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Lower bounds to the first-order gradient corrections in the gradient expansion of the kinetic-
and exchange-energy functionals
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Lower bounds for the first-order gradient corrections to the kinetic- and exchange-energy functionals in
atoms are derived using Benson'’s inequality. They are formulated in terms of the expectation values and the
momentum expectation value in a simple manner, namely,
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wheren is the natural numbety "~ 3) and(r2"~4) are the expectation valugg) is the momentum value, and
p(r) is the electron density with the normalization condition f@{r)dr=N, the number of electrons. The
bounds derived in this work are tested for atofhs 1—36. A comparison is also made with the previously
derived lower bound estimates fop[ p] andK,[ p]. The bounds presented are sharper than the previous ones
given by Pathak and GadfEhys. Rev. A25, 3426(1982; 24, 2906(1981)] (atomic units are used throughout

the paper. [S1050-29406)01711-9

PACS numbgs): 31.15-p

I. INTRODUCTION

Since Hohenberg, Kohn, and Sh4in2] made a sugges-
tion that ascribed the electron densily) as a basic variable

is the first-order gradienior Weizsaker correction[6],
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to study the electronic properties of many-electron systems, _
density-functional theory has been widely and successfullys the zeroth-order or Salter exchange-energy functiprial
applied to atoms, molecules, solids, etc. However, the exa&nd

forms of the kinetic- and exchange-energy functiorglg]

and&p] have not been known so far. In the study of density- |Vp(r)|?

functional theory, much effort has been devoted to the gra-
dient expansions ofT[p] and &[p] using the gradient-

expansion techniqu—5].

Kolpl=—p8 Wdf (6)

is the first-order gradient correction to the zeroth-order

In the gradient-expansion approximation, the kinetic- andgeXchange-energy functional. The coefficighin Eq. (6) has

exchange-energy functionals take the forfias5]

Tlpl=Telp]+Talp] ®
and
p1=Kalp]+Kalp], @
where
Tdﬂ=%ww%mf&@mm 3

is the zeroth-order kinetic-energy functional,
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a value of 7/1487%)**=0.001 667, reported by Shafs].
Recently, Engel and Vosko have argued that this value
should be multiplied by and this is generally acceptég]).

In the following calculation, we will take=5.5x10"3
given emperically by Shih, Murphy, and Wap@.

The first-order gradient correctionis,[ p] and K,[p] to
the zeroth-order kinetic- and exchange-energy functionals
Tolp] andKy[p] are large for a nonuniform system. There-
fore, the first-order gradient corrections are crucial for study-
ing atoms and molecules. It would seem of obvious interest
to studyT,[p] andK,[p] defined in Eqs(4) and (6).

Studies on the bounds to the first-order gradient correc-
tions T,[p] and K,[p] are of interes{10,11. Pathak and
Gadre[11] derived the lower bounds fdF,[p] and |K,[p]|
using Sobolev’s inequality in three dimensions in conjunc-
tion with Holder's inequality

3859 © 1996 The American Physical Society



3860 JIANMIN TAO AND JIANMIN LI 54

— 10, 212/3\—2/ where p(r) is the electron density subject to the normaliza-
Todp]= (5" N " Tdlp] @ tion condition [p(r)dr=N (the total number of electrons
and and(r"3) and(r2"~*) are the expectation values in atoms.
For the case oh=3, (r""3)=[p(r)dr=N and for the case
[Ko[p]|=3m(6m)*°BN 4K [ 1], (8 ofn=2,(r*"*%)=/p(r)dr=N,

The optimum value for the parameteris readily deter-
where 8 appearing in Eq(8) is inserted there to make the mined to be
value of K,[p] in Ref. [11] equal to that ofK,[p] in the

present context. However, the numerical test shows that the on—4 |V/0(f)|2 d 14
bounds forT,[p] and |K,[p]| in Egs.(7) and (8) are not <r ) r (14
tight.

In the present work, lower bounds to the first-order gra-Substituting the optimized parameterof Eg. (14) into Eqg.
dient correctiong ,[ p] and|K,[p]| in atoms are derived and (13) leads to the desirable result
a better relationship betwediKy[p]| and |K,[p]| is pro-

posed. _Numerical investigations on the bounds are made for |Vp(r)|? dr =n2(rn-3)2(2n-4-1 (15
comparison. p(r) = '
Il. BOUNDS TO THE FIRST-ORDER GRADIENT namely,
CORRECTIONS )
n
The fundamental inequality—Benson’s inequalify2]— Tolpl= = (r"=3)2(r2n- 41 (16)

employed in this work is given as Benson’s theorem, which
is quite useful in finding rigorous bounds involving moments
of the electron density.

