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A Kohn-Sham formalism for the treatment of excited states within the density-functional theory~DFT! is
presented. DFT exchange and correlation energy functionals for excited states are defined. Explicit expressions
for these functionals are derived by generalizing a recent DFT perturbation theory. A computational scheme for
the treatment of excited states within the DFT is suggested. Differences of Kohn-Sham eigenvalues are shown
to be well-defined approximations for excitation energies. Correction terms to these approximations are pre-
sented. Perturbation theory expansions for band gaps are discussed.@S1050-2947~96!06511-0#

PACS number~s!: 31.15.Ew, 31.50.1w, 71.45.Gm

I. INTRODUCTION

Density-functional theory~DFT! usually, somewhat in-
correctly, is labeled as a ground-state theory and with few
exceptions@1–5# is employed exclusively for the treatment
of electronic ground states and their properties. However, the
Hohenberg-Kohn theorem@6#, the basis of DFT, states that
the ground-state density of an electronic system determines
in addition to its electron number also its external potential
and, therefore, its Hamiltonian operator. Because the Hamil-
tonian operator completely characterizes all states of the sys-
tem, the excited states as well as the ground state are deter-
mined by the ground-state density. Nevertheless, the attitude
of considering DFT as a ground-state theory has been justi-
fied because, so far, there exists no formalism, like the Kohn-
Sham~KS! formalism for ground states@7#, that exploits the
formal dependence of excited states on the ground-state den-
sity and leads to a feasible procedure to treat excited states
within DFT.

In this work, a KS formalism for the treatment of excited
states within a DFT framework is introduced. DFT exchange
and correlation energies for excited states are properly de-
fined within the introduced formalism. The KS formalism for
excited states is then combined with a recently presented
DFT perturbation theory@8#. This combination results in a
computational procedure to treat excited states within DFT
that, in principle, is exact. The density functionals for the
exchange and correlation energies of excited states are ob-
tained as expressions of KS orbitals, KS eigenvalue differ-
ences, and certain parts of the exchange-correlation potential.

KS orbital eigenvalues, so far, are believed to have no
physical meaning, except for the eigenvalue of the highest
occupied KS orbital, which is the negative of the ionization
energy. Here, differences of KS eigenvalues are identified as
excitation energies and energy differences between excited
states in zeroth order with respect to the electron-electron
interaction. The corresponding higher-order correction terms
are derived. Perturbation theory expansions for excitation en-
ergies are related to band gaps of solids.

Electronic systems of all types shall be considered here,
atoms and molecules as well as crystalline solids. Their wave
functions may exhibit an exponential decay far from the sys-
tem or may have periodic boundary conditions but they must
be finite in order to obtain normalizable wave function. The

modeling of crystalline solids by a large but finite number of
unit cells leads to the usual way of investigating them by
explicitly treating one unit cell and by taking the repetition
of the cell into account by a summation ink space. For the
treatment of unbound states of atoms or molecules the sys-
tem is placed in a large but finite box in order to obtained
normalizable wave function. For simplicity only systems
with a nondegenerate ground state are considered. However,
the formalism derived here can easily be generalized to de-
generate systems@9# within the framework of the symme-
trized DFT presented in Ref.@10#.

II. KS FORMALISM FOR EXCITED STATES

Electronic systems are characterized by their electron
numberN and by an external potentialv~r ! determining their
Hamiltonian operatorT̂1V̂ee1 v̂ that consists of the opera-
tors of the kinetic energyT̂ and of the electron-electron re-
pulsion V̂ee besides the operatorv̂ corresponding to the ex-
ternal potentialv~r !. The standard KS formalism for ground
states is based on the noninteracting,N-electron Schro¨dinger
equation

@ T̂1 v̂s#F05E0
KSF0 , ~1!

the KS equation, withv̂s being theN-electron operator cor-
responding to a local multiplicative potentialvs~r ! that as a
consequence of the Hohenberg-Kohn theorem@6# is deter-
mined, up to an additive constant, by the requirement that the
ground state of the KS Hamiltonian operatorT̂1 v̂s , the KS
wave functionF0, yields the same electron densityr0~r ! as
the ground state of the corresponding interacting real system.
For the nondegenerate systems considered hereF0 is a single
Slater determinant consisting ofN spin orbitalsw i . The po-
tential vs~r ! is given as the sum

vs~r !5v~r !1u~@r0#;r !1vx~@r0#;r !1vc~@r0#;r ! ~2!

