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Entanglement purification protocols~EPPs! and quantum error-correcting codes~QECCs! provide two ways
of protecting quantum states from interaction with the environment. In an EPP, perfectly entangled pure states
are extracted, with some yieldD, from a mixed stateM shared by two parties; with a QECC, an arbitrary
quantum stateuj& can be transmitted at some rateQ through a noisy channelx without degradation. We prove
that an EPP involving one-way classical communication and acting on mixed stateM̂ (x) ~obtained by sharing
halves of Einstein-Podolsky-Rosen pairs through a channelx) yields a QECC onx with rateQ5D, and vice
versa. We compare the amount of entanglementE(M ) required to prepare a mixed stateM by local actions
with the amountsD1(M ) andD2(M ) that can be locally distilled from it by EPPs using one- and two-way
classical communication, respectively, and give an exact expression forE(M ) whenM is Bell diagonal. While
EPPs require classical communication, QECCs do not, and we proveQ is not increased by adding one-way
classical communication. However, bothD andQ can be increased by adding two-way communication. We
show that certain noisy quantum channels, for example a 50% depolarizing channel, can be used for reliable
transmission of quantum states if two-way communication is available, but cannot be used if only one-way
communication is available. We exhibit a family of codes based on universal hashing able to achieve an
asymptoticQ ~or D) of 12S for simple noise models, whereS is the error entropy. We also obtain a specific,
simple 5-bit single-error-correcting quantum block code. We prove that iff a QECC results in high fidelity for
the case of no error then the QECC can be recast into a form where the encoder is the matrix inverse of the
decoder.@S1050-2947~96!07711-6#

PACS number~s!: 03.65.Bz, 42.50.Dv, 89.70.1c

I. INTRODUCTION

A. Entanglement and nonlocality in quantum physics

Among the most celebrated features of quantum mechan-
ics is the Einstein-Podolsky-Rosen@1# ~EPR! effect, in which
anomalously strong correlations are observed between pres-
ently noninteracting particles that have interacted in the past.
These nonlocal correlations occur only when the quantum
state of the entire system isentangled, i.e., not representable
as a tensor product of states of the parts. In Bohm’s version
of the EPR paradox, a pair of spin-1/2 particles, prepared in
the singlet state

C25
1

A2
~ u↑↓&2u↓↑&), ~1!

and then separated, exhibit perfectly anticorrelated spin com-
ponents when locally measured along any axis. Bell@2# and
Clauseret al. @3# showed that these statistics violate inequali-
ties that must be satisfied by any classical local hidden vari-
able model of the particles’ behavior. Repeated experimental
confirmation @4# of the nonlocal correlations predicted by
quantum mechanics is regarded as strong evidence in its fa-
vor.

Besides helping to confirm the validity of quantum me-
chanics, entanglement has assumed an important role in
quantum information theory, a role in many ways comple-
mentary to the role of classical information. Much recent
work in quantum information theory has been aimed at char-
acterizing the channel resources necessary and sufficient to

transmit unknown quantum states, rather than classical data,
from a sender to a receiver. To avoid violations of physical
law, the intact transmission of a general quantum state re-
quires both a quantum resource, which cannot be cloned, and
a directed resource, which cannot propagate superluminally.
The sharing of entanglement requires only the former, while
purely classical communication requires only the latter. In
quantum teleportation@5# the two requirements are met by
two separate systems, while in the direct, unimpeded trans-
mission of a quantum particle, they are met by the same
system. Quantum data compression@6# optimizes the use of
quantum channels, allowing redundant quantum data, such as
a random sequence of two nonorthogonal states, to be com-
pressed to a bulk approximating its von Neumann entropy,
then recovered at the receiving end with negligible distor-
tion. On the other hand, quantum superdense coding@7# uses
previously shared entanglement to double a quantum chan-
nel’s capacity for carrying classical information.

Probably the most important achievement of classical in-
formation theory is the ability, using error-correcting codes,
to transmit data reliably through a noisy channel. Quantum
error-correcting codes~QECCs! @8–16# use coherent gener-
alizations of classical error-correction techniques to protect
quantum states from noise and decoherence during transmis-
sion through a noisy channel or storage in a noisy environ-
ment. Entanglement purification protocols~EPPs! @17#
achieve a similar result indirectly, by distilling pure en-
tangled states~e.g., singlets! from a larger number of impure
entangled states~e.g., singlets shared through a noisy chan-
nel!. The purified entangled states can then be used for reli-
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able teleportation, thereby achieving the same effect as if a
noiseless storage or transmission channel had been available.
The present paper develops the quantitative theory of mixed
state entanglement and its relation to reliable transmission of
quantum information.

Entanglement is a property of bipartite systems—systems
consisting of two partsA and B that are too far apart to
interact, and whose state, pure or mixed, lies in a Hilbert
spaceH5HA^HB that is the tensor product of Hilbert
spaces of these parts. Our goal is to develop a general theory
of state transformations that can be performed on a bipartite
system without bringing the parts together. We consider
these transformations to be performed by two observers,
‘‘Alice’’ and ‘‘Bob,’’ each having access to one of the sub-
systems. We allow Alice and Bob to perform local actions,
e.g., unitary transformations and measurements, on their re-
spective subsystems along with whatever ancillary systems
they might create in their own laboratories. Sometimes we
will also allow them to coordinate their actions through one-
way or two-way classical communication; however, we do
not allow them to perform nonlocal quantum operations on
the entire system nor to transmit fresh quantum states from
one observer to the other. Of course two-way or even one-
way classical communication is itself an element of nonlo-
cality that would not be permitted, say, in a local hidden
variable model, but we find that giving Alice and Bob the
extra power of classical communication considerably en-
hances their power to manipulate bipartite states, without
giving them so much power as to make all state transforma-
tions trivially possible, as would be the case if nonlocal
quantum operations were allowed. We will usually assume
thatHA andHB have equal dimensionN ~no generality is
lost, since either subsystem’s Hilbert space can be embedded
in a larger one by local actions!.

B. Pure-state entanglement

For pure states, a sharp distinction can be drawn between
entangled and unentangled states: a pure state is entangled or
nonlocal if and only if its state vectorY cannot be expressed
as a productYA^ YB of pure states of its parts. It has been
shown that every entangled pure state violates some Bell-
type inequality@19#, while no product state does. Entangled
states cannot be prepared from unentangled states by any
sequence of local actions of Alice and Bob, even with the
help of classical communication.

Quantitatively, a pure state’s entanglement is conve-
niently measured by its entropy of entanglement,

E~Y!5S~rA!5S~rB!, ~2!

the apparent entropy of either subsystem considered alone.
Here S(r)52Trr log2r is the von Neumann entropy and
rA5TrBuY&^Yu is the reduced density matrix obtained by
tracing the whole system’s pure-state density matrix
uY&^Yu over Bob’s degrees of freedom. Similarly
rB5TrAuY&^Yu is the partial trace over Alice’s degrees of
freedom.

The quantityE, which we shall henceforth often call sim-
ply entanglement, ranges from zero for a product state to
log2N for a maximally entangled state of twoN-state par-
ticles. E51 for the singlet stateC2 of Eq. ~1!, either of

whose spins, considered alone, appears to be in a maximally
mixed state with one bit of entropy. Paralleling the term
qubit for any two-state quantum system~e.g., a spin-12 par-
ticle!, we define anebit as the amount of entanglement in a
maximally entangled state of two qubits, or any other pure
bipartite state for whichE51.

Properties ofE that make it a natural entanglement mea-
sure for pure states include the following.

~1! The entanglement of independent systems is additive,
n shared singlets, for example, havingn ebits of entangle-
ment.

~2! E is conserved under local unitary operations, i.e.,
under any unitary transformationU that can be expressed as
a productU5UA^UB of unitary operators on the separate
subsystems.

~3! The expectation ofE cannot be increased by local
nonunitary operations: if a bipartite pure stateY is subjected
to a local nonunitary operation~e.g., measurement by Alice!
resulting in residual pure statesY j with respective probabili-
ties pj , then the expected entanglement of the final states
( j pjE(Y j ) is no greater, but may be less, than the original
entanglementE(Y) @20#. In the present paper we generalize
this result to mixed states: see Sec. II A.

~4! Entanglement can be concentrated and diluted with
unit asymptotic efficiency@20#, in the sense that for any two
bipartite pure statesY andY8, if Alice and Bob are given a
supply ofn identical systems in a stateY5(Y)n, they can
use local actions and one-way classical communication to
preparem identical systems in stateY8'(Y8)m, with the
yield m/n approaching E(Y)/E(Y8), the fidelity
z^Y8u(Y8)m& z2 approaching 1, and probability of failure ap-
proaching zero in the limit of largen.

With regard to entanglement, a pure bipartite stateY is
thus completely parametrized byE(Y), with E(Y) being
both the asymptotic number of standard singlets required to
locally prepare a system in stateY—its ‘‘entanglement of
formation’’—and the asymptotic number of standard singlets
that can be prepared from a system in stateY by local
operations—its ‘‘distillable entanglement.’’

C. Mixed-state entanglement

One aim of the present paper is to extend the quantitative
theory of entanglement to the more general situation in
which Alice and Bob share amixedstateM , rather than a
pure stateY as discussed above. Entangled mixed states may
arise~cf. Fig. 1! when one or both parts of an initially pure
entangled state interact, intentionally or inadvertently, with
other quantum degrees of freedom~shown in the diagram as
noise processesNA andNB and shown explicitly in quantum
channelx in Fig. 13! resulting in a nonunitary evolution of
the pure stateY into a mixed stateM . Another principal aim
is to elucidate the extent to which mixed entangled states, or
the noisy channels used to produce them, can nevertheless be
used to transmit quantum information reliably. In this con-
nection we develop a family of one-way entanglement puri-
fication protocols@17# and corresponding quantum error-
correcting codes, as well as two-way entanglement
purification protocols which can be used to transmit quantum
states reliably through channels too noisy to be used reliably
with any quantum error-correcting code.
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The theory of mixed-state entanglement is more compli-
cated and less well understood than that of pure-state en-
tanglement. Even the qualitative distinction between local
and nonlocal states is less clear. For example, Werner@21#
has described mixed states which violate no Bell inequality
with regard to simple spin measurements, yet appear to be
nonlocal in other subtler ways. These include improving the
fidelity of quantum teleportation above what could be
achieved by purely classical communication@22#, and giving
nonclassical statistics when subjected to a sequence of mea-
surements@23#.

Quantitatively, no single parameter completely character-
izes mixed state entanglement the wayE does for pure states.
For a generic mixed state, we do not know how to distill out
of the mixed state as much pure entanglement~e.g., standard
singlets! as was required to prepare the state in the first
place; moreover, for some mixed states, entanglement can be
distilled with the help of two-way communication between
Alice and Bob, but not with one-way communication. In
order to deal with these complications, we introduce three
entanglement measuresD1(M )<D2(M )<E(M ), each of
which reduces toE for pure states, but at least two of which
(D1 and D2) are known to be inequivalent for a generic
mixed state.

Our fundamental measure of entanglement, for which we
continue to use the symbolE, will be a mixed state’sen-
tanglement of formation E(M ), defined as the least expected
entanglement of any ensemble of pure states realizingM .
We show that local actions and classical communication can-
not increase the expectation ofE(M ) and we give exact
expressions for the entanglement of formation of a simple
class of mixed states: states of two spin-1

2 particles that are
diagonal in the so-calledBell basis. This basis consists of
four maximally entangled states — the singlet state of Eq.
~1!, and the three triplet states

C15
1

A2
~ u↑↓&1u↓↑&), ~3!

F65
1

A2
~ u↑↑&6u↓↓&). ~4!

We also give lower bounds on the entanglement of formation
of other, more general mixed states. NonzeroE(M ) will
again serve as our qualitative criterion of nonlocality; thus, a
mixed state will be considered local if can be expressed as a
mixture of product states, and nonlocal if it cannot.

By distillable entanglementwe will mean the asymptotic
yield of arbitrarily pure singlets that can be prepared locally
from mixed stateM by entanglement purification protocols
~EPPs! involving one-way or two-way communication be-
tween Alice and Bob. Distillable entanglement for one- and
two-way communication will be denotedD1(M ) and
D2(M ), respectively. Except in cases where we have been
able to prove thatD1 or D2 is identically zero, we have no
explicit values for distillable entanglement, but we will ex-
hibit various upper bounds, as well as lower bounds given by
the yield of particular purification protocols.

D. Entanglement purification and quantum error correction

Entanglement purification protocols will be the subject of
a large portion of this paper; we describe them briefly here.
The most powerful protocols, depicted in Fig. 2, involve
two-way communication. Alice and Bob begin by sharing a
bipartite mixed stateM5(M )n consisting ofn entangled
pairs of particles each described by the density matrixM ,
then proceed by repeated application of three steps:~1! Alice
and Bob perform unitary transformations on their states;~2!
they perform measurements on some of the particles; and~3!
they share the results of these measurements, using this in-
formation to choose which unitary transformations to per-
form in the next stage. The object is to sacrifice some of the
particles, while maneuvering the others into a close approxi-
mation of a maximally entangled state such asY5(C2)m,
the tensor product ofm singlets, where 0,m,n. No gener-
ality is lost by using only unitary transformations and von
Neumann measurements in steps~1! and ~2!, because Alice
and Bob are free at the outset to enlarge the Hilbert spaces
HA andHB to include whatever ancillas they might need to
perform nonunitary operations and generalized measure-
ments on the original systems.

A restricted version of the purification protocol involving
only one-way communication is illustrated in Fig. 3. Here,
without loss of generality, we permit only one stage of uni-
tary operation and measurement, followed by a one-way

FIG. 1. Typical scenario for creation of entangled quantum
states. At some early time and at locationI , two quantum systems
A andB interact@18#, then become spatially separated, one going to
Alice and the other to Bob. The joint system’s state lies in a Hilbert
spaceH5HA^HB that is the tensor product of the spaces of the
subsystems, but the state itself is not expressible as a product of
states of the subsystems:YÞYA^ YB . StateY, its pieces acted
upon separately by noise processesNA andNB , evolves into mixed
stateM .

FIG. 2. Entanglement purification protocol involving two-way
classical communication~2-EPP!. In the basic step of 2-EPP, Alice
and Bob subject the bipartite mixed state to two local unitary trans-
formationsU1 andU2. They then measure some of their particles
M, and interchange the results of these measurements~classical
data transmission indicated by double lines!. After a number of
stages, such a protocol can produce a pure, near-maximally-
entangled state~indicated by *’s!.
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classical communication. The principal advantage of such a
protocol is that the components of the resulting purified
maximally entangled state indicated by * can be separated
both in spaceand in time. In Secs. V and VI we show that
the time-separated EPR pairs resulting from such a one-way
protocol ~1-EPP! always permit the creation of a quantum
error-correction code~QECC! whose rate and fidelity are,
respectively, equal to the yieldm/n and fidelity of the puri-
fied states produced by the 1-EPP.

The link between 1-EPP and QECC is provided by quan-
tum teleportation@5#. As Fig. 4 illustrates, the availability of
the time-separated EPR state~* ! means that an arbitrary
quantum stateuj& ~in a Hilbert space no larger than 2m) can
be teleported forward in time: the teleportation is initiated
with Alice’s Bell measurementM4, and is completed by
Bob’s unitary transformationU4. The net effect is that an
exact replica ofuj& reappears at the end, despite the presence
of noise (NA,B) in the intervening quantum environment.
Moreover, we will show in detail in Sec. VI that the protocol
of Fig. 4 can be converted into a much simpler protocol with
the same quantum communication capacity but involving
neither entanglement nor classical communication, and hav-
ing the topology of a quantum error correcting code~Fig. 16!
@8–16#.

Many features of mixed-state entanglement, along with
their consequences for noisy-channel coding, are illustrated
by a particular mixed state, the Werner state@21#,

W5/85
5

8
uC2&^C2u1

1

8
~ uC1&^C1u1uF1&^F1u

1uF2&^F2u!. ~5!

