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We have investigated the accuracy of the local-spin-density approximation with orbital-density-dependent
self-interaction correction~LSDSIC! as proposed by Perdew and Zunger within a Kohn-Sham approach in
which electrons with a given spin projection all move in a single optimized effective potential~OEP!. We have
also studied the accuracy of the Krieger-Li-Iafrate~KLI ! approximation to the OEP for the same energy
functional in order to assess its applicability to systems in which the integral equation for the OEP cannot be
reduced to a one-dimensional problem, e.g., molecules. Self-consistent Kohn-Sham LSDSIC calculations have
been performed for atoms with atomic numberZ51–20 in the exchange-only case for the total energy, the
highest-occupied orbital energyem , and the expectation value ofr

2. In addition, the structure of the resulting
exchange potential is examined and compared with the exact exchange-only density-functional theory~OEP
method with Hartree-Fock exchange-energy functional! results. Furthermore, we displayem , the ionization
potentialI , and the electron affinityA when both exchange and correlation energy effects are included. Finally,
we also consider the results of evaluating the LSDSIC energy functional by employing the exact~in the
central-field approximation! single particle orbitals as proposed by Harrison. We find that the LSDSIC energy
functional generally leads to calculated values that are superior to those provided by the LSD approximation
and that the KLI approximation yields results in excellent agreement with the corresponding exact OEP results
for this energy functional. In particular, quantities strongly related to the behavior of the valence electrons are
nearly identical in both the OEP and KLI calculations, i.e., the difference between the^r 2& andem is less than
0.2% on average, while the difference between the calculatedI is less than 0.2 millihartree on average with the
corresponding difference of only 0.1 millihartree forA. @S1050-2947~96!08711-2#

PACS number~s!: 31.10.1z, 31.15.Ew, 71.15.Mb

I. INTRODUCTION

One of the central issues in density-functional theory is
how to better approximate the exchange-correlation energy
functionalExc[n], which is a functional of the ground-state
electron-density distributionn~r !, but its explicitly exact
form is not yet known@1#. In practice, the expression given
by the local spin-density~LSD! approximation is often em-
ployed. However, the LSD lacks many of the known prop-
erties of the exactExc[n] @1,2#; for example, the highest-
occupied Kohn-Sham orbital energyem should be equal to
the negative of the removal energy in an exact density-
functional theory, while the LSD approximation often yields
em in error by 40–50 %. Also the exact exchange-correlation
potential Vxc~r ! approaches21/r as r approaches infinity
while the LSD potential approaches zero exponentially fast.
Furthermore, the LSD is not self-interaction free.

Although lacking properties of the exactExc[n], the LSD
approximation provides a starting point for a betterExc[n],
as it is simple and sometimes very useful in predicting im-
portant electronic properties. Various modifications of the
LSD have been proposed@1#. The LSD is derived from a
uniform electron gas that should be a good approximation for
a slowly varying many-electron system, but for real systems

the electron densities could change rapidly. Therefore, gra-
dient corrections to the LSD expression forExc[n] are the
ones that have been carefully investigated@3,4#. Gradient
corrections do improve the prediction for some quantities,
however, none of the fundamental weaknesses of the LSD
discussed above are eliminated.

An alternative approach to modifying the LSD is to incor-
porate orbital effects into the functional such as the local
spin-density approximation with orbital-density-dependent
self-interaction-correction~LSDSIC! proposed by Perdew
and Zunger@5# that we shall employ in this work. With an
orbital-dependent energy functional, the self-interaction cor-
rection could be easily implemented, a correct long-range
behavior for the exchange-correlation potential could be ob-
tained, and the highest-occupied orbital energy could also be
better approximated. The difficulty is that there is no direct
method of calculating the functional derivative of an orbital-
dependent energy functional with respect to the density, and
consequently the conventional Kohn-Sham procedure is not
applicable with the LSDSIC. Perdew and Zunger performed
LSDSIC calculations@5# but followed a Hartree-Fock-like
procedure in which each electron moves in a different~but in
this case, local! potential. Similar calculations have been per-
formed for atoms@6#, molecules@7,8#, and small clusters@9#.

As known for almost two decades, with the Hartree-Fock
energy functional that is orbital-dependent, Kohn-Sham cal-
culations can be carried out by employing the optimized ef-
fective potential~OEP! method@10#. The OEP method de-*Author to whom correspondence should be addressed.
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mands the local effective potential from which the Kohn-
Sham orbitals are obtained such that the resulting total
energy of the system is minimized. This method is general
for any orbital-dependent energy functional but poses great
computational difficulties for systems with less symmetry
than spherically symmetric atoms. Recently, Krieger, Li, and
Iafrate~KLI ! @11# proposed an approximation to the OEP for
any Exc@fis# for arbitrary symmetry and demonstrated that
this approximation is extremely close to the OEP with the
Hartree-Fock exchange-energy functional. Thus the KLI ap-
proximation opens up the possibility of performing orbital-
dependent exchange-correlation energy functional Kohn-
Sham calculations for complex systems such as molecules
@12,13# and solids@14#.

