PHYSICAL REVIEW A VOLUME 54, NUMBER 5 NOVEMBER 1996
Unambiguous quantum measurement of nonorthogonal states
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Generalized quantum measurements can be used to separate deterministically two nonorthogonal quantum
states. However, such measurements also lead to inconclusive results, where the initial state remains unknown.
We introduce a particular type of generalized quantum measurement, which we term loss induced generalized
(LIGe) quantum measurement, and present an experimental realization. This LIGe measurement achieves
optimal deterministic separation of two nonorthogonally polarized single phdt6h650-2947@6)01311-X
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[. INTRODUCTION but rather to avoid making any mistake. It is slightly less
well known that quantum mechanics still allows you to do so
Let us assume that you are given spiparticles in one of [7,8]. Instead of having a binary answer, eithef;) or
two nonorthogonal states, sdyk;) or | #,), satisfying |#,), with a given probability of error, you add a third pos-
(41| )| =cos# 0 (1) sibility, known as an incon(_:lusive r_esult. At the end _of your
. . o . test, you therefore know with certainty that the particle was
and with the same priori probability.” For each particle,

. ; X . » either in statd ) or in state|i,), or that you do not know
your task is to try to identify the preparation. Rushm'g the initial state. A simple way to implement this test is to

through your Iec_ture notes from_y_ou_r quantum mECh_an'C%hoose at random whether to project your particle onto
coursd 1], you quickly realize that it is impossible to achieve H'[@ orthogonal to| ), or onto |y5). If you choose to

your goal: two nonorthogonal states cannot be distinguishe .
with certainty. In fact, if you restrict yourself to standard _prolect ontoly;) and get a positive result, you know that the

quantum measurementalso known as Von Neuman mea- initial state could not have beepny,) and was therefore
surement$2]), the best you can do is to project your states| ‘42>_' If you get a negative result, you cannot make a deter-
onto two orthogonal statdss;) and|#,), chosen to be “as m|n|st|g: concl_usmn: the state may have be_en e|th9r. In order
close as possible” to the original states, while keeping thd® avoid making a wrong deCISIOI’.l, you S"T.‘p'.y dlsqard the
orthogonality conditior(see Fig. 1 The result of your mea- measurement and call the result inconclusiités obvious
surement will be eitheli;) o |é,), which you will identify that there is still information left in the inconclusive results,

- ; ; ; hich means that this simple procedure is not optimal; we
with |4) and|,), respectively{3]. This setup gives you a Wi . . . . .
probability of error will present an optimal setup in the followihgThis particu-

1 lar scheme is a somewhat trivial example of a generalized
— _ 2_ 2" 0 i quantum measurement. This type of measurement, also
a=Prolieron =[(y| ¢zl =K vl b1)] =5 (1=sina). known as positive operator-valued meas(R®VM) [3,7,9,
(2 cannot be reduced to standard projections of the initial state
If you had noa priori information on the initial state, the onto orthogonal states spanning the initial Hilbert space
initial entropy of your system wabl;,=1 (in bits). After ~ alone. Our example already shows that, in some cases, they
your measurement, with a probability of errthe entropy ~may be preferable to a standard quantum measurement.
becomesHg,= —qlog,q— (1—q)log,(1—q), where we use In Sec. Il we shall first give a brief theoretical overview
the base 2 logarithm (Ig)jto obtain the entropy in bits. The 0N generalized measurements, followed by the introduction
average information gaifin bits) given by this measurement Of a particular type of measurement, which we term the loss
strategy is induced generalizedLIGe) measurement. In Sec. Il we

lw=Hini—Hsin=1+0log,q+(1-q)logy(1—q). (3)

It is well known that this is the best you can do in terms of
information gain[4,5].2

However, in some cases, this may not be the optimal mea- B B
surement for your particular purposes. For example, your o
loss may be so high if you make the wrong decision that |¢1> |¢ >
what you require is not to gain the maximum information, 2
W> >

This restriction is not necessary, but will be adopted in this work  F|G. 1. Standard projection measurement of two nonorthogonal
to simplify the algebra. states|¢1) and |i,), verifying (4| ,) =cosx. These states are

