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X-ray resonant scattering involving dissociative states
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Time-independent and time-dependent theory of radiative and nonradiative resonant x-ray s¢&sing
involving dissociative molecular states is presented. A strong space correlation between excitation and decay is
found. This space correlation has a characteristic length equal to the path propagated during the lifetime of the
core-excited state. It is shown that for internuclear distances beyond this characteristic length the RXS signal
grows exponentially small. Additional untrivial properties of the RXS cross section for continuum-bound or
bound-continuum decay transitions are predicted. Selection rules operate for continuum-bound transitions if
the slope of the continuum potential is small; only transitions to vibrational states with odd quantum numbers
are allowed in the harmonic approximation. We show that the main contribution to the RXS cross section is
obtained at the dissociative limit if the lifetime of the core-excited state is sufficiently long. Emission transi-
tions in the molecular region form the wing of the dissociative resonances. The spectral shape of this wing is
in general oscillatory. The cross sections for both type of transitions are proportional to the square of the wave
function of the vibrational state involved in the RXS process. The spectral shape copies the space distribution
of the square of this wave function, and so, indirectly, maps the shape of the corresponding molecular potential.
The zeros of the RXS cross section caused by the nodes of the vibrational wave function can be used to assign
vibrational states. The spectral width of the RXS resonances involving dissociative molecular states strongly
depends on the features of the interatomic potentials. In the general case the spectral shapes consist of a narrow
part and a broad background, and will be determined by different limiting factors, such as the spectral photon
shape, the Franck-Condon vibrational distribution, and the lifetime width for the core-excited states. The role
of these limiting factors depends on the different combinations of dissociative and bound potentials for the
ground state, the core-excited state, and the optically excited g341850-294{06)03707-9

PACS numbsg(s): 33.20.Rm, 33.50.Dq, 33.70.Jg, 34.50.Gb

I. INTRODUCTION HBr recorded at the @—¢* excitation energy7]. The HCI
2p—o* resonance was also found to decay predominantly
The quality of resonant core electron spectroscopies in thby dissociation followed by the electronic deckg|. The
x-ray region has advanced to a point where the fine structuréme scales of the dissociation and the Auger decay were
and spectral shapes can fingerprint the dynamical history aéstimated to be of the same order of magnitlilebut even
the full scattering process. The coupling between electronithe simultaneous coexistence of molecular and atomic Auger
and nuclear motions and the time scales describing excitaspectra has been predicte®]. The H,S molecule served, to
tion, decay, and, eventually, dissociation in the connectedur knowledge, as the first polyatomic species showing simi-
potentials have now become relevant concepts for the intetar featureg9,10]. Studies of this species clearly indicated
pretation of high-resolved x-ray scattering spectra. In addithat the character of the core-excited state determines the
tion to a trivial general broadening by the spectrometer, theelaxation path, and that dissociation before decay is possible
measured x-ray line shape will result from an interplay be-even for short-lived core hole states. The 2bsorption
tween the shapes of several functions: the photon functiorspectra in this molecule, as in HCI, exhibit a preedge struc-
the lifetime broadening function, and the vibratiordis-  ture [11,9] consisting of a broad band due to excitations to
crete or continuoydistribution function. This interplay will  the first unoccupied molecular orbitéda, and J, in the
in turn be dependent on the character of the participatingase of HS, 60 or “ ¢*” for HCI) followed by a series of
states, if they are bound or dissociative. With the developsharp peaks corresponding to excitations to Rydberg orbitals.
ment of tunable, narrow-band synchrotron-radiation source$he identification of the Auger spectra for the various exci-
[1-6], studies of the resonant x-ray scattering process are n@tion energies indicated that the first type of excited states
longer limited to systems with discrete bound states but nowelaxed through Auger transitions in dissociative fragments,
also involve systems with states that are unbound along thehile excitations to the bound Rydberg states showed reso-
nuclear degrees of freedom. nance Auger decay in the molecular environment. Calcula-
The diatomic hydrides served as the original prototypesions on core-excited adiabatic interatomic potentials of dif-
for resonance Augefnonradiative x-ray spectra involving ferent molecules, for example,(012,13, HBr [14], HCI [8],
dissociative states. Decay channels with dissociation prece@nd H,S [9], confirm that intermediate or final states with
ing electronic decay were first identified in the spectrum ofdissociative character are indeed relevant to consider for the
RXS process.
Experimental conclusions about the relaxation paths of
*Permanent address: Institute of Automation and Electrometrythe core-excited states thus followed from energy assign-
630090 Novosibirsk, Russia. ments of the Auger decay spectra. These spectra were inter-
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pretable in terms of diagram levels of the fragments. Thearoduced, and their special relations for different experimen-
assignments, the excitation energy dependencies, and mdss situations are derived. The last section, Sec. IV, summa-
spectroscopic data gave hints of a mechanism in which digizes our findings.

sociation is faster than the electronic decay of the excited

fragment. From further experimental progress with synchro- 1. RESONANT X-RAY SCATTERING INVOLVING

tron radiation, it has also been possible to use line shapes afdSSOCIATIVE STATES. TIME-INDEPENDENT THEORY

the Auger resonance Raman effet6—17 to draw conclu-
sions on the character of the intermediate and also the fing|
states[18—20. Only the bound states showed the expectet%

resonance narrowing of the band@&man effegt while the o qjteq with respect to—the initial state, describing elastic
Auger transitions to final dissociative states lacked such nary., 4 inelastic scattering, respectively. Being in the x-ray re-
rowing and were determined by their lifetime broadeninggisn the intermediate state is in general core excited and

only. . . . . . therefore short lived; our theory nevertheless also covers the
Although classical or semiclassical estimates of the tiM§ong-lived limit. In principle one can consider any combina-

scales for the relaxation have been useful, basic theories fQi,1, of bound and dissociative characters of these states:
x-ray resonant scattering involving dissociative states havg,vever, we confine ourselves to the experimental situation
not been provided in a way that matches the theory for boungiii, staple ground-state molecules only, allowing for disso-
discrete states. Theory now covers a cross section of intejative character of the intermediate or final states, or of both
esting effects for RXS |nvoIV|_ng discrete states In atoMSyyege states. We impose the important restriction of having
[16], moleculeg 2123, and solid§24,4,29. Radiative and oy one nuclear degree of freedom, i.e., a diatomic molecule
nonradlatlve_ RXS_lnvoIvmg bound discrete vibrational le‘_’8|scharacterized by the interatomic distarRe

have been investigated to a rather large extent, eXperimen- 14 gutline a time-independent formulation of the RXS
tally [26-2 and theoretically 29,30,26,31,3R These in- o o5q sections, we start from the generalized Kramers-

vestigations have uncovered the strong influence of interferHeisenberg formulas for inelastiRIXS) and elastidREXS)
ence between intermediate vibrational levels on the spectrg(l_ray scattering cross section

shape of the RXS signals. Many, if not most, molecular core-
excited states are dissociative or predissociative, and it is o' 0)=c"(0' 0)+ N0, 0). )
desirable to include these in a general treatment. The inter-
ference effect will also be a central concept in such a treatnless otherwise stated use atomic unifs=m=e=1,
ment. a=1/137. The first term on the right-hand side of this equa-
With the present paper we intend to investigate the contion,
ditions for resonant x-rayRaman spectroscopy involving
dissociative states, and derive general expressions for the
observed non-spectrometer-broadened spectral function. The

Resonant x-ray scattering is commonly described as a
ne-step process involving three states: the initial, interme-
iate, and final states. The latter can be identical with—or

w’
R*S(' @)= — Ef |Ff|2A(w—w'—wf0,)’o),

starting point and main emphasis rest on time-independent )
theory, with a time-dependent approach used as an interpre- (f|Qlc){c|V|0) r
tative complement for the kinematic and dynamic aspects, Fi=> ———————, A(o)= 02412