Some atomic calculations with the OEP-LSDSIC~OEP
method with the LSDSIC energy functional! @15# and KLI-
LSDSIC ~KLI method with the LSDSIC energy functional!
@2# have been reported. The OEP-LSDSIC exchange poten-
tial for the beryllium atom is presented in Ref.@15# and
shown to be very similar to the one obtained from an
OEP-HF calculation. This is an encouraging result because
the LSD produces the potential that lacks most of the exact
structural behavior. However, the general properties of the
LSDSIC Kohn-Sham potential remain to be examined as the
beryllium atom is a simple light atom, and we should know
what the situation will be for heavier atoms. The KLI-
LSDSIC calculations presented in Ref.@2# yield results that
are significantly closer to experimental observables than
those obtained from LSD calculations. It should be of inter-
est to compare them with their OEP-LSDSIC counterparts
and see how accurately the KLI approximates the OEP. In
the present paper, we will present results for atomsZ51–20
and show~1! how the exact LSDSIC Kohn-Sham~i.e., OEP!
results behave;~2! how the KLI-LSDSIC approximates the
OEP-LSDSIC, and~3! how different they are from the
OEP-HF calculation that is regarded as the exact exchange-
only density-functional theory@16#.

As discussed by Harrison@17#, how the central-field ap-
proximation should be implemented to a self-consistent
LSDSIC calculation is an interesting issue. While our focus
will be on how the LSDSIC works with both the total density
and individual orbital densities spherically averaged before
substitution into the energy functional, i.e., as initially done
by Perdew and Zunger~we will label this as LSDSICA!, we
will follow Harrison to consider the effects of this averaging
by substituting the exact nonspherical orbital densities~in the
central field approximation! into the LSDSIC energy func-
tional and then performing the angular integrations to obtain
a radially dependent energy functional~we will label this as
LSDSICE!. Harrison reported his Hartree-Fock-like
LSDSICE calculation that shows a great improvement for
the total energies for atoms withZ52–18, compared to the
results provided by the LSDSICA. In addition, we intend to
provide some information on other important quantities such
as the removal energies and electron affinities and the prop-
erties of the Kohn-Sham LSDSICE potential by performing a
Kohn-Sham LSDSICE calculation for some atomic systems
and comparing them with the corresponding LSDSICA
counterparts.

In Sec. II we will briefly review the relevant parts of the
orbital-dependent density-functional theory, and then in Sec.

III we discuss the exchange potentials from OEP-LSDSICA,
KLI-LSDSICA, OEP-HF, and LSD calculations, and in Sec.
IV we discuss other quantities such as the total energies, the
highest-occupied orbital energies, the electron-density distri-
butions, the removal energies, and electron affinities. In Sec.
V we will present some LSDSICE results and compare them
with the LSDSICA, and finally in Sec. VI we present our
conclusions.

II. OPTIMIZED EFFECTIVE POTENTIAL METHOD
AND KLI APPROXIMATION

For a given exchange-correlation energy functionalExc ,
the conventional Kohn-Sham procedure requires performing
a functional derivative with respect to the spin density,ns~r !,
to derive the local effective exchange-correlation potential,
Vxcs(r )5dExc /dns . It is a trivial problem if theExc is ex-
plicitly expressed as a functional of the spin densities. How-
ever, there is no known direct method of performing
dExc@fis~r !#/dns if it is known only in terms of orbitals such
as the Hartree-Fock exchange-energy functional

Ex
HF@f is#52 1

2(
i j s

E drE dr 8

3
f is* ~r !f is~r 8!f js* ~r 8!f js~r !

ur2r 8u
~1!

or the Perdew-Zunger self-interaction-corrected local-density
approximation@5#

Exc
LSDSIC@f is#5Exc

LSD@na ,nb#2(
is

Exc
LSD@nis,0#

2 1
2(
is

E drE dr 8
nis~r !nis~r 8!

ur2r 8u
, ~2!

where Exc
LSD is the exchange-correlation functional in the

local-density approximation, andnis~r ! is the orbital density,
nis~r !5ufis~r !u2 with ns~r !5(inis~r ! andn~r !5(sns~r !.

