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Classical state sensitivity from quantum mechanics
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Sensitivity of the time evolution to small changes in the state is a characteristic feature of classical chaos. It
has been believed that state sensitivity could not exist in quantum mechanics because of the unitary invariance
of the Hilbert-space overlap of states. We argue that this Hilbert-space criterion is irrelevant and show that both
guantum states and classical statistical states exhibit a similar kind of state sensitivity. This is demonstrated by
the degree to which the initial state can be recovered in computational motion reversal: forward evolution for
a time T, perturbation of the state, and backward time evolution. Some differences between classical and
guantum state sensitivity remain, and these seem to be insensitive to decohe3&0666-294{06)06911-9

PACS numbe(s): 03.65.Bz, 05.45th, 03.65.Sq

I. INTRODUCTION 9 pa P

gt Pap.D==1n=0 plap.)=F(@) 77 p(a,p.0).
Understanding the emergence of classical properties from 3)
guantum mechanics is a problem as old as quantum theory

itself, yet there still remain aspects of it that are not fully Here,q andp denote the position and momentum, @)

e
o X . s the external force exerted on the system. hetq,p,0)
because of the growing interest in Mesoscopic sysfdms and p,(qg,p,0) be two initial phase-space distributions that

whose size places them near the interface between the clas- : . .
. . . re close, in the sense that their overlap is almost total. That
sical and quantum domains. Perhaps the strongest impetus .to . . o
L . - iS, we have(for a suitable choice of normalizatipn
study the quantum-classical interface is provided by the phe-
nomenon ofthaos which is common in classical mechanics,
but very difficult to obtain from quantum mechanics. Chaos J f _
. . . . . . ] |t ] 1t d d — 1_ 4
in classical mechanics is usually defined as extreme sensitiv- pa(a.P.Dp2(a.p.1)da dp ¢ @
ity to the initial state. Two chaotic orbits that are initially
very close together in phase space will separate exponematt=0. But Liouville’s theorem proves that this overlap in-
tially with time. After' a mpderate amount of time haS_ tegral is independent df therefore, initially close classical
elapsed, the two chaotic orbits may bear no apparent relatiotatistical states do not separate in time. So if E2).really
to each other. o proved the absence of quantum chaos, then (Egwould
There is a simple argument that such state sensitivity carequally prove the absence of classical chaos. But the conclu-

not exist in quantum mechanics. Ligk(0)) and |¢,(0)) be  sion of this argument is, of course, false.

two initial state vectors that differ only slightly, that is, The problem with the above argument is not mathemati-
5 cal, but conceptual. There are two senses of the \statdin
K1(0)] (0N *=1~, 1) classical mechanics: the individual sttebit) and the sta-

tistical state(phase-space probability distributjorin quan-
tum mechanics, on the other hand, all stafgse or mixed
are subject to a statistical interpretation, and there is no ana-
(D] ha(t))P=1~€ (20 log of the individual orbit. The usual definition of classical
chaos, as an exponentially rapid separation of initially close
for all future timest. Not only do the states not diverge states, applies only to the individual states. A different crite-
exponentially, but they do not separate at all! This argumention must be used to identify chaos in a classical statistical
is sometimes invoked to prove that there is no chaos in quarstate.
tum mechanics. But, if taken at face value, it would prove A conceivable(but not practical method would be to
not only that chaos is absent in quantum mechanics, but thapnsider two initial phase-space distributions that are sharply
chaos cannot even emerge asymptotically in the classicgleaked, nonoverlapping, and separated by a very small dis-
limit. While the former conclusion may be acceptable, thetance. If the motion is chaotic, then the separation between
latter conclusion is very alarming, for it would mean thatthe centers of these two distributions will initially grow ex-
classical mechanics cannot be obtained as a limit of quantugonentially(and, of course, the peaks will broadeBut the
mechanics. Hilbert-space separation of the two distribution functions, as
That this radical conclusion is unjustified is strongly indi- measured by their overlap integf&q. (4)], will remain con-
cated by the fact that a parallel argument can be given for thetant. This overlap has the same valaerg, regardless of
nonexistence oflassicalchaos. It is based on the statistical whether the distance between the peaks is a millimeter or a
form of classical mechanics and the Liouville equation formile. Thus we see that the Hilbert-space overlap, as a mea-
the phase space distribution function, sure of the “closeness” of two classical distribution func-

with e being a small positive number. It follows from the
unitary nature of time development that
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tions, is entirely irrelevant to the existence or nonexistencéde recovered. When this was done for two systems that ex-
of chaos in a classical system. hibit diffusive motion(in momentum spagethe kicked ro-