: - : ) w—wo+il
and to explore when “dissociation before decay” is possible. 0

The paper is organized as follows. The time-independenfiescrines the inelastic scattering, while the second term,
theory of resonant x-ray scattering involving dissociative
states is presented in Sec. Il. In Sec. Il A the space correla-

tion between the absorption and emission processes is inves- o0’ w)=|Fo|?8(0' — ),

tigated. Section 1B presents a general analysis of (©)
continuum-continuum and bound-continuum Franck-Condon (0]V'|c){(c|V|0)

factors. The energy dependence of the RXS cross sections F0=2 —_——/

are given in Sec. Il C. As is shown here, there exists a deep ¢ ©= oIl

connection between the interference of the continuum states

and the damping of emission for large internuclear distancesppearing only in radiative RXS, is responsible for elastic
The spectral features of x-ray fluorescence and resonant Ascattering. Herav and o’ are the frequencies of incoming
ger spectra involving dissociative states are discussed in Seand outgoing x-ray photons, respectivejy,is the lifetime of

Il D, separating the cases of different combinations of boundhe final state,V and V' are the operators for the dipole
and continuum potentials. The limiting factors for the spec-interaction of incoming and outgoing x-ray photons with the
tral shape are derived for each such case. The interplay beiolecule, Q is the Coulomb-interaction-operator-induced
tween the narrow resonance and the broad background parsiger decay in nonradiative RXS, ai@=V'’ for radiative
and the oscillatory behavior of the background are also disRXS.E., |c) andE;, |f) are eigenvalues and eigenfunctions
cussed in that connection. A direct mapping of tequare@  of the core-excited and final-state Hamiltonidths andH;,

of the vibrational wave functions of a bound intermediateandw¢y=E;—E,. It iS necessary to note that in strict theory
state is another important result discussed in this section. #he HamiltoniansH, and H; are identical and equal to the
complementary time-dependent treatment of RXS is given ittotal molecular Hamiltonian. For brevity we refer below to
Sec. Ill. Here the ‘E coherence” and t coherence,” and RXS as radiative x-ray scattering, and &t denote the final
the “E interference” and t interference” concepts are in- photon frequency. The only change for a nonradiative RXS
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Here the Diracs function is used instead of the Lorentzian
function due to the smallness of the final-state lifetime
broadeningy,. The energy conservation law yields the fol-

R R lowing expression for the molecular enerfy of the con-
0 tinuum state(p,fzf(R):
FIG. 1. Excitation and decay schemes. The gro(@®dinterme- Ei=w—o'+E,. (6)
diate (), and final ) states are displaced relative to each other.
All notations are explained in the text. The RXS cross sectiofb) makes two qualitatively different

contributions: one of themgy,, is sharp, while the other,
0., has a smooth frequency dependence. It is necessary to
remember that both contributions échave additional broad-
enings caused by the finite width of the incoming photon
spectral distribution on top of the instrumental broadening
(4). The spectral width of the incoherent part of the cross
sectionoy is defined by the width of the continuum scatter-

description is that the frequency of the final photehmust
be replaced by the energy of the Auger electron.

The frequencyw’ of the x-ray emission photons has a
Raman-related shift (Stokes shift toward the long-

wavelength region refative to the frequenay of the ab- ing amplitudeF; . The spectral distribution d¥; is given by

— ; i
sorbed photorw=w’"+wyo, in accordance with the energy yho spectral distribution of the Franck-Condon factors, as fur-
conservation law and the Lorentzian function in E). This  hor studied in Sec. Il A.

Raman-related shift leads to the earlier predicted Stokes dou- |, the common Born-Oppenheimer and Condon approxi-

bling effect in radiative21] and nonradiative RIX$33,34  mations the transition matrix elemer@sandV are treated as

processes, which was recently observed in resonant Augebnstants instead of as functions of the nuclear coordinates,

spectra of kryptorj20]. When interpreting experiments, we and the scattering amplitudes for the continuum-continuum

use the convolution F¢ and for continuum-bound;, channels simplify to
[29-31.

(E, ml PE)(®E | 0)

(T_(w',wc)=J (o, 0)P(0—w:,y)dw (4)
w—wetil

Frim=VQX dec

wherew,=E.— Ey. The continuum nuclear wave functions

of the RXS cross section with the incoming photon distribu- A ! )
of statesi =c,f are here normalized to &energy function:

tion function®(w—w,7y) centered at frequenay, and hav-

ing a width y. o
Let us begin the investigation of this problem for the spe- <‘P|Ei|‘PIE./>: S(Ei—E[). (8)

cial case when the incoming x-ray photon excites the mol- '

ecule to an intermediate dissociative stéfgg. 1). We as-

sume excitation to the adiabatic interatomic poteritig{R)

of a dissociative statéor above dissociation threshold if

U.(R) is at a minimum. As is shown in Fig. 1 two qualita-

tively different channels for the radiative decay exist. One i

tbe Cd ecay from an mter_med.late contlnuu_m ?uclear Jite scattering amplitudé?) is defined by Franck-Condo(iC)
_‘PEC(R) to a bound vibrational statf)=¢n(R) of the factors (the overlap integraJsbetween the vibronic wave
final internuclear potentidl;(R). HereE, is the molecular  fynction ¢o(R) of the ground state and the continuum
energy of the continuum statgg (R). This channel will be  nyclear wave functiongg (R), and betweerg (R) and the
called the continuum-bound channel. The second channel i 3]-state nuclear Wavecfunctior@ (R). ¢

given by the decay into final dissociative statéf) f
=<prf(R), the continuum-continuum channel. We can re-
write cross sectiori2) for the considered case as the sum of

cross sectionsry(w’,w) and o.(w’,w) for the continuum- At this stage we focus on the fundamental role that inter-
bound and continuum-continuum decay channels: ference between different intermediate continuum states

The sum on the right-hand side of EJ) implies that for a
bound intermediate state) one needs to integrate over the
energyE. or sum over the vibrational states; if the incom-

ing photon frequency is tuned above or below the dissocia-
Stion threshold of the intermediate state, respectively. The

A. Space correlation between absorption and emission
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spread from the point of absorption. The finite lifetime
broadenind” means that the core excitation cuts off the co-
herent superpositiop, (10) of the core-excited states resid-
ing in an energy bandwidth given by the lifetime broadening
|E.—E|<T (Fig. 2. WhenT is large all intermediate states
(|Ec—E|<%) make coherent contributions to the wave
packet o, (maximum interference between core-excited
state$. In this case the point of emission is known exactly
(R'=R, AR—0) according to Eq(11). The x-ray excitation
cuts off only a small part|E.— E|<I'—0) of the continuum
intermediate states If is small(Fig. 2). Hence according to
the uncertainty principle th R’ — R) function in Eq.(11) is
broadened, and the explicit information about the emission
point R is lost (AR—) (Fig. 2.

To obtain a deeper understanding of the case of fifite
let us look at the lifetime-broadened Green's functi@g).
In the relevant region the nuclei move with an eneffy
larger than the potential heighi.(R). So the criterion of
applicability of the quasiclassical approximation is fulfilled
everywhere, and the quasiclassical wave function can be
written as

A (R
CPEC(R)ZWGX —ILPC(R')dR')- (12

Here p.(R)= V2u(E.— U, (R) is the momentuma is the
classical turning point wherg.(a)=0, andA is the normal-
FIG. 2. lllustration ofE interference(upper panglandt inter-  jzation constant. The small correction term containing the
ference(lower panel. AR=R’—R is the distance between absorp- \yave reflected by inhomogeneities of the potential is ne-
tion (R) and emissionR’) points.v is the characteristic nuclear glected in Eq(12). In the classically accessible regioR’,
velocity. All notations are explained in the text. R=a), and inR'=R the lifetime-broadened Green’s func-

| in the d . f emissi the int lear dist tion shows strong space correlation between the absorption
plays in the damping of emission as the internuclear distancg_ + o ission processes,

increases. To give a general treatment of this problem, let us
rewrite the scattering amplitud@) GE(R/,R):GEEO)-%—(R/'R)e—ZI‘T(R/’R)’

F.=(¢of |7 ,
1=(pg,|ec) exp(i /% p(R")dR)

VP(R")p(R)
wherep(R)=p(R)+iI'/v(R), p(R)=v2u(E—U.(R), and

in terms of the stationary wave packg{(R) and the time- (R)=p(R)/u is the relative velocity of the nuclei at the

GP'*(R',R)=—2i7A?