of the external potentialv~r ! and the Coulomb potential
u~@r0#;r !, the exchange potentialvx~@r0#;r !, and the correla-
tion potentialvc~@r0#;r !, which are functionals of the ground-
state densityr0~r !. After Eqs.~1! and ~2! have been solved
self-consistently the ground-state energyE 0

1 ~the meaning of
the superscript 1 is explained below! of the interacting sys-
tem is obtained as
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E0
15^F0uT̂uF0&1U@r0#1Ex@r0#1Ec@r0#

1E dr r0~r !v~r ! ~3!

with U[r0], Ex[r0], and Ec[r0] being the Coulomb, the
exchange, and the correlation energy, respectively.

Note that it is not necessary to know the exchange and
correlation potentials and energies as explicit functionals of
the density to carry out the standard Kohn-Sham procedure.
It is sufficient to know the exchange and correlation poten-
tials and energies as functionalsvx(@$w i ,« i2« i 8%#;r ),
vc(@$w i ,« i2« i 8%#;r ), Ex@$w i ,« i2« i 8%#, and
Ec@$w i ,« i2« i 8%# of the KS orbitalsw i and differences« i
2« i 8 of their eigenvalues« i . Because the KS orbitals and
their eigenvalue differences are functionals of the ground-
state densityr0~r ! any functional of them also is a functional
of r0~r !. The explicit expressions for the density functionals
for the exchange and correlation energies of excited states
derived later on depend on KS orbitals and their eigenvalue
differences.

The adiabatic connection or coupling constant path@11#
characterized by the Schro¨dinger equation

@ T̂1aV̂ee1 v̂a#Cn
a5En

aCn
a ~4!

represents a continuous connection between a noninteracting
model system, the KS system, and the real physical system.
In this work not only the ground stateC0

a but also thenth
eigenstateC n

a of the coupling constant Hamiltonian operator
T̂1aV̂ee1 v̂a is considered. The coupling constanta, or to
be precise, its square root, can be interpreted as a factor
scaling the elementary charge of the electron. The potential
va~r ! leading to theN-electron operatorv̂a in Eq. ~4!
through the Hohenberg-Kohn theorem@6# is defined by the
requirement that the ground stateC0

a yields the densityr0~r !
independently of the value of the coupling constanta and
therefore is a functionalva~@r0#;r ! of r0~r !. This defines
va~@r0#;r ! only up to ana-dependent additive constant for
aÞ1. For a51, the additional requirement thatva~@r0#;r !
equals the external potentialv~r !, i.e., v1~@r0#;r !5v~r !,
leaves no freedom for an additive constant. Fora51 Eq. ~4!
turns into the Schro¨dinger equation of the real physical sys-
tem whereas fora50 the corresponding KS equation results,
vs~r !5v0~@r0#;r !. Therefore the eigenstates of the KS Hamil-
tonian operatorT̂1 v̂s , the KS statesFn , and their energies
En
KS alternatively may be denoted asC n

0 and En
0, i.e.,

C n
05Fn andEn

05En
KS.

Now the additional assumption is made that the energetic
order of eigenstatesC n

a of the same symmetry is preserved
along the adiabatic connection, i.e., when going from the
noninteracting systema50 to the interacting systema51.
Under this assumption,the coupling constant path defined by
the Hamiltonian operator Tˆ1aV̂ee1v̂a establishes a continu-
ous connection between the nth eigenstates of the KS Hamil-
tonian operator and of the interacting physical Hamiltonian
operator. This finding, as simple as it is, is the basis of the
KS formalism for excited states introduced here.