This state, a 5/8 vs 3/8 singlet-triplet mixture, can be pro-
duced by mixing equal amounts of singlets and random un-
correlated spins, or equivalently by sending one spin of an
initially pure singlet through a 50% depolarizing channel.
~An x-depolarizing channel is one in which a state is trans-
mitted unaltered with probability 12x and is replaced with a
completely random qubit with probabilityx.! These recipes
suggest thatE(W5/8), the amount of pure entanglement re-
quired to prepare a Werner state, might be 0.5, but we show
~Sec. II! that in fact thatE(W5/8)'0.117. The Werner state
W5/8 is also remarkable in that pure entanglement can be
distilled from it by two-way protocols but not by any one-
way protocol. In terms of noisy-channel coding, this means
that a 50% depolarizing channel, which has a positive capac-
ity for transmitting classical information, has zero capacity
for transmitting intact quantum states if used in a one-way
fashion, even with the help of quantum error-correcting
codes. This will be proved in Sec. IV. If the same channel is
used in a two-way fashion, or with the help of two-way
classical communication, it has a positive capacity due to the
nonzero distillable entanglementD2(W5/8), which is known
to lie between 0.004 57 and 0.117 pure singlets out per im-
pure pair in. The lower bound is from an explicit 2-EPP,
while the upper bound comes from the known entanglement
of formation, which is always an upper bound on distillable
entanglement.

The remainder of this paper is organized as follows. Sec-
tion II contains our results on the entanglement of formation
of mixed states. Section III explains purification of pure,
maximally entangled states from mixed states. Section IV
exhibits a class of mixed states for whichD150 but
D2.0. Section V shows the relationship between mixed
states and quantum channels. Section VI shows how a class
of quantum error-correction codes may be derived from one-
way purification protocols and contains our efficient 5-qubit
code. Finally, Sec. VII reviews several important remaining
open questions.

II. ENTANGLEMENT OF FORMATION

A. Justification of the definition

As noted above, we define the entanglement of formation
E(M ) of a mixed stateM as the least expected entanglement
of any ensemble of pure states realizingM . The point of this
subsection is to show that the designation ‘‘entanglement of
formation’’ is justified: in order for Alice and Bob to create
the stateM without transferring quantum states between
them, they must already share the equivalent ofE(M ) pure
singlets; moreover, if they do share this much entanglement
already, then they will be able to createM . ~Both of these
statements are to be taken in the asymptotic sense explained
in the Introduction.! In this senseE(M ) is the amount of
entanglement needed to createM .

Consider any specific ensemble of pure states that realizes
the mixed stateM . By means of the asymptotically
entanglement-conserving mapping between arbitrary pure
states and singlets@20#, such an ensemble provides an
asymptotic recipe for locally preparingM from a number of
singlets equal to the mean entanglement of the pure states in
the ensemble. Clearly some ensembles are more economical
than others. For example, the totally mixed state of two qu-
bits can be prepared at zero cost, as an equal mixture of four

FIG. 3. One-way entanglement purification protocol~1-EPP!. In
1-EPP there is only one stage; after unitary transformationU1 and
measurementM, Alice sends her classical result to Bob, who uses
it in combination with his measurement result to control a final
transformationU3. The unidirectionality of communication allows
the final, maximally entangled state~* ! to be separated both in
space and in time.

FIG. 4. If the 1-EPP of Fig. 3 is used as a module for creating
time-separated EPR pairs~* !, then by using quantum teleportation
@5#, an arbitrary quantum stateuj& may be recovered exactly after
U4, despite the presence of intervening noise. This is the desired
effect of a quantum error-correcting code~QECC!.
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product states, or at unit cost, as an equal mixture of the four
Bell states. The quantityE(M ) is the minimum cost in this
sense. However, this fact does not yet justify callingE(M )
the entanglement of formation, because one can imagine
more complicated recipes for preparingM : Alice and Bob
could conceivably start with an initial mixture whose ex-
pected entanglement is less thanE(M ) and somehow, by
local actions and classical communication, transform it into
another mixture with greater expected entanglement. We
thus need to show that such entanglement-enhancing trans-
formations are not possible. We start by summarizing the
definitions that lead toE(M ).

Definition: The entanglement of formation of a bipartite
pure state Y is the von Neumann entropyE(Y)
5S(TrAuY&^Yu) of the reduced density matrix as seen by
Alice or Bob @see Eq.~2!#.

Definition: The entanglement of formationE(E) of an en-
semble of bipartite pure statesE5$pi ,Y i% is the ensemble
average( i piE(Y i) of the entanglements of formation of the
pure states in the ensemble.

Definition: The entanglement of formationE(M ) of a bi-
partite mixed stateM is the minimum ofE(E) over en-
sembles E5$pi ,Y i% realizing the mixed state:
M5( i pi uY i&^Y i u.

We now prove thatE(M ) is nonincreasing under local
operations and classical communication. First we prove two
lemmas about the entanglement of bipartitepurestates under
local operations by one party, say Alice. Any such local ac-
tion can be decomposed into four basic kinds of operations:
~i! appending an ancillary system not entangled with Bob’s
part, ~ii ! performing a unitary transformation,~iii ! perform-
ing an orthogonal measurement, and~iv! throwing away, i.e.,
tracing out, part of the system.~There is no need to add
generalized measurements as a separate category, since such
measurements can be constructed from operations of the
above kinds.! It is clear that neither of the first two kinds of
operation can change the entanglement of a pure state shared
by Alice and Bob: the entanglement in these cases remains
equal to the von Neumann entropy of Bob’s part of the sys-
tem. However, for the last two kinds of operations, the en-
tanglement can change. In the following two lemmas we
show that the expected entanglement in these cases cannot
increase.

Lemma: If a bipartite pure stateY is subjected to a mea-
surement by Alice, giving outcomesk with probabilities
pk , and leaving residual bipartite pure statesYk , then the
expected entanglement of formation(kpkE(Yk) of the re-
sidual states is no greater than the entanglement of formation
E(Y) of the original state.

(
k

pkE~Yk!<E~Y!. ~6!

Proof. Because the measurement is performed locally by
Alice, it cannot affect the reduced density matrix seen by
Bob. Therefore the reduced density matrix seen by Bob be-
fore measurement,r5TrAuY&^Yu, must equal the ensemble
average of the reduced density matrices of the residual states
after measurement:rk5TrAuYk&^Yku after measurement. It
is well known that von Neumann entropy, like classical
Shannon entropy, is convex, in the sense that the entropy of

a weighted mean of several density matrices is no less than
the corresponding mean of their separate entropies@24#.
Therefore

S~r!>(
k

pkS~rk!. ~7!

But the left-hand side of this expression is the original pure
state’s entanglement before measurement, while the right-
hand side is the expected entanglement of the residual pure
states after measurement. QED.

Lemma: Consider a tripartite pure stateY, in which the
parts are labeledA, B, andC. ~We imagine Alice holding
parts A and C and Bob holding part B.! Let
M5TrCuY&^Yu. ThenE(M )<E(Y), where the latter is un-
derstood to be the entanglement between Bob’s partB and
Alice’s partAC. That is, Alice cannot increase the minimum
expected entanglement by throwing away systemC.

Proof. Again, whatever pure-state ensemble one takes as
the realization of the mixed stateM , the entropy at Bob’s
end of theaverageof these states must equalE(Y), because
the density matrix held by Bob has not changed. By the
above argument, then, the average of the entropies of the
reduced density matrices associated with these pure states
cannot exceed the entropy of Bob’s overall density matrix;
that is,E(M )<E(Y). QED.

We now prove a theorem that extends both of the above
results to mixed states.

Theorem: If a bipartite mixed stateM is subjected to an
operation by Alice, giving outcomesk with probabilities
pk , and leaving residual bipartite mixed statesMk , then the
expected entanglement of formation(kpkE(Mk) of the re-
sidual states is no greater than the entanglement of formation
E(M ) of the original state.

(
k

pkE~Mk!<E~M !. ~8!

~If the operation is simply throwing away part of Alice’s
system, then there will be only one value ofk, with unit
probability.!

Proof. Given mixed stateM there will exist some
minimal-entanglement ensemble

E5$pj ,Y j% ~9!

of pure states realizingM .
For any ensembleE8 realizingM ,

E~M !<E~E8!. ~10!

Applying the above lemmas to each pure state in the
minimal-entanglement ensembleE, we get, for eachj ,

(
k

pku jE~M jk!<E~Y j !, ~11!

whereM jk is the residual state if pure stateY j is subjected to
Alice’s operation and yields resultk, andpku j is the condi-
tional probability of obtaining this outcome when the initial
state isY j .
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Note that when the outcomek has occurred the residual
mixed state is described by the density matrix

Mk5(
j
pj ukM jk . ~12!

Multiplying Eq. ~11! by pj and summing overj gives

(
j ,k

pjpku jE~M jk!<(
j
pjE~Y j !5E~M !. ~13!

By Bayes theorem,

pj ,k5pjpku j5pkpj uk , ~14!

Eq. ~13! becomes

(
j ,k

pkpj ukE~M jk!<E~M !. ~15!

Using the bound Eq.~10!, we get

(
k

pkE~Mk!<(
k

pk(
j
pj ukE~M jk!<E~M !. ~16!

QED.
Although the above theorem concerns a single operation

by Alice, it evidently applies to any finite preparation proce-
dure, involving local actions and one- or two-way classical
communication, because any such procedure can be ex-
pressed as sequence of operations of the above type, per-
formed alternately by Alice and Bob. Each measurement-
type operation, for example, generates a new classical result,
and partitions the before-measurement mixed state into re-
sidual after-measurement mixed states whose mean entangle-
ment of formation does not exceed the entanglement of for-
mation of the mixed state before measurement. Hence we
may summarize the result of this section by saying that ex-
pected entanglement of formation of a bipartite system’s
state does not increase under local operations and classical
communication. As noted in@20#, entanglement itselfcan
increase under local operations, even though its expectation
cannot. Thus it is possible for Alice and Bob to gamble with
entanglement, risking some of their initial supply with a
chance of winning more than they originally had.

B. Entanglement of formation for mixtures of Bell states

In the preceding subsection it was shown that an en-
semble ofpure stateswith minimum average pure-state en-
tanglement realizing a given density matrix defines a maxi-
mally economical way of creating that density matrix. In
general it is not known how to find such an ensemble of
minimally entangled states for a given density matrixM . We
have, however, found such minimal ensembles for a particu-
lar class of states of two spin-1

2 particles, namely, mixtures
that are diagonal when written in the Bell basis Eqs.~1!, ~3!,
and~4!. We have also found a lower bound onE(M ) appli-
cable to any mixed state of two spin-1

2 particles. We present
these results in this subsection.

As a motivating example consider the Werner states of
@21#. A Werner state is a state drawn from an ensemble of

F parts pure singlet, and (12F)/3 parts of each of the other
Bell states — that is, a generalization of Eq.~5!:

WF5FuC2&^C2u1
12F

3
~ uC1&^C1u1uF1&^F1u

1uF2&^F2u!. ~17!

This is equivalent to saying it is drawn from an ensemble of
x5(4F21)/3 parts pure singlet, and 12x parts the totally
mixed ‘‘garbage’’ density matrix~equal to the identity op-
erator!

G5I5
1

4
~ uC1&^C1u1uC2&^C2u1uF1&^F1u

1uF2&^F2u!, ~18!

which was Werner’s original formulation. We label these
generalized Werner statesWF , with their F value, which is
their fidelity or purity ^C2uWFuC2& relative to a perfect
singlet~even though this fidelity is defined nonlocally, it can
be computed from the results of local measurements, as
123Pi/3, wherePi is the probability of obtaining parallel
outcomes if the two spins are measured along the same ran-
dom axis!.

It would take x5(4F21)/3 pure singlets to create a
mixed stateWF by directly implementing Werner’s en-
semble. One might assume that this prescription is the one
requiring the least entanglement, so that theW5/8 state would
cost 0.5 ebits to prepare. However, through a numerical
minimization technique we found four pure states, each hav-
ing only 0.117 ebits of entanglement, that when mixed with
equal probabilities create theW5/8 mixed state much more
economically. Below we derive an explicit minimally en-
tangled ensemble for any Bell-diagonal mixed stateW, in-
cluding the Werner statesWF as a special case, as well as a
giving a general lower bound for general mixed statesM of
a pair of spin-12 particles. For pure states and Bell-diagonal
mixturesE(M ) is simply equal to this bound.

The lower bound is expressed in terms of a quantity
f (M ) which we call the ‘‘fully entangled fraction’’ofM and
define as

f ~M !5max̂ euM ue&, ~19!

where the maximum is over all completely entangled states
ue&. Specifically, we will see that for all states of a pair of
spin-12 particles,E(M )>h@ f (M )#, where the functionh is
defined by

h~ f !5H H@ 1
21Af ~12 f !# for f> 1

2

0 for f, 1
2 .

~20!

Here H(x)52xlog2x2(12x)log2(12x) is the binary en-
tropy function. For mixtures of Bell states, the fully en-
tangled fractionf (M ) is simply the largest eigenvalue of
M .

We begin by considering the entanglement of a single
pure stateuf&. It is convenient to writeuf& in the following
orthogonal basis of completely entangled states:
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ue1&5uF1&,

ue2&5 i uF2&,

ue3&5 i uC1&,

ue4&5uC2&. ~21!

Thus we write

uf&5(
j51

4

a j uej&. ~22!

The entanglement ofuf& can be computed directly as the
von Neumann entropy of the reduced density matrix of either
of the two particles. On doing this calculation, one finds that
the entanglement ofuf& is given by the simple formula

E5H@ 1
2 ~11A12C2!#, ~23!

whereC5u( ja j
2u. ~Note that one is squaring the complex

numbersa j , not their moduli.! E andC both range from 0 to
1, andE is a monotonically increasing function ofC, so that
C itself is a kind of measure of entanglement. According to
Eq. ~23!, any real linear combination of the statesuej& is
another completely entangled state~i.e.,E51). In fact,every
completely entangled state can be written, up to an overall
phase factor, as a real linear combination of theuej& ’s. ~To
see this, choosea1 to be real without loss of generality. Then
if the othera j ’s are not all real,C will be less than unity, and
thus so willE.!

Note that if one of thea j ’s, saya1, is sufficiently large in
magnitude, then the othera j ’s will not have enough com-
bined weight to makeC equal to zero, and thus the state will
have to have some entanglement. This makes sense: if one
particular completely entangled state is sufficiently strongly
represented inuf&, thenuf& itself must have some entangle-
ment. Specifically, ifua1u2.

1
2 , then because the sum of the

squares of the three remaininga j ’s cannot exceed 12ua1u2
in magnitude,C must be at leastua1u22(12ua1u2), i.e.,
2ua1u221. It follows from Eq.~23! thatE must be at least

H@ 1
21Aua1u2(12ua1u2)#. That is, we have shown that

E~ uf&)>h~ ua1u2!, ~24!

whereh is defined in Eq.~20!. This inequality will be very
important in what follows.

As one might expect, the properties just described are not
unique to the basis$uej&%. Let uej8&5(kRjkuek&, whereR is
any real, orthogonal matrix~i.e., RTR5I ). We can expand
uf& as uf&5( ja j8uej8&, and the sum( ja j8

2 is guaranteed to
be equal to( ja j

2 because of the properties of orthogonal
transformations. Thus one can use the componentsa j8 in Eq.
~23! just as well as the componentsa j . In particular, the
inequality~24! can be generalized by substituting fora1 the
component ofuf& along any completely entangled state
ue&. That is, if we definew5 z^euf& z2 for some completely
entangledue&, then

E~ uf&)>h~w!. ~25!

We now move from pure states to mixed states. Consider
an arbitrary mixed stateM , and consider any ensemble
E5pk ,fk which is a decomposition ofM into pure states

M5(
k

pkufk&^fku. ~26!

For an arbitrary completely entangled stateue&, let
wk5 z^eufk& z2, and let w5^euM ue&5(kpkwk . We can
bound the entanglement of the ensemble~26! as follows:

E~E!5(
k

pkE~ ufk&)>(
k

pkh~wk!>hF(
k

pkwkG5h~w!.