A guantum state is more analogous to a classical statisttator[7] and a hydrogen atom in a microwave radiation field
cal state than to a single classical oft@}, and the similarity ~[8], it was found that the quantum dynamics was indeed
between Eqs(2) and(4) strongly suggests that the constancyreversible to within expected numerical accuracy. EaiT,
of the Hilbert-space overlap is just as irrelevant to the existthe classical system initially began to retrace its motion, but
ence or nonexistence of chaos in quantum mechanics as itits soon returned to diffusive motion and did not even ap-
in classical mechanics. Quantum chaos, defined as the analpgoximately recover its initial state. This was caused by the
of classical chaos, should, therefore, be sought by comparinigevitable truncation and roundoff errors, which grow expo-
guantum phenomena with the manifestations of chaos in theentially (at a rate governed by the largest Lyapunov expo-
classical Liouville equation. nen in the classical case, but do not grow exponentially in

Two kinds of sensitivities can be distinguished in dynam-the quantum case.
ics: (i) sensitivity of the motion to small changes in the Those calculations provide a spectacular demonstration of
Hamiltonian, andii) sensitivity to small changes in the state, the “practical irreversibility” of classical mechanics, as
with the Hamiltonian being unchanged. Both of these can beompared with quantum mechanics. But they are less satis-
regarded as modeling the effect of an external perturbatiorfactory as a true measure of the degree of state sensitivity in
If the “environment,” which is the source of the perturba- the two theories. The “perturbations” to which the states are
tion, were described by a Hamiltonian and included withinsubjected, roundoff and truncation errors, are machine de-
the system, then cas€g and (i) could be treated within a pendent and uncontrolled. They correspond to no physical
unified framework. But that is frequently impractical, and asphenomenon. There is no assurance that the quantum and
long as the perturbation is regarded as external to the systertlassical states are equivalently perturbed, since they are rep-
the two cases remain formally distinct. resented mathematically, and hence computationally, in such

Peres[3,4] has made a thorough study of cage He  different ways. What is really being compared is the stability
finds that quantum motions are much more sensitive to af two different computational algorithms, rather than two
small perturbation of the HamiltoniaéH, if the underlying  physical processes.
classical motion is chaotic than if it is regular. This sensitiv- To overcome these limitations, we have modified the pro-
ity can be measured in various ways. One critefibhis the  cedure thus: the state is propagated from0 to t=T; a
decay of the overlap between the time-dependent statgerturbation of controlled magnitudi&arge compared to the
[4(t)) and| ' (t)), where|{0))=|i/ (0)), but|¢(t)) evolves  roundoff erroy is applied; and the motion-reversed state is
underH while |’ (t)) evolves undeH + SH. Another[4,5]  propagated front=T to t=2T. The accuracy with which
is the degree of mixing of the eigenstatestof SH when  the initial state is recovered can then be studied as a function
expressed in terms of the eigenstatesHofAs a result of  of the magnitude of the perturbation and the duraffoof
these investigations, the sensitivity of quantum motions t@ropagation. The simplest perturbation is a spatial displace-
perturbations of the Hamiltonian is reasonably well under-ment of lengthsqg, which can obviously be applied equally
stood. to a quantum or a classical state.

But this does not provide an understanding of how the For quantum mechanics, the probability of return to the
sensitivity of classical motions to small changes in the staténitial state|y(0)) is given by
can arise from quantum mechanics. We argue that such an )
understanding can come only by comparing quantum phe-  Sam( 84, T)=K¢(0)[U(=T)D(s)U(T)| (0%, (5)

nomena with the manifestations of chaos in the CIaSSica\}vhereU(T) is the time-development operator aBq4q) is

Liouville equation. Such a strategy has been applied to thg,e gisplacement operator. Because the time-development
guantum baker’'s maf6], using an analysis of the informa- operator is unitary, this is equivalent to
tion needed to track the state in detail. The results show a

similar sensitivity to perturbations in both the classical and Sym(80,T) = (T)|D (80| (T))[?
guantum maps. Unfortunately, it is difficult to apply that 2
method to realudynamical systems that satisfy Liouville’s = | v*(q,T)(q—6q,T)dq , (6)
equation or Schidinger's equation.

