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Lower bounds for the first-order gradient corrections to the kinetic- and exchange-energy functionals in
atoms are derived using Benson’s inequality. They are formulated in terms of the expectation values and the
momentum expectation value in a simple manner, namely,
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wheren is the natural number,^r n23& and^r 2n24& are the expectation values,^p& is the momentum value, and
r~r ! is the electron density with the normalization condition of*r~r !dr5N, the number of electrons. The
bounds derived in this work are tested for atomsZ51–36. A comparison is also made with the previously
derived lower bound estimates forT2[r] andK2[r]. The bounds presented are sharper than the previous ones
given by Pathak and Gadre@Phys. Rev. A25, 3426~1982!; 24, 2906~1981!# ~atomic units are used throughout
the paper!. @S1050-2947~96!01711-8#

PACS number~s!: 31.15.2p

I. INTRODUCTION

Since Hohenberg, Kohn, and Sham@1,2# made a sugges-
tion that ascribed the electron densityr~r ! as a basic variable
to study the electronic properties of many-electron systems,
density-functional theory has been widely and successfully
applied to atoms, molecules, solids, etc. However, the exact
forms of the kinetic- and exchange-energy functionalsT[r]
andE@r# have not been known so far. In the study of density-
functional theory, much effort has been devoted to the gra-
dient expansions ofT[r] and E@r# using the gradient-
expansion technique@3–5#.

In the gradient-expansion approximation, the kinetic- and
exchange-energy functionals take the forms@3–5#

T@r#5T0@r#1T2@r# ~1!

and

E@r#5K0@r#1K2@r#, ~2!

where

T0@r#5 3
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is the zeroth-order kinetic-energy functional,
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is the first-order gradient~or Weizsäcker! correction@6#,

K0@r#52
3

4 S 3p D 1/3E r4/3~r !dr ~5!

is the zeroth-order or Salter exchange-energy functional@7#,
and

K2@r#52bE u“r~r !u2

r4/3~r !
dr ~6!

is the first-order gradient correction to the zeroth-order
exchange-energy functional. The coefficientb in Eq. ~6! has
a value of 7/144~3p2!4/350.001 667, reported by Sham@5#.
Recently, Engel and Vosko have argued that this value
should be multiplied by107 and this is generally accepted@8#.
In the following calculation, we will takeb55.531023

given emperically by Shih, Murphy, and Wang@9#.
The first-order gradient correctionsT2[r] and K2[r] to

the zeroth-order kinetic- and exchange-energy functionals
T0[r] andK0[r] are large for a nonuniform system. There-
fore, the first-order gradient corrections are crucial for study-
ing atoms and molecules. It would seem of obvious interest
to studyT2[r] andK2[r] defined in Eqs.~4! and ~6!.

Studies on the bounds to the first-order gradient correc-
tions T2[r] and K2[r] are of interest@10,11#. Pathak and
Gadre@11# derived the lower bounds forT2[r] and uK2[r] u
using Sobolev’s inequality in three dimensions in conjunc-
tion with Hölder’s inequality
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T2@r#> 10
72 ~ 2

3 !2/3N22/3T0@r# ~7!

and

uK2@r#u>3p~6p!2/3bN22/3uK0@r#u, ~8!

whereb appearing in Eq.~8! is inserted there to make the
value ofK2[r] in Ref. @11# equal to that ofK2[r] in the
present context. However, the numerical test shows that the
bounds forT2[r] and uK2[r] u in Eqs. ~7! and ~8! are not
tight.

In the present work, lower bounds to the first-order gra-
dient correctionsT2[r] and uK2[r] u in atoms are derived and
a better relationship betweenuK0[r] u and uK2[r] u is pro-
posed. Numerical investigations on the bounds are made for
comparison.

II. BOUNDS TO THE FIRST-ORDER GRADIENT
CORRECTIONS

The fundamental inequality—Benson’s inequality@12#—
employed in this work is given as Benson’s theorem, which
is quite useful in finding rigorous bounds involving moments
of the electron density.

Benson’s theorem. If u(r ), P(u,r ), andG(u,r ) are con-
tinuously differentiable forr in [a,b] and P(u,r ).0, the
following inequality holds:
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whereGu5(]/]u)G(u,r ) andGr5(]/]r )G(u,r ).
If we let P5ar 2 andG5 1

2u
2g(r ), then we can readily

derive the following inequality from Eq.~9!:
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wherea is an arbitrary positive parameter andg(r ) is as-
sumed to be any continuously differentiable function. With
the substitutionsu5r1/2(r ), g(r )52r n (n51,2,3,...), and
letting a50, b→`, we obtain
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wherer(r ) is assumed to be radially symmetric. Since the
term on the right-hand side of Eq.~11! vanishes for atomic
densities, we obtain from Eq.~11!

a
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a
^r 2n24&>n^r n23&. ~12!

