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Combination of the many-body perturbation theory with the configuration-interaction method
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An ab initio method for high accuracy calculations for atoms with more than one valence electron is
described. The effective Hamiltonian for the valence electrons is formed using many-body perturbation theory
for the interaction of the valence electrons with the core. The configuration-interaction method is then used to
find the energy levels of the atom. An application of this to thallium shows that the method gives an accuracy
of about 0.5% for the ionization potential and a few tenths of a percent for the first few energy intervals.
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I. INTRODUCTION There is an alternative coupled-clust€€C) approach
(see, e.9.[12)]) in which some other series of higher-order
The development of new methods for high-precisiondiagrams are summed up in all orders thus taking into ac-
atomic calculations is necessary not only for atomic physicgount pair correlations. Some relativistic CC calculations for
itself, but also for applying atomic physics to the investiga-many-electron atoms were performed[iv,18. For alkali-
tion of the fundamental interactionsee, e.g.[1-4]). At \a1a) atoms a similar accuracy as for PTSCI was achieved.

0, i - . .
present, 1% accuracy has been reached in several measuI'liaowever, for atoms with more complicated electron struc-

ments of parity nonconservatigi®NC) in cesium[5], lead :
[6], thallium [7], and bismuth 8]. But until now the same tures the typical accuracy was about 1%6]. The most ob-

theoretical accuracy has only been reached for cef@ybd)] viou_s shortcom_ing of the method is the neglect of three-
and francium{11]. All these calculations were made within particle correlations. Also, the CC method treats the valence-
many-body perturbation theofMBPT) [12—15. In Refs. Valence and core-valence correlations at the same level of
[9,11,14,15% the dominant series of higher-order diagramsapproximation. It is clear, however, that the former correla-
were found and summed up in all orders. As the most imtions are much stronger than the latter.
portant higher-order diagrams describe the effect of the On the other hand there are methods which treat many-
screening of the Coulomb interaction by the core electronspody effects in an accurate way, at least for valence elec-
the method developed can be called “perturbation theory irirons. These are the well-known configuration-interaction
the screened Coulomb interactiofPTSC). This method (CIl) and multiconfiguration Hartree-FodMCHF) methods
produces excellent results for alkali-metal atoms, which havégsee, e.g.[19]). Cl and MCHF methods have been widely
one external electron above closed shells. The accuracy issed by a number of authors for accurate calculations for
about 0.1% for energy leve[41,14 and about 1% for hy- many-electron atomgsee, e.g.,[20]). Recently, the CI
perfine structure intervals and transition amplitudesmethod was used for calculations of PNC effects in such
[9,11,15. Formally, atoms such as thallium can also be concomplicated atoms as dysprosidi], ytterbium[22], and
sidered as having one external electron above closed subismuth[23]. In principle, the accuracy of Cl is limited only
shells. However, the application of PTSCI to Tl gives only by the incompleteness of the set of configurations used. For a
1.5% accuracy for the ionization potentjdb]. The reasonis many-electron atom the number of possible configurations is
obvious: the interaction between the &nd & electrons in  so large that one has to select only a small fraction of them.
Tl is too strong to be treated accurately by means of perturThis is usually done by neglecting core excitations or only
bation theory even though some types of diagrams are inncluding a very limited number of them. This in turn sig-
cluded in all orders. nificantly limits the accuracy of the method.
It is important to stress here that the accuracy of the
MBPT and the CI methods is restricted in different sectors of

"Electronic address: dzuba@newt.phys.unsw.edu.au the many-body problem. MBPT is not accurate in describing
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are divided into the valence electrons and the core electrons. B. Effective Hamiltonian for the CI problem
The MBPT is used to construct an effective CI Hamiltonian

. ; . The subspace is infinite-dimensional. Thus, it is impos-
in the model space of the valence electrons. This Hamilyjya 1o find an exact solution of the Séhimger equation in

tonian includes additional terms to the ordinary CI methody,;q subspace. However, if the number of the valence elec-
which account for core-core and core-valence correlationst ons is small enougti.e ’does not exceed three or fiit

The CI method is used then to find atomic energy levels an possible to find a very good approximation with the help

wave fhu_nctions. . | h lculati fof the Cl method. In this method a finite-dimensional model
In t IIS palpe'r we rgst|r|ct r?urse er-?l t9rt edc_?_lgf att)|on OlspacePC'C P is introduced by specifying the set of the al-
energy levels, in particular those of Tl, Tl an » DUt 15wed configurations for the valence electrons. The many-

the method can be extended to calculate transition ampligiecron wave function is presented as a linear combination

tudes and expectation values as well. Our final goal is tQy gjater determinants from the model subspace
calculate the parity nonconservirtgfl amplitudes for those ’

atoms for which precise PNC measurements are underway,

i.e., thallium, lead, and bismuth. A brief report of this work = EU Cil1). (4)
was published if24]. leP
Variation of C, leads to the matrix eigenvalue problem:
IIl. METHOD
A. Configuration and perturbation subspaces > H,,C,=EC, (5)
C

Let us divide the Hilbert space of the many-electron prob- JeP

lem into two subspaces. The first subspag ¢orresponds which means that the energy matrix of the CI method can be

to the frozen-core approximation. The second subsp&je ( obtained as a projection of the exact Hamiltonidronto the
includes all core excitations and is complementary to the firsinodel subspace:

one.

