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Sensitivity of the time evolution to small changes in the state is a characteristic feature of classical chaos. It
has been believed that state sensitivity could not exist in quantum mechanics because of the unitary invariance
of the Hilbert-space overlap of states. We argue that this Hilbert-space criterion is irrelevant and show that both
quantum states and classical statistical states exhibit a similar kind of state sensitivity. This is demonstrated by
the degree to which the initial state can be recovered in computational motion reversal: forward evolution for
a time T, perturbation of the state, and backward time evolution. Some differences between classical and
quantum state sensitivity remain, and these seem to be insensitive to decoherence.@S1050-2947~96!06911-9#

PACS number~s!: 03.65.Bz, 05.45.1b, 03.65.Sq

I. INTRODUCTION

Understanding the emergence of classical properties from
quantum mechanics is a problem as old as quantum theory
itself, yet there still remain aspects of it that are not fully
understood. The problem is of considerable interest today
because of the growing interest in mesoscopic systems@1#,
whose size places them near the interface between the clas-
sical and quantum domains. Perhaps the strongest impetus to
study the quantum-classical interface is provided by the phe-
nomenon ofchaos, which is common in classical mechanics,
but very difficult to obtain from quantum mechanics. Chaos
in classical mechanics is usually defined as extreme sensitiv-
ity to the initial state. Two chaotic orbits that are initially
very close together in phase space will separate exponen-
tially with time. After a moderate amount of time has
elapsed, the two chaotic orbits may bear no apparent relation
to each other.

There is a simple argument that such state sensitivity can-
not exist in quantum mechanics. Letuc1~0!& and uc2~0!& be
two initial state vectors that differ only slightly, that is,

z^c1~0!uc2~0!& z2512e, ~1!

with e being a small positive number. It follows from the
unitary nature of time development that

z^c1~ t !uc2~ t !& z2512e ~2!

for all future times t. Not only do the states not diverge
exponentially, but they do not separate at all! This argument
is sometimes invoked to prove that there is no chaos in quan-
tum mechanics. But, if taken at face value, it would prove
not only that chaos is absent in quantum mechanics, but that
chaos cannot even emerge asymptotically in the classical
limit. While the former conclusion may be acceptable, the
latter conclusion is very alarming, for it would mean that
classical mechanics cannot be obtained as a limit of quantum
mechanics.

That this radical conclusion is unjustified is strongly indi-
cated by the fact that a parallel argument can be given for the
nonexistence ofclassicalchaos. It is based on the statistical
form of classical mechanics and the Liouville equation for
the phase space distribution function,
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Here,q andp denote the position and momentum, andF(q)
is the external force exerted on the system. Letr1(q,p,0)
and r2(q,p,0) be two initial phase-space distributions that
are close, in the sense that their overlap is almost total. That
is, we have~for a suitable choice of normalization!

E E r1~q,p,t !r2~q,p,t !dq dp512e ~4!

at t50. But Liouville’s theorem proves that this overlap in-
tegral is independent oft; therefore, initially close classical
~statistical! states do not separate in time. So if Eq.~2! really
proved the absence of quantum chaos, then Eq.~4! would
equally prove the absence of classical chaos. But the conclu-
sion of this argument is, of course, false.

The problem with the above argument is not mathemati-
cal, but conceptual. There are two senses of the wordstatein
classical mechanics: the individual state~orbit! and the sta-
tistical state~phase-space probability distribution!. In quan-
tum mechanics, on the other hand, all states~pure or mixed!
are subject to a statistical interpretation, and there is no ana-
log of the individual orbit. The usual definition of classical
chaos, as an exponentially rapid separation of initially close
states, applies only to the individual states. A different crite-
rion must be used to identify chaos in a classical statistical
state.

A conceivable~but not practical! method would be to
consider two initial phase-space distributions that are sharply
peaked, nonoverlapping, and separated by a very small dis-
tance. If the motion is chaotic, then the separation between
the centers of these two distributions will initially grow ex-
ponentially~and, of course, the peaks will broaden!. But the
Hilbert-space separation of the two distribution functions, as
measured by their overlap integral@Eq. ~4!#, will remain con-
stant. This overlap has the same value~zero!, regardless of
whether the distance between the peaks is a millimeter or a
mile. Thus we see that the Hilbert-space overlap, as a mea-
sure of the ‘‘closeness’’ of two classical distribution func-
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tions, is entirely irrelevant to the existence or nonexistence
of chaos in a classical system.

