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The spinless relativistic Coulomb problem is the bound-state problem for the spinless Salpeter equation~a
standard approximation to the Bethe-Salpeter formalism as well as the most simple generalization of the
nonrelativistic Schro¨dinger formalism towards incorporation of relativistic effects! with the Coulomb interac-
tion potential~the static limit of the exchange of some massless bosons, as present in unbroken gauge theories!.
The nonlocal nature of the Hamiltonian encountered here, however, renders it extremely difficult to obtain
rigorous analytic statements on the corresponding solutions. In view of this rather unsatisfactory state of
affairs, we derive ~sets of! analytic upper bounds on the involved energy eigenvalues.@S1050-
2947~96!02711-4#

PACS number~s!: 03.65.Pm, 03.65.Ge, 11.10.St, 12.39.Pn

I. INTRODUCTION:
THE SPINLESS SALPETER EQUATION

Maybe one of the most straightforward generalizations of
the standard nonrelativistic quantum theory towards the rec-
onciliation with all the requirements imposed by special rela-
tivity is represented by describing the quantum systems un-
der consideration by the well-known ‘‘spinless Salpeter
equation.’’ Consider a quantum system the dynamics of
which is governed by some, by assumption self-adjoint,
HamiltonianH of the form

H5T1V, ~1!

whereT denotes the square-root operator of the relativistic
expression for the free~kinetic! energy of some particle of
massm and momentump,

T[Ap21m2,

andV5V(x) represents some arbitrary coordinate-dependent
static interaction potential. The eigenvalue equation for this
HamiltonianH,

Huxk&5Ekuxk&, k50,1,2, . . .

for Hilbert-space eigenvectorsuxk& corresponding to energy
eigenvalues

Ek[
^xkuHuxk&

^xkuxk&

is nothing else but the one-particle spinless Salpeter equa-
tion. Because of the nonlocality of this operatorH, that is,
more precisely, of either the kinetic-energy operatorT in
configuration space or the interaction-potential operatorV in
momentum space, it is hard to obtain analytic statements
from this equation of motion.~For the ‘‘translation’’ of the
equal-mass two-particle problem to the one-particle problem
discussed at present, see the Appendix.!

II. THE SPINLESS RELATIVISTIC COULOMB PROBLEM

Of particular importance in all physics are the~spherically
symmetric! central potentials, which depend only on the ra-
dial coordinater[uxu. Among these, the most prominent one
is the Coulomb potentialVC(r ), which is parametrized by
some~dimensionless! coupling constanta:

V~x!5VC~r !52
a

r
, a.0. ~2!

The ~semi! relativistic Hamiltonian~1! with the Coulomb
interaction potentialVC in ~2! defines the ‘‘spinless relativ-
istic Coulomb problem.’’ In the past, the interest in this spin-
less relativistic Coulomb problem has undergone an eventful
history. ~For a rather comprehensive review, consult Ref.
@1#.! Let us merely sketch in the following some highlights.

First of all, from an examination@2# of the spectral prop-
erties of the Hamiltonian~1! with interaction potential~2!
one may infer the existence of its Friedrichs extension up to
the critical value

ac5
2

p

of the involved coupling constanta and read off a lower
bound on the corresponding ground-state energy eigenvalue
E0, namely,

E0>mA12S pa

2 D 2 for a,
2

p
, ~3!

which, later on, has been slightly improved to@3#

E0>mA11A124 a2

2
for a,

1

2
.
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The analytic solutions for the wave functions of those eigen-
statesux& of the Hamiltonian~1! with interaction potential
~2! which correspond to vanishing orbital angular momen-
tum have been constructed@4#. The attempt in@4# to deter-
mine simultaneously the respective~set of! exact energy ei-
genvalues without actually solving this spinless Salpeter
equation, however, failed@5,6#. Therefore, as far as analytic
statements about the relativistic Coulomb problem, in par-
ticular, its energy eigenvalues, are concerned, up to now one
has had to content oneself with a few series expansions of
these energy eigenvaluesEk in powers of the coupling con-
stanta @7,8#, which then are, of course, only significant for a
region of rather small values ofa.

III. ANALYTIC UPPER BOUNDS
ON ENERGY EIGENVALUES

Without a closed form of all the energy eigenvaluesEk of
the spinless relativistic Coulomb problem at hand, it is
highly desirable to have, at least, analytic expressions for
upper bounds on these at one’s disposal, in order to estimate
the reliability of approximative solutions or series expan-
sions.

