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The direct method of integration of the operator Heisenberg equations of motion is extended to the solution
of quantum tunneling when the central potential is a sum of inverse powers of the radial distance. By obtaining
the equation of motion for the Weyl-ordered basis set$Sm,n(t)% formed fromr (t) andpr(t), one can express
the time evolution of any member of the set as an infinite sum involving the operators$Sm,n~0!%. The direct
integration enables one to find the expectation values of the radial position operator and its conjugate momen-
tum and higher moments of these operators as functions of time.@S1050-2947~96!04511-8#

PACS number~s!: 03.65.Ca, 03.65.Bz

I. INTRODUCTION

This is the third in a series of papers devoted to the study
of the problem of integration of the Heisenberg equations
based on ideas suggested by Bender and collaborators@1–3#.
In the earlier papers we discussed the solution of the initial
value operator equations of motion for cubic@4# and quartic
@5# potentials, respectively. In both cases we observed that
the time evolution of the operators can be determined only
for relatively short times. The nonlinearity of the problem
combined with the operator nature of the solution of the
differential equations for position and momentum restricted
the number of steps in the integration process. Nonetheless,
by calculating the constants of motion we showed that for a
short time interval the result of integration is very accurate,
and the result enabled us to find~a! the lifetime of a quasi-
stationary wave packet trapped by a cubic potential and~b!
the energy differences for quartic potentials. The present
work is concerned with the more interesting problem, viz.,
how one can extend the idea of Bender and collaborators to
the central, inverse law potentials, and solve the three-
dimensional problem of bound state or resonance tunneling
using Heisenberg’s equations. In Sec. II we write the Hamil-
tonian for the radial motion of a particle in terms of the basis
set$Sm,n(t)% of the Weyl-ordered operators. These operators
are constructed fromr (t) and pr(t) and form an algebra
which is closed under multiplication@1,2#. Then we derive
and solve the Heisenberg equation of motion forSm,n(t). As
a special case we observe that if the potential is proportional
to the inverse square of the radial distance, then the exact
solution for the operatorS0,2 can be obtained as a function of
time ~Sec. III!. In Sec. IV we find the expectation values of
the operatorsSm,2n~0! for a simple wave packet and calcu-
late the quantitieŝr (t)&, ^pr(t)&, and in general̂Sm,n(t)& as
functions of time. In Sec. V we present the results of our
calculation for a tunneling problem and a bound state prob-
lem. We discuss the special case of the Coulomb problem
with the Rydberg wave packet in Sec. VI. We show in Sec.
VII that the same method can be used for a sum of exponen-
tial potentials, such as the Morse potential. Finally we con-
clude the paper with a discussion of the merits and also the
problems of the present approach.

II. BENDER AND DUNNE ALGEBRA
FOR THE RADIAL COORDINATE

AND ITS CONJUGATE MOMENTUM

In their work on the integration of an operator differential
equation, Bender and Dunne introduced a set of Weyl-
ordered operators corresponding to the classical product
pmqn ~m andn are integers! by

Tm,n5
1

2n (
k50

n
n!

~n2k!!k!
qkpmqn2k, ~2.1!

and showed that the basis elementsTm,n form an algebra
closed under multiplication. Here we consider a trivial modi-
fication of this product rule for the radial coordinater and its
conjugatepr , where

pr52S ir ]

]r D r ~2.2!

and satisfies the commutation relation

@r ,pr #5 i . ~2.3!

Here we have set\51.
We replaceTm,n as defined above bySm,n where

Sm,n5
1

2n (
k50

n
n!

k! ~n2k!!
r kS 2
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r

]

]r D mr n2k
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r F 12n (
k50
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k! ~n2k!!
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]

]r D mr n2kG r
5
1

r
Tm,nr . ~2.4!

