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Time-independent and time-dependent theory of radiative and nonradiative resonant x-ray scattering~RXS!
involving dissociative molecular states is presented. A strong space correlation between excitation and decay is
found. This space correlation has a characteristic length equal to the path propagated during the lifetime of the
core-excited state. It is shown that for internuclear distances beyond this characteristic length the RXS signal
grows exponentially small. Additional untrivial properties of the RXS cross section for continuum-bound or
bound-continuum decay transitions are predicted. Selection rules operate for continuum-bound transitions if
the slope of the continuum potential is small; only transitions to vibrational states with odd quantum numbers
are allowed in the harmonic approximation. We show that the main contribution to the RXS cross section is
obtained at the dissociative limit if the lifetime of the core-excited state is sufficiently long. Emission transi-
tions in the molecular region form the wing of the dissociative resonances. The spectral shape of this wing is
in general oscillatory. The cross sections for both type of transitions are proportional to the square of the wave
function of the vibrational state involved in the RXS process. The spectral shape copies the space distribution
of the square of this wave function, and so, indirectly, maps the shape of the corresponding molecular potential.
The zeros of the RXS cross section caused by the nodes of the vibrational wave function can be used to assign
vibrational states. The spectral width of the RXS resonances involving dissociative molecular states strongly
depends on the features of the interatomic potentials. In the general case the spectral shapes consist of a narrow
part and a broad background, and will be determined by different limiting factors, such as the spectral photon
shape, the Franck-Condon vibrational distribution, and the lifetime width for the core-excited states. The role
of these limiting factors depends on the different combinations of dissociative and bound potentials for the
ground state, the core-excited state, and the optically excited state.@S1050-2947~96!03707-9#

PACS number~s!: 33.20.Rm, 33.50.Dq, 33.70.Jg, 34.50.Gb

I. INTRODUCTION

The quality of resonant core electron spectroscopies in the
x-ray region has advanced to a point where the fine structure
and spectral shapes can fingerprint the dynamical history of
the full scattering process. The coupling between electronic
and nuclear motions and the time scales describing excita-
tion, decay, and, eventually, dissociation in the connected
potentials have now become relevant concepts for the inter-
pretation of high-resolved x-ray scattering spectra. In addi-
tion to a trivial general broadening by the spectrometer, the
measured x-ray line shape will result from an interplay be-
tween the shapes of several functions: the photon function,
the lifetime broadening function, and the vibrational~dis-
crete or continuous! distribution function. This interplay will
in turn be dependent on the character of the participating
states, if they are bound or dissociative. With the develop-
ment of tunable, narrow-band synchrotron-radiation sources
@1–6#, studies of the resonant x-ray scattering process are no
longer limited to systems with discrete bound states but now
also involve systems with states that are unbound along the
nuclear degrees of freedom.

The diatomic hydrides served as the original prototypes
for resonance Auger~nonradiative x-ray! spectra involving
dissociative states. Decay channels with dissociation preced-
ing electronic decay were first identified in the spectrum of

HBr recorded at the 3d→s* excitation energy@7#. The HCl
2p→s* resonance was also found to decay predominantly
by dissociation followed by the electronic decay@8#. The
time scales of the dissociation and the Auger decay were
estimated to be of the same order of magnitude@7#, but even
the simultaneous coexistence of molecular and atomic Auger
spectra has been predicted@8#. The H2S molecule served, to
our knowledge, as the first polyatomic species showing simi-
lar features@9,10#. Studies of this species clearly indicated
that the character of the core-excited state determines the
relaxation path, and that dissociation before decay is possible
even for short-lived core hole states. The 2p absorption
spectra in this molecule, as in HCl, exhibit a preedge struc-
ture @11,9# consisting of a broad band due to excitations to
the first unoccupied molecular orbital~6a1 and 3b2 in the
case of H2S, 6s or ‘‘s* ’’ for HCl ! followed by a series of
sharp peaks corresponding to excitations to Rydberg orbitals.
The identification of the Auger spectra for the various exci-
tation energies indicated that the first type of excited states
relaxed through Auger transitions in dissociative fragments,
while excitations to the bound Rydberg states showed reso-
nance Auger decay in the molecular environment. Calcula-
tions on core-excited adiabatic interatomic potentials of dif-
ferent molecules, for example O2 @12,13#, HBr @14#, HCl @8#,
and H2S @9#, confirm that intermediate or final states with
dissociative character are indeed relevant to consider for the
RXS process.

Experimental conclusions about the relaxation paths of
the core-excited states thus followed from energy assign-
ments of the Auger decay spectra. These spectra were inter-
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pretable in terms of diagram levels of the fragments. The
assignments, the excitation energy dependencies, and mass
spectroscopic data gave hints of a mechanism in which dis-
sociation is faster than the electronic decay of the excited
fragment. From further experimental progress with synchro-
tron radiation, it has also been possible to use line shapes and
the Auger resonance Raman effect@15–17# to draw conclu-
sions on the character of the intermediate and also the final
states@18–20#. Only the bound states showed the expected
resonance narrowing of the bands~Raman effect!, while the
Auger transitions to final dissociative states lacked such nar-
rowing and were determined by their lifetime broadening
only.

Although classical or semiclassical estimates of the time
scales for the relaxation have been useful, basic theories for
x-ray resonant scattering involving dissociative states have
not been provided in a way that matches the theory for bound
discrete states. Theory now covers a cross section of inter-
esting effects for RXS involving discrete states in atoms
@16#, molecules@21–23#, and solids@24,4,25#. Radiative and
nonradiative RXS involving bound discrete vibrational levels
have been investigated to a rather large extent, experimen-
tally @26–28# and theoretically@29,30,26,31,32#. These in-
vestigations have uncovered the strong influence of interfer-
ence between intermediate vibrational levels on the spectral
shape of the RXS signals. Many, if not most, molecular core-
excited states are dissociative or predissociative, and it is
desirable to include these in a general treatment. The inter-
ference effect will also be a central concept in such a treat-
ment.

With the present paper we intend to investigate the con-
ditions for resonant x-ray~Raman! spectroscopy involving
dissociative states, and derive general expressions for the
observed non-spectrometer-broadened spectral function. The
starting point and main emphasis rest on time-independent
theory, with a time-dependent approach used as an interpre-
tative complement for the kinematic and dynamic aspects,
and to explore when ‘‘dissociation before decay’’ is possible.
The paper is organized as follows. The time-independent
theory of resonant x-ray scattering involving dissociative
states is presented in Sec. II. In Sec. II A the space correla-
tion between the absorption and emission processes is inves-
tigated. Section II B presents a general analysis of
continuum-continuum and bound-continuum Franck-Condon
factors. The energy dependence of the RXS cross sections
are given in Sec. II C. As is shown here, there exists a deep
connection between the interference of the continuum states
and the damping of emission for large internuclear distances.
The spectral features of x-ray fluorescence and resonant Au-
ger spectra involving dissociative states are discussed in Sec.
II D, separating the cases of different combinations of bound
and continuum potentials. The limiting factors for the spec-
tral shape are derived for each such case. The interplay be-
tween the narrow resonance and the broad background parts
and the oscillatory behavior of the background are also dis-
cussed in that connection. A direct mapping of the~square!
of the vibrational wave functions of a bound intermediate
state is another important result discussed in this section. A
complementary time-dependent treatment of RXS is given in
Sec. III. Here the ‘‘E coherence’’ and ‘‘t coherence,’’ and
the ‘‘E interference’’ and ‘‘t interference’’ concepts are in-

troduced, and their special relations for different experimen-
tal situations are derived. The last section, Sec. IV, summa-
rizes our findings.

II. RESONANT X-RAY SCATTERING INVOLVING
DISSOCIATIVE STATES. TIME-INDEPENDENT THEORY

Resonant x-ray scattering is commonly described as a
one-step process involving three states: the initial, interme-
diate, and final states. The latter can be identical with—or
excited with respect to—the initial state, describing elastic
and inelastic scattering, respectively. Being in the x-ray re-
gion the intermediate state is in general core excited and
therefore short lived; our theory nevertheless also covers the
long-lived limit. In principle one can consider any combina-
tion of bound and dissociative characters of these states;
however, we confine ourselves to the experimental situation
with stable ground-state molecules only, allowing for disso-
ciative character of the intermediate or final states, or of both
these states. We impose the important restriction of having
only one nuclear degree of freedom, i.e., a diatomic molecule
characterized by the interatomic distanceR.

To outline a time-independent formulation of the RXS
cross sections, we start from the generalized Kramers-
Heisenberg formulas for inelastic~RIXS! and elastic~REXS!
x-ray scattering cross section

s tot~v8,v!5sRIXS~v8,v!1sREXS~v8,v!. ~1!

