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Integration of the Heisenberg equations for inverse power-law potentials
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The direct method of integration of the operator Heisenberg equations of motion is extended to the solution
of quantum tunneling when the central potential is a sum of inverse powers of the radial distance. By obtaining
the equation of motion for the Weyl-ordered basis{&t ,(t)} formed fromr(t) andp,(t), one can express
the time evolution of any member of the set as an infinite sum involving the opef&igrg0)}. The direct
integration enables one to find the expectation values of the radial position operator and its conjugate momen-
tum and higher moments of these operators as functions of [B1€950-294{©6)04511-§

PACS numbd(s): 03.65.Ca, 03.65.Bz

I. INTRODUCTION IIl. BENDER AND DUNNE ALGEBRA
L. — . FOR THE RADIAL COORDINATE
This is the third in a series of papers d_evoted to the s_tudy AND ITS CONJUGATE MOMENTUM
of the problem of integration of the Heisenberg equations
based on ideas suggested by Bender and collabofdtes. In their work on the integration of an operator differential

In the earlier papers we discussed the solution of the initiaeguation, Bender and Dunne introduced a set of Weyl-
value operator equations of motion for culb#] and quartic ordered operators_corresponding to the classical product
[5] potentials, respectively. In both cases we observed thdl"d" (m andn are integersby

the time evolution of the operators can be determined only

for relatively short times. The nonlinearity of the problem 1N nl
combined with the operator nature of the solution of the Tmn=3n E — qkpmq”—k, 2.9
differential equations for position and momentum restricted 2" o (n—k)lk!

the number of steps in the integration process. Nonetheless,

by calculating the constants of motion we showed that for gng showed that the basis elemeffits,, form an algebra
short time interval the result of integration is very accuratecjosed under multiplication. Here we consider a trivial modi-

and the result enabled us to fif@ the lifetime of a quasi- fication of this product rule for the radial coordinatend its
stationary wave packet trapped by a cubic potential @nd conjugatep, , where

the energy differences for quartic potentials. The present

work is concerned with the more interesting problem, viz., .

how one can extend the idea of Bender and collaborators to D= _('_ i)r 2.2
the central, inverse law potentials, and solve the three- ' ror '
dimensional problem of bound state or resonance tunneling

using Heisenberg’s equations. In Sec. Il we write the Hamil—and satisfies the commutation relation
tonian for the radial motion of a particle in terms of the basis

set{Sy,n(t)} of the Weyl-ordered operators. These operators

are constructed fronm(t) and p,(t) and form an algebra [r,p]=1. (2.3
which is closed under multiplicatiofi,2]. Then we derive

and so_lve the Heisenberg equat_lon of motlo_nSan(t). As_ Here we have sdi=1.

a special case we observe that if the potential is proportional We replaceT . . as defined above b, , where

to the inverse square of the radial distance, then the exact mn n
solution for the operatd8, , can be obtained as a function of

time (Sec. ll). In Sec. IV we find the expectation values of 1 n! i g\™

the operatorsS,, _,(0) for a simple wave packet and calcu- Sn,n=§ Z m fk( T E) rnk

late the quantitieér (t)), (p,(t)), and in generalS,, ,(t)) as k=0 & '

functions of time. In Sec. V we present the results of our 111 0 n! g\m
calculation for a tunneling problem and a bound state prob- =7 [? kzo GRS rk( —j ar) rnk}r

lem. We discuss the special case of the Coulomb problem B '

with the Rydberg wave packet in Sec. VI. We show in Sec. 1

VII that the same method can be used for a sum of exponen- =—Tmnl. (2.4

tial potentials, such as the Morse potential. Finally we con-
clude the paper with a discussion of the merits and also the
problems of the present approach. Then the product rule becomes
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” ' jtntmik! !
= j-s ‘ .
=3 Tt =3, 7 2, 0 {qrareanmsa ey S 1)
(2.9
and the commutation relation between two members of the s8t, @ can be obtained fron2.5);
(i/2)2i+1 2+t y (2j+1)!
[Smn Srsl= 22 2411 ¢ 2 (— msnwrfzjfl,mrsfafl
'm+LHI'(n+LHIT'(r+1)I'(s+1) 26
“Tm—k+ DI N+ k—2))T(r+k—2))T(s—k+1)" (2.6
|
The two equation$2.5 and (2.6) are the basic relations From Egs.(2.12 and(2.13 we finddS;, ,/dt;
which enable us to find the equations of motion for any
operator S, , from the HamiltonianH. The Heisenberg dSmn ~[Sm H]
equation of motion for the operat&;, , is n
Sn =iNSpi1n-1
=gt =[SmaH], 27 T
o j+1 |
2 m!
where H is the Hamiltonian of the system. The reduced = (2) (m=2j—=1)1(2j+1)!
Hamiltonian for the radial motion of a particle of mdds=1
is (k+2j)!
Z A T k=11 Sm-2j-1n-k-2j-1]
= 3PP+ Ver(r) =S5, Ver( Son), 29
(2.19
where the effective potentidly (r) is the sum of the cen- ) . )
trifugal potentiall (1 +1)/r? and the external force. In this  In particular, the equations of motion f& andS, ; are
work we are interested in potentials of the type the Heisenberg equations forand p,, i.e., they reduce to
| two real equations,
k
Vg1 2.9 dr
(=2 ¥ (2.9 L 215
and in particular we want to consider a potential of the formand
A J
Ver(1) =, —, 2.10 dp, & KA Ve
k=1 T dt —k_ . (21@
k=1 ar