—vo| " |7 araR ¢l (R)GLR RIgo(R) @

independent Green'’s function point R. The lifetime broadenind” is here assumed to be
% C small in comparison withE—U.(R)]. As follows from the
- . e, ¢e, (R e (R) factor exp—2I'(R’,R)] in Eg. (13), the emission intensity
¢c=Ge¢o, Ge(R *R):f dE TE—E.+il is negligible if the time of propagation between the absorp-
(10)  tion point (R) and the emission poirR’),
with E=w+Ej. The stationary lifetime-broadened Green's , r" dR’
functionG £ (R’,R) describes the propagation of nuclei on a (R ’R):f U(T,) (14)

decaying potential surfadd (R) from the internuclear dis-
tanceR, where the molecule was core excited ufRtovhere  exceeds the lifetimer (R’,R)=I""". Indeed, the emission
the emission transition took place. When the core-excitedakes place only until the population of the core-excited state
state is short lived['>U(Rg) —Uc(R¢y) (26), the Green's  remains unexhausted. So we obtain that the internuclear dis-
function tance|R’ — R| between absorption and emission points can-

S(R'—R) not _excee_d the distan¢e/I") passed by the nuclei during the
G{(R',R)= _ (12) lifetime (Fig. 2):
E—-U. (R +il’

IR"—R|<v/T. (15

shows that the emission and absorption transitions take place

at the same pointAR=R’'—R=0) (Fig. 2, upper pangl We can now conclude that the damping factor
Thus in the limit of zero lifetime the molecule has no time to exd —2I'(R’,R) ] is caused by the interference between the
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core-excited continuum stategg (R) coherently excited describes the energy distribution of the intermediate con-
into the band E.— E|<T". So this icnterference between con- finuum nuclear states. The widgf of this distribution is the

tinuum states and the finite value Biplays the key role in Product of the widtre, of ¢o(x) and the slopere, [37]. The

the damping of x-ray emission at large internuclear dis-€XPression fory; also follows from geometrical consider-
tances. ations [37,38. The same estimation is valid for the

continuum-bound FC faCt((I‘QDEC—N,Drfﬂ transition
B. Analysis of Franck-Condon factors

) ] ~ 2 :-53 1/2
Let us estimate the first Franck-Condon facet |¢o) (of | @S )= ‘/Zlﬁgoqﬂ:n( _ &) - 1/: c0
c m
in Eq. (7) between continuum vibrational wave functions of Feo T @2 m!
the intermediate core-excited electronic state and the ground- NIAL AT
state vibrational wave function, for example, in the harmonic xexd — — ( €c Ho| - €c ' (20)
approximation Ye Ye
)= 1\ _ E x 2 [ h vz whereH ,(x) is the Hermite polynomial. The final-state po-
Po(X) = q-raoz ex 2 \aqg | pog tential U;(R) is approximated here by a harmonic potential

(16  with minimum in R{). For brevity, in Eq.(20) we kept the
notations of Eq.19), marking our parameters by the tilde

where u is the reduced massy, the vibrational frequency, symbol. Contrary to the previous parameters given by Egs.

anda, has the meaning of an average deviation®fR—R,  (16), (18), and(19), the tilde-marked parameters are obtained

from the equilibriumR, of the ground state. In accordance at the equilibrium poinR ) of the final-state potentidl((R).

with the Franck-Condon principle the main contribution to g, is the vibrational frequency of the final-state potential

<<pr0| ®o) is given by the region close to the ground-stateU(R).

equilibrium Ry, where g(x) is localized. We now expand ~ When@y/aq<1 the vibrational wave functiog/, of the

the interatomic potentiall ((R) nearR, over the displace- bound state is narrower than the Airy function, implying the

ment x=R—-Ry: U (R)=U(Ry)—F,x. Here F, following approximation for the continuum-bound FC factor:

=—(dUJ/dR), is the interatomic force at the equilibrium

pointR,. The finite regular solution of the Sclimger equa- Floc - . A€, o
tion with a linear potential is given by the Airy function (mleE) = V2uBc0AT| — F Ao __em(X)dX.
C C
[35,36 (21

1 © . . . . .
¢ = 2paAi(—7), Ai(x)=— j ds cog 153+ xs], The _mtegral on the nght-ha_nd side _of this equation ghows
PE HaoAI(—0) 0 7 Jo 13 ] that in the case of a harmonic potential the bound-continuum

(17 and continuum-bound transitions are forbidden for addt
is important to note that the expression for the continuum-

where bound FC factorg19) and (20) between the bound vibra-
1 . tional wave functionspy(R) and<pIn(R) is valid for arbitrary

(= — (X—Xe0), Xeo=— < bound wave functiongthus not only for the Hermite poly-

Aco Feo nomialg. Equationg19) and(20) can also be obtained in the

reflection approximatiorf39], where the continuum wave
function is replaced bys(x—X,), with x, as the classical
turning point.

Let us now consider the spectral region with decay tran-
Xco is the classical turning point for the linear potential sitions into final continuum states: lying above the disso-
U.(R)=U.(Ry) —F,x. The characteristic scale of oscilla- ciation threshold of the final ¢ state potentidll (=)
tionsa, of the Airy_ functio_n de(;reases if the potential slope (continuum-continuum decay channelo estimate the scat-
Feo at the equilibrium poin®R, increases. When the slope o jng amplitude in this case we assume that the internuclear
Feo IS large @eo/ac<1) the Airy function A(—¢) oscillates  gigtance remains unaltered during the electron transition
strongly if £>0 and decreases quickly {<0. This leads 0 ¢ ¢ (yertical approximation Suppose that this transition

the following estimation for the FC factor: takes place at point® near some internuclear distan@g; .
N 2,83\ 12 Only such points can make significant contributions to the
€c| _ [ <H8c0 FC factors. The solutions of the Scdinger equations for
-7:C0 172,
corresponding to this point.
Let us now direct attention to the continuum wave func-
. f c - . .
where the right-hand side expression is obtained from th&1o" (¢ @€ ) FC factors. Since these Airy solutions near
harmonic approximation. This bound-continuum FC factorR, and R;; approximate the same wave functi@r&c, they

ﬁZ 1/3
A= 2uFa €c0=Ec—Uc(Ro). (18

(9E | eo)=\2unageo

T Qg the intermediate and final nuclear states near this stationary
1/[Ae. 2
Xexp— =
2\ v
(19 tion of the core-excited state. We will use different Airy

point R.; are given by Airy functiong17) with parameters
Aec=e€cot Foolco,  ¥e=Foodo, forms (17) of ¢E_to evaluate absorptiofyg |0) and emis-
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are connected with each other by the phase multiplie
exp(i¥) with the phase shift estimated as

R

cf
J p(R)dR.
a(Rp)

& (22

Herea(R) is the classical turning point lying ne&,. The

nuclear momentunp.(R)=v2u[E.—U(R)] is equal to

zero at this point. Estimatiof22) follows from the connec-
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softened in the different special cases. The FC factb®s

and (23) in the numerator of the right-hand side of E@)
restrict the region of allowed values Bf, to AE. <., ;-

So when the core-excited state is short liv@é), one can
neglect the energy dependence of the denominator in the
expression(7) for the RXS amplitude and extract this de-
nominator from the integral ovét, at the pointE.= U (Ry)
according to the FC rule. Taking into account the condition
of completenessE|c)(c|=1, one arrives at the following

tion between the quasiclassical continuum wave function irexpression for the scattering amplitug®:

different points and the conditiogy,a,,<Rg,Rs-

Taking into account the properties of the Airy function
[35,36 and the phase factor exg), one arrives at the fol-
lowing expression for the continuum-continuum overlap in-
tegral:

5(Ef_5c) .
A it F=7,
(ot leg)=€"y 1 . _._1 € & if
e — A= | 2 *# e,
f Yet Al a\F Fe ' ¢
(23
with
ﬁ2 1/3 ff_‘/fc 1/3
’}/Cf:a]::‘ﬂ(]:f_fc)]# ’ a=vasac F ’
hZ 1/3 (24)
F=\FF; a= ) .