Unless otherwise stated use atomic units~\5m5e51,
a51/137!. The first term on the right-hand side of this equa-
tion,

sRIXS~v8,v!5
v8

v (
f

uF f u2D~v2v82v f0
,g0!,

~2!

F f5(
c

^ f uQuc&^cuVu0&
v2vc01 iG

, D~v,G!5
G

p~v21G2!
,

describes the inelastic scattering, while the second term,

sREXS~v8,v!5uF0u2d~v82v!,
~3!

F05(
c

^0uV8uc&^cuVu0&
v2vc01 iG

,

appearing only in radiative RXS, is responsible for elastic
scattering. Herev andv8 are the frequencies of incoming
and outgoing x-ray photons, respectively,g0 is the lifetime of
the final state,V and V8 are the operators for the dipole
interaction of incoming and outgoing x-ray photons with the
molecule, Q is the Coulomb-interaction-operator-induced
Auger decay in nonradiative RXS, andQ5V8 for radiative
RXS.Ec , uc& andEf , u f & are eigenvalues and eigenfunctions
of the core-excited and final-state HamiltoniansHc andHf ,
andv f05Ef2E0 . It is necessary to note that in strict theory
the HamiltoniansHc andHf are identical and equal to the
total molecular Hamiltonian. For brevity we refer below to
RXS as radiative x-ray scattering, and letv8 denote the final
photon frequency. The only change for a nonradiative RXS
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description is that the frequency of the final photonv8 must
be replaced by the energy of the Auger electron.

The frequencyv8 of the x-ray emission photons has a
Raman-related shift ~Stokes shift! toward the long-
wavelength region relative to the frequencyv of the ab-
sorbed photonv5v81vf0, in accordance with the energy
conservation law and the Lorentzian function in Eq.~2!. This
Raman-related shift leads to the earlier predicted Stokes dou-
bling effect in radiative@21# and nonradiative RIXS@33,34#
processes, which was recently observed in resonant Auger
spectra of krypton@20#. When interpreting experiments, we
use the convolution

s̄ ~v8,vc!5E s~v8,v!F~v2vc ,g!dv ~4!

of the RXS cross section with the incoming photon distribu-
tion functionF~v2vc ,g! centered at frequencyvc and hav-
ing a widthg.

Let us begin the investigation of this problem for the spe-
cial case when the incoming x-ray photon excites the mol-
ecule to an intermediate dissociative state~Fig. 1!. We as-
sume excitation to the adiabatic interatomic potentialUc(R)
of a dissociative state@or above dissociation threshold if
Uc(R) is at a minimum#. As is shown in Fig. 1 two qualita-
tively different channels for the radiative decay exist. One is
the decay from an intermediate continuum nuclear stateuc&
5wEc

c (R) to a bound vibrational stateu f &5w m
f (R) of the

final internuclear potentialUf(R). HereEc is the molecular
energy of the continuum statewEc

c (R). This channel will be

called the continuum-bound channel. The second channel is
given by the decay into final dissociative statesu f &
5wEf

f (R), the continuum-continuum channel. We can re-

write cross section~2! for the considered case as the sum of
cross sectionsscb~v8,v! and scc~v8,v! for the continuum-
bound and continuum-continuum decay channels:

s~v8,v!5scb~v8,v!1scc~v8,v!,

scb~v8,v!5
v8

v (
m

uF f ~m!u2d~v82v1vm0!, ~5!

scc~v8,v!5
v8

v
uF f u2.

Here the Diracd function is used instead of the Lorentzian
function due to the smallness of the final-state lifetime
broadeningg0. The energy conservation law yields the fol-
lowing expression for the molecular energyEf of the con-
tinuum statewEf

f (R):

Ef5v2v81E0 . ~6!

The RXS cross section~5! makes two qualitatively different
contributions: one of them,scb, is sharp, while the other,
scc, has a smooth frequency dependence. It is necessary to
remember that both contributions tos have additional broad-
enings caused by the finite width of the incoming photon
spectral distribution on top of the instrumental broadening
~4!. The spectral width of the incoherent part of the cross
sectionscc is defined by the width of the continuum scatter-
ing amplitudeF f . The spectral distribution ofF f is given by
the spectral distribution of the Franck-Condon factors, as fur-
ther studied in Sec. II A.

In the common Born-Oppenheimer and Condon approxi-
mations the transition matrix elementsQ andV are treated as
constants instead of as functions of the nuclear coordinates,
and the scattering amplitudes for the continuum-continuum
F f and for continuum-boundF f (m) channels simplify to
@29–31#.

F f , f ~m!5VQ( E dEc
^wEf ,m

f uwEc
c &^wEc

c uw0&

v2vc01 iG
, ~7!

wherevc05Ec2E0 . The continuum nuclear wave functions
of statesi5c, f are here normalized to ad-energy function:

^wEi
i uwE

i8
i

&5d~Ei2Ei8!. ~8!

The sum on the right-hand side of Eq.~7! implies that for a
bound intermediate stateuc& one needs to integrate over the
energyEc or sum over the vibrational statesw n

c if the incom-
ing photon frequency is tuned above or below the dissocia-
tion threshold of the intermediate state, respectively. The
scattering amplitude~7! is defined by Franck-Condon~FC!
factors ~the overlap integrals! between the vibronic wave
function w0(R) of the ground state and the continuum
nuclear wave functionswEc

c (R), and betweenwEc
c (R) and the

final-state nuclear wave functionswEf
f (R).

A. Space correlation between absorption and emission

At this stage we focus on the fundamental role that inter-
ference between different intermediate continuum states

FIG. 1. Excitation and decay schemes. The ground~0!, interme-
diate (c), and final (f ) states are displaced relative to each other.
All notations are explained in the text.
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plays in the damping of emission as the internuclear distance
increases. To give a general treatment of this problem, let us
rewrite the scattering amplitude~7!

F f5^wEf
f uw̃c&

5VQE
2`

` E
2`

`

dR8dR wEf
f* ~R8!GE

1~R8,R!w0~R! ~9!

in terms of the stationary wave packetw̃c(R) and the time-
independent Green’s function

w̃c5GE
1w0 , GE

1~R8,R!5E dEc
wEc
c* ~R8!wEc

c ~R!

E2Ec1 iG
,

~10!

with E5v1E0 . The stationary lifetime-broadened Green’s
functionGE

1(R8,R) describes the propagation of nuclei on a
decaying potential surfaceUc(R) from the internuclear dis-
tanceR, where the molecule was core excited up toR8 where
the emission transition took place. When the core-excited
state is short lived,G@U(R0)2Uc(Rcf) ~26!, the Green’s
function

GE
1~R8,R!5

d~R82R!

E2Uc~R0!1 iG
~11!

shows that the emission and absorption transitions take place
at the same point (DR5R82R50) ~Fig. 2, upper panel!.
Thus in the limit of zero lifetime the molecule has no time to

spread from the point of absorption. The finite lifetime
broadeningG means that the core excitation cuts off the co-
herent superpositionw̃c ~10! of the core-excited states resid-
ing in an energy bandwidth given by the lifetime broadening
uEc2Eu<G ~Fig. 2!. WhenG is large all intermediate states
~uEc2Eu<`! make coherent contributions to the wave
packet w̃c ~maximum interference between core-excited
states!. In this case the point of emission is known exactly
~R85R, DR→0! according to Eq.~11!. The x-ray excitation
cuts off only a small part~uEc2Eu<G→0! of the continuum
intermediate states ifG is small~Fig. 2!. Hence according to
the uncertainty principle thed(R82R) function in Eq.~11! is
broadened, and the explicit information about the emission
point R8 is lost ~DR→`! ~Fig. 2!.

To obtain a deeper understanding of the case of finiteG
let us look at the lifetime-broadened Green’s function~10!.
In the relevant region the nuclei move with an energyEc
larger than the potential heightUc(R). So the criterion of
applicability of the quasiclassical approximation is fulfilled
everywhere, and the quasiclassical wave function can be
written as

wEc
c ~R!5

A

Apc~R!
expS 2 i E

a

R

pc~R8!dR8D . ~12!

Here pc(R)5A2m(Ec2Uc(R) is the momentum,a is the
classical turning point wherepc(a)50, andA is the normal-
ization constant. The small correction term containing the
wave reflected by inhomogeneities of the potential is ne-
glected in Eq.~12!. In the classically accessible region~R8,
R>a!, and inR8>R the lifetime-broadened Green’s func-
tion shows strong space correlation between the absorption
and emission processes,

GE
1~R8,R!5GE

~0!1~R8,R!e22Gt~R8,R!,

GE
~0!1~R8,R!522ipA2

exp~ i*R
R8p~R9!dR9!