Then the product rule becomes
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Sm,nSk,l5
1

r
Tm,nTk,l r5(

j50

`
~ i /2! j

j ! (
s50

j

~21! j2sS j !n!m!k! l !

s! ~ j2s!! ~n2s!! ~m1s2 j !! ~k2s!! ~ l1s2 j !!
Sm1k2 j ,n1 l2 j D ,

~2.5!

and the commutation relation between two members of the set ofSm,n’s can be obtained from~2.5!;

@Sm,n ,Sr ,s#52(
j50

`
~ i /2!2 j11

~2 j11!! (
k50

2 j11

~21!k
~2 j11!!

k! ~2 j112k!!
Sm1r22 j21,n1s22 j21

3
G~m11!G~n11!G~r11!G~s11!

G~m2k11!G~n1k22 j !G~r1k22 j !G~s2k11!
. ~2.6!

The two equations~2.5! and ~2.6! are the basic relations
which enable us to find the equations of motion for any
operator Sm,n from the HamiltonianH. The Heisenberg
equation of motion for the operatorSm,n is

i
dSm,n
dt

5@Sm,n ,H#, ~2.7!

where H is the Hamiltonian of the system. The reduced
Hamiltonian for the radial motion of a particle of massM51
is

H5 1
2pr

21Veff~r !5 1
2S2,01Veff~S0,n!, ~2.8!

where the effective potentialVeff (r ) is the sum of the cen-
trifugal potential l ( l11)/r 2 and the external force. In this
work we are interested in potentials of the type

Veff~r !5 (
k51

J
Ak

r k
~2.9!

and in particular we want to consider a potential of the form

Veff~r !5 (
k51

3
Ak

r k
, ~2.10!

where we have includedl ( l11)/r 2 as a part ofA2/r
2. With

this type of potential, the HamiltonianH can be written as

H5 1
2S2,01 (

k51

J

AkS0,2k . ~2.11!

In order to calculate the time development ofSm,n for this
system we need the following two commutators that we can
find from ~2.6!:

@Sm,n ,S2,0#52inSm11,n21 ,
~2.12!

@Sm,n ,S0,2s#52(
j50

` S i2D
2 j11 m! ~s12 j !!

~m22 j21!! ~s21!!

3Sm22 j21,n2s22 j21 . ~2.13!

The last commutator is found by calculating the limit of
Eq. ~2.6! when the argument of theG functions becomes
negative. Note that the sum in Eqs.~2.13! is finite, i.e., for
oddm, jmax5

1
2~m21! and for evenm, jmax5

1
2~m22!.

From Eqs.~2.12! and ~2.13! we finddSm,n/dt;

i
dSm,n
dt

5@Sm,n ,H#

5 inSm11,n21

12(
j50

` S i2D 2 j11
m!

~m22 j21!! ~2 j11!!

3S (
k51

J

Ak

~k12 j !!

~k21!!
Sm22 j21,n2k22 j21D .

~2.14!

In particular, the equations of motion forS1,0 andS0,1 are
the Heisenberg equations forr and pr , i.e., they reduce to
two real equations,

dr

dt
5pr ~2.15!

and

dpr
dt

5 (
k51

J
kAk
r k11 52

]Veff

]r
. ~2.16!

We can write Eq.~2.16! also as an equation with real
coefficients,

dSm,n
dt

5nSm11,n211(
j50

` S 2
1

2D j m!

~m22 j21!!

3S (
k51

J

Ak

~k12 j !!

~k21!!
Sm22 j21,n2k22 j21D .

~2.17!

Now we writeSm,n(Dt) as a Taylor expansion,

Sm,n~Dt !5Sm,n~0!1
Dt

1! S dSm,ndt D
0

1
~Dt !2

2! S d2Sm,ndt2 D
0

1••• . ~2.18!

The second term (dSm,n/dt)0 can be calculated from~2.17!
in terms of Sm22 j21,n22 j22~0!, etc. By differentiating
dSm,n/dt, Eq. ~2.17!, we find d2Sm,n/dt

2, but this is also
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expressible in terms ofSm22 j21,n22 j23, . . . if we substitute
for dSm22 j21,n22 j22/dt and similar terms from~2.18!. Thus
Sm,n(Dt) can be written as an expansion involvingSm,n’s all
at t50. By repeating this process we find thatSm,n(2Dt),
Sm,n(Dt), . . . can all beexpressed in terms ofSm,n~0!,
Sm11,n21(0),...,Sm22 j21,n22 j2s~0!, . . . where s is a large
positive integer. The final result can be written as an operator
equation

Sm,n~NDt !5(
j ,k

Cj ,k~N,Dt !Sm2 j11,n2k~0!. ~2.19!

