detuning~39!. For this purpose it is more natural to use a
time-dependent representation of CG. From the time-
dependent representation for the absorption cross section
so(v) ~30! and the functionsf (v), f 1(v), f 2(v) ~34! one
can receive with a help of Eq.~A5!,

so~v!5
1

G
Re E

0

`

dtei ~V1 iG!tx~t!,

f ~v!5
4

G
Re E

0

`

dtei ~V1 iG!tx~ t !
tx~ t !

124t2 Fz2S 122t

112t D11G ,
~A6!

f 1~v!52zAq Im
1

v i2 iG E
0

`

dt

3Fei ~V2v i1 iG!t
x~ t !

112t
1e2 i ~V2 i2G!t

x* ~ t !

112t* G ,
f 2~v!5q Im

1

v i2 iG E
0

`

dt

3H ei ~V22v i1 iG!t
x~ t !

124t2 F2z2S 122t

112t D11G
1e2 i ~V2 iG!t

x* ~ t !

124t* 2 Fz2S 122t*

112t* D11G J ,
where

t5qe2 iv i t, x~ t !5
z2

A124t2
expS 4tz

112t D . ~A7!

The high-frequency asymptote for the center of gravity~32!
can be received by a direct, but somewhat lengthy, evalua-
tion of Eqs.~A6! using the method of stationary phase,

E
0

`

ei ~V1 iG!tf~ t !dt'
if~0!

V1 iG
2

f8~0!

~V1 iG!2
~A8!

applied to the limiting case~39!.
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