~27!

This equation is true in particular for the minimal entangle-
ment ensemble realizingM for which E(M )5E(E). The
second inequality follows from the convexity of the function
h. Clearly we obtain the best bound of this form by maxi-
mizing w5^euM ue& over all completely entangled states
ue&. This maximum value ofw is what we have called the
fully entangled fractionf (M ). We have thus proved that

E~M !>h@ f ~M !#, ~28!

as promised.
To make the bound~28! more useful, we give the follow-

ing simple algorithm for finding the fully entangled fraction
f of an arbitrary stateM of a pair of qubits. First, writeM in
the basis$uej&% defined in Eq.~21!. In this basis, the com-
pletely entangled states are represented by the real vectors,
so we are looking for the maximum value of^euM ue& over
all real vectorsue&. But this maximum value is simply the
largest eigenvalue of the real part ofM . We have then:f is
the maximum eigenvalue of ReM , whenM is written in the
basis of Eq.~21!.

We now show that the bound~28! is actually achieved for
two cases of interest:~i! pure states and~ii ! mixtures of Bell
states. That is, in these cases,E(M )5h@ f (M )#.

~i! Pure states. Any pure state can be changed by local
rotations into a state@25# of the form uf&5au↑↑&1bu↓↓&,
wherea,b>0 anda21b251. Entanglement is not changed
by such rotations, so it is sufficient to show that the bound is
achieved for states of this form. ForM5uf&^fu, the com-
pletely entangled state maximizing^euM ue& is uF1&, and the
value of f is z^F1uf& z25(a1b)2/25 1

21ab. By straight-

forward substitution one finds thath( 121ab)5H(a2),
which we know to be the entanglement ofuf&. Thus
E(M )5h@ f (M )#, which is what we wanted to show.

~ii ! Mixtures of Bell states.Consider a mixed state of the
form

W5(
j51

4

pj uej&^ej u. ~29!

Suppose first that one of the eigenvaluespj is greater than or
equal to12, and without loss of generality take this eigenvalue
to bep1. The following eight pure states, mixed with equal
probabilities, yield the stateW:

Ap1ue1&1 i ~6Ap2ue2&6Ap3ue3&6Ap4ue4&). ~30!
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Moreover, all of these pure states have the same entangle-
ment, namely,

E5h~p1!. ~31!

@See Eq.~23!.# Therefore the average entanglement of the
mixture is also^E&5h(p1). But p15 f (W) for this density
matrix, so for this particular mixture, we have
^E&5h@ f (W)#. Since the right-hand side is our lower bound
onE, this mixture must be a minimum-entanglement decom-
position ofW, and thusE(W)5h@ f (W)#.

If none of the eigenvaluespj is greater than
1
2, then there

exist phase factorsu i such that( j pje
iu j50. In that case we

can expressW as an equal mixture of a different set of eight
states:

Ap1eiu1/2ue1&6Ap2eiu2/2ue2&6Ap3eiu3/2ue3&

6Ap4eiu4/2ue4&. ~32!

For each of these states, the quantityC @Eq. ~23!# is equal to
zero, and thus the entanglement is zero. It follows that
E(W)50, so that again the bound is achieved.„The bound
h@ f (W)# is zero in this case becausef , the greatest of the
pj ’s, is less than

1
2.!

It is interesting to ask whether the boundh@ f (M )# is in
fact alwaysequal toE(M ) for general mixed statesM , not
necessarily Bell-diagonal. It turns out that it is not. Consider,
for example, the mixed state

M5 1
2 u↑↑&^↑↑u1 1

2 uC1&^C1u. ~33!

The value off for this state is12, so thath( f )50. And yet, as
we now show, it is impossible to build this state out of un-
entangled pure states; henceE(M ) is greater than zero and is
not equal toh( f ).

To see this, let us try to construct the density matrix of
Eq. ~33! out of unentangled pure states. That is, we want

M5(
k

pkufk&^fku, ~34!

where eachufk& is unentangled. That is, eachufk& is such
that when we write it in the basis of Eq.~21!, i.e., as
ufk&5( j51

4 ak, j uej&, thea ’s satisfy the condition

(
j51

4

ak, j
2 50. ~35!

Now the density matrixM , when written in theuej& basis,
looks like this:

M53
1

4

i

4
0 0

2 i

4

1

4
0 0

0 0
1

2
0

0 0 0 0

4 . ~36!

Thus, in order for Eq.~34! to be true, thea ’s must be con-
sistent with the following conditions:

(
k

pkuak,1u25
1
4 ,

(
k

pkuak,2u25
1
4 ,

(
k

pkuak,3u25
1
2 , ~37!

(
k

pkuak,4u250,

(
k

pkak,1ak,2* 5
i

4
.

Evidently all theak,4’s are equal to zero. By Eq.~35! the
remaininga ’s satisfy

uak,1u21uak,2u2>uak,3u2 for everyk. ~38!

In fact, the ‘‘> ’’ of this last relation must be an equality, or
else the sum conditions of Eq.~37! would not work out. That
is,

uak,1u21uak,2u25uak,3u2 for everyk. ~39!

Combining this last equation with Eq.~35!, we arrive at the
conclusion that for eachk, the ratio ofak,1 to ak,2 is real. But
in that case there is no way to generate the imaginary sum
required by the last of the conditions~37!. It is thus impos-
sible to build M out of unentangled pure states; that is,
E(M ).0.

We conclude, then, that our bound is only a bound and
not an exact formula forE. It turns out, in fact, that there are
two other ways to prove that the stateM has nonzero en-
tanglement of formation. Peres@26# and Horodeckiet al.
@27# have recently developed a general test for nonzero en-
tanglement for states of two qubits and has applied it explic-
itly to states like ourM , showing thatE(M ) is nonzero.
Also, in Sec. III B 2 below, we show that one can distill
some pure entanglement fromM , which would not be pos-
sible if E(M ) were zero.

III. PURIFICATION

Suppose Alice and Bob haven pairs of particles, each
pair’s state described by a density matrixM . Such a mixed
state results if one or both members of an initially pure Bell
state is subjected to noise during transmission or storage~cf.
Fig. 1!. Given thesen impure pairs, how many pure Bell
singlets can they distill by local actions; indeed, can they
distill any at all? In other words, how much entanglement
can they ‘‘purify’’ out of their mixed state without further
use of a quantum channel to share more entanglement?

The complete answer is not yet known, but upper and
lower bounds are@17#. An upper bound isE(M ) per pair,
because if Alice and Bob could get more good singlets than
that they could use them to create more mixed states with
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density matrixM than the number with which they started,
thereby increasing their entanglement by local operations,
which we have proven impossible~Sec. II A!. Lower bounds
are given by construction. We have found specific proce-
dures which Alice and Bob can use to purify certain types of
mixed states into a lesser number of pure singlets. We call
these schemesentanglement purification protocols~EPPs!,
which should not be confused with thepurifications of a
mixed state of@28#.

A. Purification basics

Our purification procedures all stem from a few simple
ideas.

~1! A general two-particle mixed stateM can be con-
verted to a Werner stateWF @Eq. ~17!# by an irreversible
preprocessing operation which increases the entropy
@S(WF).S(M )#, perhaps wasting some of its recoverable
entanglement, but rendering the state easier to deal with be-
cause it can thereafter be regarded as a classical mixture of
the four orthogonal Bell states@Eqs. ~1!, ~3!, and ~4!# @29#.
The simplest such preprocessing operation, arandom bilat-
eral rotation @17# or ‘‘twirl,’’ consists of choosing an inde-
pendent, random SU~2! for each impure pair and applying it
to both members of the pair~cf. Fig. 5!. Because of the
singlet state’s invariance under bilateral rotation, twirling has
the effect of removing off-diagonal terms in the two-particle
density matrix in the Bell basis, as well as equalizing the
triplet eigenvalues. Actually, removing the off-diagonal
terms is sufficient as all of our EPPs operate successfully
~with only minor modification! on a Bell-diagonal mixed
stateW with, in general, unequal triplet eigenvalues. Equal-
ization of the triplet eigenvalues only adds unnecessary en-
tropy to the mixture. In Appendix A it is shown that a con-
tinuum of rotations is unnecessary: an arbitrary mixed state
of two qubits can be converted into a WernerWF or Bell-
diagonalW mixture by a ‘‘discrete twirl,’’ consisting of a
random choice among an appropriate discrete set of bilateral
rotations@30#. We useT to denote the nonunitary operation
of performing either a discrete or a continuous twirl.

~2! Once the initial mixed stateM has been rendered into
Bell-diagonal formW, it can be purified as if it were a clas-
sical mixture of Bell states, without regard to the original
mixed stateM or the noisy channel~s! that may have gener-
ated it @31#. This is extremely convenient for the develop-

ment of all our protocols. However, as we show in Appendix
B, all the purification protocols we will develop will also
work just as well on the original non-Bell-diagonal mixtures
M .

~3! Bell states map onto one another under several kinds
of local unitary operations~cf. Table I!. These three sets of
operations are of two types:unilateral operations, which are
performed by Bob or Alice but not both, andbilateral opera-
tions, which can be written as a tensor product of an Alice
part and a Bob part, each of which are the same. The three
types of operations used are~1! unilateral rotations byp rad,
corresponding to the three Pauli matricessx , sy , andsz ;
~2! bilateral rotations byp/2 rad, henceforth denotedBx ,
By , andBz ; and ~3! the bilateral application of the two-bit
quantumXOR ~or controlled-NOT! @32,33#, hereafter referred
to as theBXOR operation~see Fig. 6!. These operations and
the Bell state mappings they implement, along with indi-
vidual particle measurements, are the basic tools Alice and
Bob use to purify singlets out ofW.

~4! Alice and Bob can distinguishF states fromC states
by locally measuring their particles along thez direction. If
they get the same results they have aF; if they get opposite
results they have aC. Note that if only one of the observers
~say, Bob! needs to know whether the state was aF or a
C, the process can be done without two-way communica-
tion. Alice simply makes her measurement and sends the
result to Bob. After Bob makes his measurement, he can then
determine whether the state had been aF or aC by com-
paring his measurement result with Alice’s, without any fur-
ther communication.

~5! For convenience we takeuF1& as the standard state
for the rest of the paper. This is because it is the state which,
when used as both source and target in aBXOR, remains
unchanged. It is not necessary to use this convention but it is
algebraically simpler. We note thatuF1& states can be con-
verted to singlet (uC2&) states using the unilateralsy rota-
tion, as shown in Table I. The only complication is that the
nonunitary twirling operationT of item 1 works only when
uC2& is taken as the standard state. But a modified twirl
T8 which leavesuF1& invariant and randomizes the other
three Bell states may easily be constructed: the modified
twirl would consist of a unilateralsy ~which swaps the
uF1& ’s and uC2& ’s! followed by a conventional twirlT,
followed by another unilateralsy ~which swaps them back!.

~6! The preceding points all suggest a new notation for the
Bell states. We use two classical bits to label each of the Bell
states and write

F1500,

C1501,

F2510,

C2511. ~40!

The right, low-order or ‘‘amplitude’’ bit identifies theF/C
property of the Bell state, while the left, high-order or
‘‘phase’’ bit identifies the1/2 property. Both properties
could be distinguished simultaneously by a nonlocal mea-
surement, but local measurements can only distinguish one

FIG. 5. The general mixed stateM of Fig. 1 can be converted
into one of the Werner formWF of Eq. ~17! if the particles on both
Alice’s and Bob’s side are subjected to the same random rotation
R @we refer to the act of choosing a random SU~2! rotation and
applying it to both particles as a ‘‘twirl’’T#.
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of the properties at a time, randomizing the other. For ex-
ample, a bilateralz spin measurement distinguishes the am-
plitude while randomizing the phase.

B. Purification protocols

We now present several two- and one-way purification
protocols. All begin with a large collection ofn impure pairs
each in mixed stateM , use upn2m of them ~by measure-

ment!, while maneuvering the remainingm pairs into a col-
lective stateM 8 whose fidelity^(F1)muM 8u(F1)m& relative
to a product ofm standardF1 states approaches 1 in the
limit of large n. The yield a purification protocolP on input
mixed statesM is defined as

DP~M !5 lim
n→`

m/n. ~41!

If the original impure pairsM arise from sharing pure EPR
pairs through a noisy channelx, then the yieldDP(M ) de-
fines the asymptotic number of qubits that can be reliably
transmitted~via teleportation! per use of the channel. For
one-way protocols the yield is equal to the rate of a corre-
sponding quantum error-correcting code~cf. Sec. V!. For
two-way protocols, there is no corresponding quantum error-
correcting code. We will compare the yields from our proto-
cols with the rates of quantum error-correcting codes intro-
duced by other authors, and with known upper bounds on the
one-way and two-way distillable entanglementsD1(W) and
D2(W). These are defined in the obvious way, e.g.,
D1(W)5max$DP(W):P is a 12EPP%. No entanglement puri-
fication protocol has been proven optimal, but all give lower
bounds on the amount of entanglement that can be distilled
from various mixed states.

1. Recurrence method

A purification procedure presented originally in@17# is the
recurrence method. This is an explicitly two-way protocol.

TABLE I. The unilateral and bilateral operations used by Alice and Bob to map Bell states to Bell states.
Each entry of theBXOR table has two lines, the first showing what happens to the source state, the second
showing what happens to the target state.

Source
C2 F2 F1 C1

I C2 F2 F1 C1

Unilateralp rotations: sx F2 C2 C1 F1

sy F1 C1 C2 F2

sz C1 F1 F2 C2

Source
C2 F2 F1 C1

I C2 F2 F1 C1

Bilateralp/2 rotations: Bx C2 F2 C1 F1

By C2 C1 F1 F2

Bz C2 F1 F2 C1

Source
Target C2 F2 F1 C1

C1 F1 F2 C2 ~source!
C2 F2 C2 C2 F2 ~target!

C1 F1 F2 C2 ~source!
Bilateral XOR: F2 C2 F2 F2 C2 ~target!

C2 F2 F1 C1 ~source!
F1 C1 F1 F1 C1 ~target!

C2 F2 F1 C1 ~source!
C1 F1 C1 C1 F1 ~target!

FIG. 6. TheBXOR operation. A solid dot indicates the source bit
of anXOR operation@32# and a crossed circle indicates the target. In
this example aC2 state is the source and aF1 is the target. If the
pairs are later brought back together and measured in the Bell basis
the source will remain aC2 and the target will have become a
C1, as per Table I.

54 3833MIXED-STATE ENTANGLEMENT AND QUANTUM ERROR . . .



Two states are drawn from an ensemble which is a mixture
of Bell states with probabilitiespi where i labels the Bell
states in our two-bit notation.~As noted earlier, if the origi-
nal impure state is not Bell-diagonal, it can be made so by
twirling!. The 00 state is again taken to be the standard state
and we takep005F. The two states are used as the source
and target for theBXOR operation. Their initial states and
probabilities, and states after theBXOR operation, are shown
in Table II. Alice and Bob test the target states, and then
separate the source states into the ones whose target states
passed and the ones whose target state failed. Each of these
subsets is a Bell state mixture, with new probabilities. These
a posterioriprobabilities for the ‘‘passed’’ subset are

p008 5~p00
2 1p10

2 !/ppass, p018 5~p01
2 1p11

2 !/ppass,
~42!

p108 52p00p10/ppass, p118 52p01p11/ppass,

with

ppass5p00
2 1p01

2 1p10
2 1p11

2 12p00p1012p01p11. ~43!

Consider the situation where Alice and Bob begin with a
large supply of Werner statesWF . They apply the preceding
procedure and are left with a subset of states which passed
and a subset which failed. For the members of the ‘‘passed’’
subset p008 .p00 for all p00.0.5. The members of the
‘‘failed’’ subset havep005p015p105p1151/4. Since the en-
tanglementE of this mixture is 0, it will clearly not be pos-
sible to extract any entanglement from the ‘‘failed’’ subset,
so all members of this subset are discarded. Note that this is
where the protocol explicitly requires two-way communica-

tion. Both Alice and Bob need to know the results of the test
in order to determine which pairs to discard.