The theoretical basis as well as the primary tool for the
derivation of rigorous upper bounds on the eigenvalues of
some self-adjoint operator is, beyond doubt, the so-called
‘‘min-max principle’’ @9#. An immediate consequence of this
min-max principle is the following statement: LetH be a
self-adjoint operator that is bounded from below@as, accord-
ing to Eq. ~3!, evidently holds for the~semi! relativistic
Hamiltonian in~1! with a Coulomb-type interaction potential
~2!#. Let Ek , k50,1,2, . . . , denote the eigenvalues ofH,
ordered according toE0<E1<E2<•••. Let Dd be some
d-dimensional subspace of the domain ofH. Then thekth
eigenvalue~counting multiplicity! of H, Ek , satisfies the in-
equality

Ek< sup
cPDk11

^cuHuc&

^cuc&
, k50,1,2, . . . . ~4!

~For a discussion of the history of inequalities and variational
methods for eigenvalue problems, see, e.g., Ref.@10#.!

A peculiarity of the~spinless relativistic! Coulomb prob-
lem is that there is only one dimensional parameter, namely,
the particle massm. As a consequence of this, for a vanish-
ing particle mass, i.e., form50, the totality of eigenvalues
Ek of the Hamiltonian~1! with interaction potential~2! col-
lapses, already on dimensional grounds, necessarily to
Ek50 for all k50,1,2, . . . . This fact is also clearly demon-
strated by application of the ‘‘relativistic virial theorem’’
proven in Refs.@11,12#. Accordingly, in the course of an
investigation of the spinless relativistic Coulomb problem, it
is sufficient to focus one’s interests to the special case of a
nonvanishing particle massm:

m.0.

In view of the above, when searching for upper bounds,
our intention must be to avoid in some way or other the
problematic square-root operator in order to deal with more
manageable Hamiltonians.

A. The ‘‘Schrödinger’’ bound

From the positivity of the square of the obviously self-
adjoint operatorT2m,

0<~T2m!2

5T21m222mT

5p212m222mT,

one obtains, for the free~or kinetic! energyT, the operator
inequality

T<m1
p2

2m
,

and thus, for the generic HamiltonianH in ~1!, the operator
inequality

H<HS , ~5!

whereHS denotes the ‘‘Schro¨dinger’’ Hamiltonian

HS5m1
p2

2m
1V. ~6!

Applying to the energy eigenvaluesEk of the Hamiltonian
H in Eq. ~1! first the min-max principle in the form given by
Eq. ~4! and after that the operator inequality~5!, we find

Ek[
^xkuHuxk&

^xkuxk&

< sup
cPDk11

^cuHuc&

^cuc&

< sup
cPDk11

^cuHSuc&

^cuc&
.

Now, let us assume that the (k11)-dimensional subspace
Dk11 in this inequality is spanned by the firstk11 eigen-
vectors of the Schro¨dinger HamiltonianHS , that is, by pre-
cisely those eigenvectors ofHS which correspond to the first
k11 energy eigenvaluesES,0 ,ES,1 , . . . ,ES,k when all eigen-
values of the Schro¨dinger HamiltonianHS are ordered ac-
cording toES,0<ES,1<ES,2<•••. In this case, the right-hand
side of the above inequality is nothing else but thekth Schrö-
dinger energy eigenvalueES,k :

sup
cPDk11

^cuHSuc&

^cuc&
5ES,k .

Consequently, any single energy eigenvalueEk of the spin-
less Salpeter equation is bounded from above by its Schro¨-
dinger counterpartES,k :

Ek<ES,k . ~7!

For the Coulomb potential~2!, the energy eigenvalues
required here are well known:

ES,n5mS 12
a2

2 n2D , ~8!
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where the total quantum numbern is given in terms of both
radial and orbital angular momentum quantum numbersnr
and l , respectively, by

n5nr1l 11, nr50,1,2, . . . , l 50,1,2, . . . .

B. A ‘‘squared’’ bound

One might be tempted to try to find an improvement of
the bound~7! by considering the square of the Hamiltonian
H, that is, the operator

Q[H25T21V21TV1VT.