“Note that this is not true in higher dimensions: a standard meaprojected onto the two orthogonal statdsgs;) and |¢,)

surement need not give the highest information d4i6]. (B=ml4— al2).
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present our system for implementing such a measuremesuch a measurement is sometimes known as a honorthogonal
using polarized single photons. Our measurement strategyeasurementlO]. This is the type of measurement that we
achieves the theoretical optimum for separating nonorthogoseed for the problem discussed in the Introduction: even
nally polarized single photons. In Sec. IV we show the ex-though we are in a two-dimensional Hilbert space, we need a
perimental realization and present our results. We fina"}h]easurement with three possib|e answers: the state was

conclude in Sec. V. |y1); the state wasi,); or the state is unknown. The prob-

ability of obtaining the result is given by
Il. QUANTUM MEASUREMENTS

A. Standard measurements

p(i)=Tr(pQj), ®

Returning to our lecture notes on quantum mechanics, or
to any good textbookl], we discover that any measurable
physical quantity, sayA, is represented by a Hermitian op- wherep is the density matrix of the initial state.
erator A in our Hilbert spaceH, known as an observable.

The main property of an observable is that it has a complete The link between the formal description of d) and the

X . Jnore physical introduction of an ancilla followed by a stan-
set of eigenvectors. Moreover, two eigenvectors correspon 5 rd orthoaonal measurement is given by the Neumark theo-
ing to different eigenvalues are orthogonal. In an 9 9 y

n-dimensional Hilbert space, we can write the completenesgern [3.12,13. Th.'s theorem states that any ggnerallzed mea-
condition as surement described by Eq7) can be obtained from an
orthogonal measurement in a higher-dimensional space. The
choice of either description is therefore more or less a matter
2 Pi=1, (4) of convenience. However, two points are worth emphasizing.
(i) In the laboratory, the result given by a measuring de-
whereP; is the projection operator on eigenvectgr) and  vice is always one in a set of macroscopically distinguishable
1 is the identity operator. A measurement of the physicaktates(e.g., the position of a meter or a number of counts in
quantity.A can only give one of the eigenvaluesAdfind the 3 countey. Therefore, the final states of at least the apparatus
initial state|y) is projected onto the corresponding eigenvec-gre necessarily orthogonal. So the physical description of the
tor. Such a measurement is also known as an orthogongheasurement needs to include an orthogonal projection.
measuremerjtl0]. The probability of obtaining the restilis (i) The description in terms of noncommuting operators
given by the overlap with the corresponding eigenstate Q, is incomplete in the sense that it does not specify

p(i)=K &il )2 (5) uniquely the state of the system after the measurement. In
! ' fact, this state depends on the exact implementation in terms

More generally, if the initial state is described by a densityof an ancilla[14].

matrix p, the probability becomes Therefore, in the following, we shall mainly use the more
physical picture and describe our generalized measurement
p(i)=Tr(pP;), (6) in terms of orthogonal projections in a higher-dimensional

_ Hilbert space.
which reduces to E(5) for a pure state.

B. Generalized measurements C. Geometrical representation
The above notion of quantum measurements is, however, . . .
Let us return to the example given in the Introduction of

too restrictive. For example, it was shown by Benifffl] two nonorthogonal statdss;) and| ), as shown in Fig. 1.

that, in general, a succession of two such measurements can- : . !
not be represented by a single standard measurement.a.!g\he two-dimensional Hilbert space spanned by the system

more general measurement is not a direct projection onto an b(_e emb_edd_ed na three-dimensio(@D) space. The
ird dimension is given by the state,), orthogonal to the

set of orthogonal states, but involves coupling the syste two initial states. This is described in Fig. 2. We first per-

under consideration to an auxiliary one, known as an ancill orm a unitary evolution of the svstem in the 3D space. Geo-
This is followed by a standard measurement of either th Y Y pace.

ancilla alone or the global systefi8,10,13. Mathematically, metnc:lly, this ev_oluf/(\)/%, denoted by, is ghrotatllon 'T .3D
this type of measurement can also be defined in terms of thigroun vectofuy)=( N .)(|¢1>_|¢2>)' with ang eﬁ. tis
original Hilbert space alone, by a generalization of ).  ©aSY to see that the initial stdig,) is transformed into
Instead of describing it in terms of a set of orthogonal pro-
jection operators?;, the generalized measurement can be 1/ « @
described by a number of, possibly noncommuting, positive Ul) = T 5'n§+COS§C059 |p1)