The members of the ‘‘passed’’ subset have a greaterp00
than those in the original set of impure pairs. The new den-
sity matrix is still Bell diagonal, but is no longer a Werner
stateWF . Therefore, a twirlT8 is applied~Sec. III A, items
1 and 5!, leaving thep00 component alone and equalizing the
others @34#. ~It is appropriate in this situation to use the
modified twirlT8 which leavesF1 invariant, as explained in
item 5 of Sec. III A.! We are left with a new situation similar
to the starting situation, but with a higher fidelityF85p008 .
Figure 7 shows the resultingF8 versusF. The process is
then repeated; iterating the function of Fig. 7 will continue to
improve the fidelity. This can be continued until the fidelity
is arbitrarily close to 1. Macchiavello@34# has found that
faster convergence can be achieved by substituting a deter-
ministic bilateralBx rotation for the twirlT8. With this modi-
fication, the density matrix remains Bell diagonal, but no
longer has the Werner formWF after the first iteration; nev-
ertheless itsp00 component increases more rapidly with suc-
cessive iterations.

Even with this improvement the recurrence method is
rather inefficient, approaching zero yield in the limit of high
output fidelity, since in each iteration at least half the pairs
are lost~one out of every two is measured, and the failures
are discarded!. Figure 7 shows the fraction of pairs lost on
each iteration. A positive yieldD2, even in the limit of per-
fect output fidelity, can be obtained by switching over from
the recurrence method to the hashing method, to be de-
scribed in Sec. III B 3, as soon as so doing will produce more
good singlets than doing another step of recurrence. The
yield versus initial fidelity of these combined recurrence-
hashing protocols is shown in Fig. 8.~See also Fig. 9.!

It is important to note that the recurrence-hashing method
gives a positive yield of purified singlets from all Werner
states with fidelity greater than 1/2. Werner states of fidelity
1/2 or less haveE50 and therefore can yield no singlets.
The pure hashing and breeding protocols, described below,
which are one-way protocols, work only down to

TABLE II. Probabilities for each initial configuration of source
and target in a pair of Bell states drawn from the same ensemble,
and the resulting state configuration after aBXOR operation is ap-
plied. The final column shows whether the target state passes~P! or
fails ~F! the test for being parallel along thez axis ~this is given by
the rightmost bit of the target state after theBXOR!. This table,
ignoring the probability column, is just theBXOR table of Table I
written in the bitwise notation of item~6! of Sec. III A.

Initial After BXOR Test
Probability S T S T result

p00
2 00 00 00 00 P
p00p01 00 01 00 01 F
p00p10 00 10 10 10 P
p00p11 00 11 10 11 F
p01p00 01 00 01 01 F
p01
2 01 01 01 00 P
p01p10 01 10 11 11 F
p01p11 01 11 11 10 P
p10p00 10 00 10 00 P
p10p01 10 01 10 01 F
p10
2 10 10 00 10 P
p10p11 10 11 00 11 F
p11p00 11 00 11 01 F
p11p01 11 01 11 00 P
p11p10 11 10 01 11 F
p11
2 11 11 01 10 P

FIG. 7. Effect on the fidelity of Werner states of one step of
purification, using the recurrence protocol.F is the initial fidelity of
the Werner state@Eq. ~17!#, F8 is the final fidelity of the ‘‘passed’’
pairs after one iteration. Also shown is the fractionppass/2 of pairs
remaining after one iteration@cf. Eq. ~43!#.
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F'0.8107, and even the best known one-way protocol@35#
works only down toF'0.8094.

2. Direct purification of non-Bell-diagonal mixtures

Most of the purification strategies discussed in this paper
assume that the state to be purified is first brought to the
Werner form, or at least to Bell-diagonal form, by means of
a twirling operation. As we have said, though, this strategy is
somewhat wasteful and we use it only to make the analysis
manageable. In this subsection we give a simple example
showing how a state can be purified directly with no twirling.
For this particular example, it happens that the purification is
accomplished in a single step rather than in a series of steps
that gradually raise the fidelity.

Consider again the stateM of Eq. ~33!:

M5 1
2 u↑↑&^↑↑u1 1

2 uC1&^C1u. ~44!

Note that because the fully entangled fraction@Eq. ~19!#
f51/2 for this state, it cannot be purified by the recurrence
method. However, a collection of pairs in this state can be
purified as using the following two-way protocol@36#: as in
the recurrence method, Alice and Bob first perform theBXOR

operation between pairs of pairs, and then bilaterally mea-
sure each target pair in the up-down basis. One can show that
if the outcome of this measurement on a given target pair is
‘‘down-down,’’ then the corresponding source pair is left in
the completely entangled stateC1. Alice and Bob therefore
keep the source pair only when they get this outcome, and
discard it otherwise. The probability of getting the outcome
‘‘down-down’’ is 1/8, and since each target pair had to be
sacrificed for the measurement, the yield from this procedure
is D251/16. The same strategy works for any state of the
form

M5~12p!u↑↑&^↑↑u1puC1&^C1u, ~45!

with yield D25p2/4.
A recent paper by Horodeckiet al. @37# presents a more

general approach to the purification of mixed states which,
like the above scheme, does not start by bringing the states to
Bell-diagonal form. Their strategy begins with a filtering op-
eration aimed at increasing the fully entangled fractionf @Eq.
~19!# of the surviving pairs; these pairs are then subjected to
the recurrence procedure described above. These authors
have shown that by this technique, one can distill some
amount of pure entanglement from any state of two qubits
having a nonzero entanglement of formation. In other words,
they have obtained for such systems the very interesting re-
sult that ifE(M ) is nonzero, then so isD2(M ).

3. One-way hashing method

This protocol uses methods analogous to those of univer-
sal hashing in classical privacy amplification@38#. ~We will
give a self-contained treatment of this hashing scheme here.!
Given a large numbern of impure pairs drawn from a Bell-
diagonal ensemble of known density matrixW, this protocol
allows Alice and Bob to distill a smaller number
m'n@12S(W)# of purified pairs ~e.g., near-perfectF1

states! wheneverS(W),1. In the limit of largen, the output
pairs approach perfect purity, while the asymptotic yield
m/n approaches 12S(W). This hashing protocol supersedes
our earlier breeding protocol@17#, which we will review
briefly in Sec. III B 4.

The hashing protocol works by having Alice and Bob
each performBXOR’s and other local unitary operations
~Table I! on corresponding members of their pairs, after
which they locally measure some of the pairs to gain infor-
mation about the Bell states of the remaining unmeasured
pairs. By the correct choice of local operations, each mea-
surement can be made to reveal almost one bit about the
unmeasured pairs; therefore, by sacrificing slightly more
thannS(W) pairs, whereS(W) is the von Neumann entropy
@see Eq.~2!# of the impure pairs, the Bell states of all the
remaining unmeasured pairs can, with high probability, be
ascertained. Then local unilateral Pauli rotations (sx,y,z) can
be used to restore each unmeasured pair to the standard
F1 state.

FIG. 8. Measures of entanglement versus fidelityF for Werner
statesWF of Eq. ~17!. E is the entanglement of formation, Eq.~27!.
DR is the yield of the recurrence method of Sec. III B 1 continued
by the hashing method of~Sec. III B 4!. DM is the yield of the
modified recurrence method of Macchiavello@34#, continued by
hashing.DH is the yield of the one-way hashing and breeding pro-
tocols~Sec. III B 4! used alone.DCS is the rate of the quantum error
correcting codes proposed by Calderbank and Shor@10# and Steane
@11#. BKL is the upper bound forD1 as shown in Sec. VI E~follow-
ing Knill and Laflamme@40#!.

FIG. 9. The same as Fig. 8 exhibited on logarithmic scales. The
value along thex axis is proportional to the logarithm of
(F20.5). In this form it is clear thatE, DM , andDR follow power
laws (F20.5)a. The ripples inDM andDR are real, and arise from
the variable number of recurrence steps performed before switching
over to the hashing protocol@17#.
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The hashing protocol requires only one-way communica-
tion: after Alice finishes her part of the protocol, in the pro-
cess having measuredn2m of her qubits, she is able to send
Bob classical information which, when combined with his
measurement results, enables him to transform his corre-
sponding unmeasured qubits into near-perfectF1 twins of
Alice’s unmeasured qubits, as shown in Fig. 3.

Let d be a small positive parameter that will later be
allowed to approach zero in the limit of largen. The initial
sequence ofn impure pairs can be conveniently represented
by a 2n-bit string x0 formed by concatenating the two-bit
representations@Eq. ~40!# of the Bell states of the individual
pairs, the sequenceC2F1F2, for example, being repre-
sented 110010. Theparity of a bit string is the modulo-2 sum
of its bits; the parity of a subsets of the bits in a stringx can
be expressed as a Boolean inner products•x, i.e., the
modulo-2 sum of the bitwiseAND of strings s and x. For
example1101•011150 in accord with the fact that there are
an even number of ones in the subset consisting of the first,
second, and fourth bits of the string 0111. Although the inner
products•x is a symmetric function of its two arguments, we
use a slanted font for the first argument to emphasize its role
as a subset selection index, while the second argument~in
roman font! is the bit string representing an unknown se-
quence of Bell states to be purified.

The hashing protocol takes advantage of the following
facts.

~1! The distributionPX0
of initial sequencesx0, being a

product ofn identical independent distributions, receives al-
most all its weight from a set of'2nS(W) ‘‘likely’’ strings. If
the likely setL is defined as comprising the 2n(S(W)1d) most
probable strings inPX0

, then the probability that the initial

string x falls outsideL is O„exp(2d2n)… @6#.
~2! As will be described in more detail later, the local

Bell-preserving unitary operations of Table I~bilateralp/2
rotations, unilateral Pauli rotations, andBXOR’s!, followed
by local measurement of one of the pairs, can be used to
learn the parity of an arbitrary subsets of the bits in the
unknown Bell-state sequencex, leaving the remaining un-
measured pairs in definite Bell states characterized by a two-
bits-shorter stringf s(x) determined by the initial sequence
x and the chosen subsets.

~3! For any two distinct stringsxÞy, the probability that
they agree on the parity of a random subset of their bit po-
sitions, i.e., thats•x5s•y for randoms, is exactly 1/2. This
is an elementary consequence of the distributive law (s•x)
% (s•y)5s•(x% y).
The hashing protocol consists ofn2m rounds of the fol-

lowing procedure. At the beginning of the (k11)st round.
k50,1, . . . ,n2m21, Alice and Bob haven2k impure
pairs whose unknown Bell state is described by a
2(n2k)-bit string xk . In particular, before the first round,
the Bell sequencex0 is distributed according to the simplea
priori probability distributionPX0

noted above. Then in the

(k11)st round, Alice first chooses and tells Bob a random
2(n2k)-bit string sk . Second, Alice and Bob perform local
unitary operations and measure one pair to determine the
subset paritysk•xk , leaving behindn2k21 unmeasured
pairs in a Bell state described by the@2(n2k)22#-bit string
xk115 f sk(xk).

Consider the trajectories of two arbitrary but distinct
stringsx0Þy0 under this procedure. Letxk andyk denote the
images ofx0 andy0, respectively, afterk rounds, where the
same sequence of operationsf s0, f s1, . . . ,f sn2m21

, param-
eterized by the same random-subset index strings
s0 ,s1 , . . . ,sn2m21, is used for both trajectories. It can
readily be verified that for anyr,n the probability

P„~xrÞyr !&;k50
r21~sk•xk5sk•yk!… ~46!

~i.e., the probability thatxr andyr remain distinct while nev-
ertheless having agreed on allr subset parities along the
way, sk•xk5sk•yk for k50, . . . ,r21) is at most 22r . This
follows from the fact that at each iteration the probability
thatx andy remain distinct is<1, while the probability that,
if they were distinct at the beginning of the iteration they will
give the same subset parity, is exactly 1/2. Recalling that the
likely set L of initial candidates has only 2n[S(W)1d] mem-
bers, but with probability greater than 12O„exp(2d2n)… in-
cludes the true initial sequencex0, it is evident that after
r5n2m rounds, the probability of failure, i.e., of no candi-
date, or of more than one candidate, remaining at the end for
xm , is at most 2n[S(W)1d]2(n2m)1O„exp(2d2n)…. Here the
first term upper-bounds the probability of more than one can-
didate surviving, while the second term upper-bounds the
probability of the truex0 having fallen outside the likely set.
Letting n2m5n@S(M )12d# and takingd'n21/4, we get
the desired result that the error probability approaches 0 and
the yieldm approachesn@12S(M )# in the limit of large
n.

It remains to show how the local operations of Table I can
be used to collect the parity of an arbitrary subset of bits of
x into the amplitude bit of a single pair. We choose as the
destination pair, into which we wish to collect the parity
s•x, that pair corresponding to the first nonzero bit ofs. For
example ifs500,11,01,10~see Fig. 10!, the destination will
be the second pair ofxk . Our goal will be to make the
amplitude bit of that pair after roundk equal to the parity of
both bits of the second pair, the right bit of the third pair, and
the left bit of the fourth pair in the unknown inputxk . Pairs
such as the first, having 00 in the index strings, have no
effect on the desired subset parity, and accordingly are by-
passed by all the operations described below.

FIG. 10. Stepk of the one-way hashing protocol, used to deter-
mine the paritysk•xk , for an arbitrary unknown set of four Bell
states represented by an unknown 8-bit stringx relative to a known
subset index strings500,11,01,10. If bilateral measurementM
yields aC state~i.e., if the measurement result is 1!, then half the
candidates forx are excluded~e.g., x500,00,00,00), but half are
still allowed ~e.g.,x500,11,00,00). For each allowedx, the after-
measurement Bell states of the three remaining unmeasured pairs
are a described by a 6-bit sequencexk115 f s(xk) deterministically
computable fromx ands.
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The first step in collecting the parity is to operate sepa-
rately on each of the pairs having a01, 10, or 11 in the index
string, so as to collect the desired parityfor that pair into the
amplitude ~right! bit of the pair. This can be achieved by
doing nothing to pairs having01 in the index string, perform-
ing aBy on pairs having10 ~sinceBy has the effect of inter-
changing the phase and amplitude bits of a Bell state!, and
performing the two rotationsBx andsx on pairs with11 in
the index string (Bxsx5sxBx has the effect ofXORing a Bell
state’s phase bit into its amplitude bit!.

The next step consists ofBXORing all the pairs except
those with00 in the index string into the selected destination,
in this case the second pair. The selected destination pair is
used as the common target for all theseBXOR’s, causing its
amplitude bit to accumulate the desired subset paritys•x.
This follows from the fact~cf. Table I! that theBXOR leaves
the source’s amplitude bit unaffected while causing the tar-
get’s amplitude bit to become theXOR of the previous am-
plitude bits of source and target. Recall that phase bits be-
have oppositely underBXOR: the target’s phase bit is
unaffected while the source’s phase bit becomes theXOR of
the previous values of source and target phase bits; this
‘‘back-action’’ must be accounted for in determining the
function f s . Figure 10 illustrates this step of the hashing
method on an unknown four-Bell-state sequencex using the
subset index strings500,11,01,10mentioned before.

The hashing protocol distills a yieldDH512S(W),
which we have calledD0 in our previous work@17#. For the
Werner channel, parametrized completely byF,

S~WF!52F log2~F !2~12F !log2@~12F !/3#, ~47!

giving a positive yield for Werner states withF*0.8107.
Figures 8 and 9 showDH(F), comparing it withE and with
other purification protocols.

4. Breeding method

This protocol, introduced in Ref.@17#, will not be de-
scribed here in detail, as it has been superseded by the one-
way hashing protocol described in the preceding section. The
breeding protocol assumes that Alice and Bob have a shared
pool of pureuF1&500 states, previously prepared by some
other method~e.g., the recurrence method! and also a supply
of Bell-diagonal impure states which they wish to purify.
The protocol consumes theF1 states from the pool, but, if
the impure states are not too impure, produces more newly
purified pairs than the number of pool states consumed~in
the manner of a breeder reactor!.