It is natural to assume that the projections of the wave HC'=PCEHPC (6)
functions of the lower energy levels of the atom onto the
subspac®) will be small. This allows us to take into account ~ We will suppose that it is possible to chooBE' so that
the subspac& by means of MBPT. On the other hand, the desired accuracy of the solution of the Scimger equa-
perturbation theory is not effective in the subsp&cand so tion in the P subspace can be achieved. For this reason,
the CI method is preferable here. below we will not distinguish betweeR®' and P.

Such a decomposition of the Hilbert space depends on the Let us write the operatoPHP explicitly. Because the
definition of the core. First, one should choose the number ofore in the subspade is frozen, we can exclude core elec-
electrons to be included in the cord (). For example, the trons from consideration by averaging the Hamiltonian over
thallium atom can be treated as either a one-electron atorthe single-determinant wave function of the core electrons.
(Ncore=80) or as a three-electron atorN ;.= 78). For the  After that the operatoPHP has the following form:
convergence of MBPT it is important that the core and va-
lence electrons be well separated in space and on the energy | 1
scale. In many cases that can be achieved by attributing to PHP= Ecore+i>2 hi +j>i>2N rij’ 0

. core core " 1]
the core all of the subshells of a particular shell.

Second, it is necessary to specify the one-particle wavgyhereE . includes the kinetic energy of the core electrons
functions for the core electrons. Because we are going to usgnd their Coulomb interaction with the nucleus and each
MBPT, these functions should be the eigenfunctions of somether. The One-partide Opera'[b?l acts on the valence elec-

one-particle Hamiltonian: trons and includes the kinetic term and the Coulomb interac-
hedb — 1 tion with the nucleus and with the core electrons. The last
0pi=¢€idbi. (1) term in Eq.(7) accounts for the interaction of the valence

electrons with each other. Atomic units are used throughout
the paper, unless otherwise stated.

Operator(7) can be used in Eq5) instead ofH. In this
fse determinants) and|J) include only the valence elec-
rons. This equation corresponds to the pure Cl method in the
frozen-core approximation.

To write the exact equivalent of the original Sctimger
spaceQ. . . equation in the subspacdelet us make thd>,Q decomposi-

Thus, we can write a projector to the subsp&cas tion of the Hamiltonian and the wave function of the many-
body problem:

The choice ofhg is discussed in Sec. lll.

We can use Slater determinafi$ of the functionse; as
a basis set in the many-electron space. It is easy to determi
to which of the two subspaces any particular determinan
[I) belongs. If allN.e lowest states are occupied, thgi
belongs to the subspa¢® otherwise it belongs to the sub-

P= {11, 2
|§p| | @ H=PHP+PHQ+ QHP+QHQ, tS)
and define a projectd® by the completeness condition V=PV +Q¥=0d+y. 9)

P+Q=1. (3)  The Schrdinger equation



3950 V. A. DZUBA, V. V. FLAMBAUM, AND M. G. KOZLOV 54

HY=E¥ (10 sion corresponds to th&\core approximation, for whichg is
_ . the Dirac-Fock operator for the core. However, when the
can be written as a system of equationsdoland y: number of valence electrons is more than one this approxi-

mation is too crude to start with, as it corresponds to a mul-
tiply charged ion rather than a neutral atom. This means that
some or all of the valence electrons should also be included
in the self-consistent procedure. For the case of thallium it is

N-1 ; ;
We can now define the Green’s function in the subspacaetter to use th&/ app'rOX|mat|on(see, e.9.[25]. The .
artree-Fock procedure is done for the closed-shell ion

(PHP)®+ (PHQ)x=ED (1D

(QHQO)x+(QHP)®=Ey. (12

Q: TI*, and the basis set of excited states for the valence elec-
Ro(E)=(E— OHO) 1, (13)  trons is calculated in the field of the frozenTkore.
Let us defineNpg as the number of electrons included in
and then use Eq12) to excludey: the Hartree-Fock self-consistent procedudg,=Npe=<N,
N being the total number of electrons in the atom. Now we
X=Ro(E)(QHP)D. (149 can defineh, as the corresponding Dirac-Fock operator:
This gives us a Schdinger-like equation in the subspace d
P, with an energy-dependent effective Hamiltonian: ho=hpe=caxp+(8—1)mc?— T +VNor - (19)
(PHP+2(E))P=ED, (15 ) . o +
Let us introduce the creatiofannihilation operatorsa;
3(E)=(PHQ)R(E)(QHP). (16) (&) for the functions(1):
By substituting(14) into (9) we can also rewrite the ortho- hDFaiT|o>: Eiaﬂo), (20)
normality conditions for the solutions of E(LO) in terms of
the solutions of Eq(15): wheree; is the Dirac-Fock energy of the orbital The cor-

responding Dirac-Fock operator in the many-electron space,

(@[ 1+ (PHQ)RQ(ENR(E)(QHPI Y=y (A7) P

Equations(15)—(17) and(14) are the exact equivalent of
Eq. (10). Because of the energy dependence of the operators _ ¥ o ~
S andRq, these equations should be solved iteratively. If DF= Ecore™ m§=:1 embmbm+i>§N:we €i8 8 =Ecoret Hor,
we are only interested in a few low-lying energy levels, then, (21)

in the first approximation, we can neglect this energy depen-

dence and evaluate both operators for some energyhereb! =a,, andb,=al, are creatiorfannihilatior) opera-
Ea=Ei=E. In this approximation Eq17) is expressed in  {ors of holes in the core. The ener@y,e in Egs. (7) and

