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An ab initio method for high accuracy calculations for atoms with more than one valence electron is
described. The effective Hamiltonian for the valence electrons is formed using many-body perturbation theory
for the interaction of the valence electrons with the core. The configuration-interaction method is then used to
find the energy levels of the atom. An application of this to thallium shows that the method gives an accuracy
of about 0.5% for the ionization potential and a few tenths of a percent for the first few energy intervals.
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I. INTRODUCTION

The development of new methods for high-precision
atomic calculations is necessary not only for atomic physics
itself, but also for applying atomic physics to the investiga-
tion of the fundamental interactions~see, e.g.,@1–4#!. At
present, 1% accuracy has been reached in several measure-
ments of parity nonconservation~PNC! in cesium@5#, lead
@6#, thallium @7#, and bismuth@8#. But until now the same
theoretical accuracy has only been reached for cesium@9,10#
and francium@11#. All these calculations were made within
many-body perturbation theory~MBPT! @12–15#. In Refs.
@9,11,14,15# the dominant series of higher-order diagrams
were found and summed up in all orders. As the most im-
portant higher-order diagrams describe the effect of the
screening of the Coulomb interaction by the core electrons,
the method developed can be called ‘‘perturbation theory in
the screened Coulomb interaction’’~PTSCI!. This method
produces excellent results for alkali-metal atoms, which have
one external electron above closed shells. The accuracy is
about 0.1% for energy levels@11,14# and about 1% for hy-
perfine structure intervals and transition amplitudes
@9,11,15#. Formally, atoms such as thallium can also be con-
sidered as having one external electron above closed sub-
shells. However, the application of PTSCI to Tl gives only
1.5% accuracy for the ionization potential@16#. The reason is
obvious: the interaction between the 6s and 6p electrons in
Tl is too strong to be treated accurately by means of pertur-
bation theory even though some types of diagrams are in-
cluded in all orders.

There is an alternative coupled-cluster~CC! approach
~see, e.g.,@12#! in which some other series of higher-order
diagrams are summed up in all orders thus taking into ac-
count pair correlations. Some relativistic CC calculations for
many-electron atoms were performed in@17,18#. For alkali-
metal atoms a similar accuracy as for PTSCI was achieved.
However, for atoms with more complicated electron struc-
tures the typical accuracy was about 1%@18#. The most ob-
vious shortcoming of the method is the neglect of three-
particle correlations. Also, the CC method treats the valence-
valence and core-valence correlations at the same level of
approximation. It is clear, however, that the former correla-
tions are much stronger than the latter.

On the other hand there are methods which treat many-
body effects in an accurate way, at least for valence elec-
trons. These are the well-known configuration-interaction
~CI! and multiconfiguration Hartree-Fock~MCHF! methods
~see, e.g.,@19#!. CI and MCHF methods have been widely
used by a number of authors for accurate calculations for
many-electron atoms~see, e.g.,@20#!. Recently, the CI
method was used for calculations of PNC effects in such
complicated atoms as dysprosium@21#, ytterbium @22#, and
bismuth@23#. In principle, the accuracy of CI is limited only
by the incompleteness of the set of configurations used. For a
many-electron atom the number of possible configurations is
so large that one has to select only a small fraction of them.
This is usually done by neglecting core excitations or only
including a very limited number of them. This in turn sig-
nificantly limits the accuracy of the method.

It is important to stress here that the accuracy of the
MBPT and the CI methods is restricted in different sectors of
the many-body problem. MBPT is not accurate in describing
valence-valence interactions, while CI fails to fully account
for the core-valence and core-core correlations. For this rea-
son it is natural to combine the two methods in an attempt to
reach high accuracy for atoms with more than one valence
electron. In the present paper we construct a combination of
the two methods in the following way. All atomic electrons
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are divided into the valence electrons and the core electrons.
The MBPT is used to construct an effective CI Hamiltonian
in the model space of the valence electrons. This Hamil-
tonian includes additional terms to the ordinary CI method,
which account for core-core and core-valence correlations.
The CI method is used then to find atomic energy levels and
wave functions.

In this paper we restrict ourselves to the calculation of
energy levels, in particular those of Tl, Tl1, and Tl21, but
the method can be extended to calculate transition ampli-
tudes and expectation values as well. Our final goal is to
calculate the parity nonconservingE1 amplitudes for those
atoms for which precise PNC measurements are underway,
i.e., thallium, lead, and bismuth. A brief report of this work
was published in@24#.

II. METHOD

A. Configuration and perturbation subspaces

Let us divide the Hilbert space of the many-electron prob-
lem into two subspaces. The first subspace (P) corresponds
to the frozen-core approximation. The second subspace (Q)
includes all core excitations and is complementary to the first
one.

It is natural to assume that the projections of the wave
functions of the lower energy levels of the atom onto the
subspaceQ will be small. This allows us to take into account
the subspaceQ by means of MBPT. On the other hand,
perturbation theory is not effective in the subspaceP and so
the CI method is preferable here.

Such a decomposition of the Hilbert space depends on the
definition of the core. First, one should choose the number of
electrons to be included in the core (Ncore). For example, the
thallium atom can be treated as either a one-electron atom
(Ncore580) or as a three-electron atom (Ncore578). For the
convergence of MBPT it is important that the core and va-
lence electrons be well separated in space and on the energy
scale. In many cases that can be achieved by attributing to
the core all of the subshells of a particular shell.