A quantum state is more analogous to a classical statisti-
cal state than to a single classical orbit@2#, and the similarity
between Eqs.~2! and~4! strongly suggests that the constancy
of the Hilbert-space overlap is just as irrelevant to the exist-
ence or nonexistence of chaos in quantum mechanics as it is
in classical mechanics. Quantum chaos, defined as the analog
of classical chaos, should, therefore, be sought by comparing
quantum phenomena with the manifestations of chaos in the
classical Liouville equation.

Two kinds of sensitivities can be distinguished in dynam-
ics: ~i! sensitivity of the motion to small changes in the
Hamiltonian, and~ii ! sensitivity to small changes in the state,
with the Hamiltonian being unchanged. Both of these can be
regarded as modeling the effect of an external perturbation.
If the ‘‘environment,’’ which is the source of the perturba-
tion, were described by a Hamiltonian and included within
the system, then cases~i! and ~ii ! could be treated within a
unified framework. But that is frequently impractical, and as
long as the perturbation is regarded as external to the system,
the two cases remain formally distinct.

Peres@3,4# has made a thorough study of case~i!. He
finds that quantum motions are much more sensitive to a
small perturbation of the Hamiltonian,dH, if the underlying
classical motion is chaotic than if it is regular. This sensitiv-
ity can be measured in various ways. One criterion@4# is the
decay of the overlap between the time-dependent states
uc(t)& anduc8(t)&, whereuc~0!&5uc8~0!&, but uc(t)& evolves
underH while uc8(t)& evolves underH1dH. Another@4,5#
is the degree of mixing of the eigenstates ofH1dH when
expressed in terms of the eigenstates ofH. As a result of
these investigations, the sensitivity of quantum motions to
perturbations of the Hamiltonian is reasonably well under-
stood.

But this does not provide an understanding of how the
sensitivity of classical motions to small changes in the state
can arise from quantum mechanics. We argue that such an
understanding can come only by comparing quantum phe-
nomena with the manifestations of chaos in the classical
Liouville equation. Such a strategy has been applied to the
quantum baker’s map@6#, using an analysis of the informa-
tion needed to track the state in detail. The results show a
similar sensitivity to perturbations in both the classical and
quantum maps. Unfortunately, it is difficult to apply that
method to real dynamical systems that satisfy Liouville’s
equation or Schro¨dinger’s equation.

In this paper we use computational motion reversal—the
accuracy with which a time-reversed system returns to its
initial state—as a measure of state sensitivity. Our results
show that, by this criterion, quantum systems exhibit a form
of state sensitivity very similar to that of classical systems.

II. MOTION REVERSAL

The technique of computational motion reversal was first
used to illustrate the difference between the stabilities of
classical and quantum dynamics. In this method, a state is
propagated from timet50 to t5T, subjected to motion re-
versal att5T, and then propagated untilt52T. Because the
dynamics are theoretically reversible, the initial state should

be recovered. When this was done for two systems that ex-
hibit diffusive motion~in momentum space!, the kicked ro-
tator @7# and a hydrogen atom in a microwave radiation field
@8#, it was found that the quantum dynamics was indeed
reversible to within expected numerical accuracy. Fort.T,
the classical system initially began to retrace its motion, but
it soon returned to diffusive motion and did not even ap-
proximately recover its initial state. This was caused by the
inevitable truncation and roundoff errors, which grow expo-
nentially ~at a rate governed by the largest Lyapunov expo-
nent! in the classical case, but do not grow exponentially in
the quantum case.

