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Density-functional theory for excited states
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A Kohn-Sham formalism for the treatment of excited states within the density-functional tti@Bmy) is
presented. DFT exchange and correlation energy functionals for excited states are defined. Explicit expressions
for these functionals are derived by generalizing a recent DFT perturbation theory. A computational scheme for
the treatment of excited states within the DFT is suggested. Differences of Kohn-Sham eigenvalues are shown
to be well-defined approximations for excitation energies. Correction terms to these approximations are pre-
sented. Perturbation theory expansions for band gaps are discL8$68680-294{@6)06511-(

PACS numbsgs): 31.15.Ew, 31.56tw, 71.45.Gm

I. INTRODUCTION modeling of crystalline solids by a large but finite number of

: . : unit cells leads to the usual way of investigating them b
Den3|ty_-funct|onal theoryDFT) usually, somewhat_ n- explicitly treating one unit cell ar¥d by takingg thegrepetitiony

correctly, is labeled as a ground-state theory and with fe\/\b]c the cell into account by a summation knspace. For the

exceptiong 1-5] is employed exclusively for the treatment yoatment of unbound states of atoms or molecules the sys-

of electronic ground states and their properties. However, theyy, s placed in a large but finite box in order to obtained

Hohenberg-Kohn theoreii6], the basis of DFT, states that pormalizable wave function. For simplicity only systems

the ground-state density of an electronic system determinggith a nondegenerate ground state are considered. However,

in addition to its electron number also its external potentiakhe formalism derived here can easily be generalized to de-

and, therefore, its Hamiltonian operator. Because the Hamilgenerate system®] within the framework of the symme-

tonian operator completely characterizes all states of the syssized DFT presented in Ref10].

tem, the excited states as well as the ground state are deter-

mined by the ground-state density. Nevertheless, the attitude Il. KS FORMALISM FOR EXCITED STATES

of considering DFT as a ground-state theory has been justi- . . ]

fied because, so far, there exists no formalism, like the Kohn- El€ctronic systems are characterized by their electron

Sham(KS) formalism for ground state], that exploits the NUMberN and by an external potentialr) determining their

formal dependence of excited states on the ground-state deH_amlltonlan operatoll + e+ v that consists of the opera-

sity and leads to a feasible procedure to treat excited staté8"s .Of the k|ne_t|c energy and Pf the electro_n—electron re-
within DET. pulsionV,, besides the operatar corresponding to the ex-

In this work, a KS formalism for the treatment of excited ternal potentiab (). The standard KS formalism for ground

states within a DFT framework is introduced. DFT exchangeStatef. is based on the noninteractiNgelectron Schrdinger
and correlation energies for excited states are properly géguation
fined within the introduced formalism. The KS formalism for

= _ KS,
excited states is then combined with a recently presented [TH05]®o=Eg P, @)

DFT pertgrbation theory8]. This coml_aination resul_ts_in @ the KS equation, withy ¢ being theN-electron operator cor-
comp_utat|(_)na_l pro_cedure to treat exc_lted stat_es within DFTresponding to a local multiplicative potential(r) that as a
that, in principle, is exact. The density functionals for theconsequence of the Hohenberg-Kohn theoféhis deter-
exchange and correlation energies of excited states are Ofineq up to an additive constant, by the requirement that the
tained as expressions of KS orbitals, KS eigenvalue differy,.und state of the KS Hamiltonian operafot o, the KS
ences, and certain parts of the exchange-correlation potentiza,ave functiond®,, yields the same electron der?s'}iy(r) as

KS orbital eigenvalues, so far, are believed to have nqne ground state of the corresponding interacting real system.