; . 2
operatorsQ;, which satisfy

1 a a
S =1, @) +E( —sin§+cos§cos€)|¢>2)

wherem can now be larger than the dimension of the Hilbert a .
o +cos5sind , 9
space. As theQ; are not orthogonal projection operators, 2 | ¢o) ©
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|¢ > D. Formal definition of a LIGe measurement
0

We now expand the previous discussion to higher-
dimensional space and formally define a LIGe measurement.
U|\|l2> We start with a system in p-dimensional spacé(g, which
we embed in a largeX-dimensional spacé(;. This can be
done, for example, by explicitly introducing an ancilla and
|u > performing the tensor product withHHs. The space
1 0 Hs®|ag), where|ag) is the initial state of the ancilla, is then
a subspace of the total spag& . A generalized measure-
M) > ment on the system consists first of a unitary transformation
A a2 U in Hy, followed by a standard measurem@min initial
|¢ > state, which may be characterized by its density maigixis
1 | first transformed intdJ p;,U". The measurement then corre-
V>

Uly,>

sponds to projections onto one of the orthogonal states:
ly,> |$1), ..., |én). The probability to get the restiltis

p(i)=Tr(UpiUT ) b)) =Tr(pinUT| ¢} ;| V). (15

FIG. 2. Geometrical representation of a generalized measure-
ment. The initial 2D Hilbert space is embedded into a 3D space by
adding an extra statlp,), which is orthogonal to the two initial Therefore, the set of operatdPs corresponding to this mea-
states. The measurement consists of one rotaficaround vector ~ surementsee Sec. Il Ais given by
|u;) with angle ¢, followed by a standard projection measurement t
in the 3D space onto the three orthogonal vecters), | 4+), and Pi=U"]¢i)(i|U. (16)
|,). Vector| ) is transformed intdJ| ), which is orthogonal to

|65, and reciprocally fof ). For reasons that shall become clear in the following, we

define a LIGe measurement as a measurement for which the

while the initial state ) is transformed into first p vectors|gy), ..., [¢p) are insideHs (this implies
that the other vectors are ig). We group all the other

1 o a 1 vectors together and consider this result as inconclusive. In
Ulo)= —( —Sin§+cos§cosﬁ)|¢1>+— this case, it is possible to express the measuremefigin
V2 V2 alone as a nonunitary transformation, followed by a standard
a o a measurement projecting on the vec_tbm), ... |dp). For
X sm§+cos§cos9 |¢2)+cos§sm0| o). initial state| ), the transformation gives
(10) [ —PUlY), (17)
The angle of rotatiord is chosen to be whereP is the orthogonal projection okg. The transfor-

mationPU is known as a contractidd 6] from Hy to Hs. It
@ is also possible to define a nonunitary transformation
cosy=tan;, (1D within Hs* by

which gives T=PUP. (18)

It is easily seen that this transformation is diagonalizable and

Uly)= \/ESi”g| $1)+ \cosx| o), (12  has eigenvalues with a modulus bounded by one. Therefore,
2 it can be written as

a T=e H A=g Heg A (19
Uliz) = \/Esm§| $2)+ cosz| o). (13

whereH andA are two commuting Hermitian operators and

. . i it -A i

Since the three statés), | ¢,), and| ¢,) are orthogonal, it A IS positive. The operatoe ™ represents the losses in the
is possible to separate them deterministically with a standar@ystem. Indeed, the transformatidndoes not conserve the
measurement. For initial state/;), the result of the mea- NO'M, but introduces state-dependent losses. Following the
surement can be eith¢r,), with probability 2sifa/2, or

| o), With probability cogy, but it cannot be ¢,), and con-

versely for initial statey,). Therefore, this system imple- 31t is also possible to perform the standard measurement directly
ments the unambiguous identification of the two initial in Hy without any unitary transformation first. We prefer to keep

states. The probability of obtaining an inconclusive result ishese wo stages as this corresponds more closely to the experimen-
tal situation where the system is first coupled to a measuring appa-

p(?)=coxx. (14 ratus and then measured.
4Formally, T is aNXN matrix, but it has zeros everywhere, ex-
This is indeed the optimal that can be achieved for two statesept in the leadingox p block, and so can be considered as a
with overlap|( 4| ,)|=cosa [12,15. transformation withiriHs.
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demonstration leading to Eq§l5) and (16) and replacing D2

U by T, we can write the family of operators corresponding DO PBS3

to the LIG measurement &3;, i=1, ... p, with 2 D1
Q=T ilT, (20) BS1| . % ~/

which give the conclusive results, and

p
Qp+1=1—i§l Qi=1-e 2, (21)

A 4
~.