NCOFE

terms of the derivative of the operat(6): (21) is defined as the matrix element of the exact Hamil-
tonianH with the core wave function:
(Pi|1=de2(BE)|Pi)_ =6k (18)
Ecore= (¥ cord M|V cores 22
Actually, for the proper choice of thé® subspace, core™ (" cord |V cord @2
de2(E) can be so small that the usual orthonormality con- ¥ —alal...at 0 29
dition can be applied. In this case, the standard CI proce- core™ €152 Neore )-

dures can be used to solve Efj5), provided that the opera-

tor %(E,,) is calculated beforehand. The latter can beNote that the core wave functio#f .., includesN,e elec-

calculated with the help of MBPT, as described in sometrons but is constructed from the solutions of E20) which

detalil in the next section. corresponds to the self-consistent field of tg- electrons.
If the subspacé includes only one electron the operator That means that expressi@@?) differs from the Dirac-Fock

PHP is reduced to the Dirac-Fock operator with ti~!  energy of the ion witiN,,,. electrons.

potential and®, is reduced to the single-particle self-energy It follows from Egs.(20), (21), and(23) that

operator. In this case Eq$l5 and (18) define Bruckner

orbitals and so the operat@r can be considered as a direct PHprQ = QHpeP=0. (24)
generalization of the single-particle self-energy operaton
the case of several valence electrons. This allows us to rewrite Eq16) as
Ill. MANY-BODY PERTURBATION THEORY FOR 3(E)=(P(H—H pp) QRo(E)(Q(H—Hpp) P)
A. Perturbation expansion = (P(V—WoF) QRo(E)(Q(V— VNDF)P), (25)

In this section we are going to obtain a perturbation ex-
pansion for expressio(16). The form of this expansion de- whereV is the operator of the two-electron Coulomb inter-
pends on the choice of the operalgr(1), which determines action andWWoF is the operator of the interaction of the
the starting approximation. The simplest form of the expaniNpg electrons with the Hartree-Fock field.



54 COMBINATION OF THE MANY-BODY PERTURBATION ... 3951

> > a B b a B a a
Q. = e T
é R e

b

1 2 3 4
1 2
FIG. 2. Second-order diagrams for the self-energy of the va-
FIG. 1. First-order diagrams for the interaction of the valencelence electron.
electron with the core.
B. Diagrammatic technique

Expression(25) has the usual MBPT form. Now we can

use the standard expansion for the oper&g(E), treating ] )
(V—WNoF) as a perturbation: In the zeroth order of MBPT the interaction of valence

electrons with the core is described by the two diagrams
(Fig. 1) where the sums for the internal lines run over the
core. The interaction with the Hartree-Fock field corresponds

1. Interaction with the core

Ro(E)=Q(E-H) 1Q

=Q(E—Hpp) 10+ Q(E—Hpp) tO(V to the same diagrams, but the sums run overNgge elec-
. trons. If Ngoe=Npe, there is a complete cancellation of
—WoF) Q(E—Hpp) 1Q+- - -. (26)  these two contributions. That means that all diagrams which

have the blocks shown in Fig. 1 as one of their parts disap-
Substituting(26) into (25) and rewriting it in matrix form  pear. The same holds true for those blocks in which one of
gives the external electron lines has been replaced by a hole line.
If Neore<Npg, there will only be a partial cancellation of
UimUms UmUmUL, the core-valence interaction and the Hartree-Fock field. As a
3= E E_E. ECENE_E oo result, the diagrams containing blocks Fig. 1 survive, but the
MeQ Mo miee M) L) sums only run fromNgoet+1 to Npe. Below we will call
=3@43@) 4. 27) them subtraction diagranjthey appear due to the facts that
the Hartree-Fock field is “stronger” than the core-valence
interaction and that the Hartree-Fock field enters Eg5)
and(26) with a minus sigi

where U=V —VNor is the residual interaction. The indices
| andJ enumerate determinants from the model spate
while indicesM and L enumerate determinants from the
spaceQ.