The eigenvalue equation for this squared HamiltonianQ
will, of course, be solved by the same set of eigenvectors
uxk& as the one for the original HamiltonianH with, how-
ever, the squares of the corresponding energy eigenvalues
Ek as the eigenvalues ofQ:

Quxk&5Ek
2uxk&, k50,1,2, . . . .

From the positivity of the square of the self-adjoint operator
T2m2V,

0<~T2m2V!2

5T21m21V222mT12mV2TV2VT,

we obtain, with the help of the obvious relation

0<m<T,

for the anticommutatorTV1VT of kinetic energyT and
interaction potentialV, which appears in the squareQ of our
HamiltonianH, the operator inequality

TV1VT<T21m21V222mT12mV

[p212m21V222mT12mV

<p21V212mV,

which, when applied to the squared HamiltonianQ, yields
the operator inequality

Q<R,

with the operatorR given by

R[2 p21m212V212mV.

Following the line of argument as given in the preceding
subsection, we might therefore conclude that the squares of
the energy eigenvaluesEk of the spinless relativistic Cou-
lomb problem are bounded from above by the eigenvalues
ER,k of the operatorR:

Ek
2<ER,k ,

which entails

Ek<AER,k. ~9!

Now, only for the Coulomb potential~2!, this latter op-
eratorR is of precisely the same structure as the Schro¨dinger

Hamiltonian ~6!, with, however, some kind of ‘‘effective’’
orbital angular momentum quantum numberL which, for
states of~genuine! orbital angular momentuml , has to be
determined from the relation

L~L11!5l ~ l 11!1a2,

the solution of which reads

L5
A114@ l ~ l 11!1a2#21

2
, l 50,1,2, . . . .

In this case, the eigenvaluesER of the operatorR may be
easily written down:

ER,N5m2S 12
a2

2N2D ,
with the ‘‘effective’’ total quantum number

N5nr1L11, nr50,1,2, . . . .

Unfortunately, it is easy to convince oneself that the
‘‘square’’ bounds~9! obtained in this way lie above and are
thus worse than the previous Schro¨dinger bounds.

C. A variational bound

For all practical purposes, the most efficient manner for
the min-max principle to come into play is in form of the
‘‘Rayleigh-Ritz variational technique.’’ Let us illustrate this
fact just for the ground-state energy eigenvalueE0. For
k50, the relation~4! simplifies to

E0<
^cuHuc&

^cuc&
.

That is, the ground-state energyE0 is clearly less than or
equal to any expectation value of the considered Hamiltonian
H. The above upper bound may, of course, be optimized by
determining the smallest of all these expectation values, at
least in some chosen Hilbert-space sector. Consequently,
there is a simple recipe for the derivation of~sometimes ex-
cellent! exact upper bounds on this ground-state energy ei-
genvalue: minimize the encountered expectation values of
the Hamiltonian under consideration,

^cluHucl&

^clucl&
,

with respect to a suitably chosen set of Hilbert-space trial
vectors ucl&, which are distinguished from each other by
some variational parameterl.

We apply this prescription to our~semi! relativistic
HamiltonianH. However, in order to make life easy, we
immediately take advantage of a simple inequality for the
expectation values of a self-adjoint operator, like our kinetic
energyT, with respect to arbitrary Hilbert-space statesuc& in
the domain of this operator:

z^cuTuc& z
^cuc&

<A^cuT2uc&

^cuc&
.
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Employing this inequality, we are able to circumvent the
~troublesome! expectation values of the square-root operator
of the kinetic energyT ~which, of course, may always be
evaluated numerically; see Ref.@1#!:

E0<
^cluHucl&

^clucl&

5
^cluT1Vucl&

^clucl&

<A^cluT2ucl&

^clucl&
1

^cluVucl&

^clucl&

[A^clup2ucl&

^clucl&
1m21

^cluVucl&

^clucl&
.

For the Coulomb potential~2!, the most reasonable choice
of trial vectors is obviously one for which the coordinate-
space representationcl(x) of the trial vectorsucl& for van-
ishing radial and orbital angular momentum quantum num-
bers is given by hydrogenlike trial functions:

cl~x!5exp~2lr !, l.0.

For these trial functions, the computation of the expectation
values in the above inequality yields@6#

E0<Al21m22al.

Determining the minimum of this latter set of upper bounds,
we arrive at@6#

E0<Evar,0,

with the variational upper bound for the ground-state energy
level E0 of the spinless relativistic Coulomb problem given
by

Evar,0[mA12a2. ~10!

