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Relativistic Coulomb problem: Analytic upper bounds on energy levels
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The spinless relativistic Coulomb problem is the bound-state problem for the spinless Salpeter dgquation
standard approximation to the Bethe-Salpeter formalism as well as the most simple generalization of the
nonrelativistic Schrdinger formalism towards incorporation of relativistic effg¢atsth the Coulomb interac-
tion potential(the static limit of the exchange of some massless bosons, as present in unbroken gaugg theories
The nonlocal nature of the Hamiltonian encountered here, however, renders it extremely difficult to obtain
rigorous analytic statements on the corresponding solutions. In view of this rather unsatisfactory state of
affairs, we derive (sets of analytic upper bounds on the involved energy eigenvaly&l050-
294796)02711-4

PACS numbsg(s): 03.65.Pm, 03.65.Ge, 11.10.St, 12.39.Pn

I. INTRODUCTION: II. THE SPINLESS RELATIVISTIC COULOMB PROBLEM

THE SPINLESS SALPETER EQUATION . . . . .
Q Of particular importance in all physics are ttepherically

Maybe one of the most straightforward generalizations ofsymmetnq CentEil potentials, which depend only on the ra-
dial coordinate =|x|. Among these, the most prominent one

the standard nonrelativistic quantum theory towards the rec- . L .
v . ; . . is the Coulomb potential/c(r), which is parametrized by

onciliation with all the requirements imposed by special rela_some(dimensionles)scou lina constanty-

tivity is represented by describing the quantum systems un- ping ’

der consideration by the well-known ‘spinless Salpeter

equation.” Consider a quantum system the dynamics of V(x)=V (r):_f

which is governed by some, by assumption self-adjoint, r

HamiltonianH of the form

a>0. 2

The (sem) relativistic Hamiltonian(1) with the Coulomb
H=T+V, @ interaction potentiaV¢ in (2) defines the “spinless relativ-

. istic Coulomb problem.” In the past, the interest in this spin-

WhereT_denotes the sqgarg-root operator of the rPT""‘“V'S“(iess relativistic Coulomb problem has undergone an eventful
expression for the freekinetic) energy of some particle of history. (For a rather comprehensive review, consult Ref.

massm and momentunp, [1].) Let us merely sketch in the following some highlights.
T=Jp2+ m2, First of all, from. an gxamlngtlofﬂ] of th_e spectrall prop-

P erties of the Hamiltoniar(1) with interaction potential2)
andV= V(X) represents some arbitrary Coordinate-dependerﬂne may infer the existence of its Friedrichs extension up to
static interaction potential. The eigenvalue equation for thighe critical value
HamiltonianH,

2

H|Xk>:Ek|Xk>1 k:0,1,2 A ac:;
for Hilbert-space eigenvectoty,) corresponding to energy ) )
eigenvalues of the involved coupling constant and read off a lower

bound on the corresponding ground-state energy eigenvalue
£ XdHIxo Eo, namely,
“ <Xk|Xk>
ma\? 2

is nothing else but the one-particle spinless Salpeter equa- Eo=my\/1-| 5~ for a<—, 3

tion. Because of the nonlocality of this operatdr that is,
more precisely, of either the kinetic-energy operafoin
configuration space or the interaction-potential operstan
momentum space, it is hard to obtain analytic statements

which, later on, has been slightly improved[&)

from this equation of motion(For the “translation” of the 1+v1—4 a? 1
equal-mass two-particle problem to the one-particle problem Ee=m\/ ——— for a<—.
discussed at present, see the Appendix. 2

1050-2947/96/54)/37905)/$10.00 54 3790 © 1996 The American Physical Society



54 RELATIVISTIC COULOMB PROBLEM: ANALYTIC ... 3791

The analytic solutions for the wave functions of those eigen- A. The “Schrodinger” bound

states|y) of the Hamiltonian(1) with interaction potential From the positivity of the square of the obviously self-
(2) which correspond to vanishing orbital angular momen'adjoint operatoil —m,

tum have been constructéd]. The attempt if4] to deter-

mine simultaneously the respectii@et o exact energy ei- 0<(T—m)?
genvalues without actually solving this spinless Salpeter o
equation, however, failefb,6]. Therefore, as far as analytic =T°+m°—2mT