Ap̄~R8! p̄~R!
, ~13!

wherep̄(R)5p(R)1 iG/v(R), p(R)5A2m(E2Uc(R), and
v(R)5p(R)/m is the relative velocity of the nuclei at the
point R. The lifetime broadeningG is here assumed to be
small in comparison with [E2Uc(R)]. As follows from the
factor exp@22Gt(R8,R)# in Eq. ~13!, the emission intensity
is negligible if the time of propagation between the absorp-
tion point (R) and the emission point~R8!,

t~R8,R!5E
R

R8 dR9

v~R9!
, ~14!

exceeds the lifetime:t (R8,R)>G21. Indeed, the emission
takes place only until the population of the core-excited state
remains unexhausted. So we obtain that the internuclear dis-
tanceuR82Ru between absorption and emission points can-
not exceed the distance~v/G! passed by the nuclei during the
lifetime ~Fig. 2!:

uR82Ru<v/G. ~15!

We can now conclude that the damping factor
exp@22Gt(R8,R)# is caused by the interference between the

FIG. 2. Illustration ofE interference~upper panel! and t inter-
ference~lower panel!. DR5R82R is the distance between absorp-
tion (R) and emission~R8! points. v is the characteristic nuclear
velocity. All notations are explained in the text.
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core-excited continuum stateswEc
c (R) coherently excited

into the banduEc2Eu<G. So this interference between con-
tinuum states and the finite value ofG plays the key role in
the damping of x-ray emission at large internuclear dis-
tances.

B. Analysis of Franck-Condon factors

Let us estimate the first Franck-Condon factor^wEc
c uw0&

in Eq. ~7! between continuum vibrational wave functions of
the intermediate core-excited electronic state and the ground-
state vibrational wave function, for example, in the harmonic
approximation

w0~x!5S 1

pa0
2D 1/4 expF2

1

2 S xa0D
2G , a05S \

mv0
D 1/2,

~16!

wherem is the reduced mass,v0 the vibrational frequency,
anda0 has the meaning of an average deviation ofx5R2R0
from the equilibriumR0 of the ground state. In accordance
with the Franck-Condon principle the main contribution to
^wEc

c uw0& is given by the region close to the ground-state

equilibrium R0, wherew0(x) is localized. We now expand
the interatomic potentialUc(R) nearR0 over the displace-
ment x5R2R0 : Uc(R)5Uc(R0)2Fc0x. Here Fc0
52(dUc/dR)0 is the interatomic force at the equilibrium
pointR0. The finite regular solution of the Schro¨dinger equa-
tion with a linear potential is given by the Airy function
@35,36#

wEc
c 5A2mac0Ai ~2z!, Ai~x!5

1

p E
0

`

ds cos@ 1
3s

31xs#,

~17!

where

z5
1

ac0
~x2xc0!, xc052

ec0
Fc0

,

ac05S \2

2mFc0D
1/3

, ec05Ec2Uc~R0!. ~18!

xc0 is the classical turning point for the linear potential
Uc(R)5Uc(R0)2Fc0x. The characteristic scale of oscilla-
tionsac0 of the Airy function decreases if the potential slope
Fc0 at the equilibrium pointR0 increases. When the slope
Fc0 is large (ac0/ac,1) the Airy function Ai~2z! oscillates
strongly if z.0 and decreases quickly ifz,0. This leads to
the following estimation for the FC factor:

^wEc
c uw0&.A2mac0

3 w0S 2Dec
Fc0

D .S 2mac0
3

p1/2a0
D 1/2

3expF2
1

2 S Dec
gc

D 2G ,
~19!

Dec5ec01Fc0ac0 , gc5Fc0a0 ,

where the right-hand side expression is obtained from the
harmonic approximation. This bound-continuum FC factor

describes the energy distribution of the intermediate con-
tinuum nuclear states. The widthgc of this distribution is the
product of the widtha0 of w0(x) and the slopeFc0 @37#. The
expression forgc also follows from geometrical consider-
ations @37,38#. The same estimation is valid for the
continuum-bound FC factor~wEc

c →wm
f transition!

^wm
f uwEc

c &.A2mãc0
3 wm

f S 2
Dẽc

F̃c0
D .S 2mãc0

3

p1/2ã02
mm!

D 1/2
3expF2

1

2
S Dẽc

g̃c
D 2GHmS 2

Dẽc

g̃c
D , ~20!

whereHm(x) is the Hermite polynomial. The final-state po-
tentialUf(R) is approximated here by a harmonic potential
with minimum in R0

f . For brevity, in Eq.~20! we kept the
notations of Eq.~19!, marking our parameters by the tilde
symbol. Contrary to the previous parameters given by Eqs.
~16!, ~18!, and~19!, the tilde-marked parameters are obtained
at the equilibrium pointR0

f of the final-state potentialUf(R).
ṽ0 is the vibrational frequency of the final-state potential
Uf(R).

When ã0/ãc0!1 the vibrational wave functionwm
f of the

bound state is narrower than the Airy function, implying the
following approximation for the continuum-bound FC factor:

^wm
f uwEc

c &.A2mãc0Ai S 2
Dẽc

F̃c0ãc0
D E

2`

`

wm
f ~x!dx.

~21!

The integral on the right-hand side of this equation shows
that in the case of a harmonic potential the bound-continuum
and continuum-bound transitions are forbidden for oddm. It
is important to note that the expression for the continuum-
bound FC factors~19! and ~20! between the bound vibra-
tional wave functionsw0~R! andw m

f (R) is valid for arbitrary
bound wave functions~thus not only for the Hermite poly-
nomials!. Equations~19! and~20! can also be obtained in the
reflection approximation@39#, where the continuum wave
function is replaced byd~x2x0!, with x0 as the classical
turning point.

Let us now consider the spectral region with decay tran-
sitions into final continuum stateswEc

f lying above the disso-

ciation threshold of the final state potentialUf~`!
~continuum-continuum decay channel!. To estimate the scat-
tering amplitude in this case we assume that the internuclear
distance remains unaltered during the electron transition
c→ f ~vertical approximation!. Suppose that this transition
takes place at pointsR near some internuclear distanceRcf .
Only such points can make significant contributions to the
FC factors. The solutions of the Schro¨dinger equations for
the intermediate and final nuclear states near this stationary
point Rcf are given by Airy functions~17! with parameters
corresponding to this point.

Let us now direct attention to the continuum wave func-
tion of the core-excited state. We will use different Airy
forms ~17! of wEc

c to evaluate absorption̂wEc
c u0& and emis-

sion ^wEf
f uwEc

c & FC factors. Since these Airy solutions near

R0 andRcf approximate the same wave functionwEc
c , they
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are connected with each other by the phase multiplier
exp(iq) with the phase shift estimated as

q.E
a~R0!

Rcf
pc~R!dR. ~22!

Herea(R0) is the classical turning point lying nearR0. The
nuclear momentumpc(R)5A2m@Ec2Uc(R)# is equal to
zero at this point. Estimation~22! follows from the connec-
tion between the quasiclassical continuum wave function in
different points and the conditiona0 ,ac0!R0 ,Rcf .

Taking into account the properties of the Airy function
@35,36# and the phase factor exp(iq), one arrives at the fol-
lowing expression for the continuum-continuum overlap in-
tegral:

^wEf
f uwEc

c &5eiqH d~e f2ec!
1

gc f
Ai H 6

1

a S e f
Ff

2
ec
FcD J

if Ff5Fc
if FfÞFc ,

~23!

with

gc f5aF5U \2

2m
~Ff2Fc!FU1/3, a5Aaf acUFf2FcF U1/3,

~24!

F5AFcFf , ai5S \2

2mFi D
1/3

.

The slopeFi52(dUi /dR) and the kinetic nuclear energy
e i5Ei2Ui(R) of statesi5c, f are calculated at the station-
ary pointR5Rcf . Equation~23! is written forFi.0. The1
and2 signs in the argument of the Airy function~23! should
be used for the casesFf.Fc andFf,Fc , respectively. The
phase shiftq between absorption~19! and emission~23!
matrix elements originates in the difference between phases
of the wave functionwEc

c at the FC pointsR0 andRcf of

absorption and emission transitions. Phaseq demonstrates
strong space correlation or coherence between absorption
and emission, and, as will be shown below, the phase factor
exp(iq) leads to important physical consequences.

In the quasiclassical limit wheregc f}\2/3→0 ~gc f being
the characteristic width of the FC factors! the FC factor~23!
tends tod~ef /Ff2ec/Fc!. This FC factor is maximal near the
point

ec
Fc

5
e f
Ff

. ~25!

In the general case the term6a must be added to the right-
hand side of this equation, because the Airy function Ai~2z!
has a maximum value@Ai ~21!.0.53# whenz51.