The optimized effective potential method@10# takes an
indirect approach to obtainVxcs~r ! with an orbital-dependent
energy functional. This is achieved by minimizing the total
energy of a system of interest

E5E@f is#5T@f is#1EH@n#1Exc@f is#

1(
s

E dr Vexts~r !ns~r !, ~3!

where

T@f is#5(
i ,s

^f isu2 1
2¹2uf is&,

EH@n#5 1
2 E dr dr 8

n~r !n~r 8!

ur2r 8u
, ~4!

by varying the Kohn-Sham local effective potentialVs~r !
from which the Kohn-Sham orbitals,fis , are obtained:

3940 54JIQIANG CHEN, J. B. KRIEGER, YAN LI, AND G. J. IAFRATE



2 1
2¹2f is~r !1Vs~r !f is~r !5e isf is~r !,

Vs~r !5Vexts~r !1Vxcs~r !1E dr 8
n~r 8!

ur2r 8u
. ~5!

This leads to the following integral equation for searching
for the ‘‘best’’ Vxcs~r !;

E dr 8Hs~r ,r 8!Vxcs~r 8!5Qs~r !,

Hs~r ,r 8!5(
i

f is* ~r !Gis~r ,r 8!f is~r 8!,

Qs~r !52(
i
E dr 8f is* ~r !Gis~r ,r 8!vxcis~r 8!f is~r 8!,

~6!

where

vxcis~r !5
dExc@f is#

f isdf is*
, ~7!

which is the single-particle potential that normally appears in
a multiple potential theory and differs from orbital to orbital,
and

Gis~r 8,r !5(
jÞ i

f js* ~r 8!f js~r !

e js2e is
, ~8!

which can be obtained by solving the equation

@2 1
2 ¹21Vs~r !2e is#Gis~r ,r 8!

5d~r2r 8!2f is~r !f is* ~r 8!. ~9!

Self-consistently solving the integral equation Eq.~6! would
produce the exact Kohn-Sham results with an orbital-
dependent energy functional. This computational scheme is
manageable for systems with a high symmetry such as
atoms, but becomes difficult for complex systems.

The KLI approximation@11# to the OEP is made by trans-
forming the OEP integral equation to a simpler form and
omitting some terms whose average values over theis state
are zero, thus obtaining the following equation for construct-
ing the Kohn-Sham effective exchange-correlation potential
in a much simpler way:

Vxcs~r !5Vxcs
s ~r !1 (

iÞm

nis~r !

ns~r !
~V̄xcis2 v̄xcis!, ~10!

where the sum does not include the highest-occupied orbital
ms, and

Vxcs
S ~r !5(

i

nis~r !

ns~r !
vxcis~r !, ~11!

which is essentially the exact Slater~i.e., average Fock! po-
tential when the Hartree-Fock exchange-energy functional is
taken for Exc@fis~r !#. V̄xcis and v̄xcis are the expectation
values ofVxcis(r ) andvxcis(r ) with respect to theis orbital.

The KLI Vxcs(r ) is much easier to construct than is the
exact OEP. For a givenExc@fis~r !# such as the expression
~1! or ~2!, Eqs. ~5!, ~7!, ~10!, and ~11! can be solved self-
consistently. Also the KLI method explicitly demonstrates
how the Kohn-Sham local effective potential can be con-
structed from an orbital-dependent possibly nonlocal energy
functional. As an example, in Fig. 1 we show the final con-
vergent results forvxi(r ), V x

S(r ), andVx~r ! for the magne-
sium atom, from an exchange-only KLI calculation with the
LSDSICA energy functional. The magnesium atom is a spin-
unpolarized system, so we have ignored the spin coordinate.
It is seen thatvxi(r ) ~i51s, 2s, 3s, and 2p! somehow cross
each other, and their depths at smallr are not in the same
order as that of the corresponding energy eigenvalues. For
i52s and 3s, the vxi(r ) has cusps that are located at the
zeros of the 2s and 3s orbital wave functions. The KLI
approach first samples thevxi(r ) according to the weight of
the i th orbital density in the total densityn(r ) to construct
the Slater potentialV x

S(r ); consequently,V x
S(r ) tends to

vxi(r ) in a region whereni(r ) is dominant in the total den-
sity n(r ). In particular, we see thatV x

S(r ) is very close to
vx1s(r ) at smallr and assumes the same long-range tail of
vx3s(r ) at larger that corresponds to the highest-occupied
orbital that is most extended for this system. Obviously the
V x

S(r ) has the21/r long-range behavior because

Vx
S~r !5(

i

ni~r !
1
2 n~r !

vxi
LSDSIC~r !→v3s

LSDSIC~r !