In this paper we use computational motion reversal_th%vhereW(T))—U(T)|¢(0)> and y( _ :
: . X ; = , q,T)={(q|¥(T)) is the
accuracy with which a time-reversed system returns to Svave function in coordinate representation. So we need not

show that, by this criterion, quantum systems exhibit a formintegrate only from 0 toT, and to calculate the overlap be-
of state sensitivity very similar to that of classical systems. tween|y(T)) and the disblaced sta(5q) | ¢(T))

Similarly, for classical mechanics, we define the overlap

Il. MOTION REVERSAL between initial and final phase-space distributions,

The technique of computational motion reversal was first Sd(b‘q,T):Nf f p(q,p, 00U (=T)
used to illustrate the difference between the stabilities of
classical and quantum dynamics. In this method, a state is XD (5q)U_(T)p(q,p,0dq dp, @

propagated from timé=0 tot=T, subjected to motion re-
versal att=T, and then propagated unti=2T. Because the where U, (T) and D (8q) are the time-development and
dynamics are theoretically reversible, the initial state shouldpace-displacement operators for the Liouville distribution.
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The normalization constam is chosen so tha$,(0,T)=1.  shown (see Fig. 1 of[9]) that the Poincareection of the
Liouville’s theorem guarantees that the overlap between twalassical orbits contains a large regular island surrounded by
phase-space distributions is constant in time, so (Bgis  a larger chaotic zone. The smallest valugidhat we found
equivalent to to be computationally practical was 0.02. In these units, the
area of the regular island is 2.25, which can support 2.25/
2mh=17.9 quantum states; the combined area of the regular
island and the surrounding chaotic zone is 10.1, which can
support 10.1/24=80.4 quantum states.

The accumulation of roundoff errors, though unavoidable, () The Hamiltonian of theperiodically kicked rotatoiis
plays no relevant role in our results because we integrate the

equation of motion only fromi=0 tot=T and do not need p2 *
to perform a compensating motion-reversed integration from H= o7 +C coa‘)z s(n—t/r). (12
T to 2T. n=1

. That the appropnate_quantum analog of E).is Eq.(6), Here,p is the angular momenturh,is the moment of inertia,
with the square of the inner product rather than some other

S . . 7 is the interval between kicks, an@r is the maximum
power, can be justified by means of the Wigner function, angular impulse per kick. Ip, and 6,, denote the values just

_ before thenth kick, then the values just before the- 1)th
pw(q,p,t)z(zwh)*lf e'PXt{q—x/2| ) yq+x/2)dx. kick are given by

(€) Pni1=Pn+C7sin(6,), (13

Scl(c?q,T)=Nffp(q,p,T)p(q—éq,p,T)dq dp. (8

In the Wigner representation, E(p) becomes
On1= On+(7/1)Ppys- (14)

Sqm(équ)ZZWﬁJ’ j pw(d,P, T)pw(d—459,p,T)dg dp. In terms of the dimensionless variablgs- (7/271)p and
X= 0/2w, these equations reduce to the so-cal¢ahdard
(10 q

map|[10],
The Wigner function is not a probability distribution, since it
can be negative, and it need not even possess a classical VYni1=Ynt (K/27)sSIN(27X,), (15
limit. But in those special cases where it is positive and does
have a classical limit, it satisfies the Liouville equati@in Xne1=XntYns1, (16)

that limit. This reassures us th&(5q9,T) and Sy(45q,T)

are appropriate quantities for comparison. By studying thevhere K=C7?/1 is the dimensionless kick-strength param-
overlap between perturbed and unperturbed states, we a@ter.

using a criterion similar to that used by Pefé$to study the The guantum Hamiltonian is obtained by replacing the
effects of perturbations in the Hamiltonian. This may facili- momentum variable bp= —i#%d/d6. The time-development
tate comparison between the cases of state perturbations apgerator that takes the state vector throughrittekick to

of Hamiltonian perturbations. just before the if+1)th kick is
Il THE MODELS U(7)=exp{—ip2r/2lh}exp{—iCT cog O)/h}. (17)
Two models have been studied, the driven quartic oscilThe rightmost factor in Eq17), which describes the kick, is
lator and the periodically kicked rotator. easy to apply in coordinate representation. The leftmost fac-
(a) The Hamiltonian of thalriven quartic oscillatoris tor, which describes the free rotation between kicks, is easy
) to apply in momentum representation, where its matrix rep-
H=p?/2M +bq*-aq cog wt). (1) resentation is (m|exp(—ip?#21#)|m’)=exp(—im*