C. Evaluation of the RXS cross sections

Let us begin from a time-independent treatment of the
short-lifetime limit

G@gc , gc f , DV, ~26!

where DV5Uc(R0)2Uc(R`). In reality this condition
~G@DV! is too strong, and, as will be shown below, it is

softened in the different special cases. The FC factors~19!
and ~23! in the numerator of the right-hand side of Eq.~7!
restrict the region of allowed values ofEc to DEc<gc ,gc f .
So when the core-excited state is short lived~26!, one can
neglect the energy dependence of the denominator in the
expression~7! for the RXS amplitude and extract this de-
nominator from the integral overEc at the pointEc5Uc(R0)
according to the FC rule. Taking into account the condition
of completeness,(cuc&^cu51, one arrives at the following
expression for the scattering amplitude~7!:

F f5
VQ

v2vc0~R0!1 iG
^wEf

f uw0&, v i0~R!5Ui~R!2E0 .

~27!

If we complete Eq.~26! by the conditionG@v0 it is easy to
see that this result@31# is general and not restricted to con-
tinuum intermediate and final states. Herev0 is the vibra-
tional frequency of the bound core-excited state. A more
physical point of view for this problem was given in Sec. I A
@see Eq.~11!#. Equation~27!, which is also obtained below
in the time-dependent treatment of RXS, shows that only
direct transitions between the vibrational states of ground
and final states take place in the limiting case of a short
lifetime. According to this equation the main contribution to
the FC factor̂ wEf

f uw0& is given at internuclear distances near
the equilibriumR0 of the ground state. In other words, the
atoms in the molecule have no time to spread far fromR0
when the core-excited state is short lived. In this limiting
case let us write the final expression for the continuum-
continuum cross section~5!, using Eqs.~19! and ~27!, as

scc~v8,v!5sD~v82vc f~R0!2Ff0af0 ,G!

3expF2S v2v82v f0~R0!1Ff0af0
gc

D 2G ,
~28!

s5
2p1/2maf0

3

Ga0

v8

v
uVQu2, vc f~R!5Uc~R!2Uf~R!.

Consider now the other important limiting case, when the
spectral width of the continuum-continuum FC is small, and
Fc→Ff :

gc f!G, gc . ~29!

According to lima→0 Ai( x/a)5ad(x), the FC factor~23! is
then equal to

^wEf
f uwEc

c &5eiqd~e f2ec!. ~30!

From Eqs.~5! and~7!, we thus have the following expression
for the RXS cross section in the limit~29!:

scc~v8,v!5s
Ff0
Fc0

D@v82vc f~Rcf!,G#

3expF2S v2v82V

gc
D 2G , ~31!

where
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V5vc0~R0!2vc f~Rcf!2Fc0ac0 , ~32!

The same result follows directly from Eqs.~5! and~7! if the
potentials Uc(R) and Uf(R) coincide. The continuum-
continuum FC factor~23! is also equal to thed function due
to the mutual orthogonality of nuclear wave functionswEf

f

and wEc
c in this case. The region of integration for the FC

factor,^wEf
f uwEc

c &, is restricted byR82R0,v/G according to

Eq. ~15! of Sec. II A. Hence Eq. ~31! is true until
Rcf2R0,v/G. The cross sectionscc~v8,v! is exponentially
small if the crossing pointRcf exceeds the passage propa-
gated during the lifetime,v/G, with the characteristic veloc-
ity v ~see below!.

It is necessary to note the special important case when
solution ~31! describes the emission in the dissociative re-
gion Rcf→`. Indeed, the dissociative limit resides in the
region of Eq.~29! since the spectral width of the continuum-
continuum FC factors~23! tends to zero~gc f→0! due to the
slopeFi→0 whenRcf→` ~Fig. 3!. WhenFi→0 the Airy
solution~17! for the linear potential overestimates the role of
largeR where the exact potentialUi(R) is negligibly small.
The RXS cross section~31! for the dissociative region was
therefore obtained from Eq.~23!, with the additional as-
sumption limR→`~Fc/Ff!51.

To evaluate the RXS cross section in the intermediate
region with the crossing point lying in the molecular region

(R0,Rcf,`), we need to use the equation for the crossing
point Rcf @40#,

v85vc f~Rcf!. ~33!

The spectral widthgc f ~24! of the continuum-continuum FC
factor depends strongly on the difference between the slopes
Fc andFf governed byRcf ~Fig. 3!. Two important limiting
cases exist. In the first case considered above, the spectral
width gc f is small in comparison with the widths of the
bound-continuum FC factor~19! and the lifetime broaden-
ing. In this limit ~29! the RXS cross section~31! is described
by the product of a Gaussian and a Lorentzian with the spec-
tral widthsgc andG. In the opposite limiting case

G!gc , gc f , ~34!

the energy conservation law holds for the absorption transi-
tion too: v5vc0. Because now the sharpest function in the
integral ~7! is 1/~v2vc01 iG!, the FC factors@except the
strongly oscillating phase factor exp(iq) ~22!# can be ex-
tracted from this integral at the pointEc5v1E0 . Different
from the cross sections~28! and~31!, the RXS cross section
according to Eq.~33! now equals

scc~v8,v!5s
pG

gc f
2

Ff0Ff
Fc0Fc

expF2S Dv1Fc0ac0
gc

D 2G
3Ai2X2S Dv1d

ḡc f
D Ce22Gt, ~35!

where

Dv5v2vc0~R0!, d5Uc~R0!2Uc~Rcf!,
~36!

g̃ c f5gc f

F
uFc2Ff u

5S \2

2m U FcFfFc2Ff
U2D 1/3.

The damping factor exp~22Gt! on the right-hand side of Eq.
~35! shows that the timet of propagation on the core-excited
potential surfaceUc(R),

t.E
a~R0!

Rcf dR

v~R!
, v~R!5S 2m @v2vc0~R!# D 1/2, ~37!

to the crossing pointRcf where the emission transition takes
place, cannot exceed the lifetimeG21 of the core-excited
state. This estimation agrees with another, deeper, treatment
of the damping factor given in Sec. II A@here see Eqs.~13!
and ~14!#. Equation~37! admits a simple estimation of the
propagation time,t;(Rcf2R0)/v, with the characteristic
velocity v;A2DU/m and of the shift of the potential,
DU5Uc(R0)2Uc(Rcf), during this propagation. The funda-
mental role played by the interference between different in-
termediate continuum states in forming the damping factor
exp~22Gt! was shown earlier in Sec. II A.

Comparison of Eqs.~31! and~35! ~see also Figs. 3 and 4!.
shows that the contribution of the ‘‘molecular’’ region~35!
in the RXS cross section is~G/gc f!

2 times smaller than the
contribution ~31! of the ‘‘dissociative’’ region. The factor

FIG. 3. Qualitative separation of theR space into molecular and
dissociative regions~upper panel!. The qualitative dependence of
the spectral width of the continuum-continuum FC factor^ f uc&
5^wEf

f uwEc
c & ~23! on the internuclear distanceR ~middle panel!. The

qualitative dependence of the continuum-continuum FC factor~23!
on the energyDE5F~ef /Ff2ec/Fc! in the molecular and dissocia-
tive regions~lowest panel!. The FC factor amplitude~}1/gc f! is
large in the dissociative region but small in the molecular region
~the oscillatory character of the FC factor is not depicted!.
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~G/gc f!
2 increases only when the crossing pointRcf tends to

the dissociative region wheregc f decreases according to Eq.
~24!.

If the frequencyv of the initial photon is tuned to the
absorption maximum~Dv50!, the RXS cross section~35!
becomes proportional to Ai2@2~d/ḡc f!#. The factor~d/ḡc f! is
large for largeRcf . Taking into account the asymptotic form
of the Airy function @35,36#, we have the following expres-
sion for the cross section~35!:

scc~v8,v!5s
G

gc f
2

Ff0Ff
Fc0Fc

e„2~ac0 /a0!2…e22Gt

3S ḡc f

d D 1/2sin2F23 S d

ḡc f
D 3/21 p

4 G . ~38!

According to Eq.~33! the turning pointRcf5v c f
21~v8! de-

pends on the emission frequency. Thusd5Uc(R0)2Uc(Rcf)
is also a function ofv8. Expression~38! shows that the Airy
function leads to slowly damped oscillations of the cross
section in the ‘‘molecular’’ region (R0,Rcf,`). This slow
damping}Aḡc f /d is halted in the region close to the disso-
ciation where the factor~G/gc f!

2 starts to increase, and the
RXS cross section is described by Eq.~31!. Cross sections
~35! and ~38! play the role of the background for the reso-
nance contribution~31! in the dissociative region, as illus-
trated in Fig. 4.