Benson’s theoremf u(r), P(u,r), andG(u,r) are con-
tinuously differentiable for in [a,b] and P(u,r)>0, the

For the cases ai=1, 2, and 3, the inequalit{16) gives the
following lower bounds forT,[ p]:

L2 =
following inequality holds: TolplZ7(r 5 (n=1), (179
b 1
J (Pu'2+ P 1G2+2G,)dr=2[G(u(b),b)— G(u(a),a)], Todpl= gq (T D (n=2), (17b
a
9 \
whereG,=(d/du)G(u,r) andG,=(a/r)G(u,r). Tolpl= 5 (r3)~1 (n=3). (179
If we let P=ar? and G=3u?g(r), then we can readily
derive the following inequality from Ec(9): Likewise, a lower bound for the first-order gradient correc-
b tion K,[p] to the zeroth-order exchange-energy functional
J aru’?+ l r~2u2g?(r)+u?g’(r) |dr Ko[p] can readily be _obtain_ed along the_z same line as above.
a a This can be accomplished in the following way by using the

) ) same inequality(10). With the substitutionsu=p*3(r),
=u“(b)g(b)—u*(ajg(a), (10 g(r)==r2p"3(r) and lettinga=0, b—=, we may obtain
from the inequality(10)

2
1 © ©
dr+—f r2p4’3dr—2f rp dr
a Jo 0

where « is an arbitrary positive parameter agdr) is as-
sumed to be any continuously differentiable function. With a (> 1
the substitutionsi= pY/4(r), g(r)=-r"(n=123...), and 5 f - g7 P
letting a=0, b— o, we obtain o P

a (»1[d \? 1 (= * 1= ,ld
Zfo ;(ap) rde_ZfO r2n-2,, dr—nforn_lp dr 3 f (dr dr=r2p(r)|2, (18
=p(r)r"2, (11)  whichyields, upon a partial integration for the fourth term of

the left-hand-side,
wherep(r) is assumed to be radially symmetric. Since the

term on the right-hand side of E¢L1) vanishes for atomic a f“’ , 1 ( d \?
9 —an3

1 0 4 3
+ = 2 43 B_f
dr aforp dr 3 0rpdr

densities, we obtain from Eq11) dr P
1 (19
_ 2 2n74 = n-3
f ) dr+ < )z ). (12 sincer?p(r) vanishes whem =0 or r—o in atomic sys-
tems.
Equation(12) can be recast in the form Our next objective is to recast E(L9) in terms of more

5 readily available quantities. For this purpose, we assume
a [ |Vp(r) 1 .. n-3 p(r) to be radially symmetric, so Eq19) can be recast in
— | ———=—dr+—{(r Y=n(r""°), (13
4 p(r) a the form
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TABLE I. Bounds forT,[p]. (All values are in a.u. TABLE II. Bounds for |K,[p]|. (All values are in a.y.
Tolp]®  Talpl Talpl |Kalp]|® |K2[P]|d [Kalp]l

Atom N (r™H2  Tip]® exact Eq.(7) Eq.(17h  Atom  (r 1)@ (p)P exact Eq.(8)  Eq.(24)
H 1 1.00 0.289 0.211 0.031 0.056 H 1.00 0.67 0.10 0.08 0.08
He 2 3.375 2.56 0.32 0.171 0.316 He 3.375 2.80 0.28 0.21 0.21
Li 3 5.730 6.38 1.23 0.325 0.608 Li 5.715 4.91 0.44 0.28 0.34
Be 4 8.396 12.84 2.14 0.540 0.979 N 18.34 18.86 1.2 0.60 0.91
B 5 11.374 22.07 3.30 0.800 1.437 Ne 31.11 35.20 1.7 0.89 1.40
C 6 14.864 34.32 4.68 1.102 1.996 Na 35.43 40.73 1.9 0.96 1.57
N 7 18.332 49.83 6.29 1.443 2.667 P 54.15 66.18 2.7 1.27 2.26
O 8 22.260 68.30 8.61 1.810 3.441 CI 64.36 80.65 3.1 1.43 2.62
F 9 26.526 91.41 10.14 2.239 4.343 Ar 69.73 88.70 3.3 151 2.80
Ne 10 31.128 117.84 12.37 2.691 5383 K 74.89 96.22 3.5 1.58 2.98
Ar 18 69.73 490.6 34.3 7.571 15.007 Cr 103.99 142.5 4.5 2.00 3.87
Kr 36 182.85 2594 142 25.217 51.596 Ni 123.58 185.3 53 2.35 4.56