In the present paper we calcula® in the lowest- All of the second-order diagrams which appear in the
(second) order of the perturbation expansi¢for a discus- evaluation of2(?) are presented in Figs. 2—-6. We omit the
sion of higher-order correlations see bejovBubstituting  unlinked lines, which correspond to the states of the valence
3() into (15), we obtain the equation of the combined ClI electrons that are not involved in the interaction. Thus, the
and MBPT method: diagrams shown are valid for any number of valence elec-

trons, any atom and any particular choice of the core. How-

Ui U ever, the omitted lines do affect the value of the MBPT cor-

> (H,+ > M Me —Ec,. (28)  rection through the Pauli principle. Indeed, the states
Jep® MeQ E—Ew occupied by the valence electrons should be omitted from the
summation over intermediate excited states. Implementing

This equation differs from(5) by the 3(® term, which ac- the Pauli principle “by hand” would make the diagrams
counts for the correlations involving core electrons. determinant-dependent and would increase the amount of

Note that the energy-dependent expressionXocorre-  calculations dramatically. Fortunately, the Pauli principle
sponds to Brillouin-Wigner perturbation theof§2]. There
is an alternative Rayleigh-Schtimger approach in which

2. Pauli principle

ence in the energy denominators for the matrix elements
small when the index corresponds to a highly excited con- (?
valence-valence correlations are included directly into the 5 6 . 7

S i independent. H hi hh “ P g ;2 . :
_is energy-independent. However, this approach has some —— - ~ b -
disadvantages. The matrix of the eigenvalue prob(@s) iw DI
becomes nonsymmetri@6]. This is because of the differ- n ©

(2) (2) : 2 3 4
217 andX})’ (E,—Ey andE;—Ey , respectively. Further-
more, some of the denominatois, —E,, could become 9

a a a

figuration. n b " n $)i

Let us stress once more that in our approach only the i b i b
excitations from the core are treated by means of MBPT. All
matrix diagonalization. Thus, the Brillouin-Wigner formal-
ism seems to be more appropriate in our case. FIG. 3. Second-order subtraction diagrams for the self-energy.
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fective radial integral corresponds to the vector sum

5 k=k;+ks.
These features increase the number of independent radial
FIG. 4. Second-order diagrams for screening. integrals by a factor of about four. On the other hand, the

box diagrams appear to be much smaller than the diagrams
can be simply ignored due to the exact cancellation of thén Figs. 4.1 — 4.3. For this reason it is possible to take them
“wrong” terms in different diagrams. Note that this rule into account only for the few leading configurations. This
works in all orders of the perturbation theory. This makes theallows one to store the effective radial integrals for other
theory very similar to MBPT for atoms with one external configurations in the same way as is done for the Coulomb
electron([14—16). Two examples of the cancelation of the integrals.
Pauli-forbidden contributions are shown in Fig. 7.

5. Diagrams with three external lines

3. Diagrams with one external line The diagram shown in Fig. 6 represents an effective three-

This is the so-called self-energy correction, which de-particle interaction in which three valence electrons interact
scribes the correlation interaction of the valence electromwith each other via the core. The diagrams of this type have
with the core. The first four diagrantBig. 2) are the same as only one internal summation and are much simpler than the
for ordinary MBPT (see, €e.g.[16]). one- and two-particle diagrams. However, the number of cor-

Figure 3 shows the subtraction diagrams for the selfresponding effective radial integrals is enormous. It is prac-
energy. Each asymmetrical diagram has a mirror image partically impossible to do large CI for the three-particle effec-
ner that is not shown explicitly. The subtraction diagramstive Hamiltonian. Fortunately, these diagrams can be made
can be quite large, and they significantly reduce the finabmall by an appropriate choice of the atomic core. In particu-

value of the self-energy correction. lar, the core and valence states should have small overlap
and be well separated energetically. These diagrams can then
4. Diagrams with two external lines be either omitted altogether or included only within the lead-

The screening of the valence-valence interaction by th&"9 configuratioxs).

core electrons is described by the diagrams shown in Figs. 4
and 5. The resulting screening correction to the interaction
between the valence electrons can be written in the form of
an effective radial integral, as is usually done for the Cou-
lomb integrals. However, one has to keep in mind the fol-
lowing specific features of the box diagrams in Figs. 4.4—4.6.

(1) The effective radial integrals for the box diagrams
have lower symmetry than the Coulomb ones. In particular,
interchanging the initial and final states in either the upper or
lower lines changes the integral.

(2) For the box diagrams there is no correlation between
the multipolarity and the parity of the transition. For ex-
ample, theA;,,— p4, transition can be either monopole or
dipole. Indeed, the parity selection rule applies to the scalar
sum of the angular momenta transferred through the Cou-

FIG. 7. Examples of diagrams which violate the Pauli principle.
FIG. 5. Second-order subtraction diagrams for screening.  Diagrams 1 and 2 and 3 and 4 cancel each other exactly.
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The diagrams of Figs. 2 — 6 give the complete set of thahe largest contributions to the core-valence interaction in
second-order contributions . Analytical expressions for cesium and francium comes from th@ @nd 6 shells, re-
these contributions are given in the Appendix. Apart fromspectively. Thus, if these shells are included in the valence
the small terms corresponding to the box diagrams of Figsspace, MBPT corrections can be significantly reduced and
4.4 — 4.6 and to the three-particle interactigfig. 6), they  the higher-order terms can be neglected. We also want to
can be expressed in a form of the usual single-particle andtress that there is no point in considering higher-order terms
two-particle radial integrals. This makes it easy to includein the expansion(29) without an accurate treatment of the
them when the effective Cl Hamiltonian is formed. energy dependence &f in the second order, as discussed in