This variational bound,Evar,0, is lower and thus better than
the former Schro¨dinger bound on the ground-state energy
level,

ES,05mS 12
a2

2 D ,
which may be obtained from Eq.~8! for nr5l 50, implying
therebyn51:

Evar,0,ES,0 for aÞ0.

Consequently, the variational technique entails indeed im-
proved upper bounds on the energy levels as compared to the
Schrödinger estimates.

D. A straightforward generalization

Our variational upper bound~10! for the ground-state en-
ergy level E0 can be very easily rederived and simulta-
neously extended to arbitrary levels of excitation by a gen-
eralization of the considerations presented in Sec. III A.
Introducing an arbitrary real parameterm ~with the dimen-

sion of mass!, we make use of the positivity of the square of
the obviously self-adjoint operatorT2m,

0<~T2m!2

5T21m222mT

5p21m21m222mT,

in order to find, for the kinetic energyT, a set of operator
inequalities~see also Ref.@13#!

T<
p21m21m2

2m
for all m.0,

and, consequently, for the~semi! relativistic HamiltonianH
in Eq. ~1!, the set of operator inequalities

H<ĤS~m! for all m.0,

with the Schro¨dinger-type HamiltonianĤS(m) given by

ĤS~m!5
p21m21m2

2m
1V.

Now, mimicking the line of argument given in Sec. III A
involving the min-max principle, we conclude that the set of
energy eigenvaluesEk , k50,1,2, . . . , of the Hamiltonian
H, if again ordered according toE0<E1<E2<•••, is
bounded from above by the~corresponding! set of energy
eigenvalues ÊS,k(m) of this Schro¨dinger Hamiltonian
ĤS(m), if the letter eigenvalues are again similarly ordered
according toÊS,0(m)<ÊS,1(m)<ÊS,2(m)<•••,

Ek<ÊS,k~m! for all m.0,

and, consequently, also by the minimum of all these energy
eigenvalues:

Ek<min
m.0

ÊS,k~m!.

For the Coulomb potential~2!, these energy eigenvalues
ÊS,n(m) are given by

ÊS,n~m!5
1

2m Fm21m2S 12
a2

n2 D G ,
with precisely the same total quantum numbern as before.
Minimizing this latter expression with respect to the param-
eterm, we finally obtain

min
m.0

ÊS,n~m!5mA12
a2

n2
.

For any value of the total quantum numbern, these bounds
definitely improve the Schro¨dinger bounds~8!:

min
m.0

ÊS,n~m!,ES,n for aÞ0.

Clearly, form5m, we immediately recover the Schro¨dinger
approach of Sec. III A.
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IV. SUMMARY

Motivated by the insight that the discrete spectrum of the
Hamiltonian consisting of just the relativistic kinetic energy
and the static Coulomb interaction potential is still not
known exactly, we derived by different but elementary meth-
ods at least a few complete sets of analytic upper bounds on
the respective energy eigenvalues. In every individual case,
the basic idea was to derive an operator inequality for this
Hamiltonian which guarantees that the expectation values of
this Hamiltonian are bounded from above by the expectation
values of some other operator which no longer involves the
~problematic! square-root operator of the relativistic kinetic
energy, and to ‘‘embed’’ this operator inequality into the
well-known min-max principle for the eigenvalues of a self-
adjoint operator bounded from below. It should be no great
surprise that just that method which employs some varia-
tional procedure yields the best of these bounds.
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APPENDIX: EQUIVALENCE OF ONE-PARTICLE
AND „EQUAL-MASS … TWO-PARTICLE SCENARIOS

The two relativistic Coulombic Hamiltonians for the one-
and two-particle problems,

H ~1!5Ap21m22
a

r
, r[uxu

and

H ~2!52AP21M22
k

R
, R[uXu

respectively, may be equated with the help of a scale trans-
formation as follows. Relate the employed phase-space vari-
ables (x,p) and (X,P), respectively, by some~in general
arbitrary! scale factorl according to

p5lP,

x5
X

l
,

which preserves their fundamental commutation relations:

@x,p#5@X,P#.

Fix this scale factor,l, to the particular valuel52 and
identify both the mass and the Coulomb coupling strength
parameters according to

m52M ,

a5
k

2
.

You will end up with

H ~1!5H ~2!.
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