The basic step of breeding is very similar to that of hash-
ing and is shown in Fig. 11. Again a random subsets of the
amplitude and phase bits of the Bell states is selected. The
parity of this selected set is again gathered up in exactly the
same way, except that the target of theBXOR operations is
one of the prepurified 00 states. The use of the pure target
simplifies the action of theBXOR, in that the ‘‘back action’’
which changes the state of the source bits is avoided in this
scheme. This means that the input stringx can be restored to
exactly its original value by a simple undoing of the one-
qubit local operations, as shown. This offers the advantage
that the ~possibly very complicated! sequence of Boolean
functionsf s0, f s1, . . . ,f sn2m21

do not have to be calculated in

this case. Once again, the result of the parity measurement
M is to reduce the number of candidates forx by almost
exactly 1/2. Thus, by the same argument as before, after
n2m'nS(W) rounds of parity measurements, it is probable
thatx has been narrowed down to be just one member of the
likely setL. Thus, alln of these pairs can be turned into pure
F1 states; however, sincen2m pureF1’s have been used
up in the process, the net yield ism/n5DH(F), exactly the
same as in the hashing protocol.

IV. ONE-WAY D AND TWO-WAY D
ARE PROVABLY DIFFERENT

It has already been noted that some of the entanglement
purification schemes use two-way communication between
the two parties Alice and Bob while others use only one-way
communication. The difference is significant because one-
way protocols can be used to protect quantum states during
storage in a noisy environment, as well as during transmis-
sion through a noisy channel, while two-way protocols can
only be used for the latter purpose~cf. Sec. VI!. Thus it is
important to know whether there are mixed states for which
D1 is properly less thanD2. Here we show that there are, and
indeed that the original Werner stateW5/8 ~i.e., the result of
sharing singlets through a 50% depolarizing channel! cannot
be purified at all by one-way protocols, even though it has a
positive yield under two-way protocols.

To show this, consider an ensemble where a state preparer
gives Alicen singlets, half shared with Bob and half shared
with another person~Charlie!. Alice is unaware of which
pairs are shared with Bob and which with Charlie. Bob and
Charlie are also given enough extra garbage particles~either
randomly selected qubits or any state totally entangled with
the environment but with no one else! so that they each have
a total ofn particles as well. This situation is diagrammed in
Fig. 12. From Alice and Bob’s point of view, each state has
the density matrixW5/8.

Alice, without hearing any information from Bob or Char-
lie, is supposed to do her half of a purification protocol and
then send on classical data to the others. Therefore, each
particle Alice has looks like a totally mixed state to her. By
symmetry, anything she could do to assure herself that a
particular particle is half of a good EPR pair shared with Bob
will also assure her that the same particle is half of a good
EPR pair shared with Charlie. No such three-sided EPR pair

FIG. 11. Stepk of the one-way breeding protocol. The scheme
is very similar to the hashing protocol of Fig. 10, except that the
target for theBXOR’s is guaranteed to be a perfectF1 state. This
allows the one-bit operations to be undone so that there is no back-
action on the stringx.
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can exist. If she used it to teleport a qubit to Bob she would
also have teleported it to Charlie, violating the no-cloning
theorem@39#. Therefore, she cannot distill even one good
EPR pair from an arbitrarily large supply ofW5/8 states. On
the other hand the combined recurrence-hashing method
(DM in Fig. 9! gives a positive lower bound on the two-way
yield D2(W5/8).0.004 57, so we can write

D1~W5/8!50,0.004 57<D2~W5/8!. ~48!

It is also clear that any ensemble of Werner states can be
reduced to one of lower fidelity by local action@combining
with totally mixed states of Eq. ~18!#. Therefore
D1(WF)50 for all F,5/8. Knill and Laflamme prove@40#
that D1(WF)50 for all F,3/4. In Sec. VI E we explain
their proof and, using the argument of Sec. V B, obtain the
bound

D1,4F23, ~49!

as shown in Figs. 8 and 9.
A similar argument can be used to show that for some

ensemblesD1 is not symmetric, depending on whether it is
Alice or Bob who starts the communication. Suppose in the
symmetric situation of Fig. 12 that Bob and Charlieknow
which pairs are shared with Alice and which are garbage. For
this ensemble the symmetry argument for Alice remains the
same andDA→B50. If the communication is from Bob to
Alice, though, it is easy to see that he can use half of his
particles, the ones he knows are good pairs shared with Al-
ice. The other half are useless since they haveE50 and
could have been manufactured locally. Thus we have
DB→A51/2 andDA→B50.

Our no-cloning argument shows that Alice and Bob can-
not generate good EPR pairs by applying a 1-EPP to the
mixed stateW5/8 generated by sharing singlets through a
50% depolarizing channel. As a consequence, there is no
quantum error-correcting code which can transmit unknown
quantum states reliably through a 50% depolarizing channel,
as will be shown in the next section.

V. NOISY CHANNELS AND BIPARTITE MIXED STATES

In preceding sections we have considered the preparation
and purification of bipartite mixed states, and we have shown
that two-way entanglement purification protocols can purify
some mixed states that cannot be purified by any one-way

protocol. When used in conjunction with teleportation, puri-
fication protocols, whether one-way or two-way, offer a
means of transmitting quantum information faithfully via
noisy channels; and one-way protocols, by producing time-
separated entanglement, can additionally be used to protect
quantum states during storage in a noisy environment. In this
section we discuss the close relation between one-way en-
tanglement purification protocols and the other well-known
means of protecting quantum information from noise,
namely quantum error-correcting codes~QECC! @8–16#.

A quantum channelx, operating on states in an
N-dimensional Hilbert space, may be defined as~cf. @9#! a
unitary interaction of the input state with an environment, in
which the environment is supplied in a standard pure initial
stateu0& and is traced out~i.e., discarded! after the interac-
tion to yield the channel output, generally a mixed state. The
quantum capacityQ(x) of such a channel is the maximum
asymptotic rate of reliable transmission of unknown quantum
statesuj& in H2 through the channel that can be achieved by
using a QECC to encode the states before transmission and
decode them afterward.

As in quantum teleportation@5# we will also consider the
possibility that the quantum channel is supplemented with
classical communication. This leads us to define the aug-
mented quantum capacitiesQ1(x) andQ2(x), of a channel
supplemented by unlimited one- and two-way classical com-
munication. For example, Fig. 13 shows a quantum error-
correcting code, consisting of encoding transformationUe
and decoding transformationUd , used to transmit unknown
quantum statesuj& reliably through the noisy quantum chan-
nel x, with the help of a one-way classical side channel
~operating in the same direction as the quantum channel!.
Perhaps surprisingly, this one-way classical channel provides
no enhancement of quantum capacity:

Q15Q. ~50!

This will be shown in Sec. V A.
We consider also the case of a noisy quantum channel

supplemented by anoiselessquantum channel. We will show
in Sec. V B that the capacity ofn uses of a noisy channel
supplemented bym uses of a noiseless channel of unit ca-
pacity is no greater than the sum of their individual capaci-
ties, i.e., their quantum capacities are no more than additive.
We have no similar result for the case of two different im-
perfect channels.

In contrast to Eq.~50! we will show that for many quan-
tum channels two-way classical communication can be used
to transmit quantum states through the channel at a rate
Q2(x) considerably exceeding the one-way capacityQ(x).
This is typically done by using the channel to share EPR
pairs between Alice and Bob, purifying the resulting bipartite

FIG. 12. A symmetric situation in which Bob and Charlie are
each equally entangled with Alice. Two-headed arrows denote
maximally entangled pairs, and open circles denote garbage states
@Eq. ~18!#.

FIG. 13. A general one-way QECC. A classical side channel
from Alice to Bob is allowed in addition to quantum channelx.
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mixed states by a two-way entanglement purification proto-
col, then using the resulting purified pairs to teleport un-
known quantum statesuj& from Alice to Bob.

The analysis ofQ andQ2 is considerably simplified by
the fact that an important class of noisy channels, including
depolarizing channels, can be mapped in a one-to-one fash-
ion onto a corresponding class of bipartite mixed states, with
the consequence that the channel’s quantum capacity
Q15Q is given by the one-way distillable entanglement
D1 of the mixed state, and vice versa. For example, a depo-
larizing channel of depolarization probabilityp512x @cf.
above Eq.~18!# corresponds to a Werner stateWF of fidelity
F512(3p/4) and hasQ5D1(WF) andQ25D2(WF).

The correspondence between channels and mixed states is
established by two functions,M̂ (x) defining the bipartite
mixed state obtained from channelx andx̂(M ) defining the
channel obtained from bipartite mixed stateM . The bipartite
mixed stateM̂ (x) is obtained by preparing a standard maxi-
mally entangled state of twoN-state subsystems,

Y5N21/2(
i51

N

uej& ^ uej&, ~51!

and transmitting Bob’s part through the channelx. For ex-
ample, a Werner stateWF , with F5123p/4, results when
half a standard EPR pair is transmitted through a
p-depolarizing channel.

The mapping in the other direction, from mixed states to
channels, is obtained by teleportation. Given a bipartite
mixed stateM of two subsystems, each having Hilbert space
of dimensionN, the channelx̂(M ) is defined by using mixed
stateM , instead of the standard maximally entangled state
uY&^Yu, in a teleportation@5# channel~see Fig. 4!. It can be
readily shown that for Bell-diagonal mixed states the two
mappings are mutually inverseM̂ „x̂(M )…5M ; we shall call
the channels corresponding to such mixed states ‘‘general-
ized depolarizing channels.’’

For more general channels and mixed states, the two map-
pings are not generally mutually inverse. For example,
x̂(M ), for the bipartite stateM5u↑↑&^↑↑u, is thep51 de-
polarizing channel, andM̂ „x̂(M )…5G of Eq. ~18!.

Nevertheless, two quite general inequalities will be dem-
onstrated in Secs. V C and V D:

;M D1~M !>Q„x̂~M !… ~52!

and

;x D1„M̂ ~x!…<Q~x!. ~53!

If ~as in the case of a Bell-diagonal state and its correspond-
ing generalized depolarizing channel! the mapping is revers-
ible, so thatM5M̂ (x) and x5x̂(M ), the two inequalities
are both satisfied, resulting in the equality mentioned earlier,
viz.,

D1~M !5Q~x!. ~54!

Equation~52! follows from the ability, to be demonstrated in
Sec. V C, to transform a QECC onx̂(M ) into a 1-EPP on
M ; Eq. ~53! follows, as shown in Sec. V D, from the fact that

any 1-EPP onM̂ (x), followed by quantum teleportation, re-
sults in a QECC onx with a classical side channel.

A trivial extension of these arguments also shows that the
corresponding results for two-way classical communication
are true, namely,

;M D2~M !>Q2„x̂~M !… ~55!

and

;x D2„M̂ ~x!…<Q2~x!, ~56!

and if M̂ „x̂(M )…5M then

D2~M !5Q2~x!. ~57!

A. A forward classical side channel does not increase
quantum capacity

To demonstrate Eq.~50!, we note that any one-way pro-
tocol for transmittinguj& through channelx can be described
as in Fig. 13. The sender Alice codesuj& and an ancillary
stateu0& using unitary transformationUe . She then performs
an incomplete measurement on the coded system giving clas-
sical resultsr which she sends on to Bob, the receiver.~If
r contains any information about the quantum inputuj& the
strong no-cloning theorem@41# would prevent the original
state from being recovered perfectly, even if the channel
were noiseless. However,r might contain information on
how the inputuj& is coded.! She also sends the remaining
quantum state throughx as encoded stateuz r&. The channel
mapsuz r& onto uh ri & for a noise syndromei .

Consider the unitary transformation Bob uses for decod-
ing in the case of some value of the classical datar for which
the decoding is successful and without loss of generality
name this caser50. ~For a code which corrects with asymp-
totically perfect fidelity there may be some cases ofr for
which the correction does not work.! We also consider error
syndromei which is successfully corrected byUd . We have

Ud~r50!~ uh0i& ^ u0&)5uj& ^ uai&. ~58!

~For our choice ofi the final uai& state can without loss of
generality be taken to beu0& in an appropriately sized Hilbert
space.! Applying Ud

21(r50) gives

Ud
21~r50!~ uj& ^ u0&)5uh0i& ^ u0&. ~59!

There must exist another unitary operationUs which rotates
uh0i& into the noiseless coded vectoruz0&. Thus,

UsUd
21~r50!~ uj& ^ u0&)5uz0& ^ u0&. ~60!

In other words,UsUd
21(r50) takesuj& into uz0& along with

some ancillary inputs and outputs always in a standardu0&
state. ThereforeUsUd

21(r50) is a good encoder. Since this
encoder always results in the correct code vector correspond-
ing to classical datar50 this data need not be sent to Bob at
all, as he will have anticipated it. Thus,UsUd

21(r50) and
Ud form a code needing no classical side channel.

It may happen that for a large block code which only
error-corrects to some high fidelity (u^juj f&u.12e where
uj f& is the final output of the decoder! that no case is cor-
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rected perfectly. Then the coded states produced by
UsUd

21(r50) will be imperfect. After transmission through
the noisy channel and correction byUd the final output will
then be less perfect than in the original code. Nevertheless,
because of unitarity it is clear that ase→0 the fidelity of this
code will also approach unity.

Thus any protocol using classical one-way data transmis-
sion to supplement a quantum channel can be converted into
a protocol in which the classical transmission is unnecessary
and with the same capacityQ5Q1. We have also now
shown that the encoding stage is unitary, in the sense that no
extra classical or quantum results accumulate in Alice’s labo-
ratory.

If the error syndromei50, corresponding to no error, is
decoded with high fidelity byUd thenUs can be taken to be
the identity. Thus, the encoding and decoding transforma-
tions can in this case be written in a form whereUe5Ud

21, a
fact independently shown by Knill and Laflamme@40#. If the
i50 error syndrome is not decoded with high fidelity by
Ud @42# then the encoder cannot be the inverse of the de-
coder. The proof is simple:Ue(uj& ^ u0&)5uz& ~where we
have dropped ther subscripts since it has been proven the
classical data is never needed! and therefore
Ue

21uz&5(uj& ^ u0&). ThusUe
21 decodes the noiseless coded

vectorsuz& which is exactly whatUd has been assumed not
to do.

B. Additivity of perfect and imperfect quantum
channel capacities

Consider a channel of capacityQ.0 supplemented by a
perfect channel of capacity 1. Suppose the imperfect channel
is usedn times and the perfect channel is usedm times. We
will call the maximum number of qubits transmitted through
the channels in this caseT. If the capacity of this joint chan-
nel is additive thenT5Ta5Qn1m.

Suppose the number of qubits transmitted is superaddi-
tive, i.e.,T.Ta . From the definition of noisy channel capac-
ity we know that we can use an imperfect channelt times to
simulate a perfect channel being usedm times where
Qt5m. We now use the imperfect channel a totaln1t times
and we can transmitT qubits through this two-part use of the
imperfect channel. ButT.Ta5Qn1m so

T.Qn1Qt. ~61!

The capacity of this channel isQ85T/(n1t). Using Eq.
~61! we can write

Q85
T

n1t
.
Qn1Qt

n1t
5Q. ~62!

A capacity ofQ8.Q has been achieved using only the origi-
nal imperfect channel whose capacity wasQ. This cannot be
so.