5Vx
LSD@ 1

2 n~r !, 12 n~r !#2Vx
LSD@n3s~r !,0#

2E dr
n3s~r 8!

ur2r 8u
→2

1

r
~r→`!, ~12!

where the LSDSIC energy functional, the expression Eq.~2!,
has been employed, andVx

LSD@na ,nb# is the expression for
the LSD exchange potential. From Eq.~10! it can be seen
that

FIG. 1. Thevxi~r !, Vx
S~r !, andVx~r ! for the magnesium atom

resulting from the exchange-only self-consistent KLI-LSDSICA
calculation. The solid lines arevxi~r !, and they arevx2s~r !, vx3s~r !,
vx1s~r !, andvx2p~r ! from above to below according to their values
at r50.001 a.u. in contrast to the order of the eigenvalues
e1s,e2s,e2p,e3s. The short-dashed line isVx

S~r ! and the long-
dashed line isVx~r !.
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Vx~r !→Vx
S~r !→2

1

r
~r→`!, ~13!

which is the correct behavior for the exchange potential.
However,V x

s(r ) is too deep at smallr . The second term in
the KLI equation ~10! adjusts the depth using again the
weight of the orbital densities in total density for the expec-
tation values of thevxi(r ) andVx(r ). The resultingVx(r ) is
smooth, with no cusps, lies far aboveV x

S(r ) at smallr , and
quickly goes toV x

S(r ) when r becomes large.

III. KOHN-SHAM EXCHANGE POTENTIAL

To show how the LSDSIC energy functional works, in
this section we present the Kohn-Sham exchange potentials
from various exchange-only calculations. We will refer to
the exchange-only LSD and LSDSIC as LSDX and
LSDXSIC, respectively. Figure 2 shows our results for the
nitrogen and phosphorus atoms, each atom having threep
electrons with parallel spins in its highest-energy subshell
and an emptyp shell with opposite spin projection. The
OEP-LSDXSICA and OEP-HF potentials represent the exact
Kohn-Sham results for the LSDXSICA and HF energy func-
tionals, respectively, and the latter is defined as the exact
exchange-only Kohn-Sham potential. It is seen from Fig. 2
that besides a correct long-range behavior, the OEP-
LSDXSICA potential is substantially better than that of
LSDX compared to the OEP-HF, showing that the
LSDXSICA exchange-energy functional represents a signifi-

cant improvement over the LSDX. Figure 2 also shows that
the KLI-LSDXSICA potential is a very good approximation
to the OEP-LSDXSICA, a large difference occurs only deep
in the core region where the electron radial density is small,
and therefore the consequence should be minor. A more en-
couraging result is that as far as an approximation to the
OEP-HF exchange-potential is concerned, KLI-LSDXSICA
is equally accurate as the OEP-LSDXSICA, showing the
strong computational ability of the KLI to produce an accu-
rate Kohn-Sham potential with an orbital-dependent energy
functional.

However, the LSDXSICA does not generally produce the
Kohn-Sham potential with all structural behaviors of the ex-
act exchange-only density-functional theory such as
‘‘bumps.’’ Bumps are a characteristic of the exact exchange
potential for atomic systems and they exist as a barrier sepa-
rating shells@18,19#. For example, there is a bump for the
nitrogen atom between then51 and 2 shells, and there are
two bumps for the phosphorus atom, one between then51
and 2, and the other betweenn52 and 3. Figure 2 shows that
the OEP-LSDSICA spin-minority potential for the nitrogen
atom does have a bump similar to that in the corresponding
OEP-HF counterpart, however, there are no bumps for all
other cases for the nitrogen and phosphorus atoms but pla-
teaus instead.

As we mentioned earlier, the OEP-LSDXSICA Kohn-
Sham exchange potential for the beryllium atom is presented
in Ref. @15# and the potential appears to have all the exact
structural behaviors. Clearly it is not a general result. To see
more about this, we plot in Fig. 3 the OEP-LSDSICA poten-
tials for atomsZ54–10. For the beryllium atom, or the spin-
minority channel of the atomsZ55–7, there is a bump in the
corresponding exchange potential. We notice that in all these
cases there are no more than two electrons in a given spin
channel and when there are more electrons in a spin channel,
the bump in the exchange potential of this channel will
quickly be smoothed out. Therefore, generally speaking,
there are no bumps in the LSDXSICA Kohn-Sham exchange
potential except for a few light atoms. The beryllium atom is
the only closed-shell atom whose exchange potential has a
bump.

FIG. 2. The exchange potentials from exchange-only Kohn-
Sham calculations for the nitrogen and phosphorus atoms. The solid
line is the result of the OEP calculation with the Hartree-Fock
exchange-energy functional, the long and short dashed lines are,
respectively, results of OEP and KLI calculations with the
LSDXSICA exchange-energy functional, and the dotted line is the
result of the LSD exchange-energy functional calculation.