2uF;

The slopeF,=—(dU;/dR) and the kinetic nuclear energy
€,=E;—U;(R) of states =c,f are calculated at the station-
ary pointR=R.;. Equation(23) is written for 7,>0. The +
and— signs in the argument of the Airy functid23) should
be used for the case’>F, and F;<F., respectively. The
phase shiftd between absorptiofl9) and emission(23)

matrix elements originates in the difference between phases

of the wave functiongogC at the FC pointsR, and R; of
absorption and emission transitions. Phaselemonstrates

strong space correlation or coherence between absorption 7~

VQ f
1~ o wn(Ry) T (PElP0)  @io(R=Ui(R)~Eo.

(27)

If we complete Eq(26) by the condition'>wy it is easy to
see that this resu[t31] is general and not restricted to con-
tinuum intermediate and final states. Hewg is the vibra-
tional frequency of the bound core-excited state. A more
physical point of view for this problem was given in Sec. | A
[see Eq.(11)]. Equation(27), which is also obtained below
in the time-dependent treatment of RXS, shows that only
direct transitions between the vibrational states of ground
and final states take place in the limiting case of a short
lifetime. According to this equation the main contribution to
the FC factchprf| ®g) is given at internuclear distances near
the equilibriumR, of the ground state. In other words, the
atoms in the molecule have no time to spread far figgn
when the core-excited state is short lived. In this limiting
case let us write the final expression for the continuum-
continuum cross sectiofb), using Eqs(19) and(27), as

T
(28)
wci(R)=U(R)—U(R).

o', 0)=0A(w'—wc(Ry) — Froatg,I')

o |

3 ’
afo w

w— '~ wi(Ro) + Frodto
Ve

B 2771/21“’

2
Fao |VQ| '

(0]

and emission, and, as will be shown below, the phase factor

exp( 9) leads to important physical consequences.

In the quasiclassical limit wherg, ;<430 (y,; being
the characteristic width of the FC factpthe FC factorn(23)
tends todl e/ F; — €./ F.). This FC factor is maximal near the
point

€c €

]?C—}—_f. (25

In the general case the tertma must be added to the right-
hand side of this equation, because the Airy functio(+Aj)
has a maximum valupAi(—1)=0.53] when/=1.

C. Evaluation of the RXS cross sections

Let us begin from a time-independent treatment of the

short-lifetime limit
F>7C! Vet AV! (26)

where AV=U_.(Ry)—U.(R.). In reality this condition
(I'>AV) is too strong, and, as will be shown below, it is

Consider now the other important limiting case, when the
spectral width of the continuum-continuum FC is small, and
fc—h?:f .

veir<D, e (29

According to lim_ 4 Ai(x/a)=ad(x), the FC factor(23) is
then equal to
(¢ log,)=€"8(er— €. (30

From Egs(5) and(7), we thus have the following expression
for the RXS cross section in the limi9):

].'

|

: Fro o0
oo, w)=0 OA[w —oc(Rep),I']
c

wo—w' —

Q 2
e
Ye

where
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(Rp<R. <), we need to use the equation for the crossing

molecular dissociation :
\llregion \l/region point R.¢ [40],

U o' =oi(Ref). (33
Cc
The spectral widthy,; (24) of the continuum-continuum FC
U f factor depends strongly on the difference between the slopes
F. and F; governed byR.; (Fig. 3). Two important limiting

cases exist. In the first case considered above, the spectral
R
'ch width v.; is small in comparison with the widths of the
,T\ bound-continuum FC factofl9) and the lifetime broaden-
ing. In this limit (29) the RXS cross sectiof81) is described
by the product of a Gaussian and a Lorentzian with the spec-
= R tral widths y, andT'. In the opposite limiting case
dissociation T<Ye, Yer, (39
molecular the energy conservation law holds for the absorption transi-
_ - ~regon tion too: w=w.y. Because now the sharpest function in the
P integral (7) is U w—ws+il"), the FC factordexcept the
strongly oscillating phase factor exg@f) (22)] can be ex-
= AE tracted from this integral at the poili,= w + E,. Different

from the cross section®8) and(31), the RXS cross section

according to Eq(33) now equals
FIG. 3. Qualitative separation of tliespace into molecular and

dissociative region$upper paan The qualiltative dependence of , 7l FioF: Aw+ Fepae) 2

the spectral width of the continuum-continuum FC fac{éfc) odw' w)=0— 7 7 expg—|———

=<<prf|<pgc> (23) on the internuclear distané&(middle panel. The Vet Y c0vc Ye

qualitative dependence of the continuum-continuum FC fa@ar Aw+

on the energy\E=F(e/F;—€/F.) in the molecular and dissocia- XAi?| — >0 e 2, (35
cf

tive regions(lowest panel The FC factor amplituddoc1/y,) is
large in the dissociative region but small in the molecular region
(the oscillatory character of the FC factor is not depigted where

= wco(Ro) — wci(Ret) — Feoloo, (32 Aw=w—w(Ro), 6=U(Ro)~Uc(Rey), a9

2\ 1/3

}—c}—f

Foo(A?
B Fo— T

The same result follows directly from Eg&) and(7) if the Yei= Yet m z
potentials U (R) and U;(R) coincide. The continuum- ¢ It
continuum FC factof23) is also equal to thé function due
to the mutual orthogonality of nuclear wave functioqa’,g,f

The damping factor eXp-2I"7) on the right-hand side of Eq.
(35) shows that the time of propagation on the core-excited
and @EC in this case. The region of integration for the FC potential surfaceJ (R),

factor,<<prf|<p°Ec), is restricted byR' — Ry<<v/I" according to

Eq. (15 of Sec. IlA. Hence Eq.(31) is true until TZJR“ 4R
R.i—Ro<v/T. The cross section.(o’,w) is exponentially a(Ry) V(R)’
small if the crossing poinR;; exceeds the passage propa-
gated during the lifetimey /T, with the characteristic veloc- to the crossing poinR.; where the emission transition takes
ity v (see below. place, cannot exceed the lifetinfé * of the core-excited

It is necessary to note the special important case wheatate. This estimation agrees with another, deeper, treatment
solution (31) describes the emission in the dissociative re-of the damping factor given in Sec. Il fere see Eq413)
gion R —x. Indeed, the dissociative limit resides in the and (14)]. Equation(37) admits a simple estimation of the
region of Eq.(29) since the spectral width of the continuum- propagation time,m~(R.s—Rg)/v, with the characteristic
continuum FC factor$23) tends to zerdy,—0) due to the velocity v~+2AU/u and of the shift of the potential,
slope /,—0 whenR —» (Fig. 3). When F—0 the Airy AU=U.(Ry)—U.(R.¢), during this propagation. The funda-
solution(17) for the linear potential overestimates the role of mental role played by the interference between different in-
large R where the exact potentiél;(R) is negligibly small.  termediate continuum states in forming the damping factor
The RXS cross sectio(B1) for the dissociative region was exp(—2I'7) was shown earlier in Sec. Il A.
therefore obtained from Eq23), with the additional as- Comparison of Eq9:31) and(35) (see also Figs. 3 and .4
sumption limg_,..(F./F;)=1. shows that the contribution of the “molecular” regidB5)

To evaluate the RXS cross section in the intermediatén the RXS cross section id7/v,)? times smaller than the
region with the crossing point lying in the molecular region contribution (31) of the “dissociative” region. The factor

2 1/2
v(R)=(; [w_ch(R)]) , (37)
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7/
0] W= UC - Uf %Q(Awm_A)AZIS[1+(1/n)], ]__}-fz ocA—4/3{1+(1/n)],
cf cYef
(40
molecular
region

whereAw,,=w:{(Ry) — wcs().

D. Spectral features

1. Continuum-bound and continuum-continuum decay channels

Issociat 'on[% We first consider the common case when the intermediate

vibrational states are continuo(sig. 1). This occurs when

R the core-excited state has a strict repulsive, dissociative, po-
cf tential, or when the excitation takes place above the disso-
o ciation threshold. A typical example is the$&molecule. As

FIG. 4. Qualitative dependence of the spectral shape of theyqyn in Ref[10], this molecule has dissociative potentials

continuum-continuum RXS cross section on the emission 1‘requencyOr the 1A1(3a1‘16ai) and 182(3a1‘13b%) 2p core-excited
’. When the lifetime broadening is sufficiently small, the decayStates The core-excited state can then decay through the two
transitions in the molecular region form the wing of the SpeCtralcontinLJum-continuum and continuum-bound channels. The

band with weak intensity in comparison with the narrow resonanciOtal cross sectior given by Eq.(5) will then be the sum of
caused by decay transition in the dissociative region. According t ecti gV oy a5y wi u
the two partial cross sectiong,, and o..