Those calculations provide a spectacular demonstration of
the ‘‘practical irreversibility’’ of classical mechanics, as
compared with quantum mechanics. But they are less satis-
factory as a true measure of the degree of state sensitivity in
the two theories. The ‘‘perturbations’’ to which the states are
subjected, roundoff and truncation errors, are machine de-
pendent and uncontrolled. They correspond to no physical
phenomenon. There is no assurance that the quantum and
classical states are equivalently perturbed, since they are rep-
resented mathematically, and hence computationally, in such
different ways. What is really being compared is the stability
of two different computational algorithms, rather than two
physical processes.

To overcome these limitations, we have modified the pro-
cedure thus: the state is propagated fromt50 to t5T; a
perturbation of controlled magnitude~large compared to the
roundoff error! is applied; and the motion-reversed state is
propagated fromt5T to t52T. The accuracy with which
the initial state is recovered can then be studied as a function
of the magnitude of the perturbation and the durationT of
propagation. The simplest perturbation is a spatial displace-
ment of lengthdq, which can obviously be applied equally
to a quantum or a classical state.

For quantum mechanics, the probability of return to the
initial stateuc~0!& is given by

Sqm~dq,T!5 z^c~0!uU~2T!D~dq!U~T!uc~0!& z2, ~5!

whereU(T) is the time-development operator andD(dq) is
the displacement operator. Because the time-development
operator is unitary, this is equivalent to

Sqm~dq,T!5 z^c~T!uD~dq!uc~T!& z2

5U E c* ~q,T!c~q2dq,T!dqU2, ~6!

where uc(T)&5U(T)uc(0)&, andc(q,T)5^quc(T)& is the
wave function in coordinate representation. So we need not
integrate the equation of motion fromT to 2T; it suffices to
integrate only from 0 toT, and to calculate the overlap be-
tweenuc(T)& and the displaced stateD(dq)uc(T)&.

Similarly, for classical mechanics, we define the overlap
between initial and final phase-space distributions,

Scl~dq,T!5NE E r~q,p,0!UL~2T!

3DL~dq!UL~T!r~q,p,0!dq dp, ~7!

where UL(T) and DL(dq) are the time-development and
space-displacement operators for the Liouville distribution.
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The normalization constantN is chosen so thatScl(0,T)51.
Liouville’s theorem guarantees that the overlap between two
phase-space distributions is constant in time, so Eq.~7! is
equivalent to

Scl~dq,T!5NE E r~q,p,T!r~q2dq,p,T!dq dp. ~8!

The accumulation of roundoff errors, though unavoidable,
plays no relevant role in our results because we integrate the
equation of motion only fromt50 to t5T and do not need
to perform a compensating motion-reversed integration from
T to 2T.

That the appropriate quantum analog of Eq.~8! is Eq.~6!,
with the square of the inner product rather than some other
power, can be justified by means of the Wigner function,

rw~q,p,t !5~2p\!21E eipx/\^q2x/2uc&^cuq1x/2&dx.

~9!

In the Wigner representation, Eq.~6! becomes

Sqm~dq,T!52p\E E rw~q,p,T!rw~q2dq,p,T!dq dp.

~10!

The Wigner function is not a probability distribution, since it
can be negative, and it need not even possess a classical
limit. But in those special cases where it is positive and does
have a classical limit, it satisfies the Liouville equation~3! in
that limit. This reassures us thatSqm(dq,T) andScl(dq,T)
are appropriate quantities for comparison. By studying the
overlap between perturbed and unperturbed states, we are
using a criterion similar to that used by Peres@4# to study the
effects of perturbations in the Hamiltonian. This may facili-
tate comparison between the cases of state perturbations and
of Hamiltonian perturbations.

III. THE MODELS

Two models have been studied, the driven quartic oscil-
lator and the periodically kicked rotator.

~a! The Hamiltonian of thedriven quartic oscillatoris

H5p2/2M1bq42aq cos~vt !. ~11!

The solution of Liouville’s equation is equivalent to the so-
lution of Hamilton’s equations for an ensemble of particles,
and this method of simulation is often a more effective com-
putational technique than a direct solution of Liouville’s dif-
ferential equation. The classical equations of motion were
integrated by an Adams-method ordinary-differential-
equation~ODE! integrator. The quantum Hamiltonian is ob-
tained by replacing the momentum variable withp52 i\]/
]q, whence the Schro¨dinger equation,Hc(q,t)5 i\]c/]t,
becomes a partial differential equation inq and t. A finite
difference approximation for theq dependence reduces this
to a large set of coupled ordinary differential equations,
which were solved by a Runge-Kutta-Merson ODE integra-
tor.