where we have included{| +1)/r? as a part ofA,/r?. With

this type of potential, the Hamiltoniad can be written as We can write Eq.(2.16 also as an equation with real

coefficients,

J
_1 dSnn
252,0+k21 AxSo k- (2.1 Sﬂ ——=NSqhs1n- 1+2

i m!
2] (m-2j—-1)!
In order to calculate the time developmenty , for this

system we need the following two commutators that we can
find from (2.6):

k+2j)!
E Ay ((k 11), szjl,nkzjl)-

[Smn+S20l=2iNSns10-1, 217
(212 Now we write S, ,(At) as a Taylor expansion,
[Sma+Sos]= 22 (')M misr2) | | g2
n=0ms (m—2j—1)I(s—1)! _ At [dSna| | (AD (d Sn,n>
Sm,n(At) Sm,n(0)+ dt O+ 21 dtZ o
X Sm-2j-1n-s-2j—1- 2.13
+eee (2.18

The last commutator is found by calculating the limit of
Eq. (2.6) when the argument of th€ functions becomes The second termdS,, ,/dt), can be calculated fror(2.17)
negative. Note that the sum in Ed2.13 is finite, i.e., for in terms of Sy, 5 1,9 2(0) etc. By differentiating
odd m, jma=3(Mm—1) and for everm, j ,.=3(M—2). dS,/dt, Eq. (2. 17) we find d?S;, /dt?, but this is also
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expressible in terms d;, 5 _1n-2j-3, - - -

if we substitute

3803

d®Sp2

1
for dSy,—5j— 10— 2j—»/dt and similar terms front2.18. Thus 2~ 7 [S11H1=25,0+4A:S . 3.9
Sm.n(At) can be written as an expansion involvigg 's all
att=0. By repeating this process we find tray, n(2At) Finally we calculate
Smn(At), ... can all beexpressed in terms osm,n( ,

_1(0),...80_2 _1n-2i-s0), ... wheresisalare d d d(4H
sggi%i'cleli%t()ager.s?héjfir%gl rzésalt can be written as an ogerator %ﬁz = 41 12520t 4A2Sp -2} = ( T ) =0. (3.9
equation

Hence the serie€3.2) terminates after the third term
Sma(NAD =2 Cj(N.ADSyj115-(0). (219 2t 2
g SoAt)=SoA0)+ 7 S1a(0) + 57
Here the coefficient€; ,(N,At) are determined numerically ' '
for a givenN andAt. OnceS;, ,(NAt) is determined as an X{2S,((0) +4A,Sy - »(0)}. (3.6

operator, we can find the expectation value rgNAt),
p,(NAt), r3(NAt), p2(NAt), ... directly from (2.19 by
calculating Sy 1, S;0 Sor S;0 €tc. all atNAt. For in-
stance, let us consider the radial position operato6, ; at
At;

dS, 1(t))

(AD)? (d?Sy (1)
So(At)= sm<0>+1,( o ( ; )O

21 dt®
oo (2.20

Using Eq.(2.17) repeatedly we find that

At
Soa(At)=Sp4(0)+ 510<0>+ E kASo - (k+1)(0)
A 3
. ) 2 K(k+1)AS; — (k+2)(0)
(At)*
Y (_(k+2)82,(k+3)(0)

(2.21

+j21 JA;Sy - (k+j+3)(0) |+

In Sec. IV we will see how the expectation values of thes
operators can be calculated if we choose a suitable wave

function.

lll. A SIMPLE EXAMPLE

Let us consider the special case where

1, A1
szpr+r_2=§SZ,0+AZSO,72- 3.1
We calculateS, (t) from the Taylor expansion
t (dSyo|  t? [d?Sy,
SoA)=S0A0)+ 77 | —5; ) 5(?
(3.2
But
dS, 1
=7 [So2H1=28, 33
and

This is the exact solution for the operator equationrfut).