Egs.(35) and(38), the spectral shape of the wing has an oscillator ! . g .
as. (35 38 P P g Y We first consider the continuum-continuum decay chan-

character. X ;

nel. The cross sections for this chann@s), (31), and(35)
have noé singularity due to the continuous nature of the final
state. The spectral widtly of the continuum-continuum
cross sectiong (' ,w) [(28), (31), and(35)] is defined by
the width of the most narrow factol= y; in the first lim-
iting case(26), y=min(y,,I') in the second limiting case
(29), andy=min(y.,y.¢) in the third casé34). Contrary to
I' and v, (19), the widthy,; of the continuum-continuum FC
factors strongly depends on the frequeneesnd w’ and on
the shape of the potentidls.(R) andU;(R). Indeed,y,s can
be large only in the “molecular” regioR .~ R,, where the

|
cross section R

R

0

(T'/v,¢)? increases only when the crossing pdRy tends to
the dissociative region wherg; decreases according to Eq.
(24).

If the frequencyw of the initial photon is tuned to the
absorption maximumAw=0), the RXS cross sectio(B5)
becomes proportional to Ai—(&8y.)]. The factor(&y.) is
large for largeR.¢. Taking into account the asymptotic form
of the Airy function[35,36], we have the following expres-
sion for the cross sectiof85):

U FioF: . s slopesF, and F; can differ strongly. The x-ray emission
o0’ w)=0 = el~ (a0 /a0))g= 217 intensity will have an oscillatory dependence@n(35) until
Yet Sc0ve condition (34) is valid. When the frequency’ is tuned to
Y\ ¥ T2 5\32 the dissociative regiofsee Eq(33)], both 7. and F; tend to

X 7) sir? 3 (ﬁ +7|- (38 zero, as a resulf; also tends to zero. Thus for emission in

the dissociative region the RXS spectral sh&p@ will be

According to Eq.(33) the turning pointRy;= w ;i (w') de-  that of a single atomiclike resonanc&l). .
pends on the emission frequency. THzsU .(Ry) — U(Rey) In the continuum-bound decay channel the cross section
is also a function ofv’. Expressior(38) shows that the Airy ~ “co Will have a sharp frequency dependence, as described by

function leads to slowly damped oscillations of the crossthe & function (5). The RXS scattering amplitud®;(y, of
section in the “molecular” regionRy< R, <). This slow this channel, defined by E(7), depends on two different FC

. . : . : factors,(19) and(20), with different vibrational parameters.
dampingex y.¢/4 is halted in the region close to the disso- X . )
ciation where the factofl'/y,)? starts to increase, and the Equatlons(.19) and(20) show that the RXS ampl!tud(g) 1S
RXS cross section is described by EG1). Cross sections a convolution of Lorentzian and Gaussian functions with the

(35) and (38) play the role of the background for the reso- WidthSI', %, and’y.. So the cross sectiong,(w’,w) is de-
nance contribution31) in the dissociative region, as illus- scribed by the Voigt contour for the given relation between

trated in Fig. 4. these widths.

To clarify the frequency dependence of the cross section According to E,qs.(7), (19), and(20)z the frequency de-
(39, let us consider the power potentials pendence ob.(w',w.;) takes the following remarkable form

U,(R)=Uj (=) + B,/R". The solution of Eq(33) then leads WhenI'<vc,7c:
to the crossing point

_ 1in _ .
Rcf:(ﬂcAﬂf) CAme'—wy(®), (39 T @00 =T B0 0,7 (#oeHR, (4D

and to the following frequency dependence of the parameters
in Eq. (38): with
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W' and bound-continuum decay channels. In the general case of
w=0"+w(RY) t oy, o= o (2mpuVQ)*(acoaco)°, several excited intermediate vibrational states, the scattering
channels will interfere through these discrete states
1 [29,30,26,3] Now, the total cross section is the sum of
X=— 7= [0 — (Us(Rg) — Uf(R{)))+ om+ Feolcol, bound-bound and bound-continuum cross sections;
c0 42 (0 ,w)= oy’ ,0)+o,{o’,0). The properties o, (o' ,w)
proportional to thes function have been investigated earlier
[29—-31] and will therefore not be discussed here.
In accordance with Eqg7) and (20) the contribution of
the bound-continuum decay channel to the total RXS cross
section is equal to

_ 1 ~
X=— = [(0' — 0c((R))) + 0m+ Foolco]-
c0

The vibrational energy of the final state,, is equal to
(m+1/2)w, in the harmonic approximation. In the opposite
limiting caseI'>vy,,y, the scattering cross section is de- Op(0',0)=
scribed by the Lorentzian according to the short-lifetime
limit (27) and the overlap integral between! (R) and
¢o(R). The effective coordinates andX of absorption and
emission transitions depend on the emission frequesicy
The square of the vibrational wave functions in E41l)
gives the spectral features with the widths=F_,ay, and

ye=7 <0 Since the bound-state wave functiop$,(R) and
¢o(R) depend orx and x through the dimensionless ratios

X/@, and x/a,. It is important to remember tha is the am=
classical turning poinfsee Eq(19)].

The spectral shape of the total cross sectidnand(5) in ~ = . . .
the considered case is defined by two resonant features wifo =~ Vi/#@o, n i the vibrational energy of the core ex-

qualitatively different frequency scales. The spectral width ofct€d Statelen=(m+1/2)@, in the harmonic approxima-
— . tion]. All other quantities are calculated at the equilibrium

oIS equal to zero when the width of the spectral function 'Spoint of the core-excited state, and they are defined by Egs.
negligibly small. The continuum-continuum  contribution (1 nq(20) after the replacement— f. Since the final state
o in this case plays the role of a background with the widthjs continuous, this cross section hasdsingularity, contrary
y. Let us briefly analyze the main features of the cross sedo oy(w',w). It is remarkable that the dependence of the
tion o(w’,w;) (4) in the dissociative limits(29) and (31) cross sectior(43) on the emission frequenay’ copies the
convoluted with the spectral functich(w—w,, y) of incom-  space distribution of the vibrational wave functigrf,(x).

ing x-ray radiation. The spectral width ofy, is equal to the Indeed, if'<@, one can tune the frequency into an exact
spectral widthy of ® when y<v.,y., and is equal to resonance with some vibrational state In this case the
min(y.,7.) in the opposite limit.o., [(4) and (31)] has a RXS cross sectio43) simply becomes

qualitatively different dependence op When y.>I" the

spectral width ofr. in the dissociative region is equal to the Ope( ' ,w)oc((an(x))z_ (45)
lifetime broadenind” and does not depend on The corre-

spondingy dependence appearsy=<I'. In the molecular This equation shows how the vibrational wave function can
region o [(35) and (38)] forms an oscillatory background pe mapped, and that the cross section is equal to zero in the

with the charac_teristic energy scal_e of oscillatiogg~1eV. points wherep & (x) is equal to zero. Equatiofd5) leads
We would like to direct attention to the spectral feat- 4 the simple geometrical consideration given in Fig. 5. This
ures demonstrated by Ed41). One can see from this consideration is based on the physical meaning ¢44) as
equation that the spectral shape of the RXS cross sectife classical turning point for propagation on the potential
is proporthnal to the square pf the fmgl-stgte V'brat'onalsurfaceuf of the final dissociative stafisee Eqs(19) and
wave function. In the harmonic approximation this func- 20)]. According to this physical meaning the spectral shape
tion 'is proportional to the Hermite —polynomial of the RXS cross section reflects the square of the vibrational
(¢ m(X) < exr —(x/a,) 12]H (x/,)). Moreover, the partial  \yaye function(e €,(x))? of the core-excited state by the lin-
RXS cross section connected with a certain final vibrationalyized potential of the final staEig. 5). This geometrical
statem is equal to zero for then nodes(zerog of the vibra-  jnterpretation of Eq(20) reminds one of the common geo-
tional wave function. So we arrive at the important conclu-metrical approach to estimating spectral linewidths in photo-
sion that resonant x-ray scattering under transitions betweef\ectron spectrf38,37. It is important to note that Eq45)
contmugm a_nd bound states_ allows the direct measuremegt,q its geometrical interpretatigfig. 5a)] are based on the
of the vibrational wave function. linear approximation of the potentiél; nearR§. Thus only
in the case of such a linear potential the mapping
o, w)x(@S(x))? is linear[see Fig. %a)]. In the general
Now let us consider the x-ray excitation below the disso-case of a nonlinear potential the mapping is evidently non-
ciation thresholdFig. 4). In this case the intermediate vibra- linear [see Fig. B)], and the application of the reflection
tional statespy, are bound, allowing for only bound-bound method will not produce a direct copy of the squared wave

‘ 2

% A (Pm( X) 43)

w—wco(Rg)—wm+iF|

whenT'<y;,y;. Here

Xx==—(0— o' _wa(Rg)"‘%anO):
Fio

12
VQ(eml @o)- (44)

!