C. QECC ˜ 1-EPP proving ;M D1„M…>Q„x̂„M……

To demonstrate this inequality~cf. Fig. 14! we use bipar-
tite mixed statesM in place of the standard maximally en-
tangled states (F1) to teleportn qubits from Alice to Bob.
This teleportation defines a certain noisy channelx̂(M ), so

designated on the center right of the figure. Alice prepares
n qubits to be teleported through this channel by applying
the encoding transformationUe of a QECC tom halves of
EPR pairs which she generates in her laboratory~upper left!
at I and ton2m ancillas in the standardu0& state. The re-
sulting quantum-encodedn qubits are teleported to Bob at
lower right through the noisy channel. There Bob applies the
decoding transformationUd . If the code can successfully
correct the errors introduced by the noisy teleportation, then
the result is that Alice and Bob sharem time-separated EPR
pairs~* !. Indeed, the whole figure can be regarded as a one-
way purification protocol whereby Alice and Bob prepare
m good EPR pairs fromn of the initial mixed statesM , using
a QECC of rateQ5m/n able to correct errors in the noisy
quantum channelx̂(M ). ThusD1(M ) must be at least as
great as the rateQ„x̂(M )… of the best QECC able to achieve
reliable quantum transmission throughx̂(M ).

D. 1-EPP˜ QECC proving ;x D1„M̂ „x……<Q„x…

In the same style as the preceding section, we establish
the second inequality by exhibiting an explicit protocol. The
object is to show that, given the existence of a 1-EPP acting
on the mixed stateM̂ (x) obtained from quantum channel
x, Alice can successfully transmit arbitrary quantum states
uj& to Bob. The capacityQ of this quantum channel is the
same asD1 for the 1-EPP; this establishes that the capacity
of x is at least as good as theD1 of the corresponding
1-EPP.

In fact, this protocol just involves the application of quan-
tum teleportation@5# mentioned in the Introduction. In Fig.
15 we show more explicitly the necessary construction,
which has already been touched on in Figs. 3 and 4. Alice
and Bob are connected by channelx. Alice arranges to share
the bipartite mixed stateM̂ (x) with Bob by passing halves
~the B particles! of maximally entangled states (F1) from
sourceI throughx to Bob. Then Alice and Bob partake in
the 1-EPP protocol. We have represented this procedure

FIG. 14. A QECC can be transformed into a 1-EPP. Teleporting
(M4 ,U4) via a mixed stateM defines the noisy channelx̂(M ). If a
quantum error-correcting code$Ue ,Ud% can correct the errors in
this channel, the code and channel can be used to share pure en-
tanglement between Alice and Bob~* !. This establishes inequality
~52!, viz., ;MD1(M )>Q„x̂(M )….
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somewhat more generally than is necessary for the hashing-
type procedures shown earlier, or for the finite-block proto-
cols to be derived below. We simply indicate that they must
preform two operationsUA andUB , and that Alice will per-
form some measurementsM and pass the results to Bob.
The measurements which Bob would perform in the hashing
protocol are understood to be incorporated inUB . Also, we
have accounted for the possibility that either Alice or Bob
might employ an ancillaa for some of their processing op-
erations.

By hypothesis, this protocol leaves Alice and Bob with
nD1 maximally entangled states~* !. They then may use this
resource to teleportnD1 unknown quantum bits in the state
uj&. Thus, the net effect is that Alice and Bob, using channel
x supplemented by one-way classical communication, have a
means of reliably transmitting quantum data, with capacity
D1„M̂ (x)…. This is exactly a QECC onx with a one-way
classical side channel. However, Eq.~50! ~proven in Sec.
V A ! states that the same capacity can be obtained without
the use of classical communication. Thus, the ultimate ca-
pacityQ of channelx must be at least as great. This estab-
lishes the inequality.

VI. SIMPLE QUANTUM ERROR-CORRECTING CODES

For most of the remainder of this paper, we will exploit
the equivalence which we have established between 1-EPP
on M̂ (x) and a QECC onx. We note that when the 1-EPP
has the property that the unitary transformationsUB and
U4 performed by Bob can be done ‘‘in place’’~i.e., no an-
cilla qubits need to be introduced; see Fig. 3!, the 1-EPP can
be transformed into a particularly simple style of QECC,
exactly like the schemes which have been introduced by
Shor @9# and have now been extended by many others@10–
16#, which are also all done ‘‘in place.’’ As we have seen in
Figs. 14 and 15, some versions of 1-EPP and QECC may
require ancillaa for their implementation.

The proof of the correspondence between the in-place
1-EPP and in-place QECC is immediate, following Sec. V D.
The 1-EPP is used to make a QECC as in Fig. 15. The
unitary transformationsUB andU4 performed by Bob are
combined as aUd andUd is performed in place by assump-
tion. ThusUe5UsUd

21 ~see Sec. V A! can also be done in
place.

As a simple consequence of this result, the one-way hash-

ing protocol of Sec. III B 3 can be reinterpreted as an explicit
error-correction code, and indeed it does the same kind of
job as the recent quantum error-correction schemes based on
linear-code theory of Calderbank and Shor@10# and Steane
@11#: in the limit of large qubit block sizen, it protects an
arbitrary state in a 2m-dimensional Hilbert space from noise.
We note that the hashing protocol actually does somewhat
better than the linear-code schemes.D1„M̂ (x)…, and there-
fore Q(x) @see Eq.~54!#, is higher for hashing than for the
linear-code scheme, as shown in Figs. 8 and 9.

We will make further contact with this other work on
error-correction coding in finite blocks by showing how fi-
nite blocks of EPR pairs can be purified in the presence of
noise which only affects a finite number of the Bell states.
When transformed into an error-correcting code, this be-
comes a procedure for recovering from a finite number of
qubit errors, as in Shor’s procedure in which one qubit,
coded into nine qubits, is safe from any error on a single
qubit. We develop efficient numerical strategies based on the
Bell-state approach which look for new coding schemes of
this type, and in fact we find a code which does the same job
as Shor’s using only five EPR pairs.

A. Another derivation of a QECC from a restricted 1-EPP

Another way to derive the in-place QECC from the in-
place 1-EPP is to exploit the symmetry between measure-
ment and preparation in quantum mechanics. Here we will
restrict our attention to noise models which are one-sided
~i.e., NA absent in Fig. 3!, or effectivelyone-sided. An im-
portant case where the noise is effectively one-sided is when
the mixed stateM obtained in Fig. 5 is Bell diagonal, i.e.,
has the form ofW @Eq. ~29!#. We can say that, subjected to
this noise, the pure Bell state is taken to an ensemble of each
of the four Bell states, with some probabilities. Using the
notation of Sec. III B 1 these arep00, p01, p10, andp11:

uF1&→$Ap00uF1&,Ap10uF2&,Ap01uC1&,Ap11uC2&%

5$RmnuF1&%. ~63!

~HereRmn are proportional to the operators$I ,sx ,sy ,sz% of
Table I.! It is easy to show that the same mixed state could
be obtained if theB particles were subjected to a generalized
depolarizing channel, andNA were absent. More generally,
we require thatNA,B be such that the resultingM could be
obtainable from some channelx; M5M̂ (x) for somex.
This is a fairly obvious restriction to make, since we are
planning on defining a QECC on this effective quantum
channelx. Note also that, since the twirling of Sec. III A
~item 1! converts any bipartite mixed state into a Werner
state, for some purposesany noise can be made effectively
one-sided.

We will now show that under these conditions, the opera-
tions performed by Alice in Fig. 15 can be greatly simplified.
Consider the joint state of theA andB particles after Alice
has applied the unitary transformationU1 of Fig. 3 as part of
the purification protocol, but before the one-sided noiseNB
has acted on theB particles. The joint state is still a pure,
maximally entangled state. For convenience, we assume that
the sourceI producesF1 Bell states.~If it produced another
type of Bell state, some additional simple rotations can be

FIG. 15. A 1-EPP can be transformed into a QECC. Givenx,
Alice creates mixed statesM̂ (x) by passing halves of entangled
statesF1 from sourceI through the channel. Alice and Bob per-
form a 1-EPP resulting in perfectly entangled states~* ! which are
then used to teleportuj& safely to Bob, completing a QECC.
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inserted in the derivation we are about to give.! The initial
product ofn Bell states may be written

uF& i5
1

A2n (
x50

2n21

ux&Aux&B . ~64!

After the application of the unitary transformationU1 to Al-
ice’s particles, the new state of the system is

uF& f5
1

A2n (
x50

2n21

(
y50

2n21

~U1!x,yuy&Aux&B . ~65!

But notice that by a simple change of the dummy indices,
this state can be rewritten

uF& f5
1

A2n (
x50

2n21

(
y50

2n21

ux&A~U1
T!x,yuy&B . ~66!

That is, the unitary transformation applied to theA particles
is completely equivalent to the same operation~transposed!
applied to theB particles.

Alice’s tasks in the 1-EPP protocol are thus reduced to
making one-particle measurementsM on n2m of the A
particles, making Bell measurementsM4 between them qu-
bits uj& to be protected and her remainingm particles~as in
quantum teleportation@5#!, and applyingU1

T to theB par-
ticles before sending them, along with her classical measure-
ment results, to Bob.~Recall from the Introduction thatm is
the yield of good singlets from the purification protocol.!

However, then2m one-particle measurementsM can be
eliminated entirely. We use the property ofF1 states that if
one of the particles is measured to beu0& or u1& in the z
basis, then the other particle is ‘‘collapsed’’ into the same
state@1,2#. So, rather than creatingn2m entangled states at
I , Alice simply preparesn2m qubits in a definite state and
sends them directly into theU1

T operation. To mimic the
randomness of the measurementM, Alice might don2m
coin flips to decide what the prepared state of theseB par-
ticles will be, and send this classical data on to Bob. But this
is unnecessary, since by hypothesis, the 1-EPP always yields
perfect entangled pairs~* !, no matter what the values of the
M measurements were. So, Alice and Bob may as well pre-
agree on some particular definite set of values~e.g., all 0’s!,
and Alice will always preset thoseB particles to that state
@43#.

The only A particles remaining in the protocol at this
point are them particles forming the halves of perfect EPR
pairs with Bob, and which are immediately used for telepor-
tation to Bob. But we note that, following the usual rules of
teleportation, the measurementM4 causes the corresponding
B particles, immediately after their creation at sourceI , to be
in the stateuj& ~if the measurement outcome were 00!, or a
rotated version,sx,y,zuj& ~for the other measurement out-
comes!. Again, the protocol should succeed no matter what
the value of this measurement; therefore, if Alice and Bob
preagree that this classical data should be taken to have the
value 00, then Alice can eliminate theA particles entirely,
eliminate the preparationI of entangled states, and simply
feed in the uj& states directly asB particles into theU1

T

transformation.~Bob also does theU4 operation of Fig. 3
appropriate for 00, namely, a no-op.!

Finally we step back to see the effect that this series of
transformations has produced, as summarized in Fig. 16. All
use of bipartite statesI , and the correspondingA particles,
has been eliminated, along with all the measurement results
transmitted to Bob. The net effect is that Alice has taken the
m-qubit unknown quantum stateuj& along with n2m
‘‘blank’’ qubits, processed them withU1

T , and sent them on
channelx to Bob. He is able to use his half of the protocol,
without any additional classical messages, to reconstruct
uj&. This, of course, is precisely the in-place QECC that we
want.

B. Finite block-size purification and error correcting codes

We have now shown that Bell-state purification proce-
dures can be mapped directly into quantum error-correcting
codes. This gives an alternative way to look for quantum
error-correction procedures within the purification approach.
This can be both analytically and computationally useful. In
fact, we can take over everything which we obtained via the
hashing protocol of Sec. III B 3, in which Alice and Bob
perform a sequence of unilateral and bilateral unitary opera-
tions to transform their bipartite state from one collection of
Bell states to another, in order to gain information about the
errors to which their particles have been subjected.

In this section we will show that this approach can also be
used to do purification, and thus error correction, in small,
finite blocks of qubits, in the spirit of much of the other
recent work on QECC@8–16#. In these procedures the object
is slightly different than in the protocols which employ as-
ymptotically large block sizes: Here, we wish purify a finite
block of n EPR pairs, of which no more thant have inter-
acted with the environment~i.e., been subjected to noise!.
The end result is to bem,n maximally entangled pairs, for
which F51 exactly. The explicit result we present below
will be for n55,m51, andt51. This protocol thus has the
same capability as the one recently reported by Laflamme
et al. @12#, although the quantum network which we derive
below is simpler in some respects. We are still investigating
the extent to which our two protocols are equivalent.

The general approach will be the same as in Sec. III;
however, our earlier emphasis was on error correction in
asymptotically large blocks of states. To deal with the finite-
block case, we will need a few small but important modifi-
cations~see Fig. 17!.

~1! There will again be a setL of possible collections of
Bell states after the action of the noiseNB ; but rather than

FIG. 16. The one-way purification protocol of Fig. 4 may be
transformed into the quantum-error-correcting-code protocol shown
here. In a QECC, an arbitrary quantum stateuj&, along with some
qubits which are originally set tou0&, are encoded in such a way by
U1
T that, after being subjected to errorsNB , decodingU2 followed

by measurementM, followed by final rotationU3, permits an exact
reconstruction of the original stateuj&.
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being a ‘‘likely set’’ defined by the fidelity of the channel,
we will characterize the noise by a promise that the number
of errors cannot exceed a certain numbert. Cases with
t11 errors are not just deemed to have low probability; they
are declared to be disallowed, following Shor@9#.

~2! The setL will have a definite, finite size; if the size of
the Bell state block isn and the number of erroneous Bell
states to be corrected ist, then the size of the set is@13#

S5 (
p50

t

3pS npD . ~67!

Borrowing the traditional language of error correction, each
member of the set, indexed byi , 1< i<S, defines anerror
syndrome. The ‘‘3’’ in Eq. ~67! corresponds to the number of
possible incorrect Bell states occurring in the evolution of
Eq. ~63!: there is either a phase error (F1→F2), an ampli-
tude error (F1→C1), or both (F1→C2) @11,13#. It has
been noted@10,13# that correcting these three types of error
is sufficient to correct any arbitrary noise to which the quan-
tum state is subjected, which we prove in Appendix B.

~3! The object of the error correction is slightly different
than in Sec. III; in the earlier case it was to find a protocol
where the fidelity of the remaining EPR pairs approached
unity asymptotically asn→`. In the finite-block case, the
object is to find a protocol such that the fidelity attains ex-
actly 100%, that is,m good EPR pairs are guaranteed to be
recoverable from the original set ofn Bell states for every
single one of theS error syndromes.

Let us emphasize again that, in the purification language
which we have developed, the quantum error correction
problem has been turned into an entirely classical exercise:
given a set ofn Bell states, we use the operations of item 2
in Sec. III A to create a classical Boolean function which
maps these Bell states onto others such that, for allS of the
error syndromes, the firstm Bell states are always the same
when the measurement results on the remainingn2m Bell
states are the same.

We will develop this informal statement of the problem in
a more formal mathematical language. First, recall the code
which we introduced for the Bell states in item 5 of Sec.
III A in which, for example, the collection of Bell states
F1F2F1 is coded as the six-bit word 001000. As in our
hashing-protocol discussion~Sec. III B 3!, we denote such
words byx( i ), where the superscripti denotes the word ap-
propriate for thei th error syndrome. These words have 2n
bits, and we will sometimes denote byxk

( i ) thekth bit of the
word.

Alice and Bob subjectx( i ) to the unitary transformations
U1 andU2. They are confined to performing sequences of
the unilateral and bilateral operations introduced in Table I.
In particular, they can do either~1! a bilateralXOR, which
flips the low ~right! bit of the target iff the low bit of the
source is 1, and flips the high~left! bit of the source iff the
high bit of the target is 1;~2! a bilateralp/2 rotationBy of
both spins in a pair about they axis, which interchanges the
high and low bits;~3! a unilateral~by either Alice or Bob!
p rotationsz of one spin about thez-axis, which comple-
ments the low bit; or~4! a composite operationsxBx , where
the sx operation is unilateral and theBx is bilateral; the
simple net effect of this sequence of operations is to flip the
low bit iff the high bit is one.

It is easy to show that with these four operations, Alice
and Bob can do anything which they can do with the full set
of operations in Table I. In our classical representation, the
effect of such a sequence of operations is to apply a classical
Boolean functionLu to x

( i ), yielding a stringw( i ):

w~ i !5Lu~x
~ i !!. ~68!