Equation~12! can be recast in the form

a

4 E u“r~r !u2

r~r !
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1

a
^r 2n24&>n^r n23&, ~13!

wherer~r ! is the electron density subject to the normaliza-
tion condition *r~r !dr5N ~the total number of electrons!
and^r n23& and^r 2n24& are the expectation values in atoms.
For the case ofn53, ^r n23&5*r~r !dr5N and for the case
of n52, ^r 2n24&5*r~r !dr5N.

The optimum value for the parametera is readily deter-
mined to be

a5S ^r 2n24&Y 1

4 E u“r~r !u2

r~r !
dr D 1/2. ~14!

Substituting the optimized parametera of Eq. ~14! into Eq.
~13! leads to the desirable result

E u“r~r !u2

r~r !
dr>n2^r n23&2^r 2n24&21, ~15!

namely,

T2@r#>
n2

72
^r n23&2^r 2n24&21. ~16!

For the cases ofn51, 2, and 3, the inequality~16! gives the
following lower bounds forT2[r]:

T2@r#> 1
72 ^r

22& ~n51!, ~17a!

T2@r#>
1

18N
^r21&2 ~n52!, ~17b!

T2@r#>
N2

8
^r 2&21 ~n53!. ~17c!

Likewise, a lower bound for the first-order gradient correc-
tion K2[r] to the zeroth-order exchange-energy functional
K0[r] can readily be obtained along the same line as above.
This can be accomplished in the following way by using the
same inequality~10!. With the substitutionsu5r1/3(r ),
g(r )52r 2r1/3(r ) and lettinga50, b→`, we may obtain
from the inequality~10!
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which yields, upon a partial integration for the fourth term of
the left-hand-side,
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~19!

since r 2r(r ) vanishes whenr50 or r→` in atomic sys-
tems.

Our next objective is to recast Eq.~19! in terms of more
readily available quantities. For this purpose, we assume
r(r ) to be radially symmetric, so Eq.~19! can be recast in
the form
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^r21&, ~20!

wherer~r ! is the electron density of atomic systems with the
normalization condition*r~r !dr5N ~the total number of
electrons! and ^r21& is the expectation value in atomic sys-
tems.

The optimum value of the parametera in Eq. ~20! is
readily determined to be

a5S E r4/3~r !drY 1

9 E u“r~r !u2

r4/3~r !
dr D 1/2. ~21!

Substituting the optimized parametera of Eq. ~21! in con-
junction with the definitions ofK0[r] andK2[r] in Eqs. ~5!
and ~6! into Eq. ~20! leads to the result

uK0@r#uuK2@r#u>3S 3p D 1/3b^r21&2[0.016 25̂r21&2,

~22!

whereb55.531023.
Within the Burkhardt-Ko`nya-Coulson-March procedure

@13#, Pathak and Gadre established an approximate relation-
ship betweenuK0[r] u and the momentum expectation value
^p& @14#:

uK0@r#u5
3

4 S 3p D 1/3E r4/3~r !dr'
^p&
p

. ~23!

Substituting Eq.~23! into Eq. ~22! yields the expected result

uK2@r#u>~9p!2/3b^r21&2^p&21[0.051 05̂r21&2^p&21.
~24!

III. NUMERICAL RESULTS FOR THE BOUNDS TO T2†r‡
AND K2†r‡

In order to test the tightness of the bounds in Eq.~17b!,
the bound estimates are evaluated for neutral atomsZ51–
36. The results are presented in Table I. The bound estimates
for T2[r] in Eq. ~7! given by Pathak and Gadre@11# have

also been carried out in terms ofT0[r] andN as displayed in
Table I for comparison.

For the case ofn52 examined in Table I, the lower
bound toT2[r] given by Eq.~17b! is observed to be better
than that obtained by Pathak and Gadre@11#. However, the
bound given by Eq.~17b! typically still underestimates by a
factor of 2. It is interesting to note that within the Thomas-
Fermi theory, the atomic kinetic energyT has the well-
knownZ1/3 dependence~Z is the atomic number andZ5N,
the total number of electrons! andT2[r], the first-order gra-
dient correction to the kinetic energy, also has such a depen-
dence because the atomic expectation value^r21& has the
Z1/3 dependence@15#.