Br 175.84 268.9 6.8 2,94 5.87
“From Ref.[14] Kr 18285 2814 7.0 3.02 6.07

a [ |[Vp|* 1

4
5 Wdr'f‘a fp""?'(r)dr;g(r*l), (20

wherep(r) is the electron density of atomic systems with the

normalization conditionfp(r)dr=N (the total number of

electrong and({r 1) is the expectation value in atomic sys-

tems.
The optimum value of the parameterin Eq. (20) is
readily determined to be

10 IVe(r)? Y2
3y dr/ = dr| . (21
o /5 | Sy 2
Substituting the optimized parameterof Eq. (21) in con-

junction with the definitions oK [ p] andK,[p] in Egs.(5)
and(6) into Eq. (20) leads to the result

a=

13
|Ko[p][IK2[p][=3 ;) B(r 12=0.016 2%r )2,

(22

where3=5.5x10"3,

8 rom Ref.[16].

bFrom Ref.[17].

°From Ref.[9].

9The bound forlK,[p]| in Eq. (8) is 0.116 2% P), obtained by
substituting Eq(23) into Eq. (8), where we take3=5.5x10"3,

also been carried out in terms Bf[ p] andN as displayed in
Table | for comparison.

For the case oih=2 examined in Table I, the lower
bound toT,[p] given by Eq.(17b) is observed to be better
than that obtained by Pathak and Gapt#&]. However, the
bound given by Eq(17b) typically still underestimates by a
factor of 2. It is interesting to note that within the Thomas-
Fermi theory, the atomic kinetic energy has the well-
known Z'*® dependencéZ is the atomic number and=N,
the total number of electronandT,[ p], the first-order gra-
dient correction to the kinetic energy, also has such a depen-
dence because the atomic expectation vdiue') has the
Z'"® dependencél5].

In order to test the quality of the lower bound Kg| p]
given by Eq.(24), numerical investigations on neutral atoms
for Z=1-36 have been made, as shown in Table Il. The

Within the Burkhardt-Kaya-Coulson-March procedure bound given by Pathak and GadtHl] is also examined for
[13], Pathak and Gadre established an approximate relatiowomparison.

ship betweenK,[p]| and the momentum expectation value

(p) [14]:

(p)

3/3 1/3
|K0[P]|:Z<;) jPMS(r)dr%?- (23

Substituting Eq(23) into Eq. (22) yields the expected result

[Kalp]|=(9m)23B(r~1)%(p)~'=0.051 0Fr ~1)%(p)~*.
(24)

IIl. NUMERICAL RESULTS FOR THE BOUNDS TO T,[p]
AND K,[p]

In order to test the tightness of the bounds in Ed/b),
the bound estimates are evaluated for neutral atdm4 —

It is clear from Table Il that Eq(24) is considerably
sharper than Eq8). The lower bound tdK,[p]| given by
Eq. (24) is observed to be in better agreement with the exact
|[K5[p]|. One observes that the relative error of the bound
(24) is at most 0.25, which occurs f&=2, and then it
slowly decreases for larger atomic numbers. This suggests
that there is a close reciprocal relationship between the lead-
ing termK[ p] and the first-order gradient correctiéty[ p]
in the gradient expansion of the exchange energy. So we can
estimate the error caused by the first-order gradient correc-
tion to the exchange energy from the reciprocal relationship
(22).

IV. CONCLUSION

In conclusion, we have found the lower bounds for the

36. The results are presented in Table |. The bound estimatdisst-order gradient corrections in the gradient expansion of

for T,[p] in Eqg. (7) given by Pathak and Gadfd1] have

the kinetic- and exchange-energy functionals. The bounds
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proposed in this work are not only extremely simple tothe Thomas-Ferm{TF) theory or the local-density approxi-
evaluate since they depend only on the expectation valuasation (LDA) of density-functional theoryfDFT) will be-

and the momentum expectation value in atoms, but also aome more and more accurate if the atoms are heavier. The
sharper than the bounds derived by Pathak and Gddie  reason is that the relative errors caused by neglecting the
The bound toK,|[p]|, given by Eq.(24), is particularly first-order gradient correctiok,[p] to the zeroth-order or
good, as seen from Table II. According to the reciprocalSlater exchange-energy functio&l[ p] become smaller for
relationship between the zeroth-order exchange-energy funtieavier atoms becau$g)| p] becomes larger for heavier at-
tional Ky[p] and the first-order gradient correctidfy,| p] oms, wherea&,[ p] becomes smaller according to H§2).
given by Eq.(22), we may conjecture that the results of We conclude that the TF theory and the LDA of the DFT are
various physical quantities of atomic systems calculated inmore applicable to heavier atoms.
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