the previous paragraph.
6. Energy denominators

Until now we have not considered the definition of the . .
energy denominators in the expressions which correspond toC' Orbital basis sets for Cl and MBPT parts of the problem
the diagrams discussed above. The endfgwhich enters In contrast to MBPT, where the basis set of the eigenvec-
Egs. (25 and (26) is the energy of the atom as a whole. tors of the unperturbed Hamiltonian is used, Cl can be done
According to Eq.7) it can be written as the sum of the core for any orthonormal set of orbitals. For the complete CI the
and the valence part€£=Egqt+Eyy. The core part then number of configurations is proportionallﬂﬁ‘e, whereN, is
cancels inE—Hpr [see Eq.(21)] and so Eq.(26) can be  the number of orbitals anll, is the number of valence elec-

rewritten as: trons. Thus, it is very important for the effective application
~ ~ of the Cl method to choose the orbital basis set which pro-
Ro(E)= Q(Eya—Hpp) Q-+ Q(Eva—Hpp) " Q(V vides rapid convergence.

From this point of view, the Dirac-Fock orbitals are not
the best choice. They are even less so, as the orbitals from
the continuum should be included. In this paper we will use
dyo very different basis sets, both providing reasonably fast
onvergence and giving very similar final results.

— WoF) Q(E yu— Hpp) 1O+ - - (29

In this expression we still have the energy,, which cor-
responds to all of the valence electrons. That means th
when, for example, the diagrams from Fig. 2 are calculated® . . T . .
the energy that should be taken for the outer lines depends on The f'r_St basis set IS similar to t_he D|rac_-Fock basis set for
the states of the other valence electrons. If there are thred! &tom in the poFentlaI .bo.x .Of fixed r_aduEg._ However,
valence electrons and we are interested in the matrix eleme stead of '”thd“C'T‘g an infinite pqtentlal barrlgr on the_ bor-
of S between the configurationgc,d) and (,c,d) then er of the box, we fix the exponential asymptotic behavior of

the energy denominator for the diagram Fig. 2.1 is equal t&Ee electron qrbtl)ta:]s fqr> Rfa .hThe exponent go(rjrespond? to
Eva— €c— €a+ €n— €~ €5, while the usual diagrammatic the asymptotic behavior of the exact many-body wave func-

rules give the denominatar, + €,— €,— €5. These expres- ?on for ::he casi wh(inlone eliﬁtron goes {O. thi Iarge'dés—
sions differ by the substitutiok, ,— e.— €4« €,. In other ances. For each partia’ wave the exponent Is chosen inde-

words, the energy denominators for the connected diagran%endently and is taken from an analysis of the experimental

depend on the particular disconnected diagram of which the tomic spectrum. Far< Ra the orbﬁals are solutions of the.
are part. adial Dirac-Fock equations. Having the correct asymptotic

From the computational point of view it is impractical to behavior of the atomic wave function at large distances al-

calculate all of the disconnected diagrams and some simpI,pWS us to use _smaller values 6, than for an ord!nary
fication should be used. In the first approximation all Con_poten'ual box. This results in a smaller number of orbitals per

nected diagrams can be evaluated at the energies which cdfit energy interval, i.e., faster convergence of the Cl

respond to the main configurati@ In the second method. Although the advantage of this basis for the calcu-
approximation each diagram can be calculated together witl‘?‘t'on O_f the Iow-lyl_ng states Is essential, its shortcomlng IS a
its first derivative with respect to the energy. That does no gcessny to redefine the basis set for the calculation of the
require any additional integrals and can be done easily. The ,|gher states. . . : .

for each disconnected diagram a corresponding correctio The second basis set includes several Dirac-Fock orbitals

for the energy shift can be made. Note that the derivatives o or the lower v_alence one-particle states while _the other or-
the diagrams can also be used in E@8). In principle, bitals are obtained from the former by multiplying them by

higher terms of the Taylor expansion can be taken into acPowers ofr and orthogonalizing the product to all other or-
count as well bitals with the samé andj. Similar basis sets have been

used in nonrelativistic atomic calculations befdsee, for
example,[27,28)). When orbitals of this type are used in
relativistic calculations, it is necessary to ensure orthogonal-
In the above treatment we restricted ourselves to the seGy to the Dirac orbitals with negative energipositron
ond order of the perturbation theory. In calculations for thestates. That can be done by using the kinetic balance condi-

alkali-metal atomg9—11] the higher-order corrections were tjon for the small components of the Dirac bispinp28].
very important. In principle, it is also possible to include

here the dominant higher-order corrections to the correlation
potential and to the screening of the Coulomb interaction in
the same way as was done[®11]. On the other hand, the We have chosen thallium to test the method because it is
combined method allows one to choose a core small enougthe second simplest atoafter cesiumhamong those used in

to make higher-order corrections negligible. For examplethe ongoing PNC experiments. Thallium has the configura-

7. Higher-order corrections

IV. APPLICATION TO TI, TI *, AND TI **
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TABLE I. Comparison of the parameters of the core in the  TABLE Il. The self-energy part of the correlation interaction of
MBPT calculations of cesium @f---5pf) and thallium the valence electrons with the atomic cdoen™t). The contribu-
(1s%- - -6s?) with those of the core of thallium used in this work tions of the mirror diagrams are included. In the last two rows of the
(1s?- - -5d19). table the resultant matrix elements of the operatand its deriva-
tive with respect to the energy are given.