To clarify the frequency dependence of the cross section
~38!, let us consider the power potentials
Ui(R)5Ui(`)1b i /R

n. The solution of Eq.~33! then leads
to the crossing point

Rcf5S bc2b f

D D 1/n, D5v82vc f~`!, ~39!

and to the following frequency dependence of the parameters
in Eq. ~38!:

d

ḡc f
}~Dv`2D!D22/3@11~1/n!#,

Ff
Fcgc f

2 }D24/3@11~1/n!#,

~40!

whereDv`5vc f(R0)2vc f~`!.

D. Spectral features

1. Continuum-bound and continuum-continuum decay channels

We first consider the common case when the intermediate
vibrational states are continuous~Fig. 1!. This occurs when
the core-excited state has a strict repulsive, dissociative, po-
tential, or when the excitation takes place above the disso-
ciation threshold. A typical example is the H2S molecule. As
shown in Ref.@10#, this molecule has dissociative potentials
for the 1A1(3a 1

216a 1
1) and1B2(3a 1

213b 2
1) 2p core-excited

states. The core-excited state can then decay through the two
continuum-continuum and continuum-bound channels. The
total cross sections given by Eq.~5! will then be the sum of
the two partial cross sectionsscb andscc.

We first consider the continuum-continuum decay chan-
nel. The cross sections for this channel,~28!, ~31!, and~35!
have nod singularity due to the continuous nature of the final
state. The spectral widthg̃ of the continuum-continuum
cross sectionsscc~v8,v! @~28!, ~31!, and ~35!# is defined by
the width of the most narrow factor:g̃5g f in the first lim-
iting case~26!, g̃5min~gc ,G! in the second limiting case
~29!, andg̃5min(gc ,gc f) in the third case~34!. Contrary to
G andgc ~19!, the widthgc f of the continuum-continuum FC
factors strongly depends on the frequencesv andv8 and on
the shape of the potentialsUc(R) andUf(R). Indeed,gc f can
be large only in the ‘‘molecular’’ regionRcf;R0 , where the
slopesFc and Ff can differ strongly. The x-ray emission
intensity will have an oscillatory dependence onv8 ~35! until
condition ~34! is valid. When the frequencyv8 is tuned to
the dissociative region@see Eq.~33!#, bothFc andFf tend to
zero, as a resultgc f also tends to zero. Thus for emission in
the dissociative region the RXS spectral shape~29! will be
that of a single atomiclike resonance~31!.

In the continuum-bound decay channel the cross section
scb will have a sharp frequency dependence, as described by
the d function ~5!. The RXS scattering amplitudeF f (m) of
this channel, defined by Eq.~7!, depends on two different FC
factors,~19! and ~20!, with different vibrational parameters.
Equations~19! and~20! show that the RXS amplitude~7! is
a convolution of Lorentzian and Gaussian functions with the
widths G, gc , and g̃c . So the cross sectionscb~v8,v! is de-
scribed by the Voigt contour for the given relation between
these widths.

According to Eqs.~7!, ~19!, and ~20!, the frequency de-
pendence ofs̄cb~v8,vc! takes the following remarkable form
whenG!gc ,g̃c :

s̄ cb~v8,vc!5s̄(
m

F~v2vc ,g!„w0~x!wm
f ~ x̃!…2, ~41!

with

FIG. 4. Qualitative dependence of the spectral shape of the
continuum-continuum RXS cross section on the emission frequency
v8. When the lifetime broadening is sufficiently small, the decay
transitions in the molecular region form the wing of the spectral
band with weak intensity in comparison with the narrow resonance
caused by decay transition in the dissociative region. According to
Eqs.~35! and~38!, the spectral shape of the wing has an oscillatory
character.
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v5v81v f0~R0
f !1vm , s̄5

v8

v
~2pmVQ!2~ac0ãc0!

3,

x52
1

Fc0
@v82„Uc~R0!2Uf~R0

f !…1vm1Fc0ac0#,
~42!

x̃52
1

F̃c0
@„v82vc f~R0

f !…1vm1F̃c0ãc0#.

The vibrational energy of the final statevm is equal to
(m11/2)ṽ0 in the harmonic approximation. In the opposite
limiting caseG@gc ,g̃c the scattering cross section is de-
scribed by the Lorentzian according to the short-lifetime
limit ~27! and the overlap integral betweenw m

f (R) and
w0(R). The effective coordinatesx and x̃ of absorption and
emission transitions depend on the emission frequencyv8.
The square of the vibrational wave functions in Eq.~41!
gives the spectral features with the widthsgc5Fc0a0 and
g̃ c5F̃ c0ã0 since the bound-state wave functionsw m

f (R) and
w0(R) depend onx̃ and x through the dimensionless ratios
x̃ /ã0 and x/a0. It is important to remember thatx̃ is the
classical turning point@see Eq.~19!#.

The spectral shape of the total cross sections~4! and~5! in
the considered case is defined by two resonant features with
qualitatively different frequency scales. The spectral width of
s̄ cb is equal to zero when the width of the spectral function is
negligibly small. The continuum-continuum contribution
s̄ cc in this case plays the role of a background with the width
g̃ . Let us briefly analyze the main features of the cross sec-
tion s̄~v8,vc! ~4! in the dissociative limits~29! and ~31!
convoluted with the spectral functionF~v2vc,g! of incom-
ing x-ray radiation. The spectral width ofs̄cb is equal to the
spectral widthg of F when g!gc ,g̃c , and is equal to
min(gc ,g̃c) in the opposite limit.s̄cc @~4! and ~31!# has a
qualitatively different dependence ong. When gc@G the
spectral width ofs̄cc in the dissociative region is equal to the
lifetime broadeningG and does not depend ong. The corre-
spondingg dependence appears ifgc<G. In the molecular
region s̄cc @~35! and ~38!# forms an oscillatory background
with the characteristic energy scale of oscillationsgc f;1 eV.

We would like to direct attention to the spectral feat-
ures demonstrated by Eq.~41!. One can see from this
equation that the spectral shape of the RXS cross section
is proportional to the square of the final-state vibrational
wave function. In the harmonic approximation this func-
tion is proportional to the Hermite polynomial
„w m

f (x)}exp@2(x/ã0)
2/2#Hm(x/ã0)…. Moreover, the partial

RXS cross section connected with a certain final vibrational
statem is equal to zero for them nodes~zeros! of the vibra-
tional wave function. So we arrive at the important conclu-
sion that resonant x-ray scattering under transitions between
continuum and bound states allows the direct measurement
of the vibrational wave function.

2. Bound-bound and bound-continuum decay channels

Now let us consider the x-ray excitation below the disso-
ciation threshold~Fig. 4!. In this case the intermediate vibra-
tional stateswm

c are bound, allowing for only bound-bound

and bound-continuum decay channels. In the general case of
several excited intermediate vibrational states, the scattering
channels will interfere through these discrete states
@29,30,26,31#. Now, the total cross section is the sum of
bound-bound and bound-continuum cross sections;
s~v8,v!5sbb~v8,v!1sbc~v8,v!. The properties ofsbb~v8,v!
proportional to thed function have been investigated earlier
@29–31# and will therefore not be discussed here.

In accordance with Eqs.~7! and ~20! the contribution of
the bound-continuum decay channel to the total RXS cross
section is equal to

sbc~v8,v!5U(
m

qm
wm
c ~x!

v2vc0~R0
c!2vm1 iGU

2

~43!

whenG!g f ,g̃ f . Here

x5
1

F̃f0

~v2v82v f0~R0
c!1F̃f0ã0!,

qm5S 2mãf0
3 v8

v D 1/2VQ^wm
c uw0&. ~44!

ã05A\/mṽ0, vm is the vibrational energy of the core ex-
cited state@vm5(m11/2)ṽ0 in the harmonic approxima-
tion#. All other quantities are calculated at the equilibrium
point of the core-excited state, and they are defined by Eqs.
~19! and~20! after the replacementc→ f . Since the final state
is continuous, this cross section has nod singularity, contrary
to sbb~v8,v!. It is remarkable that the dependence of the
cross section~43! on the emission frequencyv8 copies the
space distribution of the vibrational wave functionw m

c (x).
Indeed, ifG,ṽ0 one can tune the frequency into an exact
resonance with some vibrational statem. In this case the
RXS cross section~43! simply becomes

sbc~v8,v!}„wm
c ~x!…2. ~45!