) L o ] 21) 6y m - (Am is an eigenvalue op.) Therefore, the time
Th_e solution (_)f Liouville s_equatlon is equivalent to the_z SO- integration of the Schidinger equation is performed thus:
lution of Hamilton's equations for an ensemble of particles,choose an initial state vector in coordinate representation;
and this method of simulation is often a more effective COM-multiply by exp(—i 8 cosé); fast-Fourier-transforniFFT) to
putational technique than a direct solution of Liouville’s dif- {he momentum representation; multiply by exgi@m?/2);

ferential equation. The classical equations of motion WergFt (g the coordinate representation: etc. The two dimen-
integrated by an Adams-method ordinary-differential-gjonless parameters are

equation(ODE) integrator. The quantum Hamiltonian is ob-
tained by replacing Fhe momentum variable with —i%d/ a=h7/l and B=Crlh. (18
dq, whence the Schdinger equationH ¢(q,t) =i%dyl ot,
becomes a partial differential equationdnandt. A finite  Their product is the classical kick strength= a8=C7?/I.
difference approximation for thg dependence reduces this  The initial quantum statg/{0)) is chosen to be a localized
to a large set of coupled ordinary differential equations,wave packet. The corresponding classical distribution is con-
which were solved by a Runge-Kutta-Merson ODE integra-structed to have the same initial position and momentum
tor. distributions,

The classical parameter values used wdre 1, b=0.25,
a=0.5, andw=1. For these values, it has previously been p(9,p,00=|(ql#(0))2[{p| ¥(0))|?. (19
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the driven anharmonic oscillator. is in units of the driving force
FIG. 1. Overlap function for the quantum kicked rota@  period. Solid line: classical state. Dashed line: quantum state with
=0.97,2=0.005. T is the number of kicks before the displacement 7=0.02.
66 is applied.

teau. No matter how long the propagation tifethere is a
The manner in which differences between the classical anthinimum perturbationsq required to prevent the quantum
guantum probabilities develop and grow with time was stud-state from recurring after motion reversal. This minimdm
ied in a previous publicatiof2]. is roughly equal to the smallest de Broglie wavelength that
plays a significant role in the state. This argument can be

V. RESULTS made more precise by writing E) as

2

Figure 1 shows the overlap function for displaced quan- i
J g s brol Sqqu,T):‘ (p,T)2e Pidp  (21)

tum stateg Eq. (6)] of the kicked rotator, for various propa-
gation times.(For the rotator, the displacementy is the
angle 660.) For T=0, the decrease o®,,(5q,T) with in- where ¢(p,T) =(p|(T)) is the momentum wave function.
creasingsq merely reflects the width of the initial wave ThusSy,(4q,T) is the square of the Fourier transform of the
packet. AsT increases, the state develops more complex finenomentum distribution functiomy(p,T)|?, and its spatial
structure and becomes more sensitive to displacementextent will be inversely related to the width of the momen-
Hence, for fixeddq, Sy(5q,T) initially decreases ag in-  tum distribution. Apart from a factor of order unity, we may
creases, and for fixed, S;,(6q,T) decreases asq in- expectdq,(T)=h/Ap(T), with approximate equality hold-
creases. ing when 6q,,(T) reaches its plateau. The state rapidly
Since the(classical or quantuinoverlap S(6q,T) drops  spreads to fill the entire chaotic zone, so the limiting value of
from a value near one to a value near zero within a smalAp can be estimated from the size of the chaotic zone, and
range oféq, it is convenient to characterize the state by theindeed#/Ap provides an estimate for the observed mini-
value 6q4,5(T) for which the overlap falls to one-half, mum value of 8qq,. Figure 3 also showsdq,,, for

S(8012. T)=3. (20)