MBPT CI+MBPT
Cs?® TP Tl Diagram D651/2v551/2 D6P1/2v591/z DGPs/szF’s/z
rms radius of the last shell 2.2 2.6 1.5 Fig. 2.1 —23000 —13403 -9777
binding energy of the last shell 0.66 0.69 1.07 Fig. 2.2 2848 2081 1456
smallest excitation energy Fig. 2.3 4522 1704 1110
for the dipole transitions 0.53 0.44 0.82 Fig. 2.4 —1795 —502 —306
dipole polarizability 17 24 7 Fig. 3.1 6000 2329 1533
3 Fig. 3.2 1445 547 361
8Reference$9,10]. Referencd29]. Fig. 3.3 1445 088 760

, 2 - __Fig. 3.4 536 261 164
tion 6s°6p, and can be treated within MBPT as an atom with Fig. 3.5 11 11 17

one electron above a closed-shell c[26]. However, as we _. _

. . Fig. 3.6 11 16 29
mentioned above, the accuracy of such calculations appeats . 3 6 13
to be lower than for cesium. The main reason for this is the@g' ' 7996 5062 4640
small binding energy and diffuseness of th& 8hell, which (5:3) _0.031 0.027 —0.023
strongly interacts with the & electron. E ' ' ]

Thus, we define the core &§4s?- - -5d'9], leaving three
electrons in the CI space. It is interesting to compare this

coe wih those used n e MEPT calculton of|6lo 01 1 ot be 50 sl o the excted states Tis coule
and TI[29]. In Table | several parameters, which are impor- y

tant for the convergence of MBPT, are given for all threethe excited stategsee also the discussion of the basis set

. LI roblems below
cores. Comparison of these parameters indicates that the co?ewe also calculated the diagram in Fig. 6 for the two rela-

used here is likely to provide much better convergence fo{ivistic configurations €26py, and 6526ps,. After sum-

MBPT than the two others. ing over all permutations, we found that the effective
There is one interesting feature of the combined metho Y ratp . !

. hree-particle interaction changes the energy of these states
used here. Formally, for the MBPT calculations Bfthe by onlv —11 em~2 and +0.2 cm-L. respectively. Therefore
number of valence electrons is not fixed. In Sec. Il we"Y O . o ’ ’ pectively. '

we did not include it in the effective Hamiltonian.

showed thats can be defined in terms of radial integrals, The results of the different approximations for several

which correspond to the complete set of diagrams. USInq’evels of neutral thallium are given in Table IV. The typical

these radlgl mtegrals we can calculatefor all possible va- accuracy of the Dirac-Fock method is about 10%. The CI
lence configurations, including those which correspond tomethod improves the accuracy for the lower levels by a fac-
the ionized atoms. We started with the calculations for neu: P y ) S Dy

tral thallium and then used the same radial integrals to Cal’gor of 2. Note that the two orbital basis sets described above
culate the ions Tf and TI*+ 9 give very close results for the two lowest levels, while for the

For the MBPT part of the problem we use ti&~* ap- higher levels there is a growing difference between them. We

roximation which corresponds to the solution of the Dirac- . . )
Igock equations for the coﬁfiguratiorszl ..5d%s?. Aswas . | ABLE lll. The screening of some diagonal Coulomb radial
shown in Sec. Ill, this choice requires calculation of the sub-Integrals for zero multipolaritR, a.q., (cM ). The contributions
. . o X of the mirror diagrams are included.
traction diagrams with summations over the tweoeectrons

in the blocks shown in Fig. 1.

Tables Il and Ill present the contributions of different Diagram 2= Oswe A7 0Pz 2 OPa
diagrams to several one-electron and two-electron effectiv€oulomi 80051 55425 48322
radial integrals. It is seen that subtraction diagrams are quitEig. 4.1 —3000 —500 —225
important for the self-energy but are negligible for screeningFig. 4.2 -723 —200 —104
Box diagrams significantly reduce screening for the zercrig. 4.3 -723 —200 -104
multipolarity. Fig. 4.4 270 270 158

In the last row of Table II, derivatives of the matrix ele- Fig. 4.5 270 270 158
ments of the self-energy operator with respect to the energyig. 4.6 —437 _27 —13
are given. For thallium these derivatives are typically of thegig 53 11 —a )
order of(1-3x 10" 2. This means that the dependence of therig 5.2 -1 4 —4
energy denominators on configuration can contribute signifigig 5 3 6 —3 -3
cantly to the calculated energy levéisee discussion in Sec. ig. 5.4 6 _3 _3

). We chose the denominators to be correct for th
6s°6p configuration. As this configuration constitutes 98%
of the ground state, the correction associated with théRadial integral for the unscreened Coulomb interaction.
energy-dependence &f is small for the ground state. How- PRadial integral for the screened Coulomb interaction.

75698 55024 48178
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TABLE IV. Binding energies for thallium in different approximations in comparison with experiment

(cm™).