7

which gives the inconclusive result. Sinéeis positive, all PBS1

these operators are positive. Following the results of Sec.

IIB, Egs. (20) and (21) therefore define a POVM. FIG. 3. Setup of an optimal LIGe measurement of the polariza-
This rather abstract formalism can be made clearer byion of single photons. The incoming beam is split by a polarization

using the previous example of Sec. IIC. Hegeis a 3D beam splittePBSY into horizontal and vertical components. Part

rotation, which is followed by an orthogonal measuremenpf the vertical component is attenuated at a beam sp(@8d) and

along the three vectolispo), |#1), and|,). As both|p,) the two are then recombingd at PBS2. Two states vx_/ith polarization

and |¢2> are in the initial two-dimensional Hilbert space + g with _respect Fo the vertical axis are transforme_d _|nt_o orthogonal

Hs, this is a LIG measurement. It is easy to obtain the exStates, with polarization at 45°, and can be deterministically sepa-

plicit expression fofT acting on|¢,) and|¢,): rated at PBS3.

t=tany, (29
T|¢12)=

a

\/ECOS{E

the two fields at+ » are transformed into two orthogonally
polarized fields oriented at 45°, and can be easily sepa-
rated by PBS3as shown in Fig. B

where|y7) and|y3) are the normalized vectors orthogonal ~ The above setup enables us to take two nonorthogonally
to |4) and|y,), as defined in Sec. I. The norm ®f¢, ) is  polarized fields and transform them into two orthogonally
less than one, which means thatintroduces loss in the polarized ones, at the expense of introducing some attenua-
system. We can also write the projection operat@rs tion. We shall now turn to the quantum regime and analyze
the same setup with single photons.

1
—) [ 42.0), (22)

1
—— — |UA v (23 _
2CO§(_) B. Quantum regime
2 The two states we shall consider are nonorthogonally po-
larized single-photon states. We choose our basis for the po-
larization as the vertical and the horizontal axis and use the
=1-0,-0.. 24 usual Fock space representatifitv] to denote the corre-
Qs Q@-Q: 24 sponding states bjyL,0) for the horizontal polarizatiofthere
This shows how the more physica| picture of a POVM as d.s one photon in the horizontal mode and zero in the vertical
coupling between the system and an auxiliary one is relaten® and by [0,1) for the vertical polarization. The two
to the mathematical definition of a POVM in terms of non- Single-photon states polarized-aty with respect to the ver-
commuting operators in the initial space. We now turn to aical axis are then given by
ractical implementation of thi f m rement. .
practical implementation of this type of measurement ) = cosy|0,2) + sing| 1,0), 26

Q1,2:

and

Ill. THEORETICAL MODEL FOR LIGe MEASUREMENT |¢2>=COS77|O 1)—sin77|1 0 (27)

A. Macroscopic regime . . .
which gives an overlag|i,)=cos2y. In order to intro-

~ The setup for a practical LIGe measurement is shown iyuce BS1 in the vertical branch, we need to add the vacuum
Fig. 3. Let us first examine it in the macroscopic regimestate entering at the second port of BS1, which will get
with classical electromagnetic fields. We shall consider twocoupled to the input state. The splitting is then represented

spect to the vertical axis. An incoming field is split by a

polarization beam splitteiPBSY) into horizontal and vertical U]0,)®|0)=t]0,1)®|0)+r|0,0)®|1), (28)
components. The horizontal polarization continues on a

straight line, while the vertical one is deviated at 90°. Thewhere® represent the direct product of the initial space with
vertical branch is attenuated by a beam splitB$1), with a  the new mode. A photon originally in the vertical polariza-
transmission coefficiertt The two branches are then recom- tion mode will either remain in the same state, with ampli-
bined at a second PB®BS2. The optical paths of the two tudet, or be transferred to the new mode, with amplitude
branches are adjusted to be equal. When the transmission If the transmission amplitudé is again chosen to be
coefficientt is chosen to be t=tann, we easily obtain the states after splitting:
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U 1) ®|0) = V2sing| ¢;)®|0) + VC05277|0,0>®|1>1(29) /4 polarizer