FIG. 3. The exchange potential from exchange-only OEP-
LSDSICA calculation for atomsZ54–10. According to their values
at smallr , the shallowest one is forZ54, and then forZ55, 6, 7, 8,
9, and the deepest one is forZ510.
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IV. ENERGIES, DENSITY DISTRIBUTIONS,
AND ENERGY DIFFERENCES

In Sec. III we compared the exchange potentials from
exchange-only OEP-LSDSICA, KLI-LSDSICA, OEP-HF,
and LSD calculations, and discussed their common features
and differences. In this section, we present some calculated
physical properties of the atomic systems forZ51–20 from
those Kohn-Sham approaches with exchange-only and
exchange-correlation energy functionals and discuss their
merits and defects.

Tables I and II present, respectively, the total energiesEt
and the highest-occupied orbital energiesem from exchange-
only calculations. We first compare results from the KLI-
LSDXSICA and OEP-LSDXSICA. The KLI-LSDXSICA to-
tal energy is slightly higher than that of OEP-LSDXSICA,
but the difference is two orders of magnitude smaller than
the corresponding highest-occupied orbital energy, which is
a good approximation to the removal energy. For example,
em'20.200 a.u. forZ520 while the energy difference is
0.004 a.u. Comparing the highest-occupied orbital energies,
the greatest difference is 0.0016 a.u. atZ510, which is about
0.2% of the OEP orbital energy, and forZ520, the differ-
ence is 0.0001 a.u. The average difference between theem
for these twenty atoms is,0.0005 a.u. These results support
our earlier assessment that the deviation of the KLI exchange
potential from the OEP at smallr has small effects on ob-
servable quantities, especially those related to the valence
electrons.

Comparing the LSDXSICA with the OEP-HF, all the
LSDXSICA total energies listed in Table I are lower while
all the LSDX counterparts are higher. However, the devia-
tion of the Kohn-Sham LSDXSICA total energy, either the
OEP-LSDXSICA or the KLI-LSDXSICA, is about13 smaller
than that of the LSDX. The LSDXSICA orbital energy in

most cases is above that of the OEP-HF, so is the LSDX.
However, the LSDXSICA deviation from the OEP-HF is less
than 10%, but the LSDX orbital energy is about 40–50 % in
error. The results show that the LSDXSICA functional sub-
stantially reduces the error in the total energy and the
highest-occupied orbital energy. The excellent prediction for
em clearly originates from the correct21/r long-range tail in
the LSDXSICA exchange potential.

The expectation values ofr 2 provide a measure for evalu-
ating the accuracy of an electron-density distribution, par-
ticularly in the valence electron region. In Table III we
present^r 2& from the exchange-only Kohn-Sham calcula-
tions. It is shown that the density distributions from the OEP-
LSDXSICA and KLI-LSDXSICA are very close, but they
are clearly distinct from the LSDX. In all of the cases given
in Table III, the LSDXSICA densities are more contracted
than the LSDX. However, the LSDXSICA densities gener-
ally are not contracted enough compared with the OEP-HF
results. The exceptions are those atoms for which the
highest-occupied orbital iss type such as atomsZ511, 12,
19, and 20. Examination of the expectation values ofr 2 with
respect to individual orbitals shows that thes orbital is the
only orbital that makes the reverse of the contraction of the
total density distribution. As shown in Table II, it is these
atoms whose LSDXSICAem is below the corresponding
OEP-HF orbital energy.

Correlation interaction has to be included in order to com-
pare with experimental results. In Tables IV and V we
present our Kohn-Sham results from LSD and LSDSICA
calculations with the Perdew-Wang LSD correlation func-
tional @20#; we denote them LSDXC and LSDXCSICA@20#,
respectively. We compare them with experiments on energy
differences for a neutral atom ofN electrons such as the

TABLE I. Total energies in atomic units for atomsZ51–20
from various exchange-only Kohn-Sham calculations.