Config. J HF 2 clIbe clbd Cl + SE® Cl + SE+ scf Expt. [30]
6s%6p 1/2 43827 46865 46855 52152 49507 49264
6s%6p 3/2 36639 39760 39752 44051 41655 41471
6s%7s 1/2 21108 21487 21303 22459 22787
6s%7p 1/2 14276 14526 13835 14726 15104
6s%7p 32 13357 13582 12912 13726 14103
6s%6d 3/2 12218 7684 12940 13146
6s26d 5/2 12167 7686 12867 13064

@0ne-electron relativistic Hartree-Fock approximation.

®Ordinary configuration interaction method. No core excitations have been taken into account.

“Basis set No. 1.

9Basis set No. 2.

€Configuration interaction with self-energy part of correlations between valence and core electrons included
(diagrams in Figs. 2 and)3

fConfiguration interaction with both self-energy and screening of the valence-valence interaction included.

have already pointed out that the first basis set is actuallpdvantages of both of the methods that it is based on. First,
linked to the certain atomic states by the choice of thethe many-body problem for the valence electrons is solved
asymptotic behavior. So, it is not surprising that for the ex-accurately, assuming that the convergence regarding the ba-
cited states the results obtained with the second basis set &8s set used has been achieved. Second, the core-valence and
somewhat better. Still, even for the second basis set we we@re-core correlations which are important but small enough
able to saturate the CI for the first two levels only. to be treated accurately by means of the MBPT are also

Table IV shows that the addition of the self-energy cor-included. The implementation of the method has a very con-
rections to the effective Hamiltonian results in a significantvenient form. The second-order diagrams are calculated in
overestimation of the binding energy. A radical improvementthe single-electron basis and do not depend on the configu-
of the accuracy is achieved only when screening is also takeration of the valence electrons. Thus, their inclusion is re-
into account. Our final accuracy for the two lower levels isduced to the redefinition of the one- and two-electron matrix
better than 0.5%, which is an order of magnitude improve-elements of the ordinary Cl Hamiltonian. The ClI method
ment in comparison with the conventional Cl method. Foritself remains almost untouched. A similar approach is fea-
the higher levels the Cl has not been saturated, so they casible for the calculation of transition amplitudes. This is the
not be used as a test of the method, but improvement of thdirection of our further efforts.
results is clearly seen. The results obtained for the energy levels of Tl Thnd

In Table V the results of the calculations for the positive TI?* show that the method has great potential. From our
ions are given. Again, there is about an order of magnitudgoint of view it presents a powerful alternative to the exist-
improvement of the accuracy in comparison with the Cling methods of high precision relativistic calculations for
method. Note that for A" there is only one valence elec- many-electron atoms.
tron, and thus only the self-energy corrections are important.
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In this appendix we give expressions for the diagrams in The matrix element of the Coulomb interaction for the
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APPENDIX: ANALYTICAL EXPRESSIONS
FOR THE SECOND-ORDER DIAGRAMS

jle Ja K\[ Jb Ja K
<C,d|vck1|ayb>:(_l)mc+mb+15p\/(2ja+l)(2jb+1)(2jc+1)(2jd+l)<—mc m, q)(—mb my q)

jc ja k jb jd k ‘
X172 —1/2 0o/l 172 —12 0|Rabca: (A1)

whereR'z;b,cyd is the radial integral and,, accounts for the parity selection rule:

5p=§(la+lc+k)§(lb+ld+k), (A2)
1 if n iseven,
&M=10 if n isodd. (A3)

Let us start with the contributions to the self-energy matrix elements from the four main diaffamg).

. . . 1 i k 2 J J k 2 ky Ky
. (2] + D)+ D(2jp+ 1) [ Ja s KT e I KU TR R
Dap (Fig. 2.0= 8 k.8 i, Om..m, £ " angabnpa

ok, +1 V2 —12 0) |12 —12 O (e e e,

(Ad)

' . ' _ ja Ja kKe|(da g Kki\[ia 0 ki
Dap (Fig. 2.2=(-1)""*28 | 6 m (2o 1)(2jp+1)(2jn+ 1) ig k(|12 —12 of|12 —12 0

><(ia i kz)(jﬁ Jn kz)w

V2 —12 0]\ 12 =112 0| e —c,—e, (A5)
: (2]t 1)(2imt1)(2jnt1)
Da,b (Flg 23: - 5kl'k25ja'jb5ma'mb 2k1+1
ja Jm Ky 2 in Ja Ky ZRzlnmaR't()lnma
12 —12 0f |12 ~12 0] ¢ te e ¢ (AB)

ja jm k2 ja jm kl
Dap (Fig. 2.4=(-1'"r™s 50 m (2iatDRint D(2int DY, j. k|12 —12 0

jn ja kl ja jn k2 jm ja k2 R;lamnREZQHm
vz -2 of{12 —u2 Of\ 12 ~12 0| e, T (A7)
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In Fig. 3 only the significantly different subtraction diagrams are shown. Each of the asymmetric didd@jratrasnd 6
represents a pair of two diagrams related by reflection. Below we only give the expressions for those diagrams shown
in Fig. 3.
RO 0