statements about the relativistic Coulomb problem, in par-
ticular, its energy eigenvalues, are concerned, up to now one
has had to content oneself with a few series expansions @fne obtains, for the freér kinetic) energyT, the operator
these energy eigenvalug in powers of the coupling con- jnequality

stanta [7,8], which then are, of course, only significant for a

=p?+2m?—2mT,

2

region of rather small values af. p
Tsm+_—,
2m
Il. ANALYTIC UPPER BOUNDS ) S
ON ENERGY EIGENVALUES and thus, for the generic Hamiltoni&h in (1), the operator
inequality

Without a closed form of all the energy eigenvaltgsof
the spinless relativistic Coulomb problem at hand, it is H<Hs, 5
highly desirable to have, at least, analytic expressions for ey Y I
upper bounds on these at one’s disposal, in order to estimatd1€reHs denotes the “Schidinger” Hamiltonian
the reliability of approximative solutions or series expan- p?
sions. Hg=m+ —+V. (6)

The theoretical basis as well as the primary tool for the 2m
derivation of rigorous upper bounds on the eigenvalues 0;3\
some self-adjoint operator is, beyond doubt, the so-calleﬁi_|
“min-max principle” [9]. An immediate consequence of this
min-max principle is the following statement: Lét be a

pplying to the energy eigenvaluds, of the Hamiltonian
in Eq. (1) first the min-max principle in the form given by
Eq. (4) and after that the operator inequaliy), we find

self-adjoint operator that is bounded from belfas, accord- O Hlx)
ing to Eg. (3), evidently holds for the(semj relativistic EKEW
Hamiltonian in(1) with a Coulomb-type interaction potential Xkl Xk
(2)]. Let E, k=0,1,2..., denote the eigenvalues &f, (YIH] )
ordered according t&€,<E;<E,<---. Let D4 be some = Su W
d-dimensional subspace of the domaintdf Then thekth ¥eDkr1
eigenvalugcounting multiplicity) of H, E,, satisfies the in- (yHg v
equalit < SuUp ———+—-

A soor, (U19)

Ex< sup M k=0,1,2.... (4) Now, let us assume that thé&+{ 1)-dimensional subspace
#eDyy1 (¥ Dy, 1 in this inequality is spanned by the firkt-1 eigen-

) . ) ) N ~ vectors of the Schdinger HamiltoniarHs, that is, by pre-
(For a discussion of the hlstory of |nequal|t|es and Varlatlonabiseb/ those eigenvectors bfs which Correspond to the first

methods for eigenvalue problems, see, e.g., Réfl.) k+1 energy eigenvalueBs,Esy, - . . Esy when all eigen-
A peculiarity of the(spinless relativisticCoulomb prob-  yajyes of the Sclidinger HamiltonianHg are ordered ac-
lem is that there is only one dimensional parameter, namelysording toEg ;<Eg;<Eg,<- - -. In this case, the right-hand

the particle massn. As a consequence of this, for a vanish- side of the above inequality is nothing else butktte Schio
ing particle mass, i.e., fom=0, the totality of eigenvalues dinger energy eigenvaluBs  :

Ey of the Hamiltonian(1) with interaction potentia{2) col-

lapses, already on dimensional grounds, necessarily to (yIHgl )

Ex=0 for allk=0,1,2, ... . This fact is also clearly demon- Sup RUIES Esk-
strated by application of the “relativistic virial theorem” ¥eDira

proven in Refs[11,12. Accordingly, in the course of an Consequently, any single energy eigenvaiiyeof the spin-

investigation of the spinless relativistic Coulomb problem, itjess Salpeter equation is bounded from above by its ‘Schro
is sufficient to focus one’s interests to the special case of finger counterparEs,:

nonvanishing particle mass:
Ex<Esk- (7)
m>0.
For the Coulomb potentiaf2), the energy eigenvalues
In view of the above, when searching for upper boundsfequired here are well known:
our intention must be to avoid in some way or other the )
problematic square-root operator in order to deal with more _ @
e Esn=m|1 51, ©)]
manageable Hamiltonians. ' 2n
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where the total quantum numberis given in terms of both
radial and orbital angular momentum quantum numlvgrs
and/’, respectively, by

n=n+/+1, n=012..., /=012....