physical meaning, except for the eigenvalue of the highesgy, the nondegenerate systems considereddgiea single
occupied KS orbital, which is the negative of the ionizationg|5ter determinant consisting bF spin orbitalse, . The po-
energy. Here, differences of KS eigenvalues are identified ntial v (r) is given as the sum

excitation energies and energy differences between excited

states in zeroth order with respect to the electron-electron  y (r)=v(r)+u([pol;r) +v«([pol;r) +vc([polir) (2)

interaction. The corresponding higher-order correction terms

are derived. Perturbation theory expansions for excitation erof the external potentiab(r) and the Coulomb potential

ergies are related to band gaps of solids. u([pol;r), the exchange potential ([py];r), and the correla-
Electronic systems of all types shall be considered herejon potentialv .([pp];r), which are functionals of the ground-

atoms and molecules as well as crystalline solids. Their wavetate density(r). After Egs.(1) and(2) have been solved

functions may exhibit an exponential decay far from the sysself-consistently the ground-state enefgy (the meaning of

tem or may have periodic boundary conditions but they musthe superscript 1 is explained belpwf the interacting sys-

be finite in order to obtain normalizable wave function. Thetem is obtained as

1050-2947/96/54)/39124)/$10.00 54 3912 © 1996 The American Physical Society



54 DENSITY-FUNCTIONAL THEORY FOR EXCITED STATES 3913

Ed=(Do| T|Do) +U[ pol + Exl pol + Ecl pol stant Hamiltonian, Eq(4), is decomposed. The noninteract-
ing kinetic energyTg[po], the DFT exchange energy

E, n[po], and the DFT correlation enerdy & [ po] for the
+j dr po(ru(r) 3 nth eigenstatel @ are defined as e
with U[pol, E.lpol, and E.[p,] being the Coulomb, the Tsnlpol=(Pr[pol| TI®[pol), 5
exchange, and the correlation energy, respectively. R
Note that it is not necessary to know the exchange and Ex.nlpo]={( P pol|Ved Prlpol) —Unlpol, (6)
correlation potentials and energies as explicit functionals of R R
the density to carry out the standard Kohn-Sham procedure. E¢ nlpol=(Tnlpol| T+ aVeet 0| ¥l pol)
It is sufficient to know the exchange and correlation poten- A A R
tials and energies as functionals,([{e;,si—&i/}];r), —(Pnlpol| T+ aVeetv®|®@[pol).  (7)
ve({ei ei—eirt]ir), Exl{ei ei—eirt], and

HereU [ po] is the classical Coulomb interaction of the elec-

tron densityp 3(r) of thenth KS stateD,,=¥ 2. Forn+0 the
dporrelation energy contains Coulomb and potential energy

contributions as a consequence of the fact that the electron

E{¢;.ei—¢€:}] of the KS orbitalsg; and differences;

—eg;, of their eigenvalueg; . Because the KS orbitals and
their eigenvalue differences are functionals of the groun
state densityy(r) any functional of them also is a functional T o . . :
of py(r). The explicit expressions for the density functionals 4€NSiy pn(r) of the statesty for n+0 varies witha in

for the exchange and correlation energies of excited statdePntrast to the ground-state densi§(r)=p(r). Of course,

derived later on depend on KS orbitals and their eigenvalué-Or n=0 the standgrd ground-state fqnctionals _result. Be-
differences. cause the potential®([po);r) that determines the eigenstates

The adiabatic connection or coupling constant gdth| ¥y for a give'na is a f“”CtjP”a' of th? ground-state density
characterized by the Schtinger equation poﬂ((r), j[he eigenstates¥ [ po], their electron density
pn(lpolir), and therefore alsd’s,[pol, Unlpol. Exnlpol,
and E¢ \[po] are functionals of the ground-state electron

densitypy(r). The sum of the functional¥ [ pol, Un[pol.

a L ol
represents a continuous connection between a noninteractirggf;”[pc’]’ andEcn[po] can be identified as a generalization

: of the well-known Hohenberg-Kohn functional for
model system, the KS system, and the real physical system.“[.p ol : . .
In this work not only the ground stat#g but also thenth excited states and for varying coupling strength With

eigenstatel ; of the coupling constant Hamiltonian operator these definitions the energyy reads