The classical parameter values used wereM51, b50.25,
a50.5, andv51. For these values, it has previously been

shown ~see Fig. 1 of@9#! that the Poincare´ section of the
classical orbits contains a large regular island surrounded by
a larger chaotic zone. The smallest value of\ that we found
to be computationally practical was 0.02. In these units, the
area of the regular island is 2.25, which can support 2.25/
2p\517.9 quantum states; the combined area of the regular
island and the surrounding chaotic zone is 10.1, which can
support 10.1/2p\580.4 quantum states.

~b! The Hamiltonian of theperiodically kicked rotatoris

H5
p2

2I
1C cosu (

n51

`

d~n2t/t!. ~12!

Here,p is the angular momentum,I is the moment of inertia,
t is the interval between kicks, andCt is the maximum
angular impulse per kick. Ifpn andun denote the values just
before thenth kick, then the values just before the (n11)th
kick are given by

pn115pn1Ct sin~un!, ~13!

un115un1~t/I !pn11 . ~14!

In terms of the dimensionless variablesy5(t/2pI )p and
x5u/2p, these equations reduce to the so-calledstandard
map @10#,

yn115yn1~K/2p!sin~2pxn!, ~15!

xn115xn1yn11 , ~16!

whereK5Ct2/I is the dimensionless kick-strength param-
eter.

The quantum Hamiltonian is obtained by replacing the
momentum variable byp52 i\]/]u. The time-development
operator that takes the state vector through thenth kick to
just before the (n11)th kick is

U~t!5exp$2 ip2t/2I\%exp$2 iCt cos~u!/\%. ~17!

The rightmost factor in Eq.~17!, which describes the kick, is
easy to apply in coordinate representation. The leftmost fac-
tor, which describes the free rotation between kicks, is easy
to apply in momentum representation, where its matrix rep-
resentation is ^muexp(2ip2t/2I\)um8&5exp(2im2\t/
2I )dm,m8 . ~\m is an eigenvalue ofp.! Therefore, the time
integration of the Schro¨dinger equation is performed thus:
choose an initial state vector in coordinate representation;
multiply by exp~2 ib cosu!; fast-Fourier-transform~FFT! to
the momentum representation; multiply by exp(2 iam2/2);
FFT to the coordinate representation; etc. The two dimen-
sionless parameters are

a5\t/I and b5Ct/\. ~18!

Their product is the classical kick strengthK5ab5Ct2/I .
The initial quantum stateuc~0!& is chosen to be a localized

wave packet. The corresponding classical distribution is con-
structed to have the same initial position and momentum
distributions,

r~q,p,0!5 z^quc~0!& z2z^puc~0!& z2. ~19!
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The manner in which differences between the classical and
quantum probabilities develop and grow with time was stud-
ied in a previous publication@2#.

IV. RESULTS

Figure 1 shows the overlap function for displaced quan-
tum states@Eq. ~6!# of the kicked rotator, for various propa-
gation times.~For the rotator, the displacementdq is the
angle du.! For T50, the decrease ofSqm(dq,T) with in-
creasingdq merely reflects the width of the initial wave
packet. AsT increases, the state develops more complex fine
structure and becomes more sensitive to displacements.
Hence, for fixeddq, Sqm(dq,T) initially decreases asT in-
creases, and for fixedT, Sqm(dq,T) decreases asdq in-
creases.

Since the~classical or quantum! overlapS(dq,T) drops
from a value near one to a value near zero within a small
range ofdq, it is convenient to characterize the state by the
valuedq1/2(T) for which the overlap falls to one-half,

S~dq1/2,T!5 1
2 . ~20!

This quantity dq1/2 ~du1/2 for the rotator! is a convenient
measure of therobustnessof the state, by which we mean its
ability to sustain a perturbation and yet return after motion
reversal to approximately the initial state.