Z OEP-HF OEP-LSDXSICA KLI-LSDXSICA LSDX

1 20.5000 20.5000 20.5000 20.4571
2 22.8617 22.8617 22.8617 22.7236
3 27.4325 27.4347 27.4342 27.1934
4 214.5724 214.5795 214.5784 214.2233
5 224.5283 224.5502 224.5490 224.0636
6 237.6889 237.7462 237.7450 237.1119
7 254.4034 254.5075 254.5064 253.7093
8 274.8121 274.9635 274.9624 273.9919
9 299.4092 299.6361 299.6351 298.4740
10 2128.5454 2128.8595 2128.8586 2127.4907
11 2161.8566 2162.2181 2162.2170 2160.6443
12 2199.6116 2200.0285 2200.0273 2198.2488
13 2241.8733 2242.3425 2242.3409 2240.3561
14 2288.8507 2289.3795 2289.3775 2287.1820
15 2340.7150 2341.3014 2341.2989 2338.8885
16 2397.5016 2398.1510 2398.1483 2395.5190
17 2459.4776 2460.1997 2460.1966 2457.3435
18 2526.8122 2527.6028 2527.5994 2524.5174
19 2599.1591 2600.0133 2600.0094 2596.7115
20 2676.7519 2677.6797 2677.6756 2674.1601

TABLE II. Values of the negative of the highest occupied or-
bital energies in atomic units for atomsZ51–20 from various
exchange-only Kohn-Sham calculations.

Z OEP-HF OEP-LSDXSICA KLI-LSDXSICA LSDX

1 0.5000 0.5000 0.5000 0.2469
2 0.9180 0.9180 0.9180 0.5170
3 0.1963 0.1958 0.1957 0.1004
4 0.3092 0.3081 0.3082 0.1700
5 0.3108 0.2893 0.2897 0.1201
6 0.4358 0.4118 0.4124 0.1960
7 0.5714 0.5357 0.5363 0.2763
8 0.5083 0.4778 0.4788 0.2097
9 0.6734 0.6438 0.6452 0.3259
10 0.8507 0.8062 0.8078 0.4431
11 0.1821 0.1862 0.1864 0.0967
12 0.2530 0.2560 0.2561 0.1421
13 0.2094 0.1914 0.1915 0.0862
14 0.2970 0.2744 0.2747 0.1436
15 0.3920 0.3579 0.3582 0.2033
16 0.3636 0.3433 0.3438 0.1742
17 0.4734 0.4467 0.4473 0.2542
18 0.5907 0.5486 0.5493 0.3338
19 0.1477 0.1536 0.1537 0.0805
20 0.1956 0.2004 0.2005 0.1114
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removal energy~or ionization energy! I5Et[N21]2Et[N]
and the electron affinityA5Et[N]2Et[N11], where
Et[M ] is the ground-state total energy of theM -electron
system. In Tables IV and V we also list the highest-occupied
orbital energies for the corresponding atomic systems for

comparison because for an accurate exchange-correlation en-
ergy functional,2em should be very close to the energy dif-
ference.

For all the systems considered here, the removal energies
predicted from the KLI-LSDXCSICA have almost no differ-
ence with the corresponding OEP-LSDXCSICA counter-
parts. For the twenty atoms considered the average differ-
ence between the OEP and KLI values of the ionization
energy is less than 0.0002 a.u. and the greatest deviation is
0.0006 a.u. Similarly, the average difference between the
OEP and KLI values of the electron affinities given in Table
V is only 0.0001 a.u. with the maximum discrepancy of
0.0003 a.u. It is indeed encouraging as it is well known that
to obtain accurate results for negative ions is particularly
difficult.

Comparing I with 2em , we see that the LSDSICA
exchange-correlation energy functional satisfies the condi-
tion 2em5I to within a few percent while2em'0.60I when
the LSD is employed. The same LSDSICA pattern holds for
electron affinities. Due to error cancellation, the LSD pre-
dicts ionization energies with accuracy comparable to that of
LSDSICA calculations. However, the LSD is not applicable
to negative ion calculations as it does not yield bound states
for such systems, so there are no LSD results given in Table
V.

V. LSDSICE KOHN-SHAM POTENTIAL, ENERGY,
AND ENERGY DIFFERENCE

In this section we present some results from LSDSICE
Kohn-Sham calculations. We consider only those atoms

TABLE III. Expectation values ofr 2 in atomic units for atoms
Z51–20 from various exchange-only Kohn-Sham calculations.

Z OEP-HF OEP-LSDXSICA KLI-LSDXSICA LSDX

1 3.0000 3.0000 3.0000 3.4998
2 1.1848 1.1848 1.1848 1.3275
3 6.2145 6.2224 6.2350 6.4685
4 4.3316 4.3442 4.3457 4.4809
5 3.1690 3.1931 3.1999 3.3918
6 2.2967 2.3161 2.3194 2.4543
7 1.7253 1.7486 1.7504 1.8461
8 1.4032 1.4228 1.4252 1.5108
9 1.1386 1.1538 1.1554 1.2211
10 0.9372 0.9513 0.9524 1.0036
11 2.4708 2.3895 2.3820 2.4506
12 2.4693 2.4177 2.4129 2.4575
13 2.5772 2.6014 2.5984 2.6668
14 2.3042 2.3373 2.3354 2.3788
15 2.0174 2.0570 2.0557 2.0856
16 1.8269 1.8566 1.8552 1.8847
17 1.6265 1.6520 1.6508 1.6744
18 1.4465 1.4709 1.4699 1.4889
19 2.6939 2.5777 2.5732 2.6087
20 2.8282 2.7320 2.7289 2.7503