. a a,b, an n,i,a
Dap (Fig. 3.9==6;_j, dm, m,0k, 09,09, (2]i+ D (2jn+1)——————, (A8)
n a
In i ke RaabnR:ziia
Dap (Fig. 3.2=6;_j,6m, m 0k 00, (2Hi+D(2Int D 12 ~12 0] — (2 (A9)
n o
ja jn kl Rzlaan?mnl
Dap (Fig. 3.3=6;_,0m, m,0,001,,.1, (21t D2jnt D 12 12 o ——¢c (A10)
n o
. , , Ja o K ok Rzlanb I;Ziin
Dap (Fig. 34==6;, j,0m, m3},1,2H T D@In+ Dl 12 —12 0 (12 12 0] — =~
(A11)
RO, RS,
. a,|,n, 1,n,l
Dap (Fig. 3.5=—6j_ ;. dm, m, O, 00,09, (2 +1)(2]]+1)]J—6b, (A12)
rl
. . . ja ji k2 RanIR:;znll
Da,b (Flg 3'6:5ja'jb5ma'mb5kl'o5jn'ja(zji+1)(21j+1) 1/2 —=1/2 0 Te_b, (A13)
n

€n" €p

Ja Jj Ky Ja Ji Ky 2RI;1nijIl;2nii
Davb(Fig. 3'7):_5]avjb5m me (2]+l)(2j]+l) 12 —-1/2 0 12 —-1/2 0 —E (A14)

The diagrams in Figs. 4 and 5 correspond to the corrections to the Coulomb interaction between the valence electrons. Thus,
it is convenient to separate the angular and radial parts as ifA&Q. Below we give the expressions for the effective radial
integrals associated with each diagram. Note that the standard parity selectipwhide is accounted for by the factd,

(31)] holds for the diagrams in Figs. 4.1 — 4.3, as well as for all subtraction diagrams in Fig. 5, but not for the box diagrams
in Figs. 4.4 — 4.6.
The effective radial integrals for the screening diagrams in Fig. 4 are

. . i i k
. (21n+1)(2]a+1) Ja In RaabnRCadn
RS c.b.a (Fig. 4.0= 08 bk, kSp N1 12 ~12 0| cye—ecrme. (A15)
) _ _ . Ja Jo k) [Jo Ja KkKi\[Ja Jn ki
Racoa (Fig. 4.2=(=1) "8, «85(2in+ D(2iat DY, j, k(|22 —12 o]|12 —12 0
ja jn k y jb ja k\ 1 RI;,la,n bRC adn (AL6)
12 -12 0fX| 12 12 0] ¢ie e e

) . . . o Id Je Ja Ko\ [da 0 Kk
Racoa (Fig. 4.3=(=1) "8 «85(2In+ D(2iat DY, j. k(|12 —12 o]|w2 —12 o

in ja k Jd Je k)~ RaabnRE‘mec
12 —12 0|12 -12 0| i e e, (A17)
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" o ) jb ja k jc jd k ja jn I(1
Racpd (Fig. 4.4=(—1)latlotletlatlatin(2j +1)(2j,+1)(2k+1) ki ko jn(1ki Ko jufl22 =272 0
jo e ki\ [0 dn k\[dc e k\[db Ja  k\7?
X\1/2 —1/2 o||12 —-12 of|1/2 —-1/2 o||12 —-1/2 O

. . k—lk k
X(JC Je ) RaandRowne

12 ~12 0] cie—ee.’ (A18)

k o da K)(de do K| {da e ki
Ra.c.b.d (Fig. 4.5=(—1)latlbtlctlatlatin(2j +1)(2j,+1)(2k+1) ki Ko juflki ko jnfl22 =272 0
jo in ki\[db  Ja k\[dec in ka\[{ib Ja k\7?
Xl12 —1/2 0 1/2 —-1/2 0 1/2 —-1/2 0 1/2 —-1/2 0

jc Ja k\ 'R Rk
a,n,a,d "b,n,a,c
><<1/2 —1/2 o) — (A19)

L
e.te,—€4— €,

) ijak]cjdk
Ricp.d (Fig. 4.6=(—1)latibtictiatimtintkatiotkt 1) +1)(2),+1)(2k+1) ki ko j Ky Ki jn

jm ja kl jc jn kl jb jm I(2 jn jd k2 jb ja k -t
Xl12 —1/2 of\12 —12 of|1/2 —12 o]|12 —-1/2 O|{12 —-1/2 O
i i -1k k
% le ld K Ra,lc,m,an,zd,m,n (AZO)
12 -1/2 0 €mt €n— €p—€q
Effective radial integrals for the subtraction diagra¢hRgy. 5 are
BniRb.g
K . _ s . a,i,n,i ,d,n,c
Racb.a (Fig. 5'])_5Ja'Jn6kl’06k2'k5p(2J|+1)€c+ €n—€p—€g’ (A21)
k b Rg- .
. . a,c,b,n , 1,0,
R ¢ b.q (Fig. 5.2):5J-d,jn5k2,05k1,k5P(21i+1)Tecj, (A22)
n
i i k.\ 2 Skq K
K . . la Ji 1 Ra,i,i,an,d,n,C
Ra,c,b,d (Flg 5'3:_5jarjn5k2vk5p(21i+1) 1/2 —1/2 0 —EC+ En—Gb_Ed’ (A23)
) _ _ Jd Ji 2\ "Ry cbnR’ in
Racbd (FI9. 5.4=—08; ; 6k kp(2]it1)| 172 —1/2 0 e (A24)
n
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