IV. CALCULATION OF THE EXPECTATION VALUES

Suppose that we want to calculdigt)) or (r?(t)), then
we dividet into N equal intervalsAt=t/N. Now we need to
choose a narrow wave packet which gives us finite result for
the matrix element

(W|Smejn-kl )= f:“ﬂ*smﬂ,n—k(“ﬁ)df, 4.1

whenk is large. Therefore we seek a wave packet with the
property that

limr "[r¢g(r)]—0 asr—0 for all n. (4.2
This condition guarantees that the matrix elementSof ,
are finite.

Now let us consider the operat8, _, given by

" 1
Z p"r, n>0 (4.3

'<m BIL; pf(

which is equivalent to the definitiof2.4) (see Bender and

%unne. Using the wave packd#.2), we find that

(¥Som+1,-n¥) =0 4.9
and
m 2m
(HSom o 9=~ 2, Gty (~1)
fw I(rp) 3(&2m‘i(rw>)dr_
o orl " grem-i
4.9

Thus all the matrix elements &, _, are real.
A simple and analytically tractable wave packet with the
property(4.2) is

l/a
rg(r)=N exr{—i F+br } (4.6)
which is shown in Fig. 1.
HereN is the normalization constant and is given by
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FIG. 1. The wave packet, E¢4.6), and the effective potential,
Eqg. (2.10, are shown as functions af. The minimum and the
maximum of the potential are at=1L and 7, respectively, and
the center of the wave packet israt 3.7769..

FIG. 2. The expectation value ¢§1S, | as a function ofi,
where ¢ is the wave packet defined by E@.6). For n>15, this
expectation value starts increasing monotonicallynabecomes

larger.
1 [b\¥ sider the solvable example gi b {
I 1 ple given by the potenthB) and
vl \a {Kl(z‘/%)} ' 4.7 the wave function(4.6). From Eq.(2.20 we find the expec-

tation value ofS; y(At) with the wave packet4.6), i.e.,
whereK,(x) is the modified Bessel function. Equaticf6)

is the ground state wave function for the potential (Ylr (AD)| )= (4] SpA(AD)| ). (4.13
(a®—4ar—2abr?) This involves calculating terms likéy|S, _(x3)(0)(t)|#)
Ve(r)= T , (4.8 etc. all att=0. We have calculated the coefficients aftf?
and (At)* analytically and found that these coefficients are
with the corresponding eigenvalue identically zero independent of the values of the parameters
a andb.
b2
e=——. (4.9
8 V. MOTION OF THE CENTER OF THE WAVE PACKET

The form of the potential4.8) is similar to the general type ~ Our choice of the wave packet Eg.6) not only gives us
of the potential(2.9) and (2.10. The center of the wave @analytic expectation values, E¢h.11), but also guarantees

packet(4.6) is atr, where that these expectation values remain finite for all integers
In this case the expectation value at first decreases as a func-
a\ Y2 K,(2+/ab) tion of n (Fig. 2) but eventually starts increasing. Noting that
2 . h
ro=|p —\/_ (4.10 the wave packet does not change its shape in the course of
Ki(2vab) time, one is tempted to choose a narrow wave packet and

. . . ' follow the motion of this wave packet through the interaction
Using this wave function we find : . . )
region. However, for the rapid convergence of the iterative
ni2 method of integration outlined in Sec. Il, the ratio @f/)
(WSo_nlh)= (b/a) K”fl(z‘/%)_ (4.11 and the productgb) both must be large, and the potential
’ K,(2+/ab) must not be too deep. Choosibg: 1L, whereL is an arbi-
_ ) ) _trary unit of length, we first tried to find so that the wave
In solving the Heisenberg equations we follow the positionpacket has minimum uncertainty, i.eAg,)2(Ar)? is mini-
of the center of the wave packet, i.¢/r (t)|¢) as it moves  myum. But this uncertainty turns out to be a monotonic func-
Fhrough the potent_lal barrier. In some problgms particularytion of a which is nearly flat for 5<a<20. Therefore the
in quantum tunneling the motion of the poind(t) where  yajue ofa=9 was used in all our calculations. Using these

re(t) is defined by parameters we have found the valuesrgfandr, to be
] 3.7769 and 3.513, respectively.
pi[rc(t)]:f c|r¢(r,t)|2dr=% (4.12 We have studied two special casés. the case of quan-
0 tum tunneling andb) the bound state of the potenti@.10).