Some results for the driven quartic oscillator are shown in
Figs. 2 and 3. A quantum wave-packet state with standard
deviationsDq5Dp50.1 was placed at̂q&5^p&51, which
is within the regular island of phase space~see Fig. 1 of@9#!,
and a similar classical ensemble@Eq. ~19!# was also propa-
gated. We see~Fig. 2! that the perturbation sensitivity of the
nonchaotic state changes only very slowly with propagation
time, and also that the sensitivities displayed by the classical
and quantum systems are very similar over the range of
times studied.

A similar quantum wave packet and classical ensemble
were placed at̂ q&50.2, ^p&50, which is in the chaotic
zone, and the results~Fig. 3! are quite different. The robust-
ness of the classical state decreases rapidly with propagation
time. The robustness of the quantum state initially falls with
its classical analog, but after a certain time it reaches a pla-

teau. No matter how long the propagation timeT, there is a
minimum perturbationdq required to prevent the quantum
state from recurring after motion reversal. This minimumdq
is roughly equal to the smallest de Broglie wavelength that
plays a significant role in the state. This argument can be
made more precise by writing Eq.~6! as

Sqm~dq,T!5U E uc~p,T!u2e2 ipdq/\dpU2, ~21!

wherec(p,T)5^puc(T)& is the momentum wave function.
ThusSqm(dq,T) is the square of the Fourier transform of the
momentum distribution functionuc(p,T)u2, and its spatial
extent will be inversely related to the width of the momen-
tum distribution. Apart from a factor of order unity, we may
expectdq1/2(T)>\/Dp(T), with approximate equality hold-
ing when dq1/2(T) reaches its plateau. The state rapidly
spreads to fill the entire chaotic zone, so the limiting value of
Dp can be estimated from the size of the chaotic zone, and
indeed\/Dp provides an estimate for the observed mini-
mum value of dq1/2. Figure 3 also showsdq1/2 for

FIG. 1. Overlap function for the quantum kicked rotator~K
50.97,a50.005!. T is the number of kicks before the displacement
du is applied.

FIG. 2. Robustness parameterdq1/2(T) for a nonchaotic state of
the driven anharmonic oscillator.T is in units of the driving force
period. Solid line: classical state. Dashed line: quantum state with
\50.02.

FIG. 3. Robustness parameterdq1/2(T) for a chaotic state of the
driven anharmonic oscillator. Dashed lines~top to bottom!: quan-
tum state~\50.16, 0.08, 0.04, 0.02!. Solid line: classical state with
the same initialDq andDp as the\50.02 quantum state.
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three other values of\, confirming that the plateau of
dq1/2(T) does indeed scale with\.

The momentum of the classical kicked rotator is bounded
by a Kolmogorov-Arnold-Moser~KAM ! surface if the kick
strength is less thanKc50.9716...@10#. Although the quan-
tum system can tunnel through the KAM barrier, this is a
very small effect, and the momentum is practically bounded
in the quantum system too. Figure 4 shows the robustness
parameterdu1/2(T), calculated forK50.97 and several val-
ues ofa5\t/I . These results, like those for the driven os-
cillator ~Fig. 3!, show that asT increases,du1/2 first de-
creases but then reaches a plateau of order\/Dp.

ForK.Kc , the momentum of the classical kicked rotator
increases diffusively without bound, and the width of the
momentum distribution grows liket1/2. In this regime of un-
bounded motion, the robustness parameter of the quantum
system does not plateau. The slope of the log-log plot~Fig.
5! shows thatdu1/2(T) is proportional toT

21/2 at largeT, as
would be expected from the estimate\/Dp(T). ~The phe-
nomenon of quantum localization@11#, which limits the dif-
fusive growth of the momentum, does not occur until times
larger that those shown in Fig. 5.!

The classical and quantum systems are compared in Figs.
6 and 7 for two values ofa5\t/I . In both cases, the theo-
ries agree initially, but the robustness of the quantum state
reaches a plateau asT increases, whereas the robustness of
the classical state decreases without bound.