B. A “squared” bound

One might be tempted to try to find an improvement of
the bound(7) by considering the square of the Hamiltonian

H, that is, the operator
Q=H?=T2+V2+TV+VT.

The eigenvalue equation for this squared Hamilton@n

will, of course, be solved by the same set of eigenvectors

|x«) as the one for the original Hamiltoniad with, how-

ever, the squares of the corresponding energy eigenvalues

Ey as the eigenvalues @}:

Qlxw=Eflxi), k=012....

From the positivity of the square of the self-adjoint operator

T—m-V,
0<(T—-m-V)?
=T?2+m?+V2—2mT+2mV-TV-VT,
we obtain, with the help of the obvious relation
0=m<T,

for the anticommutatoV+VT of kinetic energyT and
interaction potential/, which appears in the squa@of our
HamiltonianH, the operator inequality

TVHVTST?24+m2+V2—-2mT+2mV
=p?+2m?+V2—2mT+2mV
<p?+V?+2mV,

which, when applied to the squared Hamiltoni@n yields
the operator inequality

Q=R,
with the operatoR given by

R=2p?+m?+2V?+2mV.

Following the line of argument as given in the preceding
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Hamiltonian (6), with, however, some kind of “effective
orbital angular momentum quantum numberwhich, for
states of(genuing orbital angular momentur®’, has to be
determined from the relation

L(L+1)=/(/+1)+a?

the solution of which reads

L VI+4[/(/+1)+a?]-1

5 , /=012....

In this case, the eigenvaluek of the operatoiR may be
easily written down:

C!Z
5R,N: mz( 1_ W) y

with the “effective” total quantum number

N=n,+L+1, n=012....

Unfortunately, it is easy to convince oneself that the
“square” bounds(9) obtained in this way lie above and are
thus worse than the previous Schirger bounds.

C. A variational bound

For all practical purposes, the most efficient manner for
the min-max principle to come into play is in form of the
“Rayleigh-Ritz variational technique.” Let us illustrate this
fact just for the ground-state energy eigenvallg For
k=0, the relation(4) simplifies to

(yHl¥)
(W)

That is, the ground-state ener@y is clearly less than or
equal to any expectation value of the considered Hamiltonian
H. The above upper bound may, of course, be optimized by
determining the smallest of all these expectation values, at
least in some chosen Hilbert-space sector. Consequently,
there is a simple recipe for the derivation(@bmetimes ex-
celleny exact upper bounds on this ground-state energy ei-
genvalue: minimize the encountered expectation values of
the Hamiltonian under consideration,

(lHlgn)
NN

Eo=

subsection, we might therefore conclude that the squares fith respect to a suitably chosen set of Hilbert-space trial

the energy eigenvaluesy of the spinless relativistic Cou- vectors|y,), which are distinguished from each other by
lomb problem are bounded from above by the eigenvaluesome variational parametar.

Erx Of the operatoiR:
Ef<&rik.
which entails
E=Er - 9

Now, only for the Coulomb potentigR), this latter op-
eratorR is of precisely the same structure as the Sdimger

We apply this prescription to oufsemj relativistic
Hamiltonian H. However, in order to make life easy, we
immediately take advantage of a simple inequality for the
expectation values of a self-adjoint operator, like our kinetic
energyT, with respect to arbitrary Hilbert-space stafte$ in
the domain of this operator:

KTl _  [ClTw)
(lyy — N (dly) -
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Employing this inequality, we are able to circumvent thesion of masy we make use of the positivity of the square of
(troublesomg expectation values of the square-root operatoithe obviously self-adjoint operatdr— u,
of the kinetic energyT (which, of course, may always be

evaluated numerically; see RéL]): 0=(T—u)?
=T?+u’=2uT
Eo< LN, S
(len) =p?+m?+u—2 uT,
_ (I T+V(h) in order to find, for the kinetic energy, a set of operator
NN inequalities(see also Refl13))
_ /<¢>\|T2|¢)\>+ (V) T< p%+m’+ pu? forall u>0
() () 2 K=
N NEEEN e (V) and, consequently, for thesem relativistic HamiltonianH
Ny T ey in Eq. (1), the set of operator inequalities
For the Coulomb potentidR), the most reasonable choice H$I:|S(,u) forall >0,

of trial vectors is obviously one for which the coordinate- ) .
space representatiaf, (x) of the trial vectorg#,) for van-  with the Schrdinger-type HamiltoniarHg(u) given by
ishing radial and orbital angular momentum quantum num-