Second, it is necessary to specify the one-particle wave
functions for the core electrons. Because we are going to use
MBPT, these functions should be the eigenfunctions of some
one-particle Hamiltonian:

h0f i5e if i . ~1!

The choice ofh0 is discussed in Sec. III.
We can use Slater determinantsuI & of the functionsf i as

a basis set in the many-electron space. It is easy to determine
to which of the two subspaces any particular determinant
uI & belongs. If allNcore lowest states are occupied, thenuI &
belongs to the subspaceP, otherwise it belongs to the sub-
spaceQ.

Thus, we can write a projector to the subspaceP as

P5 (
IPP

uI &^I u, ~2!

and define a projectorQ by the completeness condition

P1Q51. ~3!

B. Effective Hamiltonian for the CI problem

The subspaceP is infinite-dimensional. Thus, it is impos-
sible to find an exact solution of the Schro¨dinger equation in
this subspace. However, if the number of the valence elec-
trons is small enough~i.e., does not exceed three or four!, it
is possible to find a very good approximation with the help
of the CI method. In this method a finite-dimensional model
spacePCI,P is introduced by specifying the set of the al-
lowed configurations for the valence electrons. The many-
electron wave function is presented as a linear combination
of Slater determinants from the model subspace,

c5 (
IPPCI

CI uI &. ~4!

Variation ofCI leads to the matrix eigenvalue problem:

(
JPPCI

HIJCJ5ECI , ~5!

which means that the energy matrix of the CI method can be
obtained as a projection of the exact HamiltonianH onto the
model subspace:

HCI5PCIHPCI. ~6!

We will suppose that it is possible to choosePCI so that
the desired accuracy of the solution of the Schro¨dinger equa-
tion in the P subspace can be achieved. For this reason,
below we will not distinguish betweenPCI andP.

Let us write the operatorPHP explicitly. Because the
core in the subspaceP is frozen, we can exclude core elec-
trons from consideration by averaging the Hamiltonian over
the single-determinant wave function of the core electrons.
After that the operatorPHP has the following form:

PHP5Ecore1 (
i.Ncore

hi
CI1 (

j. i.Ncore

1

r i j
, ~7!

whereEcore includes the kinetic energy of the core electrons
and their Coulomb interaction with the nucleus and each
other. The one-particle operatorhCI acts on the valence elec-
trons and includes the kinetic term and the Coulomb interac-
tion with the nucleus and with the core electrons. The last
term in Eq. ~7! accounts for the interaction of the valence
electrons with each other. Atomic units are used throughout
the paper, unless otherwise stated.

Operator~7! can be used in Eq.~5! instead ofH. In this
case determinantsuI & and uJ& include only the valence elec-
trons. This equation corresponds to the pure CI method in the
frozen-core approximation.

To write the exact equivalent of the original Schro¨dinger
equation in the subspaceP let us make theP,Q decomposi-
tion of the Hamiltonian and the wave function of the many-
body problem:

H5PHP1PHQ1QHP1QHQ, ~8!

C5PC1QC[F1x. ~9!

The Schro¨dinger equation
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HC5EC ~10!

can be written as a system of equations forF andx:

~PHP!F1~PHQ!x5EF ~11!

~QHQ!x1~QHP!F5Ex. ~12!

We can now define the Green’s function in the subspace
Q:

RQ~E!5~E2QHQ!21, ~13!

and then use Eq.~12! to excludex:

x5RQ~E!~QHP!F. ~14!

This gives us a Schro¨dinger-like equation in the subspace
P, with an energy-dependent effective Hamiltonian:

„PHP1S~E!…F5EF, ~15!

S~E!5~PHQ!RQ~E!~QHP!. ~16!

By substituting~14! into ~9! we can also rewrite the ortho-
normality conditions for the solutions of Eq.~10! in terms of
the solutions of Eq.~15!:

^F i u11~PHQ!RQ~Ei !RQ~Ek!~QHP!uFk&5d ik . ~17!

Equations~15!–~17! and ~14! are the exact equivalent of
Eq. ~10!. Because of the energy dependence of the operators
S andRQ , these equations should be solved iteratively. If
we are only interested in a few low-lying energy levels, then,
in the first approximation, we can neglect this energy depen-
dence and evaluate both operators for some energy
Eav.Ei.Ek . In this approximation Eq.~17! is expressed in
terms of the derivative of the operator~16!:

^F i u12]ES~E!uFk&E5Eav
5d ik . ~18!

Actually, for the proper choice of theP subspace,
]ES(E) can be so small that the usual orthonormality con-
dition can be applied. In this case, the standard CI proce-
dures can be used to solve Eq.~15!, provided that the opera-
tor S(Eav) is calculated beforehand. The latter can be
calculated with the help of MBPT, as described in some
detail in the next section.

If the subspaceP includes only one electron the operator
PHP is reduced to the Dirac-Fock operator with theVN21

potential andS is reduced to the single-particle self-energy
operator. In this case Eqs.~15! and ~18! define Bruckner
orbitals and so the operatorS can be considered as a direct
generalization of the single-particle self-energy operatorS to
the case of several valence electrons.

III. MANY-BODY PERTURBATION THEORY FOR S

A. Perturbation expansion

In this section we are going to obtain a perturbation ex-
pansion for expression~16!. The form of this expansion de-
pends on the choice of the operatorh0 ~1!, which determines
the starting approximation. The simplest form of the expan-

sion corresponds to theVNcore approximation, for whichh0 is
the Dirac-Fock operator for the core. However, when the
number of valence electrons is more than one this approxi-
mation is too crude to start with, as it corresponds to a mul-
tiply charged ion rather than a neutral atom. This means that
some or all of the valence electrons should also be included
in the self-consistent procedure. For the case of thallium it is
better to use theVN21 approximation~see, e.g.,@25#!. The
Hartree-Fock procedure is done for the closed-shell ion
Tl 1, and the basis set of excited states for the valence elec-
trons is calculated in the field of the frozen Tl1 core.

Let us defineNDF as the number of electrons included in
the Hartree-Fock self-consistent procedure:Ncore<NDF<N,
N being the total number of electrons in the atom. Now we
can defineh0 as the corresponding Dirac-Fock operator:

h0[hDF5ca3p1~b21!mc22
Z

r
1VNDF. ~19!

Let us introduce the creation~annihilation! operatorsai
†

(ai) for the functions~1!:

hDFai
†u0&5e iai

†u0&, ~20!

wheree i is the Dirac-Fock energy of the orbitali . The cor-
responding Dirac-Fock operator in the many-electron space,
HDF, can be written as

HDF5Ecore2 (
m51

Ncore

embm
† bm1 (

i.Ncore
e iai

†ai[Ecore1H̃DF,

~21!

wherebm
† 5am andbm5am

† are creation~annihilation! opera-
tors of holes in the core. The energyEcore in Eqs. ~7! and
~21! is defined as the matrix element of the exact Hamil-
tonianH with the core wave function:

Ecore5^CcoreuHuCcore&, ~22!

Ccore5a1
†a2

†
•••a

Ncore

† u0&. ~23!

Note that the core wave functionCcore includesNcore elec-
trons but is constructed from the solutions of Eq.~20! which
corresponds to the self-consistent field of theNDF electrons.
That means that expression~22! differs from the Dirac-Fock
energy of the ion withNcore electrons.

It follows from Eqs.~20!, ~21!, and~23! that

PHDFQ4QHDFP50. ~24!

This allows us to rewrite Eq.~16! as

S~E!5„P~H2H DF!Q…RQ~E!„Q~H2HDF!P…

5„P~V2VNDF!Q…RQ~E!„Q~V2VNDF!P), ~25!

whereV is the operator of the two-electron Coulomb inter-
action andVNDF is the operator of the interaction of the
NDF electrons with the Hartree-Fock field.
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Expression~25! has the usual MBPT form. Now we can
use the standard expansion for the operatorRQ(E), treating
(V2VNDF) as a perturbation:

RQ~E![Q~E2H!21Q

5Q~E2HDF!
21Q1Q~E2HDF!

21Q~V

2VNDF!Q~E2HDF!
21Q1•••. ~26!

Substituting~26! into ~25! and rewriting it in matrix form
gives

S IJ5 (
MPQ

UIMUMJ

E2EM
1 (

M ,LPQ

UIMUMLULJ

~E2EM !~E2EL!
1•••

[S~2!1S~3!1•••, ~27!

whereU5V2VNDF is the residual interaction. The indices
I andJ enumerate determinants from the model spacePCI,
while indicesM and L enumerate determinants from the
spaceQ.

In the present paper we calculateS in the lowest-
~second-! order of the perturbation expansion~for a discus-
sion of higher-order correlations see below!. Substituting
S (2) into ~15!, we obtain the equation of the combined CI
and MBPT method:

(
JPPCI

SHIJ1 (
MPQ

UIMUMJ

E2EM
DCJ5ECI . ~28!

This equation differs from~5! by theS (2) term, which ac-
counts for the correlations involving core electrons.

Note that the energy-dependent expression forS corre-
sponds to Brillouin-Wigner perturbation theory@12#. There
is an alternative Rayleigh-Schro¨dinger approach in which
S is energy-independent. However, this approach has some
disadvantages. The matrix of the eigenvalue problem~28!
becomes nonsymmetric@26#. This is because of the differ-
ence in the energy denominators for the matrix elements
S IJ
(2) andSJI

(2) (EI2EM andEJ2EM , respectively!. Further-
more, some of the denominatorsEI2EM could become
small when the indexI corresponds to a highly excited con-
figuration.

Let us stress once more that in our approach only the
excitations from the core are treated by means of MBPT. All
valence-valence correlations are included directly into the
matrix diagonalization. Thus, the Brillouin-Wigner formal-
ism seems to be more appropriate in our case.

B. Diagrammatic technique

1. Interaction with the core

In the zeroth order of MBPT the interaction of valence
electrons with the core is described by the two diagrams
~Fig. 1! where the sums for the internal lines run over the
core. The interaction with the Hartree-Fock field corresponds
to the same diagrams, but the sums run over theNDF elec-
trons. If Ncore5NDF, there is a complete cancellation of
these two contributions. That means that all diagrams which
have the blocks shown in Fig. 1 as one of their parts disap-
pear. The same holds true for those blocks in which one of
the external electron lines has been replaced by a hole line.

If Ncore,NDF, there will only be a partial cancellation of
the core-valence interaction and the Hartree-Fock field. As a
result, the diagrams containing blocks Fig. 1 survive, but the
sums only run fromNcore11 to NDF. Below we will call
them subtraction diagrams@they appear due to the facts that
the Hartree-Fock field is ‘‘stronger’’ than the core-valence
interaction and that the Hartree-Fock field enters Eqs.~25!
and ~26! with a minus sign#.

2. Pauli principle

All of the second-order diagrams which appear in the
evaluation ofS (2) are presented in Figs. 2–6. We omit the
unlinked lines, which correspond to the states of the valence
electrons that are not involved in the interaction. Thus, the
diagrams shown are valid for any number of valence elec-
trons, any atom and any particular choice of the core. How-
ever, the omitted lines do affect the value of the MBPT cor-
rection through the Pauli principle. Indeed, the states
occupied by the valence electrons should be omitted from the
summation over intermediate excited states. Implementing
the Pauli principle ‘‘by hand’’ would make the diagrams
determinant-dependent and would increase the amount of
calculations dramatically. Fortunately, the Pauli principle

FIG. 1. First-order diagrams for the interaction of the valence
electron with the core.

FIG. 2. Second-order diagrams for the self-energy of the va-
lence electron.

FIG. 3. Second-order subtraction diagrams for the self-energy.
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can be simply ignored due to the exact cancellation of the
‘‘wrong’’ terms in different diagrams. Note that this rule
works in all orders of the perturbation theory. This makes the
theory very similar to MBPT for atoms with one external
electron~@14–16#!. Two examples of the cancelation of the
Pauli-forbidden contributions are shown in Fig. 7.

3. Diagrams with one external line

This is the so-called self-energy correction, which de-
scribes the correlation interaction of the valence electron
with the core. The first four diagrams~Fig. 2! are the same as
for ordinary MBPT~see, e.g.,@16#!.

Figure 3 shows the subtraction diagrams for the self-
energy. Each asymmetrical diagram has a mirror image part-
ner that is not shown explicitly. The subtraction diagrams
can be quite large, and they significantly reduce the final
value of the self-energy correction.

4. Diagrams with two external lines

The screening of the valence-valence interaction by the
core electrons is described by the diagrams shown in Figs. 4
and 5. The resulting screening correction to the interaction
between the valence electrons can be written in the form of
an effective radial integral, as is usually done for the Cou-
lomb integrals. However, one has to keep in mind the fol-
lowing specific features of the box diagrams in Figs. 4.4–4.6.

~1! The effective radial integrals for the box diagrams
have lower symmetry than the Coulomb ones. In particular,
interchanging the initial and final states in either the upper or
lower lines changes the integral.

~2! For the box diagrams there is no correlation between
the multipolarity and the parity of the transition. For ex-
ample, theA1/2→ p1/2 transition can be either monopole or
dipole. Indeed, the parity selection rule applies to the scalar
sum of the angular momenta transferred through the Cou-

lomb interaction,k11k2, while the multipolarity of the ef-
fective radial integral corresponds to the vector sum
k5k11k2.

These features increase the number of independent radial
integrals by a factor of about four. On the other hand, the
box diagrams appear to be much smaller than the diagrams
in Figs. 4.1 – 4.3. For this reason it is possible to take them
into account only for the few leading configurations. This
allows one to store the effective radial integrals for other
configurations in the same way as is done for the Coulomb
integrals.

5. Diagrams with three external lines

The diagram shown in Fig. 6 represents an effective three-
particle interaction in which three valence electrons interact
with each other via the core. The diagrams of this type have
only one internal summation and are much simpler than the
one- and two-particle diagrams. However, the number of cor-
responding effective radial integrals is enormous. It is prac-
tically impossible to do large CI for the three-particle effec-
tive Hamiltonian. Fortunately, these diagrams can be made
small by an appropriate choice of the atomic core. In particu-
lar, the core and valence states should have small overlap
and be well separated energetically. These diagrams can then
be either omitted altogether or included only within the lead-
ing configuration~s!.

FIG. 4. Second-order diagrams for screening.

FIG. 5. Second-order subtraction diagrams for screening.

FIG. 6. Effective three-particle interaction between valence
electrons.

FIG. 7. Examples of diagrams which violate the Pauli principle.
Diagrams 1 and 2 and 3 and 4 cancel each other exactly.
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The diagrams of Figs. 2 – 6 give the complete set of the
second-order contributions toS. Analytical expressions for
these contributions are given in the Appendix. Apart from
the small terms corresponding to the box diagrams of Figs.
4.4 – 4.6 and to the three-particle interaction~Fig. 6!, they
can be expressed in a form of the usual single-particle and
two-particle radial integrals. This makes it easy to include
them when the effective CI Hamiltonian is formed.

6. Energy denominators

Until now we have not considered the definition of the
energy denominators in the expressions which correspond to
the diagrams discussed above. The energyE which enters
Eqs. ~25! and ~26! is the energy of the atom as a whole.
According to Eq.~7! it can be written as the sum of the core
and the valence parts:E5Ecore1Eval . The core part then
cancels inE2HDF @see Eq.~21!# and so Eq.~26! can be
rewritten as:

RQ~E!5Q~Eval2H̃DF!
21Q1Q~Eval2H̃DF!

21Q~V

2VNDF!Q~Eval2H̃DF!
21Q1•••. ~29!

In this expression we still have the energyEval , which cor-
responds to all of the valence electrons. That means that
when, for example, the diagrams from Fig. 2 are calculated,
the energy that should be taken for the outer lines depends on
the states of the other valence electrons. If there are three
valence electrons and we are interested in the matrix element
of S between the configurations (a,c,d) and (b,c,d) then
the energy denominator for the diagram Fig. 2.1 is equal to
Eval2ec2ed1en2ea2eb , while the usual diagrammatic
rules give the denominatorea1en2ea2eb . These expres-
sions differ by the substitutionEval2ec2ed↔ea . In other
words, the energy denominators for the connected diagrams
depend on the particular disconnected diagram of which they
are part.

From the computational point of view it is impractical to
calculate all of the disconnected diagrams and some simpli-
fication should be used. In the first approximation all con-
nected diagrams can be evaluated at the energies which cor-
respond to the main configuration~s!. In the second
approximation each diagram can be calculated together with
its first derivative with respect to the energy. That does not
require any additional integrals and can be done easily. Then,
for each disconnected diagram a corresponding correction
for the energy shift can be made. Note that the derivatives of
the diagrams can also be used in Eq.~18!. In principle,
higher terms of the Taylor expansion can be taken into ac-
count as well.

7. Higher-order corrections

In the above treatment we restricted ourselves to the sec-
ond order of the perturbation theory. In calculations for the
alkali-metal atoms@9–11# the higher-order corrections were
very important. In principle, it is also possible to include
here the dominant higher-order corrections to the correlation
potential and to the screening of the Coulomb interaction in
the same way as was done in@9,11#. On the other hand, the
combined method allows one to choose a core small enough
to make higher-order corrections negligible. For example,

the largest contributions to the core-valence interaction in
cesium and francium comes from the 5p and 6p shells, re-
spectively. Thus, if these shells are included in the valence
space, MBPT corrections can be significantly reduced and
the higher-order terms can be neglected. We also want to
stress that there is no point in considering higher-order terms
in the expansion~29! without an accurate treatment of the
energy dependence ofS in the second order, as discussed in
the previous paragraph.

C. Orbital basis sets for CI and MBPT parts of the problem

In contrast to MBPT, where the basis set of the eigenvec-
tors of the unperturbed Hamiltonian is used, CI can be done
for any orthonormal set of orbitals. For the complete CI the
number of configurations is proportional toNo

Ne , whereNo is
the number of orbitals andNe is the number of valence elec-
trons. Thus, it is very important for the effective application
of the CI method to choose the orbital basis set which pro-
vides rapid convergence.

From this point of view, the Dirac-Fock orbitals are not
the best choice. They are even less so, as the orbitals from
the continuum should be included. In this paper we will use
two very different basis sets, both providing reasonably fast
convergence and giving very similar final results.

The first basis set is similar to the Dirac-Fock basis set for
an atom in the potential box of fixed radiusRa . However,
instead of introducing an infinite potential barrier on the bor-
der of the box, we fix the exponential asymptotic behavior of
the electron orbitals forr.Ra . The exponent corresponds to
the asymptotic behavior of the exact many-body wave func-
tion for the case when one electron goes to the large dis-
tances. For each partial wave the exponent is chosen inde-
pendently and is taken from an analysis of the experimental
atomic spectrum. Forr,Ra the orbitals are solutions of the
radial Dirac-Fock equations. Having the correct asymptotic
behavior of the atomic wave function at large distances al-
lows us to use smaller values ofRa than for an ordinary
potential box. This results in a smaller number of orbitals per
unit energy interval, i.e., faster convergence of the CI
method. Although the advantage of this basis for the calcu-
lation of the low-lying states is essential, its shortcoming is a
necessity to redefine the basis set for the calculation of the
higher states.

The second basis set includes several Dirac-Fock orbitals
for the lower valence one-particle states while the other or-
bitals are obtained from the former by multiplying them by
powers ofr and orthogonalizing the product to all other or-
bitals with the samel and j . Similar basis sets have been
used in nonrelativistic atomic calculations before~see, for
example,@27,28#!. When orbitals of this type are used in
relativistic calculations, it is necessary to ensure orthogonal-
ity to the Dirac orbitals with negative energy~positron
states!. That can be done by using the kinetic balance condi-
tion for the small components of the Dirac bispinors@23#.

IV. APPLICATION TO Tl, Tl 1, AND Tl 11

We have chosen thallium to test the method because it is
the second simplest atom~after cesium! among those used in
the ongoing PNC experiments. Thallium has the configura-
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tion 6s26p, and can be treated within MBPT as an atom with
one electron above a closed-shell core@29#. However, as we
mentioned above, the accuracy of such calculations appears
to be lower than for cesium. The main reason for this is the
small binding energy and diffuseness of the 6s2 shell, which
strongly interacts with the 6p electron.

Thus, we define the core as@1s2•••5d10#, leaving three
electrons in the CI space. It is interesting to compare this
core with those used in the MBPT calculations of Cs@9,10#
and Tl @29#. In Table I several parameters, which are impor-
tant for the convergence of MBPT, are given for all three
cores. Comparison of these parameters indicates that the core
used here is likely to provide much better convergence for
MBPT than the two others.

There is one interesting feature of the combined method
used here. Formally, for the MBPT calculations ofS the
number of valence electrons is not fixed. In Sec. III we
showed thatS can be defined in terms of radial integrals,
which correspond to the complete set of diagrams. Using
these radial integrals we can calculateS for all possible va-
lence configurations, including those which correspond to
the ionized atoms. We started with the calculations for neu-
tral thallium and then used the same radial integrals to cal-
culate the ions Tl1 and Tl11.

For the MBPT part of the problem we use theVN21 ap-
proximation which corresponds to the solution of the Dirac-
Fock equations for the configuration 1s2•••5d106s2. As was
shown in Sec. III, this choice requires calculation of the sub-
traction diagrams with summations over the two 6s electrons
in the blocks shown in Fig. 1.

Tables II and III present the contributions of different
diagrams to several one-electron and two-electron effective
radial integrals. It is seen that subtraction diagrams are quite
important for the self-energy but are negligible for screening.
Box diagrams significantly reduce screening for the zero
multipolarity.

In the last row of Table II, derivatives of the matrix ele-
ments of the self-energy operator with respect to the energy
are given. For thallium these derivatives are typically of the
order of~1–3!31022. This means that the dependence of the
energy denominators on configuration can contribute signifi-
cantly to the calculated energy levels~see discussion in Sec.
III !. We chose the denominators to be correct for the
6s26p configuration. As this configuration constitutes 98%
of the ground state, the correction associated with the
energy-dependence ofS is small for the ground state. How-

ever, it will not be so small for the excited states. This could
be one of the sources of the lower accuracy of our results for
the excited states~see also the discussion of the basis set
problems below!.

We also calculated the diagram in Fig. 6 for the two rela-
tivistic configurations 6s26p1/2 and 6s26p3/2. After sum-
ming over all permutations, we found that the effective
three-particle interaction changes the energy of these states
by only211 cm21 and10.2 cm21, respectively. Therefore,
we did not include it in the effective Hamiltonian.

The results of the different approximations for several
levels of neutral thallium are given in Table IV. The typical
accuracy of the Dirac-Fock method is about 10%. The CI
method improves the accuracy for the lower levels by a fac-
tor of 2. Note that the two orbital basis sets described above
give very close results for the two lowest levels, while for the
higher levels there is a growing difference between them. We

TABLE I. Comparison of the parameters of the core in the
MBPT calculations of cesium (1s2•••5p6) and thallium
(1s2•••6s2) with those of the core of thallium used in this work
(1s2•••5d10).

MBPT CI1MBPT
Cs a Tl b Tl

rms radius of the last shell 2.2 2.6 1.5
binding energy of the last shell 0.66 0.69 1.07
smallest excitation energy
for the dipole transitions 0.53 0.44 0.82

dipole polarizability 17 24 7

aReferences@9,10#. bReference@29#.

TABLE II. The self-energy part of the correlation interaction of
the valence electrons with the atomic core~cm21). The contribu-
tions of the mirror diagrams are included. In the last two rows of the
table the resultant matrix elements of the operatorS and its deriva-
tive with respect to the energy are given.

Diagram D6s1/2,6s1/2
D6p1/2,6p1/2

D6p3/2,6p3/2

Fig. 2.1 223000 213403 29777
Fig. 2.2 2848 2081 1456
Fig. 2.3 4522 1704 1110
Fig. 2.4 21795 2502 2306
Fig. 3.1 6000 2329 1533
Fig. 3.2 1445 547 361
Fig. 3.3 1445 988 760
Fig. 3.4 536 261 164
Fig. 3.5 11 11 17
Fig. 3.6 211 16 29
Fig. 3.7 3 6 13
^S& 27996 25962 24640
^]ES& 20.031 20.027 20.023

TABLE III. The screening of some diagonal Coulomb radial
integrals for zero multipolarityRa,a,a,a

0 ~cm21). The contributions
of the mirror diagrams are included.

Diagram a56s1/2 a56p1/2 a56p3/2

Coulomba 80051 55425 48322
Fig. 4.1 23000 2500 2225
Fig. 4.2 2723 2200 2104
Fig. 4.3 2723 2200 2104
Fig. 4.4 270 270 158
Fig. 4.5 270 270 158
Fig. 4.6 2437 227 213
Fig. 5.1 211 24 24
Fig. 5.2 211 24 24
Fig. 5.3 6 23 23
Fig. 5.4 6 23 23
Sumb 75698 55024 48178

aRadial integral for the unscreened Coulomb interaction.
bRadial integral for the screened Coulomb interaction.
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have already pointed out that the first basis set is actually
linked to the certain atomic states by the choice of the
asymptotic behavior. So, it is not surprising that for the ex-
cited states the results obtained with the second basis set are
somewhat better. Still, even for the second basis set we were
able to saturate the CI for the first two levels only.

Table IV shows that the addition of the self-energy cor-
rections to the effective Hamiltonian results in a significant
overestimation of the binding energy. A radical improvement
of the accuracy is achieved only when screening is also taken
into account. Our final accuracy for the two lower levels is
better than 0.5%, which is an order of magnitude improve-
ment in comparison with the conventional CI method. For
the higher levels the CI has not been saturated, so they can-
not be used as a test of the method, but improvement of the
results is clearly seen.

In Table V the results of the calculations for the positive
ions are given. Again, there is about an order of magnitude
improvement of the accuracy in comparison with the CI
method. Note that for Tl21 there is only one valence elec-
tron, and thus only the self-energy corrections are important.

V. CONCLUSION

The combination of the CI and MBPT methods presented
in this paper is actually a new method which retains the

advantages of both of the methods that it is based on. First,
the many-body problem for the valence electrons is solved
accurately, assuming that the convergence regarding the ba-
sis set used has been achieved. Second, the core-valence and
core-core correlations which are important but small enough
to be treated accurately by means of the MBPT are also
included. The implementation of the method has a very con-
venient form. The second-order diagrams are calculated in
the single-electron basis and do not depend on the configu-
ration of the valence electrons. Thus, their inclusion is re-
duced to the redefinition of the one- and two-electron matrix
elements of the ordinary CI Hamiltonian. The CI method
itself remains almost untouched. A similar approach is fea-
sible for the calculation of transition amplitudes. This is the
direction of our further efforts.

The results obtained for the energy levels of Tl, Tl1, and
Tl 21 show that the method has great potential. From our
point of view it presents a powerful alternative to the exist-
ing methods of high precision relativistic calculations for
many-electron atoms.
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APPENDIX: ANALYTICAL EXPRESSIONS
FOR THE SECOND-ORDER DIAGRAMS

In this appendix we give expressions for the diagrams in
Figs. 2–5. We are not writing sums explicitly: it is assumed

that summation takes place over all indices which corre-
spond to internal lines, as well as over the multipolarities of
the Coulomb interactions,k1 andk2. The following conven-
tions for the indices are used:a,b,c, andd correspond to the
external lines; 1<m,n<Ncore; Ncore11< i , j<NDF and
Ncore11<a,b. We also assume that the first Coulomb inter-
action (k1) is always connected to the linea. In the expres-
sions given below, all summations over the projections of the
angular momenta have already been made. In this Appendix
we use the standard MBPT definition of the energy denomi-
nators. For the discussion of the possible modifications of
this definition see Sec. III.

The matrix element of the Coulomb interaction for the
multipolarity k is equal to

^c,duVq
kua,b&5~21!mc1mb11dpA~2 j a11!~2 j b11!~2 j c11!~2 j d11!S j c j a k

2mc ma qD S j b j d k

2mb md qD
3S j c j a k

1/2 21/2 0D S j b j d k

1/2 21/2 0DRa,b,c,d
k , ~A1!

whereRa,b,c,d
k is the radial integral anddp accounts for the parity selection rule:

dp5j~ l a1 l c1k!j~ l b1 l d1k!, ~A2!

j~n!5H 1 if n is even,

0 if n is odd. ~A3!

Let us start with the contributions to the self-energy matrix elements from the four main diagrams~Fig. 2!.

Da,b ~Fig. 2.1!5dk1 ,k2d j a , j b
dma ,mb

~2 j a11!~2 j b11!~2 j n11!

2k111 S j a j b k1

1/2 21/2 0 D 2S j a j n k1

1/2 21/2 0 D 2
Ra,n,b,a
k1 Rb,n,b,a

k1

ea1en2ea2eb
,

~A4!

Da,b ~Fig. 2.2!5~21!k11k2d j a , j b
dma ,mb

~2 j a11!~2 j b11!~2 j n11!H j a j a k2

j n j b k1J S j a j b k1

1/2 21/2 0 D S j a j n k1

1/2 21/2 0 D
3S j a j a k2

1/2 21/2 0 D S j b j n k2

1/2 21/2 0 D Ra,n,b,a
k1 Rb,n,a,b

k2

ea1en2ea2eb
, ~A5!

Da,b ~Fig. 2.3!52dk1 ,k2d j a , j b
dma ,mb

~2 j a11!~2 j m11!~2 j n11!

2k111

3S j a j m k1

1/2 21/2 0 D 2S j n j a k1

1/2 21/2 0 D 2
Ra,n,m,a
k1 Rb,n,m,a

k1

em1en2ea2eb
, ~A6!

Da,b ~Fig. 2.4!5~21!k11k211d j a , j b
dma ,mb

~2 j a11!~2 j m11!~2 j n11!H j a j m k2

j a j n k1J S j a j m k1

1/2 21/2 0 D
3S j n j a k1

1/2 21/2 0 D S j a j n k2

1/2 21/2 0 D S j m j a k2

1/2 21/2 0 D Ra,a,m,n
k1 Rb,a,n,m

k2

em1en2ea2eb
. ~A7!
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In Fig. 3 only the significantly different subtraction diagrams are shown. Each of the asymmetric diagrams~1–4 and 6!
represents a pair of two diagrams related by reflection. Below we only give the expressions for those diagrams shown
in Fig. 3.

Da,b ~Fig. 3.1!52d j a , j b
dma ,mb

dk1,0dk2,0d j n , ja
~2 j i11!~2 j n11!

Ra,a,b,n
0 Ri ,n,i ,a

0

en2ea
, ~A8!

Da,b ~Fig. 3.2!5d j a , j b
dma ,mb

dk1,0d j n , ja
~2 j i11!~2 j n11!S j n j i k2

1/2 21/2 0 D 2
Ra,a,b,n
0 Rn,i ,i ,a

k2

en2ea
, ~A9!

Da,b ~Fig. 3.3!5d j a , j b
dma ,mb

dk2,0d j n , ja
~2 j i11!~2 j n11!S j a j n k1

1/2 21/2 0 D 2
Ra,a,n,b
k1 Ra,i ,n,i

0

en2ea
, ~A10!

Da,b ~Fig. 3.4!52d j a , j b
dma ,mb

d j n , ja
~2 j i11!~2 j n11!S j a j n k1

1/2 21/2 0 D 2S j n j i k2

1/2 21/2 0 D 2
Ra,a,n,b
k1 Ra,i ,i ,n

k2

en2ea
,

~A11!

Da,b ~Fig. 3.5!52d j a , j b
dma ,mb

dk1,0dk2,0d j n , j a
~2 j i11!~2 j j11!

Ra, j ,n, j
0 Rb,i ,n,i

0

en2eb
, ~A12!

Da,b ~Fig. 3.6!5d j a , j b
dma ,mb

dk1,0d j n , j a
~2 j i11!~2 j j11!S j a j i k2

1/2 21/2 0 D 2
Ra, j ,n, j
0 Rb,n,i ,i

k2

en2eb
, ~A13!

Da,b ~Fig. 3.7!52d j a , j b
dma ,mb

d j n , j a
~2 j i11!~2 j j11!S j a j j k1

1/2 21/2 0 D 2S j a j i k2

1/2 21/2 0 D 2
Ra,n, j , j
k1 Rb,n,i ,i

k2

en2eb
. ~A14!

The diagrams in Figs. 4 and 5 correspond to the corrections to the Coulomb interaction between the valence electrons. Thus,
it is convenient to separate the angular and radial parts as in Eq.~A1!. Below we give the expressions for the effective radial
integrals associated with each diagram. Note that the standard parity selection rule@which is accounted for by the factordp
~31!# holds for the diagrams in Figs. 4.1 – 4.3, as well as for all subtraction diagrams in Fig. 5, but not for the box diagrams
in Figs. 4.4 – 4.6.

The effective radial integrals for the screening diagrams in Fig. 4 are

Ra,c,b,d
k ~Fig. 4.1!5dk1 ,kdk2 ,kdp

~2 j n11!~2 j a11!

2k11 S j a j n k

1/2 21/2 0D 2
Ra,a,b,n
k Rc,a,d,n

k

ec1en2ed2ea
, ~A15!

Ra,c,b,d
k ~Fig. 4.2!5~21!k11kdk2 ,kdp~2 j n11!~2 j a11!H j a j b k

j a j n k1J S j b j a k1

1/2 21/2 0 D S j a j n k1

1/2 21/2 0 D
3S j a j n k

1/2 21/2 0D 3S j b j a k

1/2 21/2 0D 21
Ra,a,n,b
k1 Rc,a,d,n

k

ec1en2ed2ea
, ~A16!

Ra,c,b,d
k ~Fig. 4.3!5~21!k1k2dk1 ,kdp~2 j n11!~2 j a11!H j c j d k2

j n j a k J S j c j a k2

1/2 21/2 0 D S j d j n k2

1/2 21/2 0 D
3S j n j a k

1/2 21/2 0D S j d j c k

1/2 21/2 0D 21
Ra,a,b,n
k Rd,a,n,c

k2

ec1en2ed2ea
, ~A17!
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Ra,c,b,d
k ~Fig. 4.4!5~21! j a1 j b1 j c1 j d1 ja1 j n~2 j n11!~2 j a11!~2k11!H j b j a k

k1 k2 j nJ H j c j d k

k1 k2 j aJ S j a j n k1

1/2 21/2 0 D
3S j d j a k1

1/2 21/2 0 D S j b j n k2

1/2 21/2 0 D S j c j a k2

1/2 21/2 0 D S j b j a k

1/2 21/2 0D 21

3S j c j d k

1/2 21/2 0D 21
Ra,a,n,d
k1 Rb,a,n,c

k2

ec1en2eb2ea
, ~A18!

Ra,c,b,d
k ~Fig. 4.5!5~21! j a1 j b1 j c1 j d1 ja1 j n~2 j n11!~2 j a11!~2k11!H j b j a k

k1 k2 j aJ H j c j d k

k1 k2 j nJ S j a j a k1

1/2 21/2 0 D
3S j d j n k1

1/2 21/2 0 D S j b j a k2

1/2 21/2 0 D S j c j n k2

1/2 21/2 0 D S j b j a k

1/2 21/2 0D 21

3S j c j d k

1/2 21/2 0D 21
Ra,n,a,d
k1 Rb,n,a,c

k2

ec1en2ed2ea
, ~A19!

Ra,c,b,d
k ~Fig. 4.6!5~21! j a1 j b1 j c1 j d1 j m1 j n1k11k21k11~2 j m11!~2 j n11!~2k11!H j b j a k

k1 k2 j mJ H j c j d k

k2 k1 j nJ
3S j m j a k1

1/2 21/2 0 D S j c j n k1

1/2 21/2 0 D S j b j m k2

1/2 21/2 0 D S j n j d k2

1/2 21/2 0 D S j b j a k

1/2 21/2 0D 21

3S j c j d k

1/2 21/2 0D 21
Ra,c,m,n
k1 Rb,d,m,n

k2

em1en2eb2ed
. ~A20!

Effective radial integrals for the subtraction diagrams~Fig. 5! are

Ra,c,b,d
k ~Fig. 5.1!5d j a , j n

dk1,0dk2 ,kdp~2 j i11!
Ra,i ,n,i
0 Rb,d,n,c

k

ec1en2eb2ed
, ~A21!

Ra,c,b,d
k ~Fig. 5.2!5d j d , j n

dk2,0dk1 ,kdp~2 j i11!
Ra,c,b,n
k Rd,i ,n,i

0

en2ed
, ~A22!

Ra,c,b,d
k ~Fig. 5.3!52d j a , j n

dk2 ,kdp~2 j i11!S j a j i k1

1/2 21/2 0 D 2
Ra,i ,i ,n
k1 Rb,d,n,c

k

ec1en2eb2ed
, ~A23!

Ra,c,b,d
k ~Fig. 5.4!52d j d , j n

dk1 ,kdp~2 j i11!S j d j i k2

1/2 21/2 0 D 2
Ra,c,b,n
k Rd,i ,i ,n

k2

en2ed
. ~A24!

@1# I. B. Khriplovich, Parity Non-Conservation in Atomic Phe-
nomena~Gordon and Breach, New York, 1991!.
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