In order to define DFT exchange and correlation energies
for excited states the nth eigenvalue En

a5
^C n

a[r0] uT̂1aV̂ee1 v̂a[r0] uC n
a[r0] & of the coupling con-

stant Hamiltonian, Eq.~4!, is decomposed. The noninteract-
ing kinetic energyTs,n[r0], the DFT exchange energy
Ex,n[r0], and the DFT correlation energyE c,n

a [r0] for the
nth eigenstateC n

a are defined as

Ts,n@r0#5^Fn@r0#uT̂uFn@r0#&, ~5!

Ex,n@r0#5^Fn@r0#uV̂eeuFn@r0#&2Un@r0#, ~6!

Ec,n
a @r0#5^Cn

a@r0#uT̂1aV̂ee1 v̂auCn
a@r0#&

2^Fn@r0#uT̂1aV̂ee1 v̂auFn@r0#&. ~7!

HereUn[r0] is the classical Coulomb interaction of the elec-
tron densityr n

0~r ! of thenth KS stateFn5C n
0. FornÞ0 the

correlation energy contains Coulomb and potential energy
contributions as a consequence of the fact that the electron
density r n

a~r ! of the statesC n
a for nÞ0 varies witha in

contrast to the ground-state densityr0
a~r !5r0~r !. Of course,

for n50 the standard ground-state functionals result. Be-
cause the potentialva~@r0#;r ! that determines the eigenstates
C n

a for a givena is a functional of the ground-state density
r0~r !, the eigenstatesC n

a[r0], their electron density
r n

a~@r0#;r !, and therefore alsoTs,n[r0], Un[r0], Ex,n[r0],
and E c,n

a [r0] are functionals of the ground-state electron
densityr0~r !. The sum of the functionalsTs,n[r0], Un[r0],
Ex,n[r0], andE c,n

a [r0] can be identified as a generalization
F n

a[r0] of the well-known Hohenberg-Kohn functional for
excited states and for varying coupling strengtha. With
these definitions the energyEn

a reads

En
a5^Fn@r0#uT̂uFn@r0#&1Un@r0#1Ex,n@r0#1Ec,n

a @r0#

1E dr rn
0~r !va~r !. ~8!

As in the ground-state formalism, the correlation energy
E c,n

a [r0] contains all parts of the energyEn
a that cannot be

obtained from the corresponding KS wave function
Fn5C n

0. The energyEn
a depends on the choice of the ad-

ditive constant to the potentialva~r ! for all values ofa ex-
cept fora51 whereva~r ! is completely determined by the
requirementv1~r !5v~r !. However, the functionalsTs,n[r0],
Un[r0], Ex,n[r0], and E c,n

a [r0] are independentof the
choice of the additive constant. ForTs,n[r0], Un[r0], and
Ex,n[r0] this follows from the fact that they are determined
exclusively by the KS wave functionFn that is not affected
by an addition of a constant tova~r !. Because the contribu-
tions in the expectation values of Eq.~7! resulting from a
constant added tova~r ! cancel each other and becauseC n

a,
like Fn , is not affected by such an additive constant the
correlation energyE c,n

a [r0] is also independent of an addi-
tional constant.

In order to treat excited states of an electronic system
within a KS formalism, first, a standard KS procedure has to
be carried out to obtain the ground-state densityr0~r ! and the
KS wave functionsFn[r0]. The KS wave functionsFn[r0]
then yield the energiesTs,n[r0], Un[r0], Ex,n[r0], and
* dr r n

0~r !va~r ! by employing Eqs.~5! and ~6!. The corre-
lation energies of the excited states can be obtained by
evaluating the density functionalsE c,n

1 [r0]. Addition of
all energy terms results in the energiesEn

1 of the ex-
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cited states. As in the ground state formalism, the exchange
energy may alternatively be determined by evaluating the
density functionalsEx,n[r0]. This concludes the introduction
of the basic KS formalism for excited states.