2 2 2
s Qi ike tri ions: - pe+me+ u
bers is given by hydrogenlike trial functions: Ha()= > nv
I (X)=exp(—Ar), A>0.
Now, mimicking the line of argument given in Sec. llIA

values in the above inequality yield§] energy eigenvalueg,, k=0,1,2..., of the Hamiltonian
Eo=< NP —an. H, if again ordered according t&Ey<E;<E,<---, is

bounded from above by théorresponding set of energy
Determining the minimum of this latter set of upper bounds,gigenvalues Es(u) of this Schrainger Hamiltonian
we arrive aff 6] Hg(w), if the letter eigenvalues are again similarly ordered

according toEso(u) <Esai(u)<Esa(u)=<---,
E0$ Evar,01

Ey<E forall x>0,
with the variational upper bound for the ground-state energy =Esiw) #

level EO of the SpinleSS relativistic Coulomb problem given and, Consequenﬂy, also by the minimum of all these energy
by eigenvalues:

Evar=My1—a?. (10) Ex<MinEg ().
©n>0
This variational boundE, o, is lower and thus better than

the former Schrdinger bound on the ground-state energy  For the Coulomb potentigl), these energy eigenvalues

level, Esn(u) are given by
2 2
ES'OZm(l_a? ’ Es,n(/“):% m?+ u? l—%) ,
which may be obtained from E¢g) for n,=/'=0, implying  \ith precisely the same total quantum numbeas before.
therebyn=1: Minimizing this latter expression with respect to the param-
Evwo<Eso for a#0. eter u, we finally obtain
Consequently, the variational technique entails indeed im- minés,n(u)=m‘ [1— ‘r)l‘_j_

proved upper bounds on the energy levels as compared to the w>0
Schralinger estimates.
For any value of the total quantum numbrerthese bounds

D. A straightforward generalization definitely improve the Schainger boundg8):
Our variational upper boun@d0) for the ground-state en- MinEs (u)<Es, for a#0.
ergy level Ey can be very easily rederived and simulta- u>0 ’

neously extended to arbitrary levels of excitation by a gen-
eralization of the considerations presented in Sec. lllAClearly, for u=m, we immediately recover the Sclaiager
Introducing an arbitrary real parameter (with the dimen-  approach of Sec. Il A.
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IV. SUMMARY and

Motivated by the insight that the discrete spectrum of the «
Hamiltonian consisting of just the relativistic kinetic energy H®=2 PP+ M%2- =, R=|X|
and the static Coulomb interaction potential is still not R

known exactly, we derived by different but elementary meth- ) .
ods at least a few complete sets of analytic upper bounds digSPectively, may be equated with the help of a scale trans-

the respective energy eigenvalues. In every individual casdormation as follows. Relate the employed phase-space vari-
the basic idea was to derive an operator inequality for this”lbh_aS &p) and (X,P), respe(_:tlvely, by soméin general
Hamiltonian which guarantees that the expectation values gi'bitrary scale facton according to

this Hamiltonian are bounded from above by the expectation

values of some other operator which no longer involves the P=AP,
(problemati¢ square-root operator of the relativistic kinetic

energy, and to “embed” this operator inequality into the X
well-known min-max principle for the eigenvalues of a self- x= N

adjoint operator bounded from below. It should be no great
surprise that just that method which employs some variawhich preserves their fundamental commutation relations:
tional procedure yields the best of these bounds.
[x,p]=[X,P].
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m=2M,
APPENDIX: EQUIVALENCE OF ONE-PARTICLE

AND (EQUAL-MASS) TWO-PARTICLE SCENARIOS K

The two relativistic Coulombic Hamiltonians for the one- = 2"
and two-particle problems,

You will end up with
o
1) _ 2 2 —
H( )_\/p +m —?, r=|X| H(l):H(z).
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