This equation shows how the vibrational wave function can
be mapped, and that the cross section is equal to zero in the
m points wherew m

c (x) is equal to zero. Equation~45! leads
to the simple geometrical consideration given in Fig. 5. This
consideration is based on the physical meaning ofx ~44! as
the classical turning point for propagation on the potential
surfaceUf of the final dissociative state@see Eqs.~19! and
~20!#. According to this physical meaning the spectral shape
of the RXS cross section reflects the square of the vibrational
wave function„w m

c (x)…2 of the core-excited state by the lin-
earized potential of the final state~Fig. 5!. This geometrical
interpretation of Eq.~20! reminds one of the common geo-
metrical approach to estimating spectral linewidths in photo-
electron spectra@38,37#. It is important to note that Eq.~45!
and its geometrical interpretation@Fig. 5~a!# are based on the
linear approximation of the potentialUf nearR0

c. Thus only
in the case of such a linear potential the mapping
sbc~v8,v!}„w m

c (x)…2 is linear @see Fig. 5~a!#. In the general
case of a nonlinear potential the mapping is evidently non-
linear @see Fig. 5~b!#, and the application of the reflection
method will not produce a direct copy of the squared wave
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function, as given by Eq.~45!, but a deformation of this
wave function depending on the particular shape of the po-
tential asymptot.

Now let us briefly discuss the frequency scales of the total
cross sections̃~v8,v! convoluted with the spectral function
F ~4!. If g !G the width ofs̄bb is defined only by the width
g of the spectral functionF, and can be obtained to be very
narrow, while the width of the bound-continuum cross sec-
tion s̄bc cannot be obtained to be smaller than the widthḡ
of the product of the Lorentzian and Gaussian func-
tions; ḡ 5min~G,g̃ f!. The qualitative dependence of the spec-
tral linewidth given by the continuum parts̄bc of the cross
section goes as follows: The width ofs̄bc for a single vibra-
tional level m decreases approximately from~g1ḡ! to ḡ
when the widthg of the spectral functionF decreases. When
g !ḡ the spectral shape of the total cross section for a single
intermediate vibrational levelm is represented by a narrow
bands̄bb ~4! with the widthg on top of a background com-
prising a broad continuum contributions̄bc @~43!, ~45!, and
~4!# with the width ḡ5min~G,g̃ f!.

3. Bound-continuum and continuum-continuum decay channels

In some cases, as for example for HCl@41#, the x-ray
photons core excite the molecule to a point of the upper
potential surface which is close to the dissociation threshold
~Fig. 1!. In this case both bound and continuous vibrational
states of the intermediate state are populated~Fig. 1!. Here
let us consider only a repulsive final state, as for instance
reached by nonradiative RXS of HCl from the 3s1s*1 ~1S1!
intermediate state@41#. The total cross section for the two
decay channels, the bound-continuum and continuum-
continuum decay channels, now becomes the sum of the
above defined bound-continuumsbc ~45! and continuum-
continuumscc @~28!, ~31!, and ~35!# partial cross sections:
s~v8,v!5sbc~v8,v!1scc~v8,v!#. Due to the continuous na-

ture of the final state, both of these partial cross sections lack
d singularity, and the widths of the corresponding resonances
cannot be made small by narrowing the spectral width of
exciting radiation~lack of resonance narrowing!. As was
shown above, the spectral width ofsbc is equal to
ḡ 5min~G,g̃ f!, and is defined by the lifetime broadening and
by the spectral width of the bound-continuum FC factor. De-
pending on the circumstance~as described above! the spec-
tral width g̃ of scc is defined by three characteristic factors:
the lifetime broadening~G!, the width of the bound-
continuum FC factors~gc or gf!, and the width of the
continuum-continuum FC factors~gc f!.

III. RESONANT X-RAY SCATTERING INVOLVING
DISSOCIATIVE STATES. TIME-DEPENDENT THEORY

A. Time-dependent representation
of the RXS cross section

To carry through a time-dependent formulation of the
RXS cross sections, let us restart from the generalized
Kramers-Heisenberg formulas for the radiative and nonradi-
ative RXS cross section, Eqs.~1!, ~2!, and ~3!. Taking into
account thatEc ,uc& andEf ,u f & are eigenvalues and eigen-
functions of the HamiltoniansHc andHf of the core-excited
and final states, one can express the denominatorD and d
functions in Eqs.~2! and ~3! as an integral over time:

1

v2vc01 iG
→

1

v1E02Hc1 iG
5 i E

0

`

dt ei ~v1E02Hc!t2Gt.

~46!

The RIXS cross section and the REXS amplitude now read

sRIXS~v8,v!5
v8

vp

3ImE
0

`

dtE
0

`

dtE
0

`

dt1e
u^0uV1Gc

2~2t !

3Qf
1G1~t!QGc

1~ t1!Vu0&,

F05E
0

`

dt exp@ i ~v1E0!2Gt#^0uV8Gc
1~ t !Vu0&,

~47!

where

u5 if2G~ t1t1!2g0t,

f5~v1E0!~ t12t !1~v2v81E0!t. ~48!

The retarded and advanced Green’s functions,G i
1(t) and

G i
2(2t)5[G i

1(t)]1, here introduced (i5c, f ), read@42#

Gi
6~6t !5 H 7 ie7 iH i t if t.0

0 if t,0. ~49!

G i
1(t) describes the propagation of the wave packet subject

to the HamiltonianHi forward in time, andG i
2(t) the same

backward in time. A time-dependent representation for the
RIXS cross section, Eqs.~47! and~49!, was presented in Ref.
@29#; a more recent representation ofsRXS has been given by
Cederbaum and Tarantelli@32# using the concept of wave
packets accompanying the excitation to a decaying

FIG. 5. Geometrical illustration of the proportionality of the
bound-continuum RXS cross sectionsbc~v8,v! ~45! to the square of
the vibrational wave functionw m

c (x) of the core-excited state at the
classical turning pointx ~44!. The linear approximation of the final-
state potentialUf is depicted with a thick dashed line; the exact
potentialUf is depicted with a thin solid line. The cross sections are
obtained by reflection on~a! a linear potential, and~b! a nonlinear
potential.
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electronic state and the subsequent decay to final electronic
states. A time-dependent wave packet approach of Raman
scattering was developed earlier by Heller and co-workers
@43,44#. The present time-dependent theory generalizes the
theory of Cederbaum and Tarantelli@32#, which is applicable
only to broadband excitation, and gives different results, for
example, if the final state is bound or short lived.

It necessary to note that HamiltoniansHc and Hf are
identical and equal to the total molecular Hamiltonian in
strict theory. Let us focus on RXS features influenced by the
nuclear dynamics in both the decayinguc& and final u f &
states. In this caseHc andHf are the Hamiltonians describ-
ing the nuclear motion in the core-excited and final state and
do not coincide. Electronic matrix elementsV and Q for
absorption and decay transitions are functions of the nuclear
coordinates of the target.

The wave-packet representation allows us to rewrite Eq.
~47! in a more compact form after transition to different time
variables (t→t,t1→t1T)

sRIXS~v8,v!52q Re E
0

`

dtE
0

`

dTE
0

`

dt eifst~ t,t1T!,

~50!

F052 i ^0uc0c~0,0!&E
0

`

dt ei ~v1E0!tF~ t !,

whereq5^0uV1Q1QVu0&v8/(pv). This equation is a gen-
eralization of the theory in Ref.@32#, taking account of the
energy conservation law~d-energy function! for the RXS
process. With our time variables the phasef is equal to
f5(v1E0)T1(v2v81E0)t. The autocorrelation func-
tions introduced here are defined by

st~ t,t1T!5qe2g0te2G~2t1T!
^c f c~0,t !uc f c~t,t1T!&

^c f c~0,0!uc f c~0,0!&
,

~51!

F~ t !5e2Gt ^0uc0c~0,t !&

^0uc0c~0,0!&
.

These functions are normalized to unity@s0~0,0!51, F~0!
51# and ^c f c(0,0)uc f c(0,0)&5^0uV1Q1QVu0& and
^0uc0c(0,0)&5^0uV8Vu0&. The wave packets

cc~ t !5 iGc
1~ t !cc~0!, cc~0!5Vu0&,

~52!
c f c~t,t !5 iG f

1~t!Qcc~ t !, c0c~0,t !5V8cc~ t !

have the following meaning. At timet50 the initial vibra-
tional stateu0& is excited at rateV to the intermediate nuclear
state, and arrives there as a wave packetcc(0)5Vu0&. The
wave packetcc(t)5 iG c

1(t)cc(0) propagates on the poten-
tial surfaceUc(R) of the core-excited stateuc&; it can be
expressed through the wave packetcc~0! of the initial time
t50 with help of the propagatorGc

1(t). At some timet this
wave packet decays with the rateQ to the final stateu f &, at
which moment the wave packetc f c(0,t)5Qcc(t) appears in
the final state. The propagation of this wave packet on the
final-state potential surfaceUf(R) is governed by the re-
tarded Green’s functionG f

1(t). After the timet the initial
wave packet c f c(0,t) evolves to the wave packet
c f c(t,t)5 iG f

1(t)c f c(0,t) ~52!. During the time of evolu-

tion the population of the core-excited stateuc& decreases
due to the finite lifetimeG21 of this state. The corresponding
decrease of amplitudes of the wave packetsc f c(0,t) and
c f c(t,t1T) ~51! is reflected in the autocorrelation function
st(t,t1T) ~51! by the decaying factor exp@2G(2t1T)#. The
final stateu f & has also a finite lifetimeg0

21. Therefore, the
amplitude of the wave packetc f c(t,t1T) propagated during
the timet on the potential surface of the final stateu f & de-
creases as exp~2g0t! ~51!.