Here the coefficientsCj ,k(N,Dt) are determined numerically
for a givenN andDt. OnceSm,n(NDt) is determined as an
operator, we can find the expectation value ofr (NDt),
pr(NDt), r 2(NDt), p r

2(NDt), . . . directly from ~2.19! by
calculatingS0,1, S1,0, S0,2, S2,0, etc. all atNDt. For in-
stance, let us consider the radial position operatorr5S0,1 at
Dt;

S0,1~Dt !5S0,1~0!1
Dt

1! S dS0,1~ t !dt D
0

1
~Dt !2

2! S d2S0,1~ t !dt2 D
0

1••• . ~2.20!

Using Eq.~2.17! repeatedly we find that

S0,1~Dt !5S0,1~0!1
Dt

1!
S1,0~0!1

~Dt !2

2! (
k51

kAkS0,2~k11!(0)

2
~Dt !3

3! (
k51

k~k11!AkS1,2~k12!~0!

2
~Dt !4

4! (
k51

k~k11!AkS 2~k12!S2,2~k13!~0!

1(
j51

jA jS0,2~k1 j13!~0! D 1••• . ~2.21!

In Sec. IV we will see how the expectation values of these
operators can be calculated if we choose a suitable wave
function.

III. A SIMPLE EXAMPLE

Let us consider the special case where

H5
1

2
pr
21

A

r 2
5
1

2
S2,01A2S0,22 . ~3.1!

We calculateS0,2(t) from the Taylor expansion

S0,2~ t !5S0,2~0!1
t

1! S dS0,2dt D
0

1
t2

2! S d2S0,2dt2 D
0

1••• .

~3.2!

But

dS0,2
dt

5
1

i
@S0,2,H#52S1,1 ~3.3!

and

d2S0,2
dt2

5
1

i
@S1,1,H#52S2,014A2S0,22 . ~3.4!

Finally we calculate

d3S0,2
dt3

5
d

dt
$2S2,014A2S0,22%5

d~4H !

dt
50. ~3.5!

Hence the series~3.2! terminates after the third term

S0,2~ t !5S0,2~0!1
2t

1!
S1,1~0!1

t2

2!

3$2S2,0~0!14A2S0,22~0!%. ~3.6!

This is the exact solution for the operator equation forr 2(t).

IV. CALCULATION OF THE EXPECTATION VALUES

Suppose that we want to calculate^r (t)& or ^r 2(t)&, then
we dividet into N equal intervalsDt5t/N. Now we need to
choose a narrow wave packet which gives us finite result for
the matrix element

^cuSm1 j ,n2kuc&5E
0

`

rc*Sm1 j ,n2k~rc!dr, ~4.1!

whenk is large. Therefore we seek a wave packet with the
property that

limr2n@rc~r !#→0 as r→0 for all n. ~4.2!

This condition guarantees that the matrix elements ofSm,2n
are finite.

Now let us consider the operatorSm,2n given by

Sm,2n5
1

2m (
j50

m
m!

j ! ~m2 j !! r
pr
j S 1r nD prm2 j r , n.0 ~4.3!

which is equivalent to the definition~2.4! ~see Bender and
Dunne!. Using the wave packet~4.2!, we find that

^cuS2m11,2nuc&50 ~4.4!

and

^cuS2m,2nuc&5
~21!m

22m (
j50

2m
~2m!!

~2m2 j !! j !
~21! j

3E
0

` ] j~rc!

]r j
1

r n S ]2m2 j~rc!

]r 2m2 j Ddr.
~4.5!

Thus all the matrix elements ofSm,2n are real.
A simple and analytically tractable wave packet with the

property~4.2! is

rc~r !5N expF2
1

2 S ar 1br D G , ~4.6!

which is shown in Fig. 1.
HereN is the normalization constant and is given by
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N5
1

&
S baD

1/4

$K1~2Aab!%21/2, ~4.7!

whereKv(x) is the modified Bessel function. Equation~4.6!
is the ground state wave function for the potential

Ve~r !5
~a224ar22abr2!