We use the symbolLu for this function because, with the
operations that Alice and Bob have at their disposal,Lu is
constrained to be a linear, reversible Boolean function. This
is easy to show for the sequences of the four operations
given above. Note, however, that not all linear reversible
Boolean functions are obtainable with this repertoire. A lin-
ear Boolean function@44# can be written as a matrix equation

w~ i !5Mux
~ i !1b. ~69!

Here the matrixM and the vectorb are Boolean valued
(P$0,1%), and addition is defined modulo 2. Reversibility
adds an additional constraint: det(M )51 ~modulo 2!. In a
moment we will write down the condition which the set of
w( i ) must satisfy in order for purification to succeed.

The next step of purification is a measurementM of
n2m of the Bell states. As discussed in item 5 of Sec. III A,
after learning Alice’s measurement result, Bob can deduce
the low bit of each of the measured Bell states. If we write
these measurement results for error syndromei as another
Boolean wordv ( i ) ~of lengthn2m), the measurement can be
expressed as another linear Boolean function:

v ~ i !5Mmw
~ i !. ~70!

The matrix elements ofMm are

~Mm!kl5dk,2~m1k! . ~71!

The state of the remaining unmeasured Bell states is coded in
a truncated wordw8 of length 2m:

w8~ i !5~w1w2 • • • w2m!~ i !. ~72!

We now have all the machinery to state the condition for
a successful purification. The object is to perform a final
rotationU3 on the state coded byw8 and restore it, for every
error syndromei , to the state 00•••0. Whateverw8 is, such
a restoringU3 is always available to Bob; for each Bell state,
he does the Pauli rotations:

FIG. 17. The 1-EPP of Fig. 3 marked with the notation used in
this section.
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Bell state U3transformation

00 I ~do nothing!

01 sz

10 sx

11 sy.

~73!

But Bob must know which of these four rotations to apply to
each of the remainingm Bell states. The only information he
has on which of them to perform are the bits of the measure-
ment vectorv ( i ). This information will be sufficient, if for
every error syndrome which produces a distinctw8,v is dis-
tinct; in this case, Bob will know exactly which final rotation
U3 to apply.

This, then, is our final condition for successful purifica-
tion. In more mathematical language, we require an opera-
tion Lu for which

; i , j w8~ i !Þw8~ j !⇒v ~ i !Þv ~ j !. ~74!

We will shortly show the results of a search forLu which
satisfy Eq.~74!.

But first, we touch a point which has been raised in the
recent literature@10–13#: Bob will obviously know which
rotationU3 to apply if from the measurement he learns the
precise error syndrome, that is if for each error syndrome the
measurement outcome is distinct. This ‘‘condition for learn-
ing all the errors’’ may be stated mathematically in a way
parallel to Eq.~74!:

; i , j iÞ j⇒v ~ i !Þv ~ j !. ~75!

This condition is obviouslysufficient for successful error
correction; however, it is more restrictive than Eq.~74!, and
it is not anecessarycondition. If Eq.~75! werea necessary
condition for error correction, then a comparison of the num-
ber of possible distinct measurementsv ( i ) with the number

of error syndromesS leads @13,12# to a restriction on the
block size in which a certain number of errors can be cor-
rected:

S5 (
p50

t

3pS npD<2n2m. ~76!

It is this bound which is attained, asymptotically, by the
hashing and breeding protocols above. However, Eq.~74!
puts no obvious restriction on the block size in which error
correction can succeed, suggesting that the bound Eq.~76!
can actually be exceeded. For example, if the transformation
Lu were permitted to be any arbitrary Boolean function, then
it would be capable of settingw8500•••0 for every syn-
drome i , in which caseno error correction measurementsv
would be needed.

However,Lu is very strongly constrained in addition to
being a linear, reversible Boolean function, and we are left
uncertain to what degree the bound Eq.~76! may be violated.
For the small cases which we have explored below, in which
one Bell state is restored from single-qubit errors (m51,
t51), we find that the bound of Eq.~76! is notexceeded. All
solutions which we find which satisfy Eq.~74! also happen
to identify every error syndrome uniquely@Eq. ~75!#. The
present work, therefore, does not demonstrate that Eq.~74!
actually leads to more power error-correction schemes than
Eq. ~75!. However, Shor and Smolin@35# have recently ex-
hibited a family of new protocols which, at least asymptoti-
cally for largen, exceed the bound Eq.~76! by a small but
finite amount.

C. Monte Carlo results for finite-block purification protocols

For the single-error (t51), single-purified-state (m51)
case, we have performed a Monte Carlo computer search for
unitary transformationsU1 andU2. The program first tabu-
lates thex( i ) for all the allowed error syndromesi , as shown

TABLE III. Possible initial Bell states and the resulting final state after the gate array of Fig. 18 has been
applied.

Initial state Final state Measurement
i x( i ) w( i ) resultv ( i )

1 00 00 00 00 00 00 00 00 00 01 0 0 0 1
2 01 00 00 00 00 01 00 00 01 01 0 0 1 1
3 10 00 00 00 00 10 01 00 00 01 1 0 0 1
4 11 00 00 00 00 11 01 00 01 01 1 0 1 1
5 00 01 00 00 00 00 01 00 00 00 1 0 0 0
6 00 10 00 00 00 01 10 01 00 01 0 1 0 1
7 00 11 00 00 00 01 11 01 00 00 1 1 0 0
8 00 00 01 00 00 10 00 11 11 01 0 1 1 1
9 00 00 10 00 00 00 00 01 00 00 0 1 0 0
10 00 00 11 00 00 10 00 10 11 00 0 0 1 0
11 00 00 00 01 00 10 01 01 10 01 1 1 0 1
12 00 00 00 10 00 00 00 01 01 00 0 1 1 0
13 00 00 00 11 00 10 01 00 11 00 1 0 1 0
14 00 00 00 00 01 00 00 00 00 00 0 0 0 0
15 00 00 00 00 10 01 11 11 01 11 1 1 1 1
16 00 00 00 00 11 01 11 11 01 10 1 1 1 0
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in Table III. ~For the case oft51 there areS53n11 error
syndromes, since either of then Bell states could suffer three
types of error, plus one for the no-error case.! The program
then randomly selects one of the four basic operations enu-
merated above, and randomly selects a Bell state or pair of
Bell states to which to apply the operation. The program then
checks whether the resulting set of statesw( i ) satisfies the
error-correction condition of Eq.~74!. If the answer is no,
then the program repeats the procedure, adding another ran-
dom operation. If the answer is yes, the program saves the
list of operations, and starts over, seeking a shorter solution.
Two ‘‘shortness’’ criteria were explored: fewest total opera-
tions, and fewest totalBXOR’s ~since two-bit operations
could be the more difficult ones to implement in a physical
apparatus@32#!.

A simple argument akin to the one of Sec. IV shows that
error correction in a block of 2 (t51, m51, n52) is im-
possible. We performed an extensive search forn53 and
n54 codes; it would not be possible to detect the complete
error syndrome for these cases@Eq. ~76!#, but it would ap-
peara priori possible to satisfy Eq.~74!. Nevertheless, no
solutions were found, strongly suggesting that, for this case,
n55 is the best block code possible@12#. Knill and
Laflamme have recently proved this@40#.

Our search found many solutions forn55 with similar
numbers of quantum gate operations. The minimal network
which was eventually found was one with 11 operations, six
of which wereBXOR’s. Here we present a complete analysis
of a slightly different solution, which involves 12 operations,
seven of which areBXOR’s. The gate array for this solution is
shown in Fig. 18. The complete action ofU1 andU2 pro-
duced by this quantum network is given in Table III.

Note that, as indicated above, this code not only satisfies
the actual error-correction criterion Eq.~74!, but it also sat-
isfies the stronger condition Eq.~75!; all the error syndromes
are distinguished by the measurement resultsv ( i ).

It is interesting to note, as a check, that the tabulated
transformation is indeed a reversible, linear Boolean opera-
tion. The reader may readily confirm that the results of Table
III are obtained from the linear transformation Eq.~69!, with

Mu51
1 0 0 0 0 1 0 1 0 0

0 1 1 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 1 0

1 0 0 1 0 0 0 1 1 0

0 0 0 0 0 1 0 0 1 0

0 0 1 0 1 1 1 1 1 0

0 0 0 0 0 1 0 1 0 0

0 0 0 0 0 1 1 0 1 0

0 1 0 0 0 0 0 0 1 0

0 0 0 1 1 0 1 0 0 1

2 ~77!

and

b5~0 0 0 0 0 0 0 0 0 1!. ~78!

D. Alternative conditions for successful quantum error
correction code

While all of our work has involved deriving QECC’s us-
ing the 1-EPP construction, it is possible, and instructive, to
formulate the conditions for a good error correcting code
directly in the QECC language. As Shor first showed@9#, in
this language the requirements become a set of constraints
which the subspace into which the quantum bits are encoded
must satisfy. In the course of our work we derived a set of
general conditions for the case of error-correcting a single bit
(m51). They are quite similar to conditions which other
workers have formulated recently@13,45#. Knill and
Laflamme have recently obtained the same condition@40#.

We will assume that only one qubit is to be protected, but
the generalization to multiple qubits is straightforward. Sup-
pose a qubit is encoded~by U1

T in Fig. 16! as a state

uj&5auv0&1buv1&, ~79!

wherea and b are arbitrary except for the normalization
condition

uau21ubu251, ~80!

and uv0& and uv1& are two basis vectors in the high-
dimensional Hilbert space of the quantum memory block.
Can uv0& and uv1& be chosen such that, after the quantum
state is subjected to Werner-type errors, the original quantum
state can still be perfectly reconstituted as the state of a
single qubit,

uj f&5au0&1bu1&? ~81!

We shall derive the conditions whichuv0& and uv1& must
satisfy in order for this to be true.

We specify the action of the noise as a mapping of the
original quantum state into an ensemble of unnormalized
state vectors given by applying the linear operatorsRi to the
original state vector:

uj&→$Ri uj&%. ~82!

For each error syndromei there is an~unnormalized! opera-
tor Ri specifying the effect of the noise, as in Eq.~63!. For

FIG. 18. The quantum gate array, determined by our computer
search, which protects one qubit from single-bit errors in a block of
five. ‘‘Bilateral’’ and ‘‘unilateral’’ refer to whether both Alice and
Bob, or only Alice ~or Bob!, perform the indicated steps in the
2-EPP; in the QECC version, it corresponds to whether the opera-
tion is done in both coding and decoding, or in just the coding~or
decoding! operations. All but the first qubit are measured at the end.
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single-bit errors, theRi ’s are just proportional to asx ,sy , or
sz operator applied to one of the quantum-memory qubits, as
discussed below. Two-bit errors would involve operators like
Ri5sx,y,z

a sx,y,z
b applied to two different qubitsa andb, and

so forth. Equivalently to Eq.~82!, the effect of the noise
NB in Fig. 16 can be expressed as a ensemble of normalized
state vectorsuj i& with their associated probabilitiespi :

uj&→$pi ,uj i&%5H ^juRi
†Ri uj&,

Ri uj&

A^juRi
†Ri uj& J . ~83!

The Werner noise can be set up so that thepi ’s are the
probabilities that the environment ‘‘measures’’ thei th out-
come of a pointer or ancilla space. We can evaluate the prob-
ability pi ~for the i th outcome of these measurements! for the
state Eq.~79! using the expression in Eq.~83!:

pi5~a* ,b* !3S ^v0uRi
†Ri uv0& ^v0uRi

†Ri uv1&

^v1uRi
†Ri uv0& ^v1uRi

†Ri uv1&
D 3S a

b D .
~84!

We have used the linearity of the operatorsRi . The matrix
notation used in Eq.~84! will prove useful in a moment.

The first, necessary condition which must be satisfied in
order that the state may be reconstituted as in Eq.~81! is that
the environment producing the Werner noise can acquire no

information about the initial quantum state by doing this an-
cilla measurement. This will be true so long aspi in Eq. ~84!
is not a function of the state vector coefficientsa andb. It
may be noted that the right hand side of Eq.~84! has the
form of the expectation value of a 232 Hermitian operator
in the state (a,b)T. It is a well-known theorem of linear
algebra that such an operator can only have an expectation
value independent of the state vector (a,b)T iff the Hermit-
ian operator is proportional to the identity operator. This
gives us the first two conditions that the state vector may be
recovered exactly:; i ,

^v0uRi
†Ri uv0&5^v1uRi

†Ri uv1&5pi ,

^v1uRi
†Ri uv0&50. ~85!

If this condition is satisfied, then the ensemble of state
vectors in Eq.~82! can be written in the simplified form:

auv0&1buv1&→H pi ,aRi uv0&1bRi uv1&
Api

J . ~86!

Now, given that the environment learns nothing from the
measurement, a further, sufficient condition is that there exist
a unitary transformation (U2) which takes each of the state
vectors of Eq.~86! to a vector of the form:

1

A^v0uRi
†Ri uv0&

~aRi uv0&1bRi uv1&)→~au0&1bu1&)uai&. ~87!

Here uai& is a normalized state vector of all the qubits excluding the one which will contain the final state Eq.~81!. Because
of unitarity, the angle between any two state vectors must be preserved. Taking the dot product of the state vectors resulting
from two different syndromesi and j , and equating the result before and after the unitary operation gives

1

A^v0uRi
†Ri uv0&A^v0uRj

†Rj uv0&
3~a* ,b* !3S ^v0uRi

†Rj uv0& ^v0uRi
†Rj uv1&

^v1uRi
†Rj uv0& ^v1uRi

†Rj uv1&
D 3S a

b D 5uau2^ai uaj&1ubu2^ai uaj&5^ai uaj&.

~88!

In the last part we have used the normalization condition to eliminatea andb. Now, since the right-hand side of Eq.~88!, and
the prefactor of the left hand side, are independent ofa and b, so must be the expectation value of the 232 Hermitian
operator. We again conclude that this Hermitian operator must be proportional to the identity operator, and this gives the final
necessary and sufficient conditions@46# for successful storage of the quantum data:; i , j ,

^v0uRi
†Rj uv0&5^v1uRi

†Rj uv1&, ~89!

^v1uRi
†Rj uv0&50. ~90!

For the specific five-qubit code described above, we found~by another, simple computer calculation! that the two basis vectors
of Eq. ~79! are

uv0&}~2u00000&2u11000&2u01100&2u00110&2u00011&2u10001&1u10010&1u10100&1u01001&1u01010&1u00101&

1u11110&1u11101&1u11011&1u10111&1u01111&), ~91!

i.e., a superposition of all even-parity kets, with particular signs, and

uv1&5~ the corresponding vector with 0 and 1 interchanged!. ~92!
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It is easy to confirm that this pair of vectors satisfies the
conditions Eqs.~89! and ~90!. It is interesting to note that
these two vectors donotspan the same two-dimensional sub-
space as the ones recently reported by Laflammeet al. @12#;
but it has recently been shown that they are related to one
another by one bit rotations@47#.

E. Implications of error-correction conditions
on channel capacity

Knill and Laflamme@40# have used the error correction
conditions@Eqs. ~89! and ~90!# to provide a stronger upper
bound forQ andD1 than the one of Sec. IV by showing that
D150 whenF50.75. We indicate this on Figs. 8 and 9,
using our channel-additivity result of Sec. V B to extend this
to the linear bound shown. Their proof is as follows: write
the coded qubit basis states@cf. Eqs.~91! and ~92!# as

uv i&5(
x

ax
i ux&5(

y:z
ay:z
i uy:z&. ~93!

Herex stands for ann bit binary number, andy:z stands for
a partitioning of x into a 2t-bit substring y and an
(n22t)-bit substringz. ~The partitioning may be arbitrary,
and need not be into the least significant and most significant
bits.! Knill and Laflamme then consider the reduced density
matrices on they and thez spaces:

rn22t
i 5 (

y,z1 ,z2
ay:z1
i ay:z2

i* uz1&^z2u, ~94!

r2t
i 5 (

y1 ,y2 ,z
ay1 :z
i ay2 :z

i* uy1&^y2u. ~95!