2uad, —
Mwa

2. Bound-bound and bound-continuum decay channels
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ture of the final state, both of these partial cross sections lack
6 singularity, and the widths of the corresponding resonances
cannot be made small by narrowing the spectral width of
exciting radiation(lack of resonance narrowihgAs was
shown above, the spectral width aofy,. is equal to

vy=min(I',5;), and is defined by the lifetime broadening and
by the spectral width of the bound-continuum FC factor. De-
pending on the circumstandas described aboy¢he spec-
tral widthy of o is defined by three characteristic factors:
the lifetime broadening(I’), the width of the bound-
continuum FC factors(y, or y;), and the width of the
continuum-continuum FC factofg;).

Cross
section

Ill. RESONANT X-RAY SCATTERING INVOLVING
DISSOCIATIVE STATES. TIME-DEPENDENT THEORY

A. Time-dependent representation

FIG. 5. Geometrical illustration of the proportionality of the of the RXS cross section

bound-continuum RXS cross sectiof.(o’,w) (45) to the square of
the vibrational wave functiow $,(x) of the core-excited state atthe ~ To carry through a time-dependent formulation of the
classical turning point (44). The linear approximation of the final- RXS cross sections, let us restart from the generalized
state potentialJ; is depicted with a thick dashed line; the exact Kramers-Heisenberg formulas for the radiative and nonradi-
potentialU; is depicted with a thin solid line. The cross sections areative RXS cross section, Eggl), (2), and (3). Taking into
obtained by reflection ofe) a linear potential, an¢b) a nonlinear  account that.,|c) and E;,|f) are eigenvalues and eigen-
potential. functions of the Hamiltoniankl, andH; of the core-excited
and final states, one can express the denomin&tand &

function, as given by Eq(45), but a deformation of this functions in Eqs(2) and(3) as an integral over time:
wave function depending on the particular shape of the po-

tential asymptot. 1 ., 1 = jwdt gl (@+Eg=Hot-Tt
Now let us briefly discuss the frequency scales of the total? ~ @coHil' @+ Eg—Hc+il' Jo
cross sectiorr(w’,w) convoluted with the spectral function (46)

® (4). If y<I the width of o, is defined only by the width
v of the spectral functioi, and can be obtained to be very
narrow, while the width of the bound-continuum cross sec- '

The RIXS cross section and the REXS amplitude now read

tion oy, cannot be obtained to be smaller than the wigith o~"S(0’, @)= o

of the product of the Lorentzian and Gaussian func-

tions; y=min(T',y;). The qualitative dependence of the spec- * * * 0 4

tral linewidth given by the continuum padt, of the cross XIm 0 dt 0 dr 0 dt;e(0[V* G (—1)
section goes as follows: The width of, for a single vibra- (47)
tional level m decreases approximately frofp+7v) to y XQf G (1)QG/ (t1)V|0),

when the widthy of the spectral functiod decreases. When
y<y the spectral shape of the total cross section for a singl
intermediate vibrational leveh is represented by a narrow
band oy, (4) with the width y on top of a background com-
prising a broad continuum contributian,. [(43), (45), and  where
(4)] with the width y=min(T",7y;).

Eo: f;dt exfli(w+Ep) —TtJ(0]V'G¢ (1)V|0),

0=i ¢_ F(t"’tl) —%YoT,
3. Bound-continuum and continuum-continuum decay channels d=(w+Ey)(t;—t)+(w—w'+Eg)T. (48)

In some cases, as for example for H@l], the x-ray , .
photons core excite the molecule to a point of the uppe;rh,e retaided+and +advanc_ed Greens__funcudag,(t) and
potential surface which is close to the dissociation threshol®i (T =[G (D17, here introducedi=c,f ), read[42]

(Fig. 1. In this case both bound and continuous vibrational . FieTHit if t>0

states of the intermediate state are populdféd. 1). Here G (*)=1y i t<0 (49

let us consider only a repulsive final state, as for instance '

reached by nonradiative RXS of HCI from the'3*® (}37) G, (t) describes the propagation of the wave packet subject
intermediate stat¢41]. The total cross section for the two to the HamiltoniarH; forward in time, and3; (t) the same
decay channels, the bound-continuum and continuumbackward in time. A time-dependent representation for the
continuum decay channels, now becomes the sum of thRIXS cross section, Eq§47) and(49), was presented in Ref.
above defined bound-continuum,. (45 and continuum- [29]; a more recent representation@t > has been given by
continuumoy. [(28), (31), and (35)] partial cross sections: Cederbaum and Tarante[lB2] using the concept of wave
o(@',w)=0opw’,w)to.{0' ,w)]. Due to the continuous na- packets accompanying the excitation to a decaying
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electronic state and the subsequent decay to final electrontion the population of the core-excited state decreases
states. A time-dependent wave packet approach of Ramaiue to the finite lifetimd ! of this state. The corresponding
scattering was developed earlier by Heller and co-workerslecrease of amplitudes of the wave packets(0t) and
[43,44). The present time-dependent theory generalizes thé;.(7,t+T) (51) is reflected in the autocorrelation function
theory of Cederbaum and TarantéBP2], which is applicable o ,(t,t+T) (51) by the decaying factor ekpI'(2t+T)]. The
only to broadband excitation, and gives different results, foffinal state|f) has also a finite lifetimey,*. Therefore, the
example, if the final state is bound or short lived. amplitude of the wave packet.(7,t+ T) propagated during

It necessary to note that Hamiltoniahk, and H; are  the time 7 on the potential surface of the final stdf¢ de-
identical and equal to the total molecular Hamiltonian increases as exp y,7) (51).
strict theory. Let us focus on RXS features influenced by the In accordance with the expression for the autocorrelation
nuclear dynamics in both the decaying) and final [f)  function o(t,t+T) (51), the final statdf) can be reached
states. In this case andH; are the Hamiltonians describ- under inelastic scattering by two different ways involving
ing the nuclear motion in the core-excited and final state andwo potentials. These ways differ by the timteandt+ T of
do not coincide. Electronic matrix elements and Q for  decay transitiort— f to the final state, and by the different
absorption and decay transitions are functions of the nucledimes lapses 0 and of propagation on the final-state poten-
coordinates of the target. tial surfaceU;(R) (see the lower panel of Fig.)2The first

The wave-packet representation allows us to rewrite Egpath is given by the absorption transition to state at the
(47) in a more compact form after transition to different time initial time t=0, by the propagation on the potential surface

variables {(—t,t;—t+T) U.(R), and by the decay transitia+ f to the final state at
timet. This path leads to the final wave packgt(0.t) (Fig.
N A * i 2). The second path is given by core excitation to the state
RIXS - _ )
oo’ 0) qRe fo dtjo deo dr %o (t,t+T), |c) at t=0 with forthcoming propagation on the potential

(50) surfaceU (R), by the decay transitioe—f at timet+T,
) oc _ and by the propagation in the field of the potentiy{(R)
FO:_I<0|‘/’°C(O’O)>L dt @ EIF(1), during the timer (Fig. 2). At the end of this path the final
wave packet equalg;.(7,t+T). The cross sectiof50) of
whereq=(0|V* Q" QV|0)w'/(7w). This equation is a gen- inelasti(_: scatteri_ng is the half-Fourier transform of the auto-
eralization of the theory in Ref32], taking account of the correlation function(51) which Correlates_ the wave packets
energy conservation laws-energy functiop for the RXS ~ ¥#c(01t) and ¢(7,t+T) at the same point but at different
process. With our time variables the phageis equal to  UMeS.