This quantity 5q4, (86, for the rotatoy is a convenient
measure of theobustnes®f the state, by which we mean its
ability to sustain a perturbation and yet return after motion
reversal to approximately the initial state. 0.1
Some results for the driven quartic oscillator are shown in :
Figs. 2 and 3. A quantum wave-packet state with standard ggq
deviationsAq=Ap=0.1 was placed afq)=(p)=1, which
is within the regular island of phase spdsee Fig. 1 of9]),
and a similar classical ensemilgqg. (19)] was also propa- 0.01 ¥
gated. We seéFig. 2) that the perturbation sensitivity of the F
nonchaotic state changes only very slowly with propagation
time, and also that the sensitivities displayed by the classical

and quantum systems are very similar over the range of 0.001
times studied. 0 5 10 15 20 25 30 35 40
A similar quantum wave packet and classical ensemble T
were placed a{q)=0.2, (p)=0, which is in the chaotic
zone, and the result&ig. 3) are quite different. The robust- FIG. 3. Robustness parametgty;,(T) for a chaotic state of the

ness of the classical state decreases rapidly with propagati@fiven anharmonic oscillator. Dashed lingsp to botton): quan-
time. The robustness of the quantum state initially falls withtum state(A=0.16, 0.08, 0.04, 0.02Solid line: classical state with
its classical analog, but after a certain time it reaches a plahe same initialAq andAp as thez=0.02 quantum state.
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FIG. 4. Robustness paramet&6,,,(T) for a bounded chaotic 1 10 100
state of the quantum kicked rotatdf € 0.97). From top to bottom, T (kicks)

the curves correspond ®=0.02, 0.01, 0.005, 0.002a=7%17/1.)
FIG. 5. Robustness paramet@#,,(T) for an unbounded cha-

three other values ofi, confirming that the plateau of Ofic state of the quantum kicked rotatét=4; «=0.02.

6945(T) does indeed scale with.

The momentum of the classical kicked rotator is bounded-haracterize the state sensitivity of a classical or quantum
by a Kolmogorov-Arnold-MosefKAM) surface if the kick system by a parameter called thg&bustnesswhich is the
strength is less thaK,=0.9716...[10]. Although the quan- largest perturbation that can be applied to the state after
tum system can tunnel through the KAM barrier, this is apropagation for a tim@ without preventing the system from
very small effect, and the momentum is practically boundecapproximately recovering its initial state after motion rever-
in the quantum system too. Figure 4 shows the robustness@l. AsT increases, an initially smooth state develops finer
parametersé,,(T), calculated forlk =0.97 and several val- structures, which are more sensitive to perturbations, and the
ues ofa=%7/1. These results, like those for the driven os- robustness decreases. The robustness decreases very slowly
cillator (Fig. 3), show that asT increases,56,, first de-  Wwith time for nonchaotic states, but very rapidly for chaotic
creases but then reaches a plateau of otdamp. states. For short times, the state sensitivities of classical and

ForK>K_, the momentum of the classical kicked rotator quantum systems are very similar. For long times, the robust-
increases diffusively without bound, and the width of theness of a chaotic classical state decreasmgyhly exponen-
momentum distribution grows like"2. In this regime of un- tially) without bound, but the robustness of the correspond-
bounded motion, the robustness parameter of the quantufig quantum state decreases much more slowly. We have
system does not plateau. The slope of the log-log ¢(#ag.  argued that the minimum perturbation required to prevent a
5) shows thaisd,,(T) is proportional toT ~¥2 at largeT, as
would be expected from the estimai¢Ap(T). (The phe-
nomenon of quantum localizatiqd 1], which limits the dif- 10" e e e
fusive growth of the momentum, does not occur until times E
larger that those shown in Fig.)5.

The classical and quantum systems are compared in Figs.
6 and 7 for two values oft=77/1. In both cases, the theo-
ries agree initially, but the robustness of the quantum state
reaches a plateau dsincreases, whereas the robustness of
the classical state decreases without bound.

K =097, o=0.005

V. DISCUSSION

It has previously been show#d] that the time evolution

of a quantum system is more sensitive to small perturbations
in the Hamiltonian if the analogous classical system is cha-
otic than if it is not chaotic. But sensitivity to small changes
in the quantum state, for a fixed Hamiltonian, was believed
not to exist because of the unitary invariance of Hilbert-
space overlap of states. We have argued that the Hilbert- FIG. 6. Robustness paramet&6,,,(T) for a bounded chaotic
space overlap criterion is not relevant to the existence oftate of the classicdtircles and quantuniplain line) kicked rota-
chaos in either quantum or classical mechanics. Instead, wer (K=0.97, a=#/1=0.005.
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FIG. 8. Example of the extrapolation to obtain one classical