In accordance with the expression for the autocorrelation
function st(t,t1T) ~51!, the final stateu f & can be reached
under inelastic scattering by two different ways involving
two potentials. These ways differ by the timest andt1T of
decay transitionc→ f to the final state, and by the different
times lapses 0 andt of propagation on the final-state poten-
tial surfaceUf(R) ~see the lower panel of Fig. 2!. The first
path is given by the absorption transition to stateuc& at the
initial time t50, by the propagation on the potential surface
Uc(R), and by the decay transitionc→ f to the final state at
time t. This path leads to the final wave packetc f c(0,t) ~Fig.
2!. The second path is given by core excitation to the state
uc& at t50 with forthcoming propagation on the potential
surfaceUc(R), by the decay transitionc→ f at time t1T,
and by the propagation in the field of the potentialUf(R)
during the timet ~Fig. 2!. At the end of this path the final
wave packet equalsc f c(t,t1T). The cross section~50! of
inelastic scattering is the half-Fourier transform of the auto-
correlation function~51! which correlates the wave packets
c f c(0,t) andc f c(t,t1T) at the same point but at different
times.

The wave packet representation, Eqs.~50! and ~51!, al-
lows us to give an alternative treatment of the interference
effects in comparison with the time-independent theory. The
autocorrelation functionst(t,t1T) describes the time coher-
ence or interference of time-shifted wave packets~see the
lower panel in Fig. 2!. We will refer to this interference of
time-shifted wave packets as tot coherence ort interference.
The decay of core-excited stateuc& destroys thet coherence.
The multiplier exp@2G(2t1T)# in Eq. ~51! shows that the
corresponding coherence time, estimated as effective retarda-
tion timeT, does not exceed the lifetime of the intermediate
state

T&
1

G
. ~53!

The notion of interference of RIXS is different in the time-
independent theory@29–31#; the interference between RXS
channels is defined by the energiesEc of the intermediate
statesuc& @see Eq.~2! and the upper panel in Fig. 2#. We will
refer to this interference asE interference orE coherence.
As known from the time-independent theory of RIXS
@29–31#, theE interference between two different scattering
channels is large if the energy gapDE5Ec2Ec8 between
different intermediate states is smaller than or comparable
with the lifetime broadening

DE&G. ~54!

In other words, the length of coherence inE space is defined
by the lifetime broadeningG, while the length of coherence
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in the t representation or the coherence time is restricted by
G21 ~53!. Thus Eqs.~53! and ~54! show that whenE inter-
ference orE coherence is large~G→`!, the t interference or
t coherence is small, and vice versa. This follows indirectly
also from the uncertainty principle.

Contrary to Cederbaum and Tarantelli@32#, Eqs.~47! and
~50! contain an additional integration over timet. This third
integral is of principal importance as it leads to theD singu-
larity of the RXS cross section~2! caused by the energy
conservation law. The amplitude of the elastic scatteringF0
~51! is the half-Fourier transform of the overlap of the
ground-state vibrational stateu0& and the wave packet
c0c(0,t) ~52! @43#. The physical meaning of this wave packet
is the same as that of the wave packet discussed above,
cf c(0,t), if here we replace the indexf by the index 0 of the
ground state.

One can also adopt a Condon approximation in which
V, V8, andQ are assumed to be constant. The RIXS cross
section and REXS amplitude~47! are then simplified con-
siderably becauseV, V8, and Q may be extracted from
all integrals. To rewrite Eqs.~47!, ~50!, and ~52! in the
Condon approximation, we need to useV5V85Q51,
^c f c(0,0)uc f c(0,0)&51, ^0uc0c~0,0!&51, and q5uVQu2v8/
~pv!, and we have to introduce the multiplierV8V at the
right-hand side of the expression forF(t) ~51!.

B. Time-dependent analysis of the RXS amplitude

To analyze the dynamics of the propagation of wave
packets in coordinate space, the language of scattering am-
plitudes is appropriate. The RXS scattering amplitude~2! can
be written in terms of the time-independent Green’s function
broadened byG as

GE
15

1

E2Hc1 iG
5E

0

`

dt e~ iE2G!tGc
1~ t !, ~55!

or in terms of the time-dependent Green’s function as

F f5^ f uQGE
1Vu0&5E

0

`

dt e~ iE2G!t^ f uQGc
1~ t !Vu0&.

~56!

Here we use the Green’s functionsGE
1 andGc

1(t) ~49! de-
fined by the HamiltonianHc85Hc2U0(R0), the potential
Uc8(R)5Uc(R)2Uc(R0), and the energy E5v1E0
2Uc(R0) shifted byUc(R0). Comparing the right-hand side
of Eq. ~56! and the definition of the wave packetc f c(0,t)
~52!, we find

F f52 i E
0

`

dt e~ iE2G!t^ f uc f c~0,t !&

52 i E
2`

`

dx c f* ~x!H E
0

`

dt e~ iE2G!tc f c~0,t;x!J ,
~57!

wherec f c(0,t;x) is the wave packet in the coordinate repre-
sentation. This equation is useful for qualitative analysis of
RXS under transitions between dissociative states. Let us
assume the Condon approximation for simplicity, and extract

V andQ from the integral in Eq.~57!. In this case the wave
packetc f c(0,t;x) coincides with the solution of the time-
dependent Schro¨dinger equation in the potential of the core-
excited stateUc(R) with initial wave functionw0(x) ~16!.
One can understand the main features of a wave-packet
propagation if one looks for the solution of this problem with
a linear potential Uc8(R)5Uc(R)2Uc(R0)5Fx
~F5Fc5const.0, x5R2R0! @45#,

c f c~0,t;x!5S 1

pa~ t !2D
1/4

expF2
1

2 S x2xc~ t !

a~ t ! D 2a1 ib G ,
~58!

where

xc~ t !5Ft2/2m, a~ t !5a0F11S tt0D
2G1/2, t05

ma0
2

\
,

~59!

and a512i t /t0, b5Ft(x2Ft2/6m!. Equation ~58! shows
that the probability density distribution remains Gaussian-
like just as the ground-state distributionw0

2(x) ~16! and that
the center of gravityxc(t) of the wave packet moves accord-
ing to the law of classical mechanics with a uniform accel-
erationF/m. The width of the packeta(t) which originally
wasa0 increases with time according to Eq.~59!. The char-
acteristic time for the wave-packet spread ist0. The physical
reason for this spread is the different velocitiesp/m of mo-
tion of different Fourier components exp(ipx) of the wave
packet. It also follows indirectly from the uncertainty of mo-
mentumDp;1/a caused by the finite dimensions of the
wave packet. In the dissociation regionE.Uc(`)2Uc(R0),
one can also expect in the case of a general potential that the
center of massxc(t) of the wave packet moves according to
the law of classical mechanicsm ẍc5F(xc). The time depen-
dence of the spreada(t) ~59! of the wave packet depends in
the general case on the shape ofw0(x) and on the potential.
Contrary to the case of linear potentials, the general case is
complicated by inhomogeneities of the potential. Equations
~52! and~57! show that during the propagation on the inter-
mediate state potential surfaceUc(R) the wave packet con-
tinuously decays to the final electronic state. The factor
exp~2Gt! ~57! describes the decrease of the wave-packet
amplitude caused by the decay-induced decrease of the core-
excited state population. Thus the decay transitionsc→ f can
take place only when the time of decay transitions does not
exceed the lifetime and, as a consequence, when the coordi-
nate for the center of mass of the wave packet does not
exceed the distance covered by the wave packet during this
lifetime,

0<t<
1

G
, xc<

vc
G
. ~60!

Herevc;ADV/m is the characteristic velocity of the wave-
packet propagation, andDV5Uc(R0)2Uc(R01xc) is the
change of the intermediate-state potential under propagation
of the wave packet. To obtainxc5Ft2/2m ~59!, one can es-
timate the slope asF;DV/xc . It is relevant to note that the
center of gravityxc and the crossing pointRcf cannot be
equal. These quantities have different magnitudes and differ-
ent physical meanings. Indeed,xc is the time-dependent
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character of the wave packet or coherent superposition of the
infinite set of wave functions, while the crossing pointRcf is
the characteristic of the FC factor between two stationary
wave functions. However, these two quantities also have a
common property, namely, that they cannot exceedvc/G. In
Sec. III B1 we examine the two important limiting cases of
short- and long-lived intermediate states.