. . . . o For the former case we have chosen
is of interest. Herd® _[r.(t)] is the probability of finding the

particle to the left of the point=r.. Thus if P_[r.(t)] A,;=3.872, A,=-15.488, and A;=9.0349.

>3, the probability of the particle being in the range

0<r<r, is greater than finding the particle betwegnand  This potential is shown in Fig. 1, together with the wave
infinity. However, in the case of Heisenberg’s equations wepacket(4.6). By calculating the total energy{H|), where
seek a solution of the operator equation f¢t) and there- H is the Hamiltonian(2.11) we have found that the total
fore it is easier to follow the motion of the center of the waveenergy is zero. The potentidl4(r) has a minimum at
packet, i.e.{yfr(t)|#). To test our method, let us again con- r =1L and a maximum at="7L, whereV,,,=0.2634. Since
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FIG. 3. The position of the center of the wave packet as a F|G. 5. The expectation value of the position of the particle as a
function of time (measured in units of ». At t=0.4 it reaches @ fynction of time when the total energy of the wave packet is nega-
minimum of 3.75% before changing its direction. tive (4|H| )= — 2L~ 2. Here the minimum ofy{r (t)|$)=3.763 is

reached at=0.1L2.
the energy associated with the wave packet is less than the
height of the potential, this case corresponds to quantum turpotential, the integration is accurate only for a short time,
neling. To verify the accuracy of the integration of the dif- about 0.13 in units of.2. Figure 5 shows the motion of the

ferential equation, at each intervight, j=1,2,... wehave center of the wave packet.
obtained the expectation values of the enekgyt| ), and
the commutatotyi[r,p,]|#). Both of these quantities remain VI. RYDBERG WAVE PACKET

constant over a time interval of about4 for the tunneling
problem with an error of about one part in 10 000. The ex- Rydberg wave packets, in their simplest form, are super-
pectation value of( |r(t)| )= (4|Sg(t)|4) is shown in positions of many eigenstates with different principle quan-
Fig. 3. Here we observe that the center of the wave packdm numbers and are well localized in the radial coordinate
first moves toward the minimum of the potential, but thenf- These wave packets are of great interest in studying the
changes its direction and escapes the barrier. A plot oflassical limit of the problem of interaction between atoms
(WP, ()| ) vs (Y (t)| ), which is the analog of the classical and an external electromagnetic fidléi7]. Let u,. (r) be
motion in phase space, is displayed in Fig. 4, again showinghe radial wave function for a hydrogenlike atom,
penetration through the barrier. We have also studied the 3. 1o
motion of the wave packet when the total energy of the wave, (g) (n"—1-1)! ex;{ _Z r)
packet is negative, i.e., a bound state. For this case using thé’ 2n’'n’! n’
2Zr)! 27Zr
x(n—) ﬁ',tll_1<7), n=12.. (6.

a(r)=

n!

same wave packet as before we have chosen

A,=49.579, A,=—235.474, and A;=187.895,

where r is measured in units of the Bohr radius
corresponding to the expectation value dfy|H|) a,="h?/(Me?), andZ is the nuclear charge. From the set of
=—2L "2 The wave function is not an eigenstatetbfbut U,/ |’s we can construct a Rydberg wave packet in the fol-
a superposition of bound states and continuum wave fundowing way: For the central force problems, we fixand
tions. For this case the motion of the center of the wavewrite
packet is shown in Fig. 5. Here because of the depth of the

Y1) =2 Corlig (1), (6.2
<yip, Oy>"° )
s We want the matrix elemer{t){S,,, _,|#) to remain finite
15 for n=<K, therefore we choos€,’ such that
12.5
) lim ¢ (r)—r% as r—o0. 6.3
7.5 To this end we expand the right hand sidg@&g) in powers
5 of r and equate the coefficients iof, s=0,1,...K—1 equal
2.5 to zero and the coefficients of equal to unity. This gives
0 us a set oK +1 linear equations foC,’s. For instance, a
4 45 5 55 6 65T normalized Rydberg wave function for tifewave obtained
<Yir(Ohy> by the superposition

FIG. 4. The expectation value of momentum versus the expec- K
tation value of the position indicating the escape through the bar- lpR(r):E Chrup(r) (6.4
rier. n'
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a number of other types of potentials. For instance, let us