T+aV.+0v® is considered. The coupling constantor to a_ - @
be precise, its square root, can be interpreted as a factor=n ~ (PrlPoll TI®nlpol) + Unlpol + Exnlpol + Eclpol

[T+aVeet 0| W e=ECW? (4)

scaling the elementary charge of the electron. The potential

v%(r) leading to theN-electron operatorn® in Eq. (4) +f dr p(r)v*(r). 8
through the Hohenberg-Kohn theordB) is defined by the

requirement that the ground stal§ yields the densityy(r) As in the ground-state formalism, the correlation energy

independently of the value of the coupling constanand  E ¢ [p,] contains all parts of the enerdy? that cannot be
therefore is a functionab “([polir) of po(r). This defines optained from the corresponding KS wave function
v“([poJir) only up to ana-dependent additive constant for @ =W 0 The energyE ¢ depends on the choice of the ad-
a#1. For =1, the additional requirement that*([po];r)  ditive constant to the potential®(r) for all values ofa ex-
equals the external potential(r), i.e., v*([polif)=v(r),  cept fora=1 wherev®(r) is completely determined by the
leaves no freedom for an additive constant. kerl Eq.(4)  requiremenwv*(r)=uv(r). However, the functional¥ [ po],
turns into the Schrdinger equation of the real physical sys- U [p], Exnlpol, and EZ[po] are independentof the
tem whereas fow=0 the corresponding KS equation results, choice of the additive constant. Fax, ,[ po], U,[pol, and
vs(r)=v([polr); Therefore the eigenstates of the KS Hamil- E, [ p ] this follows from the fact that they are determined
tonian operatof + v, the KS states,,, and their energies exclusively by the KS wave functio® , that is not affected
EXS alternatively may be denoted a¥?° and EY, i.e., by an addition of a constant w"(r). Because the contribu-
Vo=, andEP=EKS. tions in the expectation values of E€f) resulting from a
Now the additional assumption is made that the energeticonstant added to“(r) cancel each other and becaub¢,
order of eigenstate¥ ;y of the same symmetry is preserved like ®,,, is not affected by such an additive constant the
along the adiabatic connection, i.e., when going from thecorrelation energye ¢ ,[po] is also independent of an addi-
noninteracting systera=0 to the interacting systere=1.  tional constant.
Under this assumptionthe coupling constant path defined by  In order to treat excited states of an electronic system
the Hamiltonian operator FaV,.+V* establishes a continu- within a KS formalism, first, a standard KS procedure has to
ous connection between the nth eigenstates of the KS Hamlbe carried out to obtain the ground-state dengity) and the
tonian operator and of the interacting physical Hamiltonian KS wave functionsb ,[ po]. The KS wave function® [ p]
operator. This finding, as simple as it is, is the basis of thethen yield the energieS\[po], Unlpol, Exnlpol, and

KS formalism for excited states introduced here. f dr p%(r)ve(r) by employing Egs(5) and (6). The corre-
In order to define DFT exchange and correlation energietation energies of the excited states can be obtained by
for excited _ states the nth eigenvalue E[= evaluating the density functionalEévn[po]. Addition of

(¥ Y pol | T+ aVeet 04 pol I¥ & pol) of the coupling con-  all energy terms results in the energi& of the ex-



3914 ANDREAS GCRLING 54

cited states. As in the ground state formalism, the exchanggotentimskv(r) up to a limited ordek can be treated.
energy may alternatively be determined by evaluating the The terms¥E,, of the Taylor series for ground as well as
density functional€, [ po]. This concludes the introduction excited-state energies: are now obtained using perturba-
of the basic KS formalism for excited states. tion theory once more:

ke _k VMol k-1
Ill. DFT PERTURBATION THEORY En="Ful{ei}{ei—ei}h v(n),... "u(n)]