V. DISCUSSION

It has previously been shown@4# that the time evolution
of a quantum system is more sensitive to small perturbations
in the Hamiltonian if the analogous classical system is cha-
otic than if it is not chaotic. But sensitivity to small changes
in the quantum state, for a fixed Hamiltonian, was believed
not to exist because of the unitary invariance of Hilbert-
space overlap of states. We have argued that the Hilbert-
space overlap criterion is not relevant to the existence of
chaos in either quantum or classical mechanics. Instead, we

characterize the state sensitivity of a classical or quantum
system by a parameter called therobustness, which is the
largest perturbation that can be applied to the state after
propagation for a timeT without preventing the system from
approximately recovering its initial state after motion rever-
sal. AsT increases, an initially smooth state develops finer
structures, which are more sensitive to perturbations, and the
robustness decreases. The robustness decreases very slowly
with time for nonchaotic states, but very rapidly for chaotic
states. For short times, the state sensitivities of classical and
quantum systems are very similar. For long times, the robust-
ness of a chaotic classical state decreases~roughly exponen-
tially! without bound, but the robustness of the correspond-
ing quantum state decreases much more slowly. We have
argued that the minimum perturbation required to prevent a

FIG. 4. Robustness parameterdu1/2(T) for a bounded chaotic
state of the quantum kicked rotator (K50.97). From top to bottom,
the curves correspond toa50.02, 0.01, 0.005, 0.002. (a5\t/I .!

FIG. 5. Robustness parameterdu1/2(T) for an unbounded cha-
otic state of the quantum kicked rotator~K54; a50.02!.

FIG. 6. Robustness parameterdu1/2(T) for a bounded chaotic
state of the classical~circles! and quantum~plain line! kicked rota-
tor ~K50.97,a5\t/I50.005!.
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quantum system from returning to its initial state after mo-
tion reversal,dq1/2(T), is governed by the smallest de Bro-
glie wavelength in the state. Therefore, if the motion is
bounded in momentum space,dq1/2(T) will plateau at a
value of order\/Dp. If the momentum distribution width
Dp is not bounded, thendq1/2(T) continues to decrease with
T, in inverse proportion toDp.

The break between the quantum and classical behaviors is
very striking for chaotic states~Figs. 3, 6, and 7!. One would
expect the time of the break to increase as\ decreases, so
that full quantum-classical correspondence would emerge in
the limit \→0. This is not seen in our results, and the reason
may not be due merely to the limited range of\ values that
we were able to study. As was stressed in@2#, the quantum
state depends on\, so the limit\→0 involves a sequence of
states that must be chosen in a physically appropriate man-
ner. In particular, the common choice of Gaussian wave
packets withDq;Dp;\1/2 is arbitrary and lacks physical
significance.

A more appropriate procedure is to hold constant, as
\→0, the initial probability distributions of macroscopically
significant variables. But which distributions need to be con-
trolled? In our calculations, the initial position distribution
was held constant, since it is the position distribution that
determines the applicability or inapplicability of Ehrenfest’s
theorem@2#. But in Figs. 6 and 7 it is apparent that the
classical results depend on\. This occurs because the initial
classical ensemble was constructed to have the same position
and momentum distributions as the initial quantum state. If
Dq is held constant, thenDp will scale with \. As time
increases, the phase-space distribution develops essentially
the same filamentary structure, regardless of the~small! ini-
tial Dp, but the thickness of the filaments depends on the
initial Dp. This makes no difference to the low-order mo-
ments of the distribution~such as were studied in@2#!, but it
does affect the overlap function. Thus the classical value of
Scl(dq,T) becomes a ‘‘moving target’’ as\→0. In order to
seeSqm(dq,T) converge onto a definiteScl(dq,T) as\→0, it
will be necessary to holdboth the initial position and mo-
mentum distributions constant as\→0, so that the corre-

sponding classical ensemble does not vary with\. This will
require the use of mixed quantum states~density matrices!,
since a wave packet necessarily hasDp}\/Dq. Although
feasible, this will be computationally demanding, and has not
yet been done.~A 204832048 density matrix will take 2048
times as long to compute as a 2048-component state vector.!