Ul i) ®|0) = 2sing| ¢,) ®|0) + \cos2y|0,0) @ | 1>,(30)

PDL
where|¢,) and|¢,) are the two orthogonal single-photon PBS fiber
states polarized at 45°: 7

DI -
1 polarization
| 1) = E(|0,1>+|1,0>), (31) D2 J controller
1 TPHC MCBA |, PC
|¢2>:E(|0’1>_|1'0>)- (32

FIG. 4. Implementation of a simple LIG measurement. A pulsed

If we put single-photon detectors in the three outputlaser(wavelength 1300 nm, length of the pulses about 1 iss
branches, we can now get the full statistics for this measuresirongly attenuated to obtain pulses with 0.1 photon on average. It
ment system: a count in D1 corresponds to initial stateS first transformed into a circularly polarized beam b /4 plate.
|441), a count in D2 corresponds to initial stdt,), and a The follqwing .Iinear. polqrizer gnables one .to choose any linear
court n DO coresponds to a inconclusive resul,.The prop 0212810, W a e nensty. The POL her plys e ol of
ability for this is p(?)=cos2;. This system is therefore olarization components, one of which is attenuated during the

equivalent to the one presented in Sec. IIC and realizes th o N . .
. . transmission. The polarization controller creates linearly polarized
optimal separation of the two nonorthogonal states.

output states that can be separated at the PBS. The light on each
side of the PBS is sent to Ge avalanche detectors D1 and D2 oper-
IV. EXPERIMENTAL REALIZATION ating in the Geiger mode, to detect single photons. The signal is
amplified, discriminated, and combined at an “or” gate. The time
to pulse height convertdfPHC) (EGG-Orteg records the time of
The appealing property of the setup suggested in the prexrival of each photons. The slightly different lengths in the two
ceding section is that it enables us to obtain directly theoutput ports ensure that the photons coming from the two ports
statistics for the three possible answearép,), p(#-), and arrive at different times. The multichannel buffer analyddCBA)
p(?).However, it requires an interferometer that needs to béEGG-Orteg analyzes the amplitudes produced by the TPHC,
kept stable. A much simpler setup was therefore chosen forhich are then recorded in the PC.
our experiment and is presented in Fig. 4. The main element

is a polarization maintaining fiber that possessesyyerall attenuation coefficient in the vertical axistjsthen
polarl_zanon-dependent Iossé]sS]. W_e will refer_ to _|t as @ the two states polarized at », with t=tany, will become
PDL fiber. In this type of fiber, one linear polarization mode thogonal. However, in a polarization maintaining fiber, be-

propagates withc_)ut attenuation, while the orthogonal mode iSause of the birefringence, the two modes do not propagate
attenuatgc{PDL fibers are usually used as polarlgers: a Iongat the same velocity.Therefore, the two output states need
enough fiber completely absorbs one mode, leaving only on '

linear polarization at the outputThis fiber replaces the in- fot be linearly polarized, but can have any elliptical polar-

terferometer of Fig. 319]. The advantage is that as the two ization. In order to enable separation at a PBS, we need to

polarized states propagate in the same fiber, the stability oe}dd another polarization controller, which transforms the two

the experiment is much better than with two spatially Sepa_elliptical polarizations into two linear ones. We set the con-
oller to send the state 7, say, in detector D1 and shall get