¢=(0+Eq)T+(w—w'+Ey)7. The autocorrelation func-  The wave packet representation, E¢50) and (51), al-
tions introduced here are defined by lows us to give an alternative treatment of the interference
effects in comparison with the time-independent theory. The
3 3 (10| i 7,t+T)) autocorrelation functiowr (t,t+ T) describes the time coher-
o (t,t+T)=qe r07e T2+D 0.0 4r(0.0) ence or interference of time-shifted wave packetse the
fe ST 51 lower panel in Fig. 2 We will refer to this interference of
(0] ¢roe(01)) (51) time-shifted wave packets astt@oherence ot interference.
F(t)=e It e The decay of core-excited stdte) destroys thé coherence.
(0[¢0c(0,0)) The multiplier exp—I'(2t+T)] in Eqg. (51) shows that the

corresponding coherence time, estimated as effective retarda-
tion time T, does not exceed the lifetime of the intermediate
state

These functions are normalized to unity,(0,0=1, F(0)
=1] and (c(0,0)4¢(0,0))=(0[V'Q"QV|0) and
(0] 0c(0,0))=(0|V'V|0). The wave packets

YD =1GL ()e(0), 1o(0)=V]0), T=1. 53

H + ! (52) F

Yre(mD=IGHNQUeY), troc(ON=V il The notion of interference of RIXS is different in the time-
have the following meaning. At time=0 the initial vibra-  independent theor{29-31; the interference between RXS
tional statd0) is excited at rat& to the intermediate nuclear channels is defined by the energigs of the intermediate
state, and arrives there as a wave packgD)=V|0). The stategc) [see Eq(2) and the upper panel in Fig].2Ve will
wave packet)(t)=iG J (t)4.(0) propagates on the poten- refer to this interference a8 interference o coherence.
tial surfaceU (R) of the core-excited statg); it can be ~As known from the time-independent theory of RIXS
expressed through the wave packe(0) of the initial time [29-31], theE interference between two different scattering
t=0 with help of the propagatd® ; (t). At some timet this ~ channels is large if the energy gayE=E.—E; between
wave packet decays with the ra@eto the final statgf), at  different intermediate states is smaller than or comparable
which moment the wave packet (0,t) =Qu(t) appearsin  with the lifetime broadening
the final state. The propagation of this wave packet on the
final-state potential surfact;(R) is governed by the re- AE=T. (54
tarded Green’s functio® { (7). After the timer the initial
wave packet ;.(0t) evolves to the wave packet In other words, the length of coherencelirspace is defined
ee(T,t) =G { (1) 4.(0t) (52). During the time of evolu- by the lifetime broadening@’, while the length of coherence
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in thet representation or the coherence time is restricted by andQ from the integral in Eq(57). In this case the wave

I'"! (53). Thus Egs(53) and(54) show that wherE inter-  packet #:.(0t;X) coincides with the solution of the time-

ference olE coherence is largd’—x), thet interference or dependent Schdinger equation in the potential of the core-

t coherence is small, and vice versa. This follows indirectlyexcited statel (R) with initial wave function gy(x) (16).

also from the uncertainty principle. One can understand the main features of a wave-packet
Contrary to Cederbaum and Tarantg8P], Eqgs.(47) and  propagation if one looks for the solution of this problem with

(50) contain an additional integration over timeThis third a linear potential U (R)=U(R)—U.(Rg)=Fx

integral is of principal importance as it leads to thesingu-  (F=F_ =const-0, x=R—R,) [45],

larity of the RXS cross sectiof2) caused by the energy

conservation law. The amplitude of the elastic scatteFigg T 1(x=x(t))*

(51) is the half-Fourier transform of the overlap of the P1c(0LX) = 1-;;,1(t)2 ex 2 a(t) atip

ground-state vibrational stat¢d) and the wave packet (58

oc(01) (52) [43]. The physical meaning of this wave packet

is the same as that of the wave packet discussed abowwhere

¥:(0t), if here we replace the indefxby the index O of the

21112 pa’
ground state. o XD =Ft2u, a(t)=ag 14| — } L To=
One can also adopt a Condon approximation in which To h
V, V', andQ are assumed to be constant. The RIXS cross (59

section and REXS amplitudet7) are then simplified con-
siderably becaus#&/, V', and Q may be extracted from
all integrals. To rewrite Eqs(47), (50), and (52) in the

Condon approximation, we need to use=V'=Q=1,

(#1c(0,0) ¢1c(0,0)) =1, (Ol¢)pc(0,0)=1, and q=|VQ|?w'/

(mw), and we have to introduce the multiplist'V at the

right-hand side of the expression fB(t) (51).

and a=1—it/7y, B=Ft(x—Ft%6u). Equation (58 shows
that the probability density distribution remains Gaussian-
like just as the ground-state distributigg(x) (16) and that
the center of gravity(t) of the wave packet moves accord-
ing to the law of classical mechanics with a uniform accel-
erationF/w. The width of the packea(t) which originally
wasa, increases with time according to E$9). The char-
, . . acteristic time for the wave-packet spreadgsThe physical
B. Time-dependent analysis of the RXS amplitude reason for this spread is the different velocit@g of mo-
To analyze the dynamics of the propagation of wavetion of different Fourier components expk) of the wave
packets in coordinate space, the language of scattering arpacket. It also follows indirectly from the uncertainty of mo-
plitudes is appropriate. The RXS scattering amplit@jecan ~ mentum Ap~1/a caused by the finite dimensions of the

be written in terms of the time-independent Green'’s functioriave packet. In the dissociation regir- U (=) —U(Ry),
broadened by as one can also expect in the case of a general potential that the

center of mass,(t) of the wave packet moves according to
the law of classical mechanigsx,=F(x.). The time depen-
dence of the spreaal(t) (59) of the wave packet depends in
the general case on the shapeggfx) and on the potential.
or in terms of the time-dependent Green'’s function as Contrary to the case of linear potentials, the general case is
complicated by inhomogeneities of the potential. Equations
B . (" (E-T)t N (52) and (57) show that during the propagation on the inter-
Fi=(f|QGg V|0)= J; dte (flQG¢ (H)V|0). mediate state potential surfate(R) the wave packet con-
(56) tinuously decays to the final electronic state. The factor
exp(—TI't) (57) describes the decrease of the wave-packet
Here we use the Green’s functiofist andG (t) (49) de- amplitude caused by the decay-induced decrease of the core-

fined by the HamiltonianH.=H.—Uy(R,), the potential excited state population. Thus the decay transitors can
U.(R)=U(R)—U.(Ry), and the energy E=w+E, take place only when the time of decay transitions does not
Cc ’

—U,(R,) shifted byU(R,). Comparing the right-hand side exceed the lifetime and, as a consequence, when the coordi-
of Eq. (56) and the definition of the wave packet.(Os) nate for the center of mass of the wave packet does not

1 0 ,
+_ _ (E-Tit+
G =E=h T fodte Gl (), (55

(52), we find exceed the distance covered by the wave packet during this
' lifetime,
— i | gt qiE-D 1 v
Ff Ifo dt (S <f|¢fc(0,t)> ogtg_' Xc\_c- (60)
r r
=—i Jw dx z,b}*(x){ det eBE-Dly (04%) 1, Herev .~ AV/u is the characteristic velocity of the wave-
- 0 packet propagation, andV=U_(Ry) — U (Ry+X.) is the