8r 4
, ~4.8!

with the corresponding eigenvalue

«52
b2

8
. ~4.9!

The form of the potential~4.8! is similar to the general type
of the potential~2.9! and ~2.10!. The center of the wave
packet~4.6! is at r 0 where

r 05S abD
1/2 K2~2Aab!

K1~2Aab!
. ~4.10!

Using this wave function we find

^cuS0,2nuc&5
~b/a!n/2Kn21~2Aab!

K1~2Aab!
. ~4.11!

In solving the Heisenberg equations we follow the position
of the center of the wave packet, i.e.,^cur (t)uc& as it moves
through the potential barrier. In some problems particularly
in quantum tunneling the motion of the pointr c(t) where
r c(t) is defined by

P2@r c~ t !#5E
0

r c
urc~r ,t !u2dr5 1

2 ~4.12!

is of interest. HereP2[ r c(t)] is the probability of finding the
particle to the left of the pointr5r c . Thus if P2[ r c(t)]
. 1

2, the probability of the particle being in the range
0,r,r c is greater than finding the particle betweenr c and
infinity. However, in the case of Heisenberg’s equations we
seek a solution of the operator equation forr (t) and there-
fore it is easier to follow the motion of the center of the wave
packet, i.e.,̂cur (t)uc&. To test our method, let us again con-

sider the solvable example given by the potential~4.8! and
the wave function~4.6!. From Eq.~2.20! we find the expec-
tation value ofS0,1(Dt) with the wave packet~4.6!, i.e.,

^cur ~Dt !uc&5^cuS0,1~Dt !uc&. ~4.13!

This involves calculating terms likêcuS2,2(k13)(0)(t)uc&
etc. all att50. We have calculated the coefficients of (Dt)2

and (Dt)4 analytically and found that these coefficients are
identically zero independent of the values of the parameters
a andb.

V. MOTION OF THE CENTER OF THE WAVE PACKET

Our choice of the wave packet Eq.~4.6! not only gives us
analytic expectation values, Eq.~4.11!, but also guarantees
that these expectation values remain finite for all integersn.
In this case the expectation value at first decreases as a func-
tion of n ~Fig. 2! but eventually starts increasing. Noting that
the wave packet does not change its shape in the course of
time, one is tempted to choose a narrow wave packet and
follow the motion of this wave packet through the interaction
region. However, for the rapid convergence of the iterative
method of integration outlined in Sec. II, the ratio of (a/b)
and the product (ab) both must be large, and the potential
must not be too deep. Choosingb51L, whereL is an arbi-
trary unit of length, we first tried to finda so that the wave
packet has minimum uncertainty, i.e., (Dpr)

2(Dr )2 is mini-
mum. But this uncertainty turns out to be a monotonic func-
tion of a which is nearly flat for 5,a,20. Therefore the
value ofa59 was used in all our calculations. Using these
parameters we have found the values ofr 0 and r c to be
3.7769 and 3.513, respectively.

We have studied two special cases:~a! the case of quan-
tum tunneling and~b! the bound state of the potential~2.10!.
For the former case we have chosen

A153.872, A25215.488, and A359.0349.

This potential is shown in Fig. 1, together with the wave
packet~4.6!. By calculating the total energŷcuH uc&, where
H is the Hamiltonian~2.11! we have found that the total
energy is zero. The potentialVeff(r ) has a minimum at
r51L and a maximum atr57L, whereVmax50.2634. Since

FIG. 1. The wave packet, Eq.~4.6!, and the effective potential,
Eq. ~2.10!, are shown as functions ofr . The minimum and the
maximum of the potential are atr51L and 7L, respectively, and
the center of the wave packet is atr53.7769L.