In order to test the quality of the lower bound toK2[r]
given by Eq.~24!, numerical investigations on neutral atoms
for Z51–36 have been made, as shown in Table II. The
bound given by Pathak and Gadre@11# is also examined for
comparison.

It is clear from Table II that Eq.~24! is considerably
sharper than Eq.~8!. The lower bound touK2[r] u given by
Eq. ~24! is observed to be in better agreement with the exact
uK2[r] u. One observes that the relative error of the bound
~24! is at most 0.25, which occurs forZ52, and then it
slowly decreases for larger atomic numbers. This suggests
that there is a close reciprocal relationship between the lead-
ing termK0[r] and the first-order gradient correctionK2[r]
in the gradient expansion of the exchange energy. So we can
estimate the error caused by the first-order gradient correc-
tion to the exchange energy from the reciprocal relationship
~22!.

IV. CONCLUSION

In conclusion, we have found the lower bounds for the
first-order gradient corrections in the gradient expansion of
the kinetic- and exchange-energy functionals. The bounds

TABLE I. Bounds forT2[r]. ~All values are in a.u.!

Atom N ^r21&a T0[r]
a

T2[r]
a

exact
T2[r]
Eq. ~7!

T2[r]
Eq. ~17b!

H 1 1.00 0.289 0.211 0.031 0.056
He 2 3.375 2.56 0.32 0.171 0.316
Li 3 5.730 6.38 1.23 0.325 0.608
Be 4 8.396 12.84 2.14 0.540 0.979
B 5 11.374 22.07 3.30 0.800 1.437
C 6 14.864 34.32 4.68 1.102 1.996
N 7 18.332 49.83 6.29 1.443 2.667
O 8 22.260 68.30 8.61 1.810 3.441
F 9 26.526 91.41 10.14 2.239 4.343
Ne 10 31.128 117.84 12.37 2.691 5.383
Ar 18 69.73 490.6 34.3 7.571 15.007
Kr 36 182.85 2594 142 25.217 51.596

aFrom Ref.@14#.

TABLE II. Bounds for uK2[r] u. ~All values are in a.u.!

Atom ^r21&a ^p&b
uK2[r] u

c

exact
uK2[r] u

d

Eq. ~8!
uK2[r] u
Eq. ~24!

H 1.00 0.67 0.10 0.08 0.08
He 3.375 2.80 0.28 0.21 0.21
Li 5.715 4.91 0.44 0.28 0.34
N 18.34 18.86 1.2 0.60 0.91
Ne 31.11 35.20 1.7 0.89 1.40
Na 35.43 40.73 1.9 0.96 1.57
P 54.15 66.18 2.7 1.27 2.26
Cl 64.36 80.65 3.1 1.43 2.62
Ar 69.73 88.70 3.3 1.51 2.80
K 74.89 96.22 3.5 1.58 2.98
Cr 103.99 142.5 4.5 2.00 3.87
Ni 123.58 185.3 5.3 2.35 4.56
Br 175.84 268.9 6.8 2.94 5.87
Kr 182.85 281.4 7.0 3.02 6.07

aFrom Ref.@16#.
bFrom Ref.@17#.
cFrom Ref.@9#.
dThe bound foruK2[r] u in Eq. ~8! is 0.1169N22/3^P&, obtained by
substituting Eq.~23! into Eq. ~8!, where we takeb55.531023.
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proposed in this work are not only extremely simple to
evaluate since they depend only on the expectation values
and the momentum expectation value in atoms, but also are
sharper than the bounds derived by Pathak and Gadre@11#.
The bound toK2u[r] u, given by Eq. ~24!, is particularly
good, as seen from Table II. According to the reciprocal
relationship between the zeroth-order exchange-energy func-
tional K0[r] and the first-order gradient correctionK2[r]
given by Eq. ~22!, we may conjecture that the results of
various physical quantities of atomic systems calculated in

the Thomas-Fermi~TF! theory or the local-density approxi-
mation ~LDA ! of density-functional theory~DFT! will be-
come more and more accurate if the atoms are heavier. The
reason is that the relative errors caused by neglecting the
first-order gradient correctionK2[r] to the zeroth-order or
Slater exchange-energy functionalK0[r] become smaller for
heavier atoms becauseK0[r] becomes larger for heavier at-
oms, whereasK2[r] becomes smaller according to Eq.~22!.
We conclude that the TF theory and the LDA of the DFT are
more applicable to heavier atoms.
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