Knill and Laflamme then prove two operator equations. First:

rn22t
0 rn22t

1 50. ~96!

This is proved by using the condition for a successful error-
correction code@Eq. ~90!#, where the linear operatorRi op-
erates on a set oft bits, andRj operates on a different set of
t bits. ~TheseR’s should be taken as projection operators in
this proof.! Likewise, by applying Eq.~89! with the same
operatorsRi andRj , they prove

r2t
0 5r2t

1 . ~97!

These two equations give a contradiction when the two sub-
strings are of the same size, because it says that reduced
matrices are simultaneously orthogonal and identical. This
says that no code can exist if 2t5n22t, which corresponds
to F512t/n50.75. As a bonus, these results give an inter-
esting insight into the behavior of coded states: no measure-
ment on 2t qubits can reveal anything about whether a 0 or a
1 is encoded, while there exists a measurement onn22t
qubits which will distinguish with certainty a coded 0 from a
coded 1.

This result shows that the lowest fidelity Werner channel
with finite capacity must haveF.0.75. Call that fidelity
F0. Consider a channel with fidelityF betweenF0 and 1.
The capacity of this channel is no greater than that of a
composite channel consisting of a perfect channel used a

fraction (F2F0)/(12F0) of the time and a channel with
fidelity F0 used (12F)/(12F0) of the time because the first
channel is the same as the composite channel provided one is
unaware of whether the fidelity is 1 orF0 on any particular
use of the channel.~This construction is akin to that of Sec.
IV.! By the channel additivity argument of Sec. V B the
capacity of the composite channel, which bounds the capac-
ity of the fidelity F channel, cannot exceed
(F2F0)/(12F0). SinceF0 cannot be below 0.75 we obtain
the straight-line bound

Q5D1<4F23, ~98!

as shown in Figs. 8 and 9.

VII. DISCUSSION AND CONCLUSIONS

There has been an immense amount of recent activity and
progress in the theory of quantum error-correcting codes,
including block codes with some error-correction capacities
in blocks of two @16#, three @13,14#, and four @16#. Codes
which completely correct single-bit errors have now been
reported for block sizes of five as in the present work@12#,
seven@11#, eight @15#, and nine@9#; this is in addition to the
work using linear-code theory of families of codes which
work up to arbitrarily large block sizes@10,11#. A variety of
subsidiary criteria have been introduced, such as correcting
only phase errors, maintaining constant energy in the coded
state, and correction by a generalized watchdogging process.
Much of this work can be expressed in entanglement purifi-
cation language, in some cases more simply.

Our results highlight the different uses to which a quan-
tum channel may be put. When a noisy quantum channel is
used for classical communication, the goal—by optimal
choice of preparations at the sending end, measurements at
the receiving end, and classical error-correction
techniques—is to maximize the throughput of reliable clas-
sical information. When used for this purpose, a simple de-
polarizing channel from Alice to Bob has a positive classical
capacityC.0 provided it is less than 100% depolarizing.
Adding a parallel classical side channel to the depolarizing
quantum channel would increase the classical capacity of the
combination by exactly the capacity of the classical side
channel.

When the same depolarizing channel is used in connec-
tion with a QECC or EPP to transmit unknown quantum
states or share entanglement, its quantum capacityQ is posi-
tive only if the depolarization probability is sufficiently small
(,1/3), and this capacity is not increased at all by adjoining
a parallel classical side channel. On the other hand, an addi-
tional classical back channel, from Bob to Alice, does en-
hance the quantum capacity, making it positive for all depo-
larization probabilities less than 2/3.

It is instructive to compare our results to the simpler
theory of noiseless quantum channels and pure maximally
entangled states. There the transmission of an intact two-
state quantum system or qubit~say, from Alice to Bob! is a
very strong primitive, which can be used to accomplish other
weaker actions, in particular the undirected sharing of an ebit
of entanglement between Alice and Bob, or the directed
transmission of a bit of classical information from Alice to
Bob. ~These two weaker uses to which a qubit can be put are
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mutually exclusive, in the sense thatk qubits cannot be used
simultaneously to sharel ebits between Alice and Boband
to transmitm classical bits from Alice to Bob ifl 1m.k
@48#!.

A noisy quantum channelx, if it is not too noisy, can
similarly be used, in conjunction with QECC’s, for the reli-
able transmission of unknown quantum states, the reliable
sharing of entanglement, or the reliable transmission of clas-
sical information. Its capacity for the first two tasks, which
we call the quantum capacityQ(x), is a lower bound on its
capacityC(x) for the third task, which is the channel’s con-
ventional classical capacity.

Most error-correction protocols are designed to deal with
error processes that act independently on each qubit, or affect
only a bounded number of qubits within a block. A quite
different error model arises in quantum cryptography, where
the goal is to transmit qubits, or share pure ebits, in such a
way as to shield them from entanglement with a malicious
adversary. Traditionally one grants this adversary the ability
to listen to all classical communications between the pro-
tagonists Alice and Bob, and to interact with the quantum
data in a highly correlated way designed to defeat their error-
correction or entanglement-purification protocol. It is not yet
known whether protocols can be developed to deal success-
fully with such an adversarial environment.

Even for the simple error models which introduce no en-
tanglement between the message qubits, there are still a wide
range of open questions. As Fig. 8 has shown, we still do not
know what the attainable yield is for a given channel fidelity;
but we are hopeful that the upper and lower bounds we have
presented can be moved towards one another, for both one-
way and two-way protocols.

Improving the lower bounds is relatively straightforward,
as it simply involves construction of protocols with higher
yields. An important step towards this has been the realiza-
tion that it is not necessary to identify the entire error syn-
drome to successfully purify. This has permitted the lower
bound for one-way protocols~and thus for QECC’s! to be
raised slightly above theDH curve of Fig. 8~see Ref.@35#!.

Improvement of the upper bounds is more problematical.
For two-way protocols, we presently have no insight into
how this bound can be lowered belowE. Characterizing
D1 , D2, andE for all mixed states would be a great achieve-
ment @49#, but even that would not necessarily provide a
complete theory of mixed state entanglement. Such a theory
ought to describe, for any two bipartite statesM andM 8, the
asymptotic yield with which stateM 8 can be prepared from
stateM by local operations, with or without classical com-
munication. In general, the most efficient preparation would
probably not proceed by distilling pure entanglement out of
M 8, then using it to prepareM ; it is even conceivable that
there might be incomparable pairs of states,M andM 8 such
that neither could be prepared from the other with positive
yield.

Surprisingly, basic questions about even the classical ca-
pacity of quantum channels remain open. For example, it is
not known whether the classical capacity of two parallel
quantum channels can be increased by entangling their in-
puts.

For us, all of this suggests that, even 70 years after its
establishment, we still are only beginning to understand the

full implications of the quantum theory. Its capacity to store,
transmit, and manipulate information is clearly different
from anything which was envisioned in the classical world.
It still remains to be seen whether the present surge of inter-
est in quantum error correction will enable the great potential
power of quantum computation to be realized, but it is
clearly a step in this direction.
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APPENDIX A: IMPLEMENTATION OF RANDOM
BILATERAL ROTATION

In this appendix we show how an arbitrary density matrix
of two particles can be brought into the Werner form by
making a random selection, with uniform probabilities, from
a set of 12 operations$Ui% which involve identical rotations
on each of the two particles.@Thus, the rotationsUi are
members of a particular SU~2! subset of SU~4!.# After such a
set of rotations the density matrix is transformed into an
arithmetic average of the rotated matrices:

MT5
1

N(
i51

N

Ui
†MUi . ~A1!

N will be 12 in the example we are about to give. The
434 density matrixM , expressed in the Bell basis, has three
parts which behave in different ways under rotation:~1! the
diagonal singlet (C2) matrix element, which transforms as a
scalar;~2! three singlet-triplet matrix elements, which trans-
form as a vector under rotation; and~3! the 333 triplet
block, which transforms as a second-rank symmetric tensor.
In the desired Werner form the vector part of the density
matrix is zero, and the symmetric second-rank tensor part is
proportional to the identity.

The mathematics of this problem is the same as that
which describes the tensor properties of a large collection of
molecules as would occur in a liquid, glass, or solid. In the
case of a liquid, all possible orientations of the molecules
occur. Because of the orientational averaging@mathemati-
cally equivalent to Eq.~A1!, where the sum runs over all
SU~2! operations#, vector quantities become zero~e.g., the
net electric dipole moment of the liquid is zero!, while
second-rank tensor quantities become proportional to the
identity ~e.g., the liquid’s dielectric response is isotropic!
@50#.

But following the molecular-physics analogy further, we
know that crystals, in which the molecular units only assume
a discrete set of orientations, can also be optically isotropic
and nonpolar. It is also well known that only cubic crystals
have sufficiently high symmetry to be isotropic. This sug-
gests that if the sum in Eq.~A1! is over the discrete subgroup
of SU~2! corresponding to the symmetry operations of a tet-
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rahedron~the simplest object with cubic symmetry!, then the
desired Werner state will result; and this turns out to be the
case.

The bilateral rotationsBx,y,z introduced in Sec. III B 3 are
the appropriate starting point for building up the desired set
of operations. In fact they correspond to fourfold rotations of
a cube about thex, y, andz axes. This is not evident from
their action on Bell states as shown in Table I where they
appear to correspond to twofold operations. This is because
this table does not show the effect of theB rotations on the
phase of the Bell states. Phases are not required in the puri-
fication protocols described in the text, because the density
matrix in all these cases is already assumed to be diagonal,
so that the phases do not appear. But for the present analysis
they do, so we repeat the table with phases in Table IV.

When presented in this way, it is evident that these opera-
tions are fourfold~that is,Bi

45I ), and indeed, they are the
generators of the 24-element group of rotations of a cube,
known as the groupO in crystallography@50#. ~It is also
isomorphic toS4, the permutation group of four objects.!

Now, as mentioned above, only the rotations which leave
a tetrahedron invariant are necessary to make the density
matrix isotropic. This is a 12-element subgroup ofO known
asT ~which is isomorphic toA4, the group of all even per-
mutations of four objects!. Written in terms of theBi ’s, these
12 operations are

$Ui%5

I ~ identity!

BxBx

ByBy

BzBz

BxBy

ByBz

BzBx

ByBx

BxByBxBy

ByBzByBz

BzBxBzBx

ByBxByBx .

M→WF ~A2!

It is easily confirmed by direct calculation, using Table IV,
that this set of 12$Ui%, when applied to a general density
matrix M in Eq. ~A1!, results in a Werner density matrix
WF of Eq. ~17!.

There are a couple of special cases in which the set of
rotations can be made simpler. If it is only required that the

stateM be taken to some Bell-diagonal stateW @Eq. ~29!#,
then a smaller subset, corresponding to the orthorhombic
crystal groupD2 ~an abelian four-element group! may be
used:

$Ui%5

I

BxBx

ByBy

BzBz .

M→W ~A3!

Finally there is another special case, which arises in some of
our purification protocols, in which the density matrixW is
already diagonal in the Bell basis, but is not isotropic~i.e.,
the triplet matrix elements are different from one another!.
To carryW intoWF , the discrete group in Eq.~A1! can be
again be reduced, in this case to the three-element group with
the elements

$Ui%5

I

BxBxBxBy

BxBxBxBz .

W→WF ~A4!

One further feature of any set$Ui% that takes the density
matrix to the isotropic formWF , which can be used to sim-
plify the set, is that the modified set$RUi%, for any bilateral
rotationR, also results in a Werner density matrixWF in Eq.
~A1!. Since the density matrix is already isotropic, any addi-
tional rotationR leaves it isotropic.~A cubic crystal has the
same dielectric properties no matter how it is rotated.! For
example, if we takeR5Bx , the three operations of Eq.~A4!
take the form

$Ui%5

Bx

By

Bz .

W→WF ~A5!

APPENDIX B: GENERAL-NOISE ERROR CORRECTION

In this appendix we present an argument, based on twirl-
ing, that correcting amplitude and phase errors corrects every
possible error. We have derived finite-block purifications un-
der the assumption that the pairs which are affected by the
environment are subject to errors of the Werner type, in
which the Bell state evolves into a classical mixture of Bell
states@see Eq.~63!#. But the most general effect which noise
can have on a Bell state appears very different from the
Werner noise model, and is characterized by the 434 den-
sity matrixM into which a standard Bell stateF1 evolves
~see Fig. 5!. Many additional parameters besides the fidelity

TABLE IV. Modification of part of Table I, including the phase changes of the Bell states.

Source
C2 F2 F1 C1

I C2 F2 F1 C1

Bilateralp/2 rotations: Bx C2 F2 iC1 iF1

By C2 2C1 F1 F2

Bz C2 iF1 iF2 C1
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F5^F1uM uF1& are required for the specification of this
general error model. A general 434 density matrix of course
requires 15 real parameters for its specification. However,
not all of these parameters define distinct errors, since any
change of basis by Alice or Bob cannot essentially change
the situation~in particular, the ability to purify EPR pairs
cannot be changed!. This says that six parameters, those in-
volved in two different SU~2! changes of basis, are irrel-
evant. But this still leaves nine parameters which are re-
quired to fully specify the most general independent-error
model @51#. How then does correction of just amplitude,
phase, and both, deal with all of these possible noise condi-
tions, characterized by nine continuous parameters?

To show this we will again introduce the ‘‘twirl’’ of Fig.
5, although in the end it will be removed again. Recall that
any density matrix is transformed into one of the Werner
type by the random twirl.~See item 5 of Sec. III A for the
method of twirling theF1 state.! Thus, if twirling is inserted
as shown in Fig. 19, or in the corresponding places in Fig. 3,
then the channel is converted to the Werner type, and the
error correction criteria we describe in Sec. VI will work.

But let us consider the action of the twirl in more detail.
Let us personify the twirl actionT in Fig. 19 ~or in the
corresponding purification protocol of Fig. 3, as in Fig. 5! by
saying that an agent~‘‘Tom’’ ! performs the twirl for then
bits by randomly choosingn times from among one of 12
bilateral rotations tabulated in Appendix A. Tom makes a

record of which of these 12n actions he has taken; he does
not, however, reveal this record to Alice or Bob. Without this
record, but with a knowledge that Tom has performed this
action, Alice and Bob conclude that the density matrix of the
degraded pairs has the Werner form. They proceed to use the
protocol they have developed to purifym EPR pairs per-
fectly. Now, suppose that after this has been done, Tom re-
veals to Alice and Bob the twirl record which he has here-
tofore kept secret. At this point, Alice and Bob now have a
revised knowledge of the state of the particle pairs which
entered their purification protocol; in fact, they now know
that the density matrix is just some particular rotated version
of the non-Werner density matrix in which the environment
leaves the EPR pairs. Nevertheless, this does not change the
fact that the purification protocol has succeeded. Indeed, we
must conclude that it succeeds for each of the 12n possible
values of Tom’s record, and in particular it succeeds even in
the case that each of Tom’sn rotations was the identity
operation. Thus, the purification protocol works on the origi-
nal non-Werner errors, even if Tom and his twirling is com-
pletely removed. This completes the desired proof, and we
will thus develop protocols for correcting Werner type er-
rors, Eq.~63!, keeping in mind their applicability to the more
general case.

A slight extension of the above arguments shows that as-
ymptotic large-block purification schemes such as our hash-
ing protocol of Sec. III B 3 are also capable of correcting for
non-Werner error. Consider a non-Bell-diagonal product
density matrix ofn particles,M5(M )n, whose fidelity is
such that, after twirling, it can be successfully purified, re-
sulting in entangled states whose final fidelity with respect to
perfect singlets approaches 1 in the limitn→`. The hashing
protocol produces truly perfect singlets of unit fidelity for a
likely set L of error syndromes containing nearly all the
probability. This means that we can writeM5~12e!
M 81edM , whereM 8 can be purified with exactly 100%
final fidelity. By the above arguments,M 8 can be success-
fully purified even if twirling is not performed. Sincee→0
asn→`, the original stateM will also be purified to fidelity
approaching 1, even without twirling.
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