FIG. 2. The expectation value of^cuS0,2nuc& as a function ofn,
wherec is the wave packet defined by Eq.~4.6!. For n.15, this
expectation value starts increasing monotonically asn becomes
larger.
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the energy associated with the wave packet is less than the
height of the potential, this case corresponds to quantum tun-
neling. To verify the accuracy of the integration of the dif-
ferential equation, at each intervaljDt, j51,2, . . . wehave
obtained the expectation values of the energy,^cuHuc&, and
the commutator̂cu[ r ,pr ] uc&. Both of these quantities remain
constant over a time interval of about 1L2 for the tunneling
problem with an error of about one part in 10 000. The ex-
pectation value of̂ cur (t)uc&5^cuS0.1(t)uc& is shown in
Fig. 3. Here we observe that the center of the wave packet
first moves toward the minimum of the potential, but then
changes its direction and escapes the barrier. A plot of
^cupr(t)uc& vs ^cur (t)uc&, which is the analog of the classical
motion in phase space, is displayed in Fig. 4, again showing
penetration through the barrier. We have also studied the
motion of the wave packet when the total energy of the wave
packet is negative, i.e., a bound state. For this case using the
same wave packet as before we have chosen

A1549.579, A252235.474, and A35187.895,

corresponding to the expectation value of^cuHuc&
522L22. The wave function is not an eigenstate ofH, but
a superposition of bound states and continuum wave func-
tions. For this case the motion of the center of the wave
packet is shown in Fig. 5. Here because of the depth of the

potential, the integration is accurate only for a short time,
about 0.13 in units ofL2. Figure 5 shows the motion of the
center of the wave packet.

VI. RYDBERG WAVE PACKET

Rydberg wave packets, in their simplest form, are super-
positions of many eigenstates with different principle quan-
tum numbers and are well localized in the radial coordinate
r . These wave packets are of great interest in studying the
classical limit of the problem of interaction between atoms
and an external electromagnetic field@6,7#. Let un8,l(r ) be
the radial wave function for a hydrogenlike atom,

un8,l~r !5F S 2Zn8 D 3 ~n82 l21!!

2n8n8! G1/2 expS 2
Z

n8
r D

3S 2Zrn8 D lLn82 l21
2l11 S 2Zrn8 D , n851,2,... ~6.1!

where r is measured in units of the Bohr radius
a05\2/(Me2), andZ is the nuclear charge. From the set of
un8,l ’s we can construct a Rydberg wave packet in the fol-
lowing way: For the central force problems, we fixl and
write

c l~r !5(
n8

Cn8un8,l~r !. ~6.2!

We want the matrix element̂cuS2m,2nuc& to remain finite
for n<K, therefore we chooseCn8 such that

lim c l~r !→r K as r→0. ~6.3!

To this end we expand the right hand side of~6.2! in powers
of r and equate the coefficients ofr s, s50,1,...,K21 equal
to zero and the coefficients ofr K equal to unity. This gives
us a set ofK11 linear equations forCn8’s. For instance, a
normalized Rydberg wave function for theS wave obtained
by the superposition

cR~r !5(
n8

K

Cn8un8~r ! ~6.4!

FIG. 3. The position of the center of the wave packet as a
function of time ~measured in units ofL2!. At t50.4 it reaches a
minimum of 3.755L before changing its direction.

FIG. 4. The expectation value of momentum versus the expec-
tation value of the position indicating the escape through the bar-
rier.

FIG. 5. The expectation value of the position of the particle as a
function of time when the total energy of the wave packet is nega-
tive ^cuHuc&522L22. Here the minimum of̂cur (t)uc&53.763 is
reached att50.1L2.
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is displayed in Fig. 6 for the values ofK56 andZ53. The
potential in this case is just the Coulomb potential2Z/r5
23/r in atomic units~a051!, and the calculation is done
exactly as before. The result for the expectation value of the
position of the center of the wave packet is shown in Fig. 7.
For this problem the motion of the center of the wave packet
can be found directly from the solution of the Schro¨dinger
equation, i.e.,

^c l~r ,t !ur uc l~r ,t !&5(
n, j

K

CnCj* exp@ i ~Ej2En!t#

3^uj ,l~r !ur uun,l~r !&. ~6.5!

This result should be the same as^c l(r )ur (t)uc l(r )& found
from the solution of the Heisenberg equation with appropri-
ateAi ’s, and with Rydberg wave packet. The results obtained
by these two approaches completely overlap for 0<t<7 as is
shown in Fig. 7. Thus we have another way of verifying the
accuracy of the method developed in the present work.