0.6
consider the Morse potential in one dimension,
0.5
2(X—X X—X
0.4 V(x)=V, exp(—%)—Zexr{—( c 0)) . (7.1
0.3
YR® If we changex to q whereq is defined by
0.2
X—Xg)
0.1 q=ex;{—( 0 ) (7.2
c
0
0 5 10 15 20 25 then the Hamiltonian for this system can be written(ias
units of A=M=1)
FIG. 6. The Rydberg wave packet for tiSewave obtained by 1\ 1 d?
superposition of fiven’ values[see Eq(6.4)]. = (E) 3 (q2 d—qz+q ﬁ +vo(q2—q)}, (7.3

is displayed in Fig. 6 for the values &=6 andZ=3. The  yhereyy=c?V, is a dimensionless variable. Writing in
potential in this case is just the Coulomb potentigd/r = terms of T, ,, Eq. (2.1), we find

—3/r in atomic units(ag=1), and the calculation is done

exactly as before. The result for the expectation value of the 1 (1 )

position of the center of the wave packet is shown in Fig. 7H= = (5 (To2T20=1ToaT1,0 +vo(To2~ 2To,1))- (7.9
For this problem the motion of the center of the wave packet

can be found directly from the solution of the Safligger  With the help of the product formula, E(@.5), we can write

equation, i.e., H as an operator which is linear W, ,’s,

K 11 .
<¢|(r,t)|r|¢|(r,t)>=z CnCJ*exp[i(Ej—En)t] H:EZ 5T2,2+IT1,1+UO(T0,2_2T0,1) . (75)
nj
X(ujy|(r)|r|unv|(r)>. (6.5 _Ilz_rom this Hamiltonian we obtain the equation of motion for
m,n»
This result should be the same @g (r)|r(t)|¢,(r)) found dT,,
from the solution of the Heisenberg equation with appropri- i dt' =[Tmn,H]

ateA;’s, and with Rydberg wave packet. The results obtained

by these two approaches completely overlap fst €7 as is

shown in Fig. 7. Thus we have another way of verifying the =
accuracy of the method developed in the present work.

[
Z) mn(m-— n)Tm—l,n—1+ (m— n)Tm,n

Hi(n—mM)Trr1ne1
VIl. APPLICATION TO OTHER SYSTEMS +2m0o( T 10— T 10 1)- (7.6)

In addition to the power law and inverse power law po-

tentials, the method described in this paper can be applied t-ghe Heisenberg equations of motion farand p are the

special cases of E¢7.6) for (m=0,n=1) and (n=1,n=0),
respectively. We can solve these equations by the method
discussed in Sec. I, however, in this case ofly, with
m=0 andn=0 will contribute.

11.8
11.7 VIIl. CONCLUSION
<\ler(t)I\|/R>
11.6 In this paper we have tried to show that the method of
115 integration of the operator Heisenberg equations can be ex-

tended to the inverse power law potentials. In particular, we
11.4 have studied the problem of quantum tunneling in a central
field of force, and the time development of the Rydberg

11.3 . . .
wave packet. There are certain advantages in this approach
11.2 . . as compared to the conventional method of solving the
0 L 2 34 > 6 ! Schralinger equation. First the shape of the wave packet will

not change in the course of motion, therefore it is easier to

FIG. 7. The position of the center of the Rydberg wave packetd€fine a tunneling time by finding the time that the position
as a function of time found by the integration of the Heisenbergof the center of wave packe, [or r, Eq. (4.12] passes

equations and also from the solution of the Sdimger equation. through the maximum point of the barrier. For the calcula-

For t<7 (in units of Ma?4) the two results overlap. tion of the tunneling time a narrow wave packet is prefer-
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able, however, for a narrow wave packet the main contribuwave packet is crucial in getting a rapidly converging series.
tion will come from continuum states, furthermore, thelf we want to use a minimum uncertainty wave packet we
expectation value ofy/S; _,(t)|#) which appears in the cal- can transform the original Hamiltonian by a unitary transfor-
culation of (¥4r(t)|#) grows very rapidly withn even for ~ mation so that the resulting equation fby, , involvesm=0
smalln. Therefore the rapid convergence of the expectatiorandn=0 terms as was done for the Morse potential. Another
value S, ,(NAt), Eq. (2.19, is not assured wheNAt is  approach which has been recently proposed by Pen and Jiang
large. For the times that the result of integration is véBdc.  to study the scattering by a one-dimensional Coulomb poten-
V), this method gives us not only the expectation values of tial uses a finite-dimensional matrix method together with a
and p,, but generally the expectation value of any Weyl- minimum uncertainty wave packet to solve the Heisenberg
ordered produc$,, ,(t). For instance as a byproduct one canequation[8].

calculate the time evolution of the uncertainty

(<S2.O_<Sl.0>2>)2(<80.2_<80.]>2>)2 for any power law or in- ACKNOWLEDGMENT

verse power law potentials, or operator integrals of motion
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