FOR EXCITED STATES 0 K
_ _ _ _ _ +J dr p,(r) “v(r). (9
After having derived the basic KS formalism for excited
states the problem of determining the density functionalSthe contributions KE{eit {ei—ei b v (r),... K o (n)],
Ex.nlpo] andE g o[ po] remains. In order to address this prob- |ike the potentials‘ (r), consist of KS orbitals, KS eigen-
lem and to get further insight into the formalism a recentlyya|ue differences, and the lower-order potentiaiér) with
introduced DFT perturbation theory is employf8l. The  1<|<k—1 and are independent with respect to the addition
DFT perturbation theory is based on the Taylor series 0bf constants to the potential® (r). This follows from the
v*([palin), v ([poliN) =2 —oa" “v([polir), andE§ with re-  change of the energyE® as well as of the term
spect toa. Ir) this work th(_a excited-state energie§ are also o[ dr p2(r)v(r) by «*Nc, upon addition of the constant
developed in Taylor serie€ =3 ;_oa* “E,,. The zeroth- ¢, 1o ¥, (r). Fora=1, the physically relevant value of the
order term % ([ pol;r) _equals the KS pptentlabs(r), e,  terms J drpﬂ(r)kv(r) can be added up to give
% ([polir)=vs(r)=v*~%[pol;r). The higher-order terms [ dr p%r)u(r) because 7, “v ([pelir)=v(r) if the KS po-
are related to Coulomb, exchange, and correlation potentialgential vs(r)=°v(r) is determined in a self-consistent proce-

Because “([pl;r) is defined only up to an-dependent con-  dure according to Eq2). The energyE ! then is given by
stant, each of the potential® ([ po];r) contains an unde-

fined constant. The choice of this constant is only restricted 1 - ‘ 1 1
by the additional requirement that the sum of all E”:gl Fal{eit {ei—ei}, v (r),.... To(r)]
Ko ([pol;r) vieldsv (r)=v*=([pol;r). If the zeroth-order po-
tential, i.e., the KS potential, is determined through Ej. 0
then this constraint is always obeyed. +f dr pp(ro(r). (10

In Ref. [8] it was shown that the requirement that the _ o )
ground-state density(r) is invariant along the coupling This allows one to treat, at least in principle, excited states
constant path allows one to calculate up to an additive conexactly within DFT, by first performing an exact KS proce-
stant the potentials“o(r) for k=1 as functionals dure to determine the densitipg(r), the potentials‘v(r),
ky ([{qoi},{si—sir},lv(r),...,k_lv(l’)];r) of the KS orbitals, and jche KS orbitals; apd eigenvalues; . Subsequently _Eq.
KS eigenvalue differences, and the lower-order potential$10) is used to determine the energies. If other properties
'u(r) excluding the KS potentiaPu(r), i.e., 1<I<k—-1. beS|d_es thelenergy shaII. be investigated then .also the wave
This means for any given KS potential, i.e., for any |Oca|funct|ons\lf_n can be obt_alned through perturbation theory in
multiplicative potential, all the potential® (r) and therefore ~ form of their Taylor series. .
the full exchange-correlation potential can be calculated ex- The zeroth-order term’F [po] equals Tg[pol, i-e.,
actly by order to order recursion. This allows one, in prin- °Fi[pol={®n[pol| TI®a[pol), the first-order term
ciple, to perform an exact KS procedure by self-consistently'F [ po] equals E, ,[po] plus Ug[pg], ie., F . [pol
solving Egs.(1) and (2) using exchange-correlation poten- =(® [ po]|Ved ®nlpo]), and the higher-order terms sum up
tials obtained from thév (r) [8]. Of course, in practice only to E%,n[po]. The second-order terrF [ po] is given by

<q)n[p0]|\’\/ee_ LAj[po] - ax[PO]|(Dj[P0]><<Dj[po]|\A/ee_ lA'I[po] - lA)x[Po:”(Dn[PO])
#n En>—E° '