VII. APPLICATION TO OTHER SYSTEMS

In addition to the power law and inverse power law po-
tentials, the method described in this paper can be applied to

a number of other types of potentials. For instance, let us
consider the Morse potential in one dimension,

V~x!5V0FexpS 2
2~x2x0!

c D22 expS 2
~x2x0!

c D G . ~7.1!

If we changex to q whereq is defined by

q5expS 2
~x2x0!

c D , ~7.2!

then the Hamiltonian for this system can be written as~in
units of\5M51!

H5S 1cD
2F2

1

2 S q2 d2

dq2
1q

d

dqD1v0~q
22q!G , ~7.3!

wherev05c2V0 is a dimensionless variable. WritingH in
terms ofTm,n, Eq. ~2.1!, we find

H5
1

c2 S 12 ~T0,2T2,02 iT0,1T1,0!1v0~T0,222T0,1! D . ~7.4!

With the help of the product formula, Eq.~2.5!, we can write
H as an operator which is linear inTm,n’s,

H5
1

c2 S 12 T2,21 iT1,11v0~T0,222T0,1! D . ~7.5!

From this Hamiltonian we obtain the equation of motion for
Tm,n ,

i
dTm,n
dt

5@Tm,n ,H#

5S i4Dmn~m2n!Tm21,n211~m2n!Tm,n

1 i ~n2m!Tm11,n11

12mv0~Tm21,n2Tm21,n11!. ~7.6!

The Heisenberg equations of motion forq and p are the
special cases of Eq.~7.6! for (m50,n51) and (m51,n50),
respectively. We can solve these equations by the method
discussed in Sec. II, however, in this case onlyTm,n with
m>0 andn>0 will contribute.

VIII. CONCLUSION

In this paper we have tried to show that the method of
integration of the operator Heisenberg equations can be ex-
tended to the inverse power law potentials. In particular, we
have studied the problem of quantum tunneling in a central
field of force, and the time development of the Rydberg
wave packet. There are certain advantages in this approach
as compared to the conventional method of solving the
Schrödinger equation. First the shape of the wave packet will
not change in the course of motion, therefore it is easier to
define a tunneling time by finding the time that the position
of the center of wave packetr 0 @or r c , Eq. ~4.12!# passes
through the maximum point of the barrier. For the calcula-
tion of the tunneling time a narrow wave packet is prefer-

FIG. 6. The Rydberg wave packet for theS wave obtained by
superposition of fiven8 values@see Eq.~6.4!#.

FIG. 7. The position of the center of the Rydberg wave packet
as a function of time found by the integration of the Heisenberg
equations and also from the solution of the Schro¨dinger equation.
For t<7 ~in units ofMa2\! the two results overlap.
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able, however, for a narrow wave packet the main contribu-
tion will come from continuum states, furthermore, the
expectation value of̂cuS0,2n(t)uc& which appears in the cal-
culation of ^cur (t)uc& grows very rapidly withn even for
smalln. Therefore the rapid convergence of the expectation
value Sm,n(NDt), Eq. ~2.19!, is not assured whenNDt is
large. For the times that the result of integration is valid~Sec.
V!, this method gives us not only the expectation values ofr
and pr , but generally the expectation value of any Weyl-
ordered productSm,n(t). For instance as a byproduct one can
calculate the time evolution of the uncertainty
(^S2.02^S1.0&

2&)2(^S0.22^S0.1&
2&)2 for any power law or in-

verse power law potentials, or operator integrals of motion
such as Eq.~3.6!. As we have emphasized before in the
integration of the Heisenberg equations, the choice of the

wave packet is crucial in getting a rapidly converging series.
If we want to use a minimum uncertainty wave packet we
can transform the original Hamiltonian by a unitary transfor-
mation so that the resulting equation forTm,n involvesm>0
andn>0 terms as was done for the Morse potential. Another
approach which has been recently proposed by Pen and Jiang
to study the scattering by a one-dimensional Coulomb poten-
tial uses a finite-dimensional matrix method together with a
minimum uncertainty wave packet to solve the Heisenberg
equation@8#.
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