TABLE IV. Removal energies~the ionization energies! I and the highest occupied orbital energiesem for atomsZ51–20 from
experiments~exact! ~Z52–10 from@21#, Z511–18 from@22,23# andZ519–20 from@24#! and various Kohn-Sham calculations. Atomic
units are used.

EXACT OEP-LSDXCSICA KLI-LSDXCSICA LSDXC
Z I(2em! I 2em I 2em I 2em

1 0.500 0.5000 0.5000 0.5000 0.5000 0.4787 0.2690
2 0.904 0.9198 0.9481 0.9198 0.9481 0.8927 0.5703
3 0.198 0.2005 0.1974 0.2001 0.1973 0.2011 0.1163
4 0.343 0.3348 0.3284 0.3346 0.3285 0.3318 0.2058
5 0.305 0.3259 0.3056 0.3265 0.3059 0.3151 0.1506
6 0.414 0.4447 0.4263 0.4451 0.4268 0.4323 0.2272
7 0.536 0.5643 0.5493 0.5646 0.5499 0.5510 0.3085
8 0.500 0.5195 0.5265 0.5198 0.5274 0.5108 0.2724
9 0.641 0.6730 0.6840 0.6732 0.6855 0.6637 0.3839
10 0.795 0.8244 0.8411 0.8245 0.8429 0.8152 0.4978
11 0.189 0.1952 0.1895 0.1951 0.1896 0.1972 0.1132
12 0.281 0.2842 0.2752 0.2842 0.2753 0.2839 0.1755
13 0.220 0.2220 0.2047 0.2219 0.2047 0.2204 0.1110
14 0.300 0.3070 0.2868 0.3069 0.2871 0.3039 0.1699
15 0.386 0.3918 0.3701 0.3916 0.3705 0.3870 0.2311
16 0.381 0.3939 0.3825 0.3940 0.3831 0.3877 0.2286
17 0.477 0.4946 0.4805 0.4946 0.4813 0.4870 0.3047
18 0.579 0.5947 0.5793 0.5946 0.5800 0.5857 0.3822
19 0.159 0.1646 0.1579 0.1646 0.1580 0.1664 0.0961
20 0.228 0.2278 0.2179 0.2278 0.2181 0.2285 0.1415
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whose total electron densities are spherically symmetric so
that the different treatments of the central-field approxima-
tion in LSDSICA and LSDSICE calculations are only due to
the treatment of the nonspherical orbitals in the self-
interaction correction part of the LSDSIC energy functional,
thus some insights on SIC could be clearly obtained. The
total densities of atoms forZ51–4 are spherical, but there is
no difference between LSDSICA and LSDSICE because the
individual orbital densities of these atoms are all spherically
symmetric. We list atomic systems in Table VI forZ<20 for
which its total density is spherical exceptZ<4.

Table VI shows that the KLI approximation is as close to
the exact OEP results when the LSDSICE energy functional
is employed as it is to the OEP when the LSDSICA is used.
With respect to the quality of energy functionals, the
LSDSICE shows significant advantages and also minor dis-
advantages. Comparing with the LSDSICA, it offers a sub-
stantial improvement over the total energy as given by the
OEP-HF results in Table I. While the LSDXSICE total en-

ergy is still too deep, it reduces the error by a factor of 5–10.
However, even though its predictions for the highest-
occupied orbital energy, for the removal energy and for the
electron affinity are similar to those obtained by employing
the LSDSICA, it appears all of them for all the systems
considered tend slightly to go in the wrong direction rather
than to be closer to the exact values.

Figure 4 shows a comparison between the OEP-
LSDXSICE and the OEP-LSDSXSICA exchange potentials.
The LSDSICE potentials retain the same fundamental struc-
ture as shown in the LSDSICA results. The nitrogen atom
spin majority potential is slightly shallower than the
LSDSICA counterpart. Comparison with Fig. 2 shows that
the OEP-LSDXSICA potential is too deep, and that the
LSDSICE improves the potential but only slightly. We see
only one curve for the spin minority potential in Fig. 4. This
is because for the nitrogen atom the two orbitals, 1s and 2s,
both are spherical symmetric, so the LSDSICA and
LSDSICE results are extremely close. For the phosphorus

TABLE V. Electron affinitiesA and the highest occupied orbital energies of the corresponding negative ionsem for light atoms from
experiments~exact! @24# and various Kohn-Sham calculations. Atomic units are used.