Fulpol= (12)

Perturbation theory yields the functiondls[po] in terms  EXS pyt are distinguished by the spin components of the
of ground state and excited KS wave functichg and KS jnyolved orbitals¢; and ¢,. The four excited KS determi-
energiesE,”. However, these consist of KS orbitals and nants can be combined to a singlet and threefold degenerate
eigenvalues and therefore the function&f[po] also can triplet state in the usual way. The zeroth-order contributions
be expressed in terms of the latter. _ OAE(S,i—v) and °AE(T,i— ) of the excitation energies

As an example the zero- and first-order energies for apenyeen the ground state of the interacting physical system
excited state corresponding to a singly excited KS state arg,j the excited states that are adiabatically connected to the

considered. The KS ground state of a hondegenerate syst : ; .
is a single Slater determinant witV2 doubly occupied spa- ei[?tg ;Sesﬁl;?fhgbézgneeid ebn)\//at)llrj?an:j?#g?er? g Eli§tron frefm
tial orbitals ¢; . Promotion of one electron from an occupied v € 9 &

orbital ¢; into an unoccupied orbitap, gives rise to four
excited KS determinants that have the same KS energies OAE(S,i—v)=CAE(T,i—v)=¢,—¢;. (12
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The first-order terms are given by
FAE(T =) =(¢,[03" —0x[No]l4,)
—(iloy =0 Noll i) — (i vi),

(133
AE(Si—v)=(¢, 03"~ 0, nol|4,)
_<¢i|a>':“__ax[n0]|¢i>
—(vi|vi)+2(vi|iv) (13b

with (ij[sty=/drdr’ & (r) &](r") ¢s(r) ¢ (r)|r—r’|
and with{;)t‘L being a nonlocal exchange operator of the form
of the Hartree-Fock exchange operator, however, construct
from the N/2 occupied KS orbitals. Equatiofi2) demon-
strates that KSorbital eigenvalues are not just auxiliary
guantities without physical meaning; their difference is a
well-defined approximation to excitation energieszeroth
order in the electron-electron interactifi®?]. The first-order
correction termg13g and (13b) take the symmetry of the
final states into accountt is a general advantage of the

orbital-dependent energy functionals defined here that the
incorporate symmetry in a natural straightforward manner.

The approximate energy functionals currently employed i

standard KS calculations that explicitly depend on the elec:
tron density do not directly account for the symmetry. As a

result, singlet triplet splittings can be estimated only indi-

rectly from the energies of a triplet KS determinant and a KS
determinant that is a mixture of a singlet and a triplet state

[13]. Other KS orbital differences, like,+&,—&j—¢; or
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e,—¢&—¢,+t¢g;, also can be identified with zero-order ap-
proximations of excitation energies or energy differences be-
tween excited states of the physical interacting systein
and v,u denote KS orbitals being occupied and unoccupied,
respectively.

In crystalline solids the lowest excitation energy is equal
to the band gap. For the energetically lowest excitation char-
acterized byi =N/2 andv=N/2+ 1 the perturbation theory
expansion for the excitation energy therefore constitutes an
expansion of the band gap. This expansionifeiN/2 and
v=N/2+1 indeed is identical to a perturbation expansion
for the band gap that was derived receriti4] by other
means except for terms that vanish for systems with periodic
boundary conditions in the limit of an infinite number of unit
lis[in Egs.(133 and(13b) the terms(vi|vi) and(viliv)
vanish in this limif. The derivation of perturbation expan-
sions for band gaps via excitation energies given in this work
has the advantage that it is not restricted to the fundamental
band gap.

In conclusion, the formalism introduced here opens the
way to treat excited states within DFT both on a formal level
and in practical calculations. The exact KS orbital- and
igenvalue-dependent functionals introduced here not only
an be directly used in practical procedures but also may
erve as a starting point to derive new approximate energy
unctionals for ground as well as excited states that also may
account for symmetry.
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