FIG. 7. Robustness paramet&6,,,(T) for a bounded chaotic point (T=>5) in Fig. 6. Values were computed @< g grids for

state of the classicdtircles and quanturriplain line) kicked rota- ensemble§ oh particles: n=1.00 000 (circle);.Z0.0 OQO (squarg;
tor (K=0.97,a=%17/1=0.0D. 400 000(diamond; 800 000(triangle. The solid line is then— oo

limit.

guantum system from returning to its initial state after mo-
tion reversal,8q45(T), is governed by the smallest de Bro- sponding classical ensemble does not vary Wit his will
glie wavelength in the state. Therefore, if the motion isrequire the use of mixed quantum stafdensity matrices
bounded in momentum spacéqq,(T) will plateau at a since a wave packet necessarily hiage#/Ag. Although
value of orders/Ap. If the momentum distribution width feasible, this will be computationally demanding, and has not
Ap is not bounded, theAq,,(T) continues to decrease with yet been dongA 2048x2048 density matrix will take 2048
T, in inverse proportion tap. times as long to compute as a 2048-component state vector.

The break between the quantum and classical behaviors is Decoherencéthe loss of quantum coherence due to inter-
very striking for chaotic stateigs. 3, 6, and ¥ One would  action with the environmejpis sometimes invokef12,13
expect the time of the break to increasefiadecreases, so to explain the emergence of classical propertiesluding
that full quantum-classical correspondence would emerge ishao$ from quantum mechanics. Although decoherence can
the limit 2—0. This is not seen in our results, and the reasorbe effective in eliminating interference patterns, it will not
may not be due merely to the limited rangefofalues that reduce the striking differences betwee)(5q,T) and
we were able to study. As was stresseddf the quantum Sy (59, T). The largeT plateau inSy,(5q,T) is governed by
state depends ok, so the limitA—0 involves a sequence of the minimum de Broglie wavelength, which will not be af-
states that must be chosen in a physically appropriate marected by weak environmental interactions. Thus, although
ner. In particular, the common choice of Gaussian wavalecoherence may be relevant to the study of the quantum-to-
packets withAq~Ap~7#*2 is arbitrary and lacks physical classical interface, it is not fully responsible for the emer-
significance. gence of classical behavior.

A more appropriate procedure is to hold constant, as
©—0, the initial probability distributions of macroscopically
significant variables. But which distributions need to be con- ACKNOWLEDGMENT
trolled? In our calculations, the initial position distribution
was held constant, since it is the position distribution thatEn
determines the applicability or inapplicability of Ehrenfest’s
theorem[2]. But in Figs. 6 and 7 it is apparent that the
class?cal results depend d@n This occurs because the initial_ _ APPENDIX: COMPUTATION OF CLASSICAL
classical ensemblg was qonstructed to .hlave the same position PHASE-SPACE INTEGRALS
and momentum distributions as the initial quantum state. If

This research was supported by the Natural Sciences and
gineering Research Council of Canada.

Aq is held constant, thethp will scale with . As time The evaluation ofS;(8qg,T) from Eg. (8) requires the
increases, the phase-space distribution develops essentiaihtegration of a function of the phase-space dengsity,p,t).
the same filamentary structure, regardless of(gmaal)) ini- But p(q,p,t) is not available as a continuous function; we

tial Ap, but the thickness of the filaments depends on théave only a finite ensemble of points distributed over phase
initial Ap. This makes no difference to the low-order mo- space. The probability density can be estimated by dividing
ments of the distributiofsuch as were studied [2]), butit  phase space into a grid of cells and counting the number of
does affect the overlap function. Thus the classical value opoints in each cell. One might think that the intediady. (8)]
S.(69,T) becomes a “moving target” as—0. In order to  would be accurately estimated if we choose a fine enough
seeS;m( 69, T) converge onto a definitg,(5q,T) ash—0, it grid. But that is not so. As the grid becomes ever finer, the
will be necessary to holthoth the initial position and mo- histogram approximation t@(q,p,t) approaches a set of
mentum distributions constant ds—0, so that the corre- delta functions, and the overldfq. (8)] tends to zero. It is
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necessary to compute the histogram for an ensembie of the solid line in Fig. 8, which can then be extrapolated to the
particles on a grid 0§ x g cells, for several values af and  continuum limit (1—0). It is apparent from Fig. 8 that no
g, and perform a double extrapolation. For fixed grid gize feasible value oh or g can be considered “large enough.”
the results vary nearly linearly with 1/ and an accurate Only by this double-extrapolation method can reliable values
extrapolation to the infiniten limit is possible. This yields be obtained.
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