EXACT OEP-LSDXCSICA KLI-LSDXCSICA
Z A(2em! A 2em A 2em

1 0.028 0.0263 0.0625 0.0263 0.0624
3 0.023 0.0205 0.0251 0.0207 0.0251
5 0.010 0.0243 0.0280 0.0246 0.0283
6 0.047 0.0621 0.0722 0.0623 0.0727
8 0.054 0.0649 0.0992 0.0650 0.1002
9 0.125 0.1376 0.1866 0.1377 0.1878
11 0.020 0.0214 0.0244 0.0214 0.0244
13 0.017 0.0233 0.0203 0.0233 0.0203
14 0.051 0.0584 0.0542 0.0584 0.0542
16 0.076 0.0915 0.0950 0.0915 0.0952
17 0.133 0.1467 0.1506 0.1467 0.1509
19 0.018 0.0203 0.0208 0.0203 0.0208

TABLE VI. Results of Kohn-Sham calculation with LSDSICE energy functional for some atomic systems
with a spherical total eletron density. Atomic units are used.

Z OEP-LSDSICE KLI-LSDSICE OEP-LSDSICE KLI-LSDSICE

Exchange-onlyEt Exchange-only2em
7 254.4259 254.4247 0.5205 0.5212
10 2128.6158 2128.6148 0.7893 0.7902
11 2161.9306 2161.9297 0.1867 0.1869
12 2199.6987 2199.6975 0.2564 0.2565
15 2340.8002 2340.7979 0.3510 0.3511
18 2526.8925 2526.8890 0.5407 0.5410
19 2599.2417 2599.2378 0.1541 0.1542
20 2676.8476 2676.8434 0.2008 0.2009

I ~with correlation! A ~with correlation!
11 0.1959 0.1958 0.0215 0.0215
12 0.2847 0.2847
19 0.1653 0.1653 0.0204 0.0204
20 0.2284 0.2284
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atom, the improvement of the Kohn-Sham potentials is not
discernible in the scale of Fig. 4, so its LSDSICE potentials
are not presented.

VI. CONCLUSIONS

We have performed self-consistent Kohn-Sham atomic
calculations with self-interaction-corrected LSD exchange
and exchange-correlation energy functionals. One of our ma-
jor goals is to investigate how the KLI works with the
LSDSIC energy functional. The KLI-LSDSIC is shown to be
a highly accurate approximation to OEP-LSDSIC, and in
particular, both methods predict almost the exact same en-
ergy differences such as the ionization energies and the elec-
tron affinities for atomsZ51–20. Since it has been previ-
ously shown that the KLI-HF results are very similar to those
of the exact OEP-HF, the present results add further support
to the belief that the KLI is generally an accurate approxi-
mation to the OEP method for any orbital-dependent energy

functional. This suggests the application of the KLI-LSDSIC
approach to more complex systems in performing optimized
effective potential calculations for which the exact OEP in-
tegral equation cannot be solved.

Our objective is also to investigate how the LSDSIC en-
ergy functional works within a Kohn-Sham theory. This is
done by comparing the OEP-LSDSICX and OEP-HF calcu-
lations. The LSDSIC is shown to be a much better approxi-
mation than the LSD alone in predicting most of the elec-
tronic properties. The LSDSIC predicts with a high accuracy
the total energy and the highest-occupied orbital energy.
Self-consistent calculations for negative ions become pos-
sible with the LSDSIC energy functional and the resulting
electron affinities are in fair agreement with experiments,
while the conventional LSD is not applicable to such sys-
tems. The application of the central-field approximation is an
issue on how to implement the self-interaction correction.
We show that the LSDSICE total energy is much better than
that of LSDSICA, but other quantities such as the ionization
potential and electron affinity are not improved if not made
slightly worse.

The LSDSIC Kohn-Sham potential is deeper than that of
the OEP-HF and the LSD one is shallower. However, the
LSDSIC potential is much closer to the exact one, and in
particular, it has the correct21/r long-range behavior so that
the highest-occupied orbital energy is accurately approxi-
mated. One of the unfortunate respects is that the ‘‘bump~or
bumps!’’ in the exact potentials is~or are! often missed in
the results of the LSDSIC. Numerical evidence shows that
the LSDSIC potential of a spin channel has a ‘‘bump’’ only
for a few lightest atoms. The LSDSICE improves LSDSICA
Kohn-Sham potentials only slightly, and the fundamental
features remain the same.
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