(57) change of the intermediate-state potential under propagation
of the wave packet. To obtai.=Ft%2u (59), one can es-
where;.(0;x) is the wave packet in the coordinate repre-timate the slope a~AV/x.. It is relevant to note that the
sentation. This equation is useful for qualitative analysis ofcenter of gravityx, and the crossing poin®;; cannot be
RXS under transitions between dissociative states. Let ugqual. These quantities have different magnitudes and differ-
assume the Condon approximation for simplicity, and extracent physical meanings. Indeed, is the time-dependent
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character of the wave packet or coherent superposition of thiar the RIXS and REXS amplitudes, respectively. The final-
infinite set of wave functions, while the crossing pdiy; is  state energyg; is defined by Eq(6), while E=w+E;. So

the characteristic of the FC factor between two stationarghe RIXS and REXS amplitudes are the sums of two contri-
wave functions. However, these two quantities also have autions. The terms connected with the principal value of the
common property, namely, that they cannot excegdl. In  integral overE, describe the interference between close-
Sec. Il B1 we examine the two important limiting cases oflying intermediate continuum states. The long-lived limit for

short- and long-lived intermediate states. the core-excited dissociative states differs thus qualitatively
from the bound core-excited states at the same limit. Let us
1. Short-lived core-excited states recall that the interference between different vibrational sub-

levels of bound core-excited states is absent in this limit
[29-31. Ordinarily, the principal value of the integrals in
Ve Eq. (64) is smaller than the main term. We therefore ne-
—=ag, (61) glected the principal values of the corresponding integrals in
Eqgs.(35) and (41).

the nuclei have no time move far away from the equilibrium
point Ro and the wave packet does not Spread' This means C. Characteristic features of molecular dissociation

When the lifetimel’* of the core-excited state is small,

that the wave packet;.(0t) is a smoother function over following x-ray excitation
time than exp-I't), and that one can extra¢f|¢fc(0t)> If the final statel f) is dissociative, the molecule will evi-
from the integral(57) at pointt=0. BecauseG*(0)=—i  dently dissociate independently of the lifetirie of the
and, as a resulty;(0,0))=QV|0), we have[31] core-excited statéc), and independently of the dissociative
versus bound character of the core-excited state. The disso-
F= 1. (f|QV|0)= Qy (f|0) (62) ciation of statgf) can only be inhibited by decay to a lower-
E+ill E+ill lying bound state, which still often is too slow>10""s) to

stop dissociation. As indicated by recent experiments
One can see from the latter expression written in the Condof1.8,19,48§, it is necessary to understand when the RXS spec-
approximation that inelastid #0) and elastiqf =0) scatter-  trum is defined by the molecule in the classical FC region
ing amplitudes are defined by a projection of the final vibra-(near the equilibrium internuclear distan®g of the ground
tional state|f) on the ground vibrational sta{). The FC  stat§ or by the dissociation fragments in the asymptotical
factor (f|0) is defined by a narrow region close Ry with  regionR>R,. Let us consider first the case of a continuum
the width a, due to strong localization of the ground-state intermediate state reached by excitation to a repulsive poten-
vibrational function|0). This is the case for a vertical transi- tial U (R) or by excitation above the dissociative threshold
tion because the initial wave pack6 has no time to spread U «(®). In the short lifetime limit(61) the molecular frag-
during the lifetime of the core-excited state. It is of interest toments have no time to separate and the RXS spectrum is
note that the intermediate vibrational statey do not take  defined by molecular transitions near the equilibrium point
part in RXS in the short-time limifsee Eq.(62)]. The am-  R,. In the opposite limit of large lifetime ./I'>R,, a mol-
plitude of elastic scattering is simplified considerably by theecule has time to propagate into the dissociative region lying
Condon approximation far from the equilibrium poinR,. During this propagation
the wave packet continuously decays to the final state, emit-
- % 63) ting x-ray photons and Auger electrons. The RXS spectral
OTE+irT shape is formed in accordance with E§4). As follows
directly from Egs.(23) and (24), the continuum-continuum
according to(0|0)=1. FC factors increase when the slop€s and F; are small
(F—0), or when they tend to become equaL— F). So in
2. Long-lived core-excited states the dissociative region where potentidls(R) and U;(R)
have small slopes, the FC factof@3) have § singularity.
The emission transition in the dissociative region is thus one

is narrow in comparison with the widthg (19) andy.; (24) taking place in the atomic fragmen@tomic transition The

of absorption and emission FC factors. With aid of the iden spectral line of this atomiclike transition has the widttas
tity 1/(x=10)=Fim8(x) +p(1/x) and the FC rule, we ob- was discussed in Sec. Il [See also Eq(31)]. The emission
tain from Eqs.(2) and (3) transitions in the molecular regiofR{;~ Ry) where F.#F,

gives a background with the width,; (24). As shown in
Sec. II D, this atomiclike transition has non-Raman behavior
and lacks Stokes shifts. This effect was observed recently in

We now consider the opposite long-lived limiting case
when the lifetime broadening of the intermediate stai@4)

Fi=—VQ|im(eof |eS) (et
f Q <¢Ef|¢E><@E|¢O> the resonant Auger spectra of HE20].
f [ c
W’j . <(PEf|‘PEC><§DEC|(PO>) V. SUMMARY
E.—E '
¢ (64) In this work we have presented time-independent and
(o] 0 >|2 time-dependent theories for radiative and nonradiative reso-
Fo=—VV'| i 7| (goloS)|2+ f dE Pol PE, nant x-ray scattering involving dissociative states. We inves-
0 ol %e P ¢ E.~E )’ tigated three general types of x-ray scattering channels con-
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necting ground, core-excited, and valence-excited states witthuring this lifetime. RXS emission at the internuclear dis-
bound and dissociative character. We find that the interestinthnces beyond the characteristic length is exponentially
combinations arg1) bound-continuum-bound plus bound- small.

continuum-continuum (bcb+bccg, (2) bound-bound- Selection rules operate for continuum-bound transitions if
bound plus bound-bound-continuurtbbb+bbg, and (3)  the slope of the continuum potential is sufficiently small.
bound-bound-continuum plus bound-continuum-continuumThat is, only transitions to vibrational states with odd quan-
(bbctbco channels. It is shown that these combinationstum numbers are allowed within the harmonic approxima-
have different limiting factors for the spectral shapes, andion.

that they are different with respect to the relative contribu- The main contribution to the RXS cross section is given
tions of the resonant and background parts in the spectréy the dissociative region if the lifetime of the core-excited
The spectral shape is defined by the absorption and emissiatate is sufficiently long. The emission transitions in the mo-
Franck-Condon distribution@vith the widthsy, and/ory.;), lecular region form the wing of the dissociative resonance.
by the lifetime broadening functiotwidth I'), and by the The spectral shape of this wing is in general oscillatory with
spectral function of the excitation photofwsidth ). In the  the characteristic energy scajg~1 eV. It depends strongly
soft-x-ray region these parameters have typical values obfn the shapes of the potential surfaces involved in the RXS
ve~1 eV, 0<y;~1 eV, I'~0.1 eV, andy~0.1 eV. In the process. We call attention to detailed experimental investiga-
first type of combinationbcb+bcg the shape of the RXS tions of the wings of the RXS spectral lines with the aim of
cross section consists of a narrow line caused by theeceiving information about potential surfaces of the elec-
continuum-bound channel with the widfy a background tronic states involved in the RXS process.

with the width equal to the lifetime broadening of the x-ray  Additional untrivial properties of the RXS cross section
excited statd’, and an additional broader background causedor continuum-boundo, or bound-continuumey,. decay

by the continuum-continuum channel. The cross section ofransitions have been obtained. Both cross sections are pro-
the bbbtbbc RXS channels is defined by a narrow line portional to the square of the wave function of the vibra-
caused by the bound-bound channel with widithand a tional states involved in the RXS process. Moreover, the
background caused by the bound-continuum channel witlspectral shape of the RXS cross section copies the space
width .. The cross section of the third type of scatteringdistribution of the squared vibrational wave function with the
channel(bbct+bco) is formed by a lifetime-broadened’)  characteristic energy scalge~7;~1 eV. So an experimen-
resonance and a background with the wigith Contrary to  tal measurement would allow a direct mapping of the vibra-
the two previous cases, this last case shows a “non-Ramantional wave function and a reconstruction of the shape of the
behavior; the width of the resonance does not depend on theorresponding molecular potential. Indeed, the zeros of the
width of the spectral distribution of incoming x-ray photons. RXS cross section caused by the nodes of the vibrational
Other findings presented in this work can be summarized awave function allow the assignment of vibrational states.
follows.

. A strong space correlatioq between excitatiqn_anq dgcay ACKNOWLEDGMENT
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