1. Short-lived core-excited states

When the lifetimeG21 of the core-excited state is small,

vc
G

<a0 , ~61!

the nuclei have no time move far away from the equilibrium
point R0 and the wave packet does not spread. This means
that the wave packetc f c(0,t) is a smoother function over
time than exp~2Gt!, and that one can extract^ f uc f c(0,t)&
from the integral~57! at point t50. BecauseG1(0)52 i
and, as a result,c f c(0,0)&5QVu0&, we have@31#

F f5
1

E1 iG
^ f uQVu0&.

QV

E1 iG
^ f u0&. ~62!

One can see from the latter expression written in the Condon
approximation that inelastic~fÞ0! and elastic~f50! scatter-
ing amplitudes are defined by a projection of the final vibra-
tional stateu f & on the ground vibrational stateu0&. The FC
factor ^f u0& is defined by a narrow region close toR0 with
the width a0 due to strong localization of the ground-state
vibrational functionu0&. This is the case for a vertical transi-
tion because the initial wave packetu0& has no time to spread
during the lifetime of the core-excited state. It is of interest to
note that the intermediate vibrational statesuc& do not take
part in RXS in the short-time limit@see Eq.~62!#. The am-
plitude of elastic scattering is simplified considerably by the
Condon approximation

F05
VV8

E1 iG
~63!

according tô 0u0&51.

2. Long-lived core-excited states

We now consider the opposite long-lived limiting case
when the lifetime broadeningG of the intermediate state~34!
is narrow in comparison with the widthsgc ~19! andgc f ~24!
of absorption and emission FC factors. With aid of the iden-
tity 1/(x6 i0)57 ipd(x)1`~1/x! and the FC rule, we ob-
tain from Eqs.~2! and ~3!

F f52VQS ip^wEf
f uwE

c &^wE
c uw0&

1`E dEc
^wEf

f uwEc
c &^wEc

c uw0&

Ec2E
D ,

~64!

F052VV8S ipU^w0uwE
c &U21pE dEc

u^w0uwEc
c &u2

Ec2E
D ,

for the RIXS and REXS amplitudes, respectively. The final-
state energyEf is defined by Eq.~6!, while E5v1E0 . So
the RIXS and REXS amplitudes are the sums of two contri-
butions. The terms connected with the principal value of the
integral overEc describe the interference between close-
lying intermediate continuum states. The long-lived limit for
the core-excited dissociative states differs thus qualitatively
from the bound core-excited states at the same limit. Let us
recall that the interference between different vibrational sub-
levels of bound core-excited states is absent in this limit
@29–31#. Ordinarily, the principal value of the integrals in
Eq. ~64! is smaller than the main term. We therefore ne-
glected the principal values of the corresponding integrals in
Eqs.~35! and ~41!.

C. Characteristic features of molecular dissociation
following x-ray excitation

If the final stateu f & is dissociative, the molecule will evi-
dently dissociate independently of the lifetimeG21 of the
core-excited stateuc&, and independently of the dissociative
versus bound character of the core-excited state. The disso-
ciation of stateu f & can only be inhibited by decay to a lower-
lying bound state, which still often is too slow~t.1027 s! to
stop dissociation. As indicated by recent experiments
@18,19,46#, it is necessary to understand when the RXS spec-
trum is defined by the molecule in the classical FC region
~near the equilibrium internuclear distanceR0 of the ground
state! or by the dissociation fragments in the asymptotical
regionR@R0 . Let us consider first the case of a continuum
intermediate state reached by excitation to a repulsive poten-
tial Uc(R) or by excitation above the dissociative threshold
Uc~`!. In the short lifetime limit~61! the molecular frag-
ments have no time to separate and the RXS spectrum is
defined by molecular transitions near the equilibrium point
R0. In the opposite limit of large lifetimevc/G@R0 , a mol-
ecule has time to propagate into the dissociative region lying
far from the equilibrium pointR0. During this propagation
the wave packet continuously decays to the final state, emit-
ting x-ray photons and Auger electrons. The RXS spectral
shape is formed in accordance with Eq.~64!. As follows
directly from Eqs.~23! and ~24!, the continuum-continuum
FC factors increase when the slopesFc and Ff are small
~Fi→0!, or when they tend to become equal~Fc→Fc!. So in
the dissociative region where potentialsUc(R) andUf(R)
have small slopes, the FC factors~23! have d singularity.
The emission transition in the dissociative region is thus one
taking place in the atomic fragments~atomic transition!. The
spectral line of this atomiclike transition has the widthG as
was discussed in Sec. II C@see also Eq.~31!#. The emission
transitions in the molecular region (Rcf;R0) whereFcÞFc
gives a background with the widthgc f ~24!. As shown in
Sec. II D, this atomiclike transition has non-Raman behavior
and lacks Stokes shifts. This effect was observed recently in
the resonant Auger spectra of HCl@20#.

IV. SUMMARY

In this work we have presented time-independent and
time-dependent theories for radiative and nonradiative reso-
nant x-ray scattering involving dissociative states. We inves-
tigated three general types of x-ray scattering channels con-
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necting ground, core-excited, and valence-excited states with
bound and dissociative character. We find that the interesting
combinations are~1! bound-continuum-bound plus bound-
continuum-continuum ~bcb1bcc!, ~2! bound-bound-
bound plus bound-bound-continuum~bbb1bbc!, and ~3!
bound-bound-continuum plus bound-continuum-continuum
~bbc1bcc! channels. It is shown that these combinations
have different limiting factors for the spectral shapes, and
that they are different with respect to the relative contribu-
tions of the resonant and background parts in the spectra.
The spectral shape is defined by the absorption and emission
Franck-Condon distributions~with the widthsgc and/orgc f!,
by the lifetime broadening function~width G!, and by the
spectral function of the excitation photons~width g!. In the
soft-x-ray region these parameters have typical values of
gc;1 eV, 0,gc f;1 eV, G;0.1 eV, andg;0.1 eV. In the
first type of combination~bcb1bcc! the shape of the RXS
cross section consists of a narrow line caused by the
continuum-bound channel with the widthg, a background
with the width equal to the lifetime broadening of the x-ray
excited stateG, and an additional broader background caused
by the continuum-continuum channel. The cross section of
the bbb1bbc RXS channels is defined by a narrow line
caused by the bound-bound channel with widthg and a
background caused by the bound-continuum channel with
width gc . The cross section of the third type of scattering
channel~bbc1bcc! is formed by a lifetime-broadened~G!
resonance and a background with the widthgc . Contrary to
the two previous cases, this last case shows a ‘‘non-Raman’’
behavior; the width of the resonance does not depend on the
width of the spectral distribution of incoming x-ray photons.
Other findings presented in this work can be summarized as
follows.

A strong space correlation between excitation and decay
is found. This space correlation relates to the finite lifetime
of the intermediate core-excited state, more precisely as a
characteristic length scale equaling the distance propagated

during this lifetime. RXS emission at the internuclear dis-
tances beyond the characteristic length is exponentially
small.

Selection rules operate for continuum-bound transitions if
the slope of the continuum potential is sufficiently small.
That is, only transitions to vibrational states with odd quan-
tum numbers are allowed within the harmonic approxima-
tion.

The main contribution to the RXS cross section is given
by the dissociative region if the lifetime of the core-excited
state is sufficiently long. The emission transitions in the mo-
lecular region form the wing of the dissociative resonance.
The spectral shape of this wing is in general oscillatory with
the characteristic energy scalegc f;1 eV. It depends strongly
on the shapes of the potential surfaces involved in the RXS
process. We call attention to detailed experimental investiga-
tions of the wings of the RXS spectral lines with the aim of
receiving information about potential surfaces of the elec-
tronic states involved in the RXS process.

Additional untrivial properties of the RXS cross section
for continuum-boundscb or bound-continuumsbc decay
transitions have been obtained. Both cross sections are pro-
portional to the square of the wave function of the vibra-
tional states involved in the RXS process. Moreover, the
spectral shape of the RXS cross section copies the space
distribution of the squared vibrational wave function with the
characteristic energy scaleg̃c;g̃ f;1 eV. So an experimen-
tal measurement would allow a direct mapping of the vibra-
tional wave function and a reconstruction of the shape of the
corresponding molecular potential. Indeed, the zeros of the
RXS cross section caused by the nodes of the vibrational
wave function allow the assignment of vibrational states.
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