III. DFT PERTURBATION THEORY
FOR EXCITED STATES

After having derived the basic KS formalism for excited
states the problem of determining the density functionals
Ex,n[r0] andE c,n

1 [r0] remains. In order to address this prob-
lem and to get further insight into the formalism a recently
introduced DFT perturbation theory is employed@8#. The
DFT perturbation theory is based on the Taylor series of
va~@r0#;r !, v

a~@r0#;r !5( k50
` ak kv~@r0#;r !, andE 0

a with re-
spect toa. In this work the excited-state energiesEn

a are also
developed in Taylor series:En

a5( k50
` ak kEn . The zeroth-

order term 0v(@r0#;r ) equals the KS potentialvs~r !, i.e.,
0v(@r0#;r )5vs(r )5va50(@r0#;r ). The higher-order terms
are related to Coulomb, exchange, and correlation potentials.
Becauseva~@r0#;r ! is defined only up to ana-dependent con-
stant, each of the potentialskv(@r0#;r ) contains an unde-
fined constant. The choice of this constant is only restricted
by the additional requirement that the sum of all
kv(@r0#;r ) yieldsv~r !5va51~@r0#;r !. If the zeroth-order po-
tential, i.e., the KS potential, is determined through Eq.~2!
then this constraint is always obeyed.

In Ref. @8# it was shown that the requirement that the
ground-state densityr0~r ! is invariant along the coupling
constant path allows one to calculate up to an additive con-
stant the potentials kv(r ) for k>1 as functionals
kv„@$w i%,$« i2« i 8%,

1v(r ),...,k21v(r )#;r … of the KS orbitals,
KS eigenvalue differences, and the lower-order potentials
lv(r ) excluding the KS potential0v(r ), i.e., 1< l<k21.
This means for any given KS potential, i.e., for any local
multiplicative potential, all the potentialskv(r ) and therefore
the full exchange-correlation potential can be calculated ex-
actly by order to order recursion. This allows one, in prin-
ciple, to perform an exact KS procedure by self-consistently
solving Eqs.~1! and ~2! using exchange-correlation poten-
tials obtained from thekv(r ) @8#. Of course, in practice only

potentialskv(r ) up to a limited orderk can be treated.
The termskEn of the Taylor series for ground as well as

excited-state energiesEn
a are now obtained using perturba-

tion theory once more:

kEn5
kFn@$w i%,$« i2« i 8%,

1v~r !,...,k21v~r !#

1E dr rn
0~r ! kv~r !. ~9!

The contributions kFn@$w i%,$« i2« i 8%,
1v(r ),...,k21v(r )#,

like the potentialskv(r ), consist of KS orbitals, KS eigen-
value differences, and the lower-order potentialslv(r ) with
1< l<k21 and are independent with respect to the addition
of constants to the potentialskv(r ). This follows from the
change of the energyEn

a as well as of the term
ak* dr r n

0~r !kv~r ! by akNck upon addition of the constant
ck to

kv(r ). Fora51, the physically relevant value ofa, the
terms * dr r n

0~r !kv~r ! can be added up to give
* dr r n

0~r !v~r ! because( k50
` kv~@r0#;r !5v~r ! if the KS po-

tential vs~r !5
0v~r ! is determined in a self-consistent proce-

dure according to Eq.~2!. The energyEn
1 then is given by

En
15 (

k51

`

kFn@$w i%,$« i2« i 8%,
1v~r !,...,k21v~r !#

1E dr rn
0~r !v~r !. ~10!

This allows one to treat, at least in principle, excited states
exactly within DFT, by first performing an exact KS proce-
dure to determine the densitiesr n

0~r !, the potentialskv(r ),
and the KS orbitalsw i and eigenvalues« i . Subsequently Eq.
~10! is used to determine the energiesEn . If other properties
besides the energy shall be investigated then also the wave
functionsC n

1 can be obtained through perturbation theory in
form of their Taylor series.

The zeroth-order term0Fn@r0# equals Ts,n[r0], i.e.,
0Fn@r0#5^Fn@r0#uT̂uFn@r0#&, the first-order term
1Fn@r0# equals Ex,n[r0] plus Un[r0], i.e., 1Fn@r0#
5^Fn@r0#uV̂eeuFn@r0#&, and the higher-order terms sum up
to E c,n

1 [r0]. The second-order term2Fn@r0# is given by

2Fn@r0#5(
jÞn

^Fn@r0#uV̂ee2û@r0#2 v̂x@r0#uF j@r0#&^F j@r0#uV̂ee2û@r0#2 v̂x@r0#uFn@r0#&
En
KS2Ej

KS . ~11!