rated beams. Also, since the PDL fiber enables us to modi X it )
the polarization continuously during the propagation, it ist"€ State—7 in detector D2. The setup is first aligned and
possible to change the attenuation by using different lengthgalibrated with strong pulses. Then the intensity is greatly
of fibers. Instead of having one discrete jump, like in ordi-reduced to obtain very weak pulses, with, on average, 0.1
nary polarizers, we can in principle monitor the evolution of Photon per pulse. This ensures that the probability to get
the state of the polarizatidi20]. The disadvantage is that we more than one photon in one pulse is negligible. Most pulses
do not have access to the lossy mode anymore and so canritgve no photon at all and will simply not be counted. This
get directly the probability for inconclusive results. means that even though we do not create pure single photon
In this setup, the laser beam, at a wavelength of 1300 nirstates, but rather weak coherent states, we select only the
is first sent through a/4 wave plate, followed by a rotating cases where the initial pulse contains one photon. This justi-
polarizer, which enables us to send any chosen linear polafies our theoretical approach of Sec. Il B. Therefore, during
ization towards the PDL fiber, with a fixed intensity. We the experiment, we send and detect the photons one by one.
vary the polarization angley, while monitoring the output
intensity (after the PDL fibex, to obtain the two principal
axes of the fiber. To keep the same notation as in Sec. Ill, we5This is known as polarization mode dispersi®MD) and exists
shall call the nonlossy axis horizontal and the lossy one verin all optical fibers. However, PMD is much larger in polarization
tical. We also choose the latter as the angular origin. If thenaintaining fibers.

A. Setup
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Polarization angle = -30 V. CONCLUSION

T T T T T T T

eoor In this paper we have shown that generalized quantum

measurements, where the system under consideration is
. . ‘ . . ) ‘ coupled to an auxiliary quantum systdthe ancilla before
0 05 1 15 2 25 3 35 4 performing a standard projection measurement on the full
Polarization angle = 0 system, are not a mathematical curiosity, but can indeed be
- ' . . . ' - 1 implemented in the laboratory. We specifically introduced
and performed a LIGe quantum measurement to demonstrate
this point. This type of generalized measurement is interest-
ing because, on the one hand, it is easily performed in the

200 1

(=]
(=]
T

(=]
(=
T
1

Number of counts
n H o]
(=]
(=]
T

(=]

0 05 1 15 2 25 8 35 4 laboratory(the auxiliary system being simply an extra degree

Polarization angle = 30 of freedom in the vacuum state, which is coupled to the

0ol ' ' ' ' ' ' ' ] original system, while, on the other hand, its results are not
a0ol- | obtainable with a standard measurement. Our measurement,

for example, enabled us to separate two quantum states with
o . . . . overlap 1/2 with only about 2% error rate. The price to pay
0 05 ! P S 8 8 4 was of course that many measurement results were inconclu-
sive, corresponding to the absorption of the photon.

FIG. 5. Time histogram of the detected photons. The horizontal Qne could argue that our measurement is not a purely
scale represents the channels in the MCBA converted in nanosegyantum effect, in the sense that it can be understood in
onds(one channel represents 3)p$he vertical scale is the corre- terms of macroscopic fields as well: two nonorthogonally
§ponding nur_nber_ of detected photons. T_he differential atte_n“atiOBolarized fields are transformed into orthogonally polarized
n the PDL fiber is 4.54 dB, corresppndmg tp=30°. The first ones, at the expense of losing part of the fields. However, an
mgi%\'goi%r:z;%%w?Ot?hgh:;z?sn:rgx'ir\}?néninm%hazr;irr 223 a(r;;j implementation with single photons is somewhat similar to
The input angle is—=30° and most photons arrive in D1 With an We”_knowr.] interferometric engriments with single ph.OtonS'

' where the interference pattern is built from one detection at a

error rate of about 2.0%ratio of the number of counts in D2 with . H h intuitive f is th inale oh
respect to D1 (b) The input angle is 0° and the photons are equa"yf[lme. ere the counterintuitive feature is that a single p oton

split in the two ports(c) The input angle is 30° and most photons 'S not only split coherently intq the two polarization compo-
arrive in D2, with an error rate of about 1.7%. nents, but also “knows” that it went through an absorbing

medium even though it was not absorbed. The use of a PDL
fiber is also interesting because the evolution of the polariza-
tion in the fiber is continuous. On the one hand, for all the
The results are presented in Fig. 5. We choose a PDphotons that were eventually detected, there was no real ab-
fiber [18] of 25 cm, which gave a differential attenuation of sorption in the fiber. On the other hand, the polarization
454 dB. Using EQq.(25), this corresponds to an angle component along the lossy axis was, nevertheless, slowly
7=30°. The two statel);) and|y,) are therefore polarized reduced, thus rotating the initial stