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We have investigated the accuracy of the local-spin-density approximation with orbital-density-dependent
self-interaction correctioflLSDSIC) as proposed by Perdew and Zunger within a Kohn-Sham approach in
which electrons with a given spin projection all move in a single optimized effective potéd&d). We have
also studied the accuracy of the Krieger-Li-lafrg#€l |) approximation to the OEP for the same energy
functional in order to assess its applicability to systems in which the integral equation for the OEP cannot be
reduced to a one-dimensional problem, e.g., molecules. Self-consistent Kohn-Sham LSDSIC calculations have
been performed for atoms with atomic numlzr1-20 in the exchange-only case for the total energy, the
highest-occupied orbital energy,, and the expectation value of. In addition, the structure of the resulting
exchange potential is examined and compared with the exact exchange-only density-functional@&ry
method with Hartree-Fock exchange-energy functipmesults. Furthermore, we display,, the ionization
potentiall, and the electron affinith when both exchange and correlation energy effects are included. Finally,
we also consider the results of evaluating the LSDSIC energy functional by employing the(iexéot
central-field approximatigrsingle particle orbitals as proposed by Harrison. We find that the LSDSIC energy
functional generally leads to calculated values that are superior to those provided by the LSD approximation
and that the KLI approximation yields results in excellent agreement with the corresponding exact OEP results
for this energy functional. In particular, quantities strongly related to the behavior of the valence electrons are
nearly identical in both the OEP and KLI calculations, i.e., the difference between3hand €n 1S less than
0.2% on average, while the difference between the calculaigetess than 0.2 millihartree on average with the
corresponding difference of only 0.1 millihartree f&r [S1050-29476)08711-3

PACS numbg(s): 31.10:+z, 31.15.Ew, 71.15.Mb

[. INTRODUCTION the electron densities could change rapidly. Therefore, gra-
dient corrections to the LSD expression f6g[n] are the
One of the central issues in density-functional theory isones that have been carefully investiga{@#]. Gradient
how to better approximate the exchange-correlation energgorrections do improve the prediction for some quantities,
functional E,[n], which is a functional of the ground-state however, none of the fundamental weaknesses of the LSD
electron-density distributiom(r), but its explicitly exact discussed above are eliminated. o
form is not yet knowr[1]. In practice, the expression given __An alternative approach to modifying the LSD is to incor-
by the local spin-densityLSD) approximation is often em- porate orbltal effect; into the .funct|o_nal such_ as the local
ployed. However, the LSD lacks many of the known prop_splnfdensny_ approximation with orbital-density-dependent
erties of the exacE,[n] [1,2]: for example, the highest- SE!f-interaction-correctionLSDSIC) proposed by Perdew

occupied Kohn-Sham orbital energy, should be equal to and Zungef5] that we shall employ in this work. With an

the negative of the removal energy in an exact density_orbltal—dependent energy functional, the self-interaction cor-

. . o i rection could be easily implemented, a correct long-range
fun_ct|onal theory, while the LSD approximation often ylelqls behavior for the exchange-correlation potential could be ob-
€, in error by 40—-50 %. Also the exact exchange-correlatio

i orrelaliogined, and the highest-occupied orbital energy could also be
potential V,(r) approaches-1/r asr approaches infinity petter approximated. The difficulty is that there is no direct
while the LSD potential approaches zero exponentially fastmethod of calculating the functional derivative of an orbital-
Furthermore, the LSD is not self-interaction free. dependent energy functional with respect to the density, and

Although lacking properties of the exat [n], the LSD  consequently the conventional Kohn-Sham procedure is not
approximation provides a starting point for a betgg[n],  applicable with the LSDSIC. Perdew and Zunger performed
as it is simple and sometimes very useful in predicting im-.SDSIC calculationg5] but followed a Hartree-Fock-like
portant electronic properties. Various modifications of theprocedure in which each electron moves in a diffefent in

LSD have been proposdd]. The LSD is derived from a this case, localpotential. Similar calculations have been per-

uniform electron gas that should be a good approximation foformed for atomg6], moleculeg7,8], and small clusterg9].

a slowly varying many-electron system, but for real systems As known for almost two decades, with the Hartree-Fock
energy functional that is orbital-dependent, Kohn-Sham cal-
culations can be carried out by employing the optimized ef-

* Author to whom correspondence should be addressed. fective potentialOEP method[10]. The OEP method de-
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mands the local effective potential from which the Kohn-1ll we discuss the exchange potentials from OEP-LSDSICA,
Sham orbitals are obtained such that the resulting totaKLI-LSDSICA, OEP-HF, and LSD calculations, and in Sec.
energy of the system is minimized. This method is generalV we discuss other quantities such as the total energies, the
for any orbital-dependent energy functional but poses grediighest-occupied orbital energies, the electron-density distri-
computational difficulties for systems with less symmetrybutions3 the removal energies, and electron affinities. In Sec.
than spherically symmetric atoms. Recently, Krieger, Li, andv We Will present some LSDSICE results and compare them
lafrate(KLI ) [11] proposed an approximation to the OEP for With the LSDSICA, and finally in Sec. VI we present our
any E [ ¢, ] for arbitrary symmetry and demonstrated thatcOnclusions.

this approximation is extremely close to the OEP with the

Hartree-Fock exchange-energy functional. Thus the KLI ap- Il. OPTIMIZED EFFECTIVE POTENTIAL METHOD
proximation opens up the possibility of performing orbital- AND KLI APPROXIMATION

dependent exchange-correlation energy functional Kohn-
Sham calculations for complex systems such as molecul%ﬁ
[12,13 and solidg14].

Some atomic calculations with the OEP-LSDSIOEP
method with the LSDSIC energy functiondll5] and KLI-
LSDSIC (KLI method with the LSDSIC energy functional
[2] have been reported. The OEP-LSDSIC exchange pote
tial for the beryllium atom is presented in Rédfl5] and
shown to be very similar to the one obtained from an
OEP-HF calculation. This is an encouraging result becaus
the LSD produces the potential that lacks most of the exact
structural behavior. However, the general properties of the EXHF[¢i0]= _%2 dr | dr’

LSDSIC Kohn-Sham potential remain to be examined as the ijo
beryllium atom is a simple light atom, and we should know Xd’i*g(f)dha(r')(ﬁfg(f')(ﬁjg(r)

For a given exchange-correlation energy functioBgl,

e conventional Kohn-Sham procedure requires performing
a functional derivative with respect to the spin dengity(r),

to derive the local effective exchange-correlation potential,
V()= OE,./n,. It is a trivial problem if theE,, is ex-
rg:)_licitly expressed as a functional of the spin densities. How-
ever, there is no known direct method of performing
OE,d ¢ ,(r))/én, if it is known only in terms of orbitals such
as the Hartree-Fock exchange-energy functional

what the situation will be for heavier atoms. The KLI-
LSDSIC calculations presented in Rg2] yield results that [r=r|
are significantly closer to experimental observables than

those obtained from LSD calculations. It should be of inter-0r the Perdew-Zunger self-interaction-corrected local-density
est to compare them with their OEP-LSDSIC counterpart@pproximation 5]

and see how accurately the KLI approximates the OEP. In

the present paper, we will present results for at@msl—20 LSDSI _ =LSD, _ LSD

and show(1) how the exact LSDSIC Kohn-Shafie., OEP B Tl =B Tna.ng] % Exe 1Nio0]

results behave(2) how the KLI-LSDSIC approximates the )
OEP-LSDSIC, and(3) how different they are from the 1y drj dr Nig (NN, (r") @
OEP-HF calculation that is regarded as the exact exchange- 24 [r—r'|

only density-functional theorj16].

As discussed by Harrisofi7], how the central-field ap- where ELSP is the exchange-correlation functional in the
proximation should be implemented to a self-consistentocal-density approximation, ang,(r) is the orbital density,
LSDSIC calculation is an interesting issue. While our focusnig(r):|¢m(r)|2 with n_(r)=3;n;,(r) andn(r)==_n,(r).
will be on how the LSDSIC works with both the total density ~ The optimized effective potential methdd0] takes an
and individual orbital densities spherically averaged beforéndirect approach to obtaivi,(r) with an orbital-dependent
substitution into the energy functional, i.e., as initially doneenergy functional. This is achieved by minimizing the total
by Perdew and Zungéwe will label this as LSDSICA we  energy of a system of interest
will follow Harrison to consider the effects of this averaging
by substituting the exact nonspherical orbital densifieshe E=E[¢i,]=T[di,]+En[n]+E,d ¢i,]
central field approximationinto the LSDSIC energy func-
tional and then performing the angular integrations to obtain
a radially dependent energy functiorfale will label this as
LSDSICE. Harrison reported his Hartree-Fock-like
LSDSICE calculation that shows a great improvement foryhere
the total energies for atoms with=2-18, compared to the
results provided by the LSDSICA. In addition, we intend to
provide some information on other important quantities such T his]=2 (ol =3V bio),
as the removal energies and electron affinities and the prop- he
erties of the Kohn-Sham LSDSICE potential by performing a

()

+2 | dr Ve (ring(r), &)

Kohn-Sham LSDSICE calculation for some atomic systems E [n]:lf dr dr’ n(ryn(r’) @
and comparing them with the corresponding LSDSICA H z [r—r’]
counterparts.

In Sec. Il we will briefly review the relevant parts of the by varying the Kohn-Sham local effective potenth)(r)
orbital-dependent density-functional theory, and then in Sedrom which the Kohn-Sham orbitalg},, are obtained:
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_%V2¢io(r)+va(r)¢io’(r):Eia'd)io'(r)r

n(r’)
—7 ©

VU(r):VeXb(r)+VXCU(r)+f dr’ |

This leads to the following integral equation for searching
for the “best” V¢, (r);

Exchange potential (a.u.)

fdr’Hg(r,r')me(r')=Qg(f),

1 1 2 1 1

Ho(r,r) =20 ¢l (NGig(r.r ) diy(r'), oot oot er e

r{a.u.)

_ - , , , FIG. 1. Thev(r), VE(r), andV,(r) for the magnesium atom
Qu(r)= zl jdr Pio(NGio(r. 1 )xcio(r) diolr), resulting from the exchange-only self-consistent KLI-LSDSICA
(6) calculation. The solid lines ang,;(r), and they are,,s(r), vyas(r),
vx1s(r), anduy,,(r) from above to below according to their values

where at r=0.001 a.u. in contrast to the order of the eigenvalues
€15< €s< €2p< €35. The short-dashed line ¥ 3(r) and the long-
b (F)= OB, d bio] @) dashed line i8/,(r).
XClo d’iu—é(ﬁr‘r ’

The KLI V,.,(r) is much easier to construct than is the
which is the single-particle potential that normally appears irexact OEP. For a givek, ¢;,(r)] such as the expression
a multiple potential theory and differs from orbital to orbital, (1) or (2), Egs.(5), (7), (10), and(11) can be solved self-

and consistently. Also the KLI method explicitly demonstrates
how the Kohn-Sham local effective potential can be con-
, ¢j‘g(r’)¢ja(r) structed from an orbital-dependent possibly nonlocal energy
Gio(r ,r)=2 T e —e. (8 functional. As an example, in Fig. 1 we show the final con-
2 o e vergent results fov,;(r), V(r), andV,(r) for the magne-
which can be obtained by solving the equation sium atom, from an exchange-only KLI calculation with the
LSDSICA energy functional. The magnesium atom is a spin-
[—3 V24 Vo(r) = €io]Gin(r.r") unpolarized system, so we have ignored the spin coordinate.
It is seen thab,;(r) (i=1s, 2s, 3s, and 2) somehow cross
=8(r—r")= i (r) i, (r'). (9 each other, and their depths at snratire not in the same
. ) ) . order as that of the corresponding energy eigenvalues. For
Self-consistently solving the integral equation E8).would  ;— 25 and %, the v,;(r) has cusps that are located at the

produce the exact Kohn-Sham results with an orbital-,ergs of the 8 and % orbital wave functions. The KLI
dependent energy functionaI: This cpmputational scheme iépproach first samples thg,(r) according to the weight of
manageable for systems with a high symmetry such ageith orbital density in the total density(r) to construct
atoms, but becom_es d_|ff|cult for complex_systems. the Slater potentiaV (r); consequentlyV5(r) tends to
The KLI approximatior{11] to the OEP is made by trans- ,, (1) in a region wheren,(r) is dominant in the total den-
formmg the OEP integral equation to a S|mpler form a”dsity n(r). In particular, we see thalf(r) is very close to
omitting some terms_whose average vaIues_ ovei ghstate va«(r) at smallr and assumes the same long-range tail of
are zero, thus obtaining thg following equation fqr CO”Str“‘?t'vx3s(r) at larger that corresponds to the highest-occupied
ing the Kohn-Sham effective exchange-correlation potentiabypital that is most extended for this system. Obviously the

in a much simpler way: V3(r) has the—1/r long-range behavior because
VXCU(r):V)S(Co'(r)+_2 nm—(r) (V_xcio-_v_xcio)v (10 s n;(r) LSDSIC LSDSIC,
i ny(r) Vi =2 T U0 D —esAD)
where the sum does not include the highest-occupied orbital
mar, and =ViPL3 n(r),3 n(r)]= Vi nag(r),0]
Vieo(1) =20 ?,—((:)) UsciolT), (1) —f dr %*—% (r—e), (12)

which is essentially the exact Slatér., average Fogkpo-  where the LSDSIC energy functional, the expression(By.
tential when the Hartree-Fock exchange-energy functional ifas been employed, an¢5D[na,nB] is the expression for
taken for E,J ¢,(r)]. Vi, andv,g, are the expectation the LSD exchange potential. From EQ.0) it can be seen
values ofV, ,(r) andv,,(r) with respect to théo orbital.  that
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et 7 FIG. 3. The exchange potential from exchange-only OEP-
"§ 7 LSDSICA calculation for atom&=4-10. According to their values
5 i i at smallr, the shallowest one is f&=4, and then fozZ =5, 6, 7, 8,
g 9, and the deepest one is fAr=10.
g i
x . .
w - Phosphorus atom cant improvement over the LSDX. Figure 2 also shows that
= , 4 the KLI-LSDXSICA potential is a very good approximation
0.01 04 4 10 0.01 01 4 10 to the OEP-LSDXSICA, a large difference occurs only deep

in the core region where the electron radial density is small,
and therefore the consequence should be minor. A more en-
FIG. 2. The exchange potentials from exchange-only Kohn-couraging result is that as far as an approximation to the
Sham calculations for the nitrogen and phosphorus atoms. The soll@EP-HF exchange-potential is concerned, KLI-LSDXSICA
line is the result of the OEP calculation with the Hartree-Fockis equally accurate as the OEP-LSDXSICA, showing the
exchange-energy functional, the long and short dashed lines argfrong computational ability of the KLI to produce an accu-
respectively, results of OEP and KLI calculations with the rate Kohn-Sham potential with an orbital-dependent energy
LSDXSICA exchange-energy functional, and the dotted line is thefynctional.
result of the LSD exchange-energy functional calculation. However, the LSDXSICA does not generally produce the
Kohn-Sham potential with all structural behaviors of the ex-
Vx(r)—>Vf(r)—>— E (r—), (13) act exchange-only density-funf:ti_onal theory such as
r “bumps.” Bumps are a characteristic of the exact exchange
potential for atomic systems and they exist as a barrier sepa-
rating shells[18,19. For example, there is a bump for the
nitrogen atom between the=1 and 2 shells, and there are
two bumps for the phosphorus atom, one betweemthé
and 2, and the other betwean-2 and 3. Figure 2 shows that
the OEP-LSDSICA spin-minority potential for the nitrogen

r{a.u.) r(a.u)

which is the correct behavior for the exchange potential
However,V;(r) is too deep at smal. The second term in
the KLI equation(10) adjusts the depth using again the
weight of the orbital densities in total density for the expec-
tation values of the,;(r) andV,(r). The resultingV,(r) is
smooth, with no cusps, lies far above(r) at smallr, and

quickly goes toV S(r) whenr becomes large. atom does have a bump similar to that in the corresponding
OEP-HF counterpart, however, there are no bumps for all
1. KOHN-SHAM EXCHANGE POTENTIAL other cases for the nitrogen and phosphorus atoms but pla-

teaus instead.

To show how the LSDSIC energy functional works, in ~ As we mentioned earlier, the OEP-LSDXSICA Kohn-
this section we present the Kohn-Sham exchange potentiasham exchange potential for the beryllium atom is presented
from various exchange-only calculations. We will refer toin Ref. [15] and the potential appears to have all the exact
the exchange-only LSD and LSDSIC as LSDX andstructural behaviors. Clearly it is not a general result. To see
LSDXSIC, respectively. Figure 2 shows our results for themore about this, we plot in Fig. 3 the OEP-LSDSICA poten-
nitrogen and phosphorus atoms, each atom having three tials for atomsZ=4-10. For the beryllium atom, or the spin-
electrons with parallel spins in its highest-energy subsheliminority channel of the atom&=5-7, there is a bump in the
and an emptyp shell with opposite spin projection. The corresponding exchange potential. We notice that in all these
OEP-LSDXSICA and OEP-HF potentials represent the exactases there are no more than two electrons in a given spin
Kohn-Sham results for the LSDXSICA and HF energy func-channel and when there are more electrons in a spin channel,
tionals, respectively, and the latter is defined as the exad¢he bump in the exchange potential of this channel will
exchange-only Kohn-Sham potential. It is seen from Fig. 2quickly be smoothed out. Therefore, generally speaking,
that besides a correct long-range behavior, the OEPthere are no bumps in the LSDXSICA Kohn-Sham exchange
LSDXSICA potential is substantially better than that of potential except for a few light atoms. The beryllium atom is
LSDX compared to the OEP-HF, showing that thethe only closed-shell atom whose exchange potential has a
LSDXSICA exchange-energy functional represents a signifibump.
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TABLE |. Total energies in atomic units for atons=1-20 TABLE II. Values of the negative of the highest occupied or-
from various exchange-only Kohn-Sham calculations. bital energies in atomic units for atond=1-20 from various
exchange-only Kohn-Sham calculations.

Z OEP-HF OEP-LSDXSICA KLI-LSDXSICA  LSDX

z OEP-HF OEP-LSDXSICA KLI-LSDXSICA LSDX

1 —0.5000 —0.5000 —0.5000 —0.4571
2 —2.8617 —2.8617 —2.8617 —2.7236 1 0.5000 0.5000 0.5000 0.2469
3 —7.4325 —7.4347 —7.4342 —7.1934 2 09180 0.9180 0.9180 0.5170
4 —145724 —14.5795 —14.5784 —14.2233 3 0.1963 0.1958 0.1957 0.1004
5 —24.5283 —24.5502 —24.5490 —24.0636 4 0.3092 0.3081 0.3082 0.1700
6 —37.6889 —37.7462 —37.7450 —37.1119 5 0.3108 0.2893 0.2897 0.1201
7 —54.4034 —54.5075 —54.5064 —53.7093 6 04358 0.4118 0.4124 0.1960
8 -—74.8121 —74.9635 —74.9624 —73.9919 7 05714 0.5357 0.5363 0.2763
9 —99.4092 —99.6361 —99.6351 —98.4740 8 0.5083 0.4778 0.4788 0.2097
10 —128.5454  —128.8595 —128.8586 —127.4907 9 06734 0.6438 0.6452 0.3259
11 -161.8566 —162.2181 —162.2170 —160.6443 10  0.8507 0.8062 0.8078 0.4431
12 —199.6116  —200.0285 —200.0273  —198.2488 11 0.1821 0.1862 0.1864 0.0967
13 —241.8733  —242.3425 —242.3409 —240.3561 12 0.2530 0.2560 0.2561 0.1421
14 —288.8507 —289.3795 —289.3775 —287.1820 13 0.2094 0.1914 0.1915 0.0862
15 —340.7150 —341.3014 —341.2989 —338.8885 14 0.2970 0.2744 0.2747 0.1436
16 —397.5016 —398.1510 —398.1483  —395.5190 15 0.3920 0.3579 0.3582 0.2033
17 —459.4776  —460.1997 —460.1966  —457.3435 16  0.3636 0.3433 0.3438 0.1742
18 —-526.8122 —527.6028 —527.5994  -524.5174 17 0.4734 0.4467 0.4473 0.2542
19 —-599.1591 —-600.0133 —600.0094 —596.7115 18  0.5907 0.5486 0.5493 0.3338
20 —676.7519 —677.6797 —677.6756 —674.1601 19  0.1477 0.1536 0.1537 0.0805
20 0.1956 0.2004 0.2005 0.1114

IV. ENERGIES, DENSITY DISTRIBUTIONS,

AND ENERGY DIFFERENCES . .
most cases is above that of the OEP-HF, so is the LSDX.

In Sec. lll we compared the exchange potentials fromHowever, the LSDXSICA deviation from the OEP-HF is less
exchange-only OEP-LSDSICA, KLI-LSDSICA, OEP-HF, than 10%, but the LSDX orbital energy is about 40—50 % in
and LSD calculations, and discussed their common featuresrror. The results show that the LSDXSICA functional sub-
and differences. In this section, we present some calculatestantially reduces the error in the total energy and the
physical properties of the atomic systems Zor1-20 from  highest-occupied orbital energy. The excellent prediction for
those Kohn-Sham approaches with exchange-only and,, clearly originates from the correetl/r long-range tail in
exchange-correlation energy functionals and discuss thethe LSDXSICA exchange potential.
merits and defects. The expectation values of provide a measure for evalu-

Tables | and Il present, respectively, the total enerfies ating the accuracy of an electron-density distribution, par-
and the highest-occupied orbital energégsirom exchange- ticularly in the valence electron region. In Table Il we
only calculations. We first compare results from the KLI- present(r?) from the exchange-only Kohn-Sham calcula-
LSDXSICA and OEP-LSDXSICA. The KLI-LSDXSICA to- tions. It is shown that the density distributions from the OEP-
tal energy is slightly higher than that of OEP-LSDXSICA, LSDXSICA and KLI-LSDXSICA are very close, but they
but the difference is two orders of magnitude smaller tharare clearly distinct from the LSDX. In all of the cases given
the corresponding highest-occupied orbital energy, which isn Table lll, the LSDXSICA densities are more contracted
a good approximation to the removal energy. For examplethan the LSDX. However, the LSDXSICA densities gener-
€,~—0.200 a.u. forz=20 while the energy difference is ally are not contracted enough compared with the OEP-HF
0.004 a.u. Comparing the highest-occupied orbital energiesesults. The exceptions are those atoms for which the
the greatest difference is 0.0016 a.uZat10, which is about highest-occupied orbital is type such as atom&=11, 12,
0.2% of the OEP orbital energy, and f@=20, the differ- 19, and 20. Examination of the expectation values’ofith
ence is 0.0001 a.u. The average difference betweergthe respect to individual orbitals shows that theorbital is the
for these twenty atoms is0.0005 a.u. These results support only orbital that makes the reverse of the contraction of the
our earlier assessment that the deviation of the KLI exchangmtal density distribution. As shown in Table Il, it is these
potential from the OEP at small has small effects on ob- atoms whose LSDXSICAe,, is below the corresponding
servable quantities, especially those related to the valend®EP-HF orbital energy.
electrons. Correlation interaction has to be included in order to com-

Comparing the LSDXSICA with the OEP-HF, all the pare with experimental results. In Tables IV and V we
LSDXSICA total energies listed in Table | are lower while present our Kohn-Sham results from LSD and LSDSICA
all the LSDX counterparts are higher. However, the devia-calculations with the Perdew-Wang LSD correlation func-
tion of the Kohn-Sham LSDXSICA total energy, either the tional [20]; we denote them LSDXC and LSDXCSIJARO0],
OEP-LSDXSICA or the KLI-LSDXSICA, is abou} smaller  respectively. We compare them with experiments on energy
than that of the LSDX. The LSDXSICA orbital energy in differences for a neutral atom df electrons such as the
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TABLE Ill. Expectation values of? in atomic units for atoms comparison because for an accurate exchange-correlation en-
Z=1-20 from various exchange-only Kohn-Sham calculations. ergy functional,— e, should be very close to the energy dif-

ference.
z OEP-HF  OEP-LSDXSICA  KLI-LSDXSICA  LSDX For all the systems considered here, the removal energies
1 3.0000 3.0000 3.0000 3.4998 predicted from the KLI-LSDXCSICA have almost no differ-
2 1.1848 1.1848 1.1848 13275 ence with the corresponding OEP-LSDXCSICA counter-
3 6.2145 6.2224 6.2350 6.4685 parts. For the twenty atoms considered the average differ-
4 43316 4.3442 4.3457 4.4809 ence between the OEP and KLI values of the ionization
5 3.1690 3.1931 3.1999 3.3918 energy is less than 0.0002 a.u. and the greatest deviation is
6 22967 2.3161 2.3194 24543 0.0006 a.u. Similarly, the average difference between the
7 1.7253 1.7486 1.7504 1.8461 OEP and KLI values of the electron affinities given in Table
8  1.4032 1.4228 1.4252 15108 V is only 0.0001 a.u. with the maximum discrepancy of
9  1.1386 1.1538 1.1554 1.2211 0.0003 a.u. Itis indeed encouraging as it is well known that
10 09372 0.9513 0.9524 1.0036 gqffpbtl?m accurate results for negative ions is particularly
ifficult.
Hozw 2w zam 2000 N ing with e, we see tha the LSDSICA
13 25772 26014 2 5084 2 6668 gxchange-correlgtlpn energy functlon_al satisfies the condi-
14 23042 23373 23354 23788 tion —emfl to within a few percent while-€,,~0.60 when
15 20174 2 0570 20557 5 0856 the LSD is (_em_ployed. The same LSDSICA pattern holds for
electron affinities. Due to error cancellation, the LSD pre-
16 18269 1.8566 1.8552 1.8847 " icts ionization energies with accuracy comparable to that of
1r 16265 1.6520 1.6508 16744 | SDSICA calculations. However, the LSD is not applicable
18 14465 1.4709 1.4699 1.4889 15 negative ion calculations as it does not yield bound states
19 26939 2.5777 2.5732 2.6087 for such systems, so there are no LSD results given in Table
20 2.8282 2.7320 2.7289 2.7503 .

removal energyor ionization energyl =E,[N—1]—E,[N]
and the electron affinityA=E[N]—E[N+1], where
E,[M] is the ground-state total energy of th-electron
system. In Tables IV and V we also list the highest-occupied In this section we present some results from LSDSICE
orbital energies for the corresponding atomic systems foKohn-Sham calculations. We consider only those atoms

V. LSDSICE KOHN-SHAM POTENTIAL, ENERGY,
AND ENERGY DIFFERENCE

TABLE IV. Removal energieqthe ionization energigsl and the highest occupied orbital energigs for atomsZ=1-20 from
experimentgexac) (Z=2-10 from[21], Z=11-18 from[22,23 andZ=19-20 from[24]) and various Kohn-Sham calculations. Atomic
units are used.

EXACT OEP-LSDXCSICA KLI-LSDXCSICA LSDXC
z I(—€en) | —€n I —€m I —€m
1 0.500 0.5000 0.5000 0.5000 0.5000 0.4787 0.2690
2 0.904 0.9198 0.9481 0.9198 0.9481 0.8927 0.5703
3 0.198 0.2005 0.1974 0.2001 0.1973 0.2011 0.1163
4 0.343 0.3348 0.3284 0.3346 0.3285 0.3318 0.2058
5 0.305 0.3259 0.3056 0.3265 0.3059 0.3151 0.1506
6 0.414 0.4447 0.4263 0.4451 0.4268 0.4323 0.2272
7 0.536 0.5643 0.5493 0.5646 0.5499 0.5510 0.3085
8 0.500 0.5195 0.5265 0.5198 0.5274 0.5108 0.2724
9 0.641 0.6730 0.6840 0.6732 0.6855 0.6637 0.3839
10 0.795 0.8244 0.8411 0.8245 0.8429 0.8152 0.4978
11 0.189 0.1952 0.1895 0.1951 0.1896 0.1972 0.1132
12 0.281 0.2842 0.2752 0.2842 0.2753 0.2839 0.1755
13 0.220 0.2220 0.2047 0.2219 0.2047 0.2204 0.1110
14 0.300 0.3070 0.2868 0.3069 0.2871 0.3039 0.1699
15 0.386 0.3918 0.3701 0.3916 0.3705 0.3870 0.2311
16 0.381 0.3939 0.3825 0.3940 0.3831 0.3877 0.2286
17 0.477 0.4946 0.4805 0.4946 0.4813 0.4870 0.3047
18 0.579 0.5947 0.5793 0.5946 0.5800 0.5857 0.3822
19 0.159 0.1646 0.1579 0.1646 0.1580 0.1664 0.0961

20 0.228 0.2278 0.2179 0.2278 0.2181 0.2285 0.1415
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TABLE V. Electron affinitiesA and the highest occupied orbital energies of the corresponding negative,jdos light atoms from
experimentgexac) [24] and various Kohn-Sham calculations. Atomic units are used.

EXACT OEP-LSDXCSICA KLI-LSDXCSICA
z A(—€m) A —€n A —€n
1 0.028 0.0263 0.0625 0.0263 0.0624
3 0.023 0.0205 0.0251 0.0207 0.0251
5 0.010 0.0243 0.0280 0.0246 0.0283
6 0.047 0.0621 0.0722 0.0623 0.0727
8 0.054 0.0649 0.0992 0.0650 0.1002
9 0.125 0.1376 0.1866 0.1377 0.1878
11 0.020 0.0214 0.0244 0.0214 0.0244
13 0.017 0.0233 0.0203 0.0233 0.0203
14 0.051 0.0584 0.0542 0.0584 0.0542
16 0.076 0.0915 0.0950 0.0915 0.0952
17 0.133 0.1467 0.1506 0.1467 0.1509
19 0.018 0.0203 0.0208 0.0203 0.0208

whose total electron densities are spherically symmetric sergy is still too deep, it reduces the error by a factor of 5-10.
that the different treatments of the central-field approximaHowever, even though its predictions for the highest-
tion in LSDSICA and LSDSICE calculations are only due to occupied orbital energy, for the removal energy and for the
the treatment of the nonspherical orbitals in the self-electron affinity are similar to those obtained by employing
interaction correction part of the LSDSIC energy functional,the LSDSICA, it appears all of them for all the systems
thus some insights on SIC could be clearly obtained. Theonsidered tend slightly to go in the wrong direction rather
total densities of atoms faf=1—4 are spherical, but there is than to be closer to the exact values.
no difference between LSDSICA and LSDSICE because the Figure 4 shows a comparison between the OEP-
individual orbital densities of these atoms are all sphericall. SDXSICE and the OEP-LSDSXSICA exchange potentials.
symmetric. We list atomic systems in Table VI i6=20 for  The LSDSICE potentials retain the same fundamental struc-
which its total density is spherical except4. ture as shown in the LSDSICA results. The nitrogen atom
Table VI shows that the KLI approximation is as close tospin majority potential is slightly shallower than the
the exact OEP results when the LSDSICE energy functionalSDSICA counterpart. Comparison with Fig. 2 shows that
is employed as it is to the OEP when the LSDSICA is usedthe OEP-LSDXSICA potential is too deep, and that the
With respect to the quality of energy functionals, the LSDSICE improves the potential but only slightly. We see
LSDSICE shows significant advantages and also minor disenly one curve for the spin minority potential in Fig. 4. This
advantages. Comparing with the LSDSICA, it offers a sub-s because for the nitrogen atom the two orbitalsahd Z,
stantial improvement over the total energy as given by théoth are spherical symmetric, so the LSDSICA and
OEP-HF results in Table I. While the LSDXSICE total en- LSDSICE results are extremely close. For the phosphorus

TABLE VI. Results of Kohn-Sham calculation with LSDSICE energy functional for some atomic systems
with a spherical total eletron density. Atomic units are used.

z OEP-LSDSICE KLI-LSDSICE OEP-LSDSICE KLI-LSDSICE
Exchange-onlyg; Exchange-only-e¢,

7 —54.4259 —54.4247 0.5205 0.5212
10 —128.6158 —128.6148 0.7893 0.7902
11 —161.9306 —161.9297 0.1867 0.1869
12 —199.6987 —199.6975 0.2564 0.2565
15 —340.8002 —340.7979 0.3510 0.3511
18 —526.8925 —526.8890 0.5407 0.5410
19 —599.2417 —599.2378 0.1541 0.1542
20 —676.8476 —676.8434 0.2008 0.2009

| (with correlation A (with correlation
11 0.1959 0.1958 0.0215 0.0215
12 0.2847 0.2847
19 0.1653 0.1653 0.0204 0.0204

20 0.2284 0.2284




3946 JIQIANG CHEN, J. B. KRIEGER, YAN LI, AND G. J. IAFRATE 54

functional. This suggests the application of the KLI-LSDSIC

approach to more complex systems in performing optimized
effective potential calculations for which the exact OEP in-

tegral equation cannot be solved.

Our objective is also to investigate how the LSDSIC en-
ergy functional works within a Kohn-Sham theory. This is
done by comparing the OEP-LSDSICX and OEP-HF calcu-
lations. The LSDSIC is shown to be a much better approxi-
mation than the LSD alone in predicting most of the elec-
tronic properties. The LSDSIC predicts with a high accuracy
etV the total energy and the highest-occupied orbital energy.
0.01 0.1 1 10 Self-consistent calculations for negative ions become pos-

r(au) sible with the LSDSIC energy functional and the resulting
electron affinities are in fair agreement with experiments,

FIG. 4. Comparison of the exchange potential from thewhile the conventional LSD is not applicable to such sys-
exchange-only OEP-LSDSICE calculatigsolid lineg with the re-  tems. The application of the central-field approximation is an
sults from OEP-LSDSICA calculatiofdashed lings The curves issue on how to implement the self-interaction correction.
with no “bump” are the spin-majority potentials. The spin- \We show that the LSDSICE total energy is much better than
minority potentials in both approximations are nearly identical andthgt of LSDSICA, but other quantities such as the ionization
the difference between them are not discernible in this figure. potential and electron affinity are not improved if not made

. o slightly worse.
atom, the improvement of the Kohn-Sham potentials is not The L SDSIC Kohn-Sham potential is deeper than that of

discernible in the scale of Fig. 4, so its LSDSICE potentialsthe 0EP-HF and the LSD one is shallower. However, the

are not presented. LSDSIC potential is much closer to the exact one, and in
particular, it has the correct1/r long-range behavior so that

VI. CONCLUSIONS the highest-occupied orbital energy is accurately approxi-

We have performed self-consistent Kohn-Sham atomi ated. One of the unfortunate respects is that the "bimnp

calculations with self-interaction-corrected LSD exchange umpg"” in the exact potentials igor arg often missed in

and exchange-correlation energy functionals. One of our ma%—he results of the LSDSIC. Numerical evidence shows that

- : ; : ; he LSDSIC potential of a spin channel has a “bump” only
jor goals is to investigate how the KLI works with the . .

LSDSIC energy functional. The KLI-LSDSIC is shown to be fé’rha f‘;"r‘]’ "ghtestt atoms. Trl‘e LI.S[E]ﬁ'CE mptoves LdSDS'CtAI
a highly accurate approximation to OEP-LSDSIC, and in onn-sham potentials only slightly, an € fundamenta

particular, both methods predict almost the exact same er{_eatures remain the same.
ergy differences such as the ionization energies and the elec-
tron affinities for atomsZ=1-20. Since it has been previ-
ously shown that the KLI-HF results are very similar to those One of the author§).B.K) is grateful for a grant from the
of the exact OEP-HF, the present results add further suppoti.S. Army Research Office in support of this work. The
to the belief that the KLI is generally an accurate approxi-calculations of this work were performed on SUN worksta-
mation to the OEP method for any orbital-dependent energyions in the Brooklyn College Atrium Computer Laboratory.

Exchange potential (a.u.)
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