Decoherence~the loss of quantum coherence due to inter-
action with the environment! is sometimes invoked@12,13#
to explain the emergence of classical properties~including
chaos! from quantum mechanics. Although decoherence can
be effective in eliminating interference patterns, it will not
reduce the striking differences betweenSqm(dq,T) and
Scl(dq,T). The large-T plateau inSqm(dq,T) is governed by
the minimum de Broglie wavelength, which will not be af-
fected by weak environmental interactions. Thus, although
decoherence may be relevant to the study of the quantum-to-
classical interface, it is not fully responsible for the emer-
gence of classical behavior.
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APPENDIX: COMPUTATION OF CLASSICAL
PHASE-SPACE INTEGRALS

The evaluation ofScl(dq,T) from Eq. ~8! requires the
integration of a function of the phase-space densityr(q,p,t).
But r(q,p,t) is not available as a continuous function; we
have only a finite ensemble of points distributed over phase
space. The probability density can be estimated by dividing
phase space into a grid of cells and counting the number of
points in each cell. One might think that the integral@Eq. ~8!#
would be accurately estimated if we choose a fine enough
grid. But that is not so. As the grid becomes ever finer, the
histogram approximation tor(q,p,t) approaches a set of
delta functions, and the overlap@Eq. ~8!# tends to zero. It is

FIG. 8. Example of the extrapolation to obtain one classical
point (T55) in Fig. 6. Values were computed ong3g grids for
ensembles ofn particles:n5100 000 ~circle!; 200 000 ~square!;
400 000~diamond!; 800 000~triangle!. The solid line is then→`
limit.

FIG. 7. Robustness parameterdu1/2(T) for a bounded chaotic
state of the classical~circles! and quantum~plain line! kicked rota-
tor ~K50.97,a5\t/I50.01!.
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necessary to compute the histogram for an ensemble ofn
particles on a grid ofg3g cells, for several values ofn and
g, and perform a double extrapolation. For fixed grid sizeg,
the results vary nearly linearly with 1/n, and an accurate
extrapolation to the infiniten limit is possible. This yields

the solid line in Fig. 8, which can then be extrapolated to the
continuum limit (1/g→0). It is apparent from Fig. 8 that no
feasible value ofn or g can be considered ‘‘large enough.’’
Only by this double-extrapolation method can reliable values
be obtained.

@1# See, for example,Quantum Complexity in Mesoscopic Sys-
tems, edited by A. R. Bishop, R. E. Ecke, and R. Mainieri
~North-Holland, Amsterdam, 1995!.

@2# L. E. Ballentine, Yumin Yang, and J. P. Zibin, Phys. Rev. A
50, 2854~1994!.

@3# A. Peres, Phys. Rev. A30, 1610~1984!.
@4# A. Peres,Quantum Theory: Concepts and Methods~Kluwer,

Dordrecht, 1993!, Chap. 11.
@5# L. Benet, T. H. Seligman, and H. A. Weidenmu¨ller, Phys. Rev.

Lett. 71, 529 ~1993!.
@6# R. Schack and C. M. Caves, Phys. Rev. Lett.71, 525 ~1993!.

@7# D. L. Shepelyansky, Physica~Amsterdam! 8D, 208 ~1983!.
@8# G. Casati, B. V. Chirikov, I. Guarneri, and D. L. Shepelyan-

sky, Phys. Rev. Lett.56, 2437~1986!.
@9# N. Ben-Tal, N. Moiseyev, and H. J. Korsch, Phys. Rev. A46,

1669 ~1992!.
@10# A. J. Lichtenberg and M. A. Lieberman,Regular and Chaotic

Dynamics~Springer, New York, 1992!.
@11# D. R. Grempel, R. E. Prange, and S. Fishman, Phys. Rev. A

29, 1639~1984!.
@12# W. H. Zurek and J. P. Paz, Physica D83, 300 ~1995!.
@13# K. Shiokawa and B. L. Hu, Phys. Rev. E52, 2497~1995!.

54 3819CLASSICAL STATE SENSITIVITY FROM QUANTUM . . .