Perturbation theory yields the functionalskFn@r0# in terms
of ground state and excited KS wave functionsFn and KS
energiesEn

KS. However, these consist of KS orbitals and
eigenvalues and therefore the functionalskFn@r0# also can
be expressed in terms of the latter.

As an example the zero- and first-order energies for an
excited state corresponding to a singly excited KS state are
considered. The KS ground state of a nondegenerate system
is a single Slater determinant withN/2 doubly occupied spa-
tial orbitalsf i . Promotion of one electron from an occupied
orbital f i into an unoccupied orbitalfn gives rise to four
excited KS determinants that have the same KS energies

En
KS but are distinguished by the spin components of the

involved orbitalsf i andfn . The four excited KS determi-
nants can be combined to a singlet and threefold degenerate
triplet state in the usual way. The zeroth-order contributions
0DE(S,i→n) and 0DE(T,i→n) of the excitation energies
between the ground state of the interacting physical system
and the excited states that are adiabatically connected to the
two KS states obtained by promoting an electron fromf i
into fn equal the KS eigenvalue difference«n2« i ,

0DE~S,i→n!50DE~T,i→n!5«n2« i . ~12!
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The first-order terms are given by

1DE~T,i→n!5^fnuv̂x
NL2 v̂x@n0#ufn&

2^f i uv̂x
NL2 v̂x@n0#uf i&2^n i un i &,

~13a!

1DE~S,i→n!5^fnuv̂x
NL2 v̂x@n0#ufn&

2^f i uv̂x
NL2 v̂x@n0#uf i&

2^n i un i &12^n i u in& ~13b!

with ^ i j ust&5* dr dr 8 f i* (r ) f j* (r 8) fs~r ! f t~r 8!/ur2r 8u
and withv̂x

NL being a nonlocal exchange operator of the form
of the Hartree-Fock exchange operator, however, constructed
from theN/2 occupied KS orbitals. Equation~12! demon-
strates that KSorbital eigenvalues are not just auxiliary
quantities without physical meaning; their difference is a
well-defined approximation to excitation energiesof zeroth
order in the electron-electron interaction@12#. The first-order
correction terms~13a! and ~13b! take the symmetry of the
final states into account. It is a general advantage of the
orbital-dependent energy functionals defined here that they
incorporate symmetry in a natural straightforward manner.
The approximate energy functionals currently employed in
standard KS calculations that explicitly depend on the elec-
tron density do not directly account for the symmetry. As a
result, singlet triplet splittings can be estimated only indi-
rectly from the energies of a triplet KS determinant and a KS
determinant that is a mixture of a singlet and a triplet state
@13#. Other KS orbital differences, like«n1«m2« i2« j or

«n2« i2«m1« j , also can be identified with zero-order ap-
proximations of excitation energies or energy differences be-
tween excited states of the physical interacting system~i , j
andn,m denote KS orbitals being occupied and unoccupied,
respectively!.

In crystalline solids the lowest excitation energy is equal
to the band gap. For the energetically lowest excitation char-
acterized byi5N/2 andn5N/211 the perturbation theory
expansion for the excitation energy therefore constitutes an
expansion of the band gap. This expansion fori5N/2 and
n5N/211 indeed is identical to a perturbation expansion
for the band gap that was derived recently@14# by other
means except for terms that vanish for systems with periodic
boundary conditions in the limit of an infinite number of unit
cells @in Eqs.~13a! and ~13b! the termŝ n i un i & and^n i u in&
vanish in this limit#. The derivation of perturbation expan-
sions for band gaps via excitation energies given in this work
has the advantage that it is not restricted to the fundamental
band gap.

In conclusion, the formalism introduced here opens the
way to treat excited states within DFT both on a formal level
and in practical calculations. The exact KS orbital- and
eigenvalue-dependent functionals introduced here not only
can be directly used in practical procedures but also may
serve as a starting point to derive new approximate energy
functionals for ground as well as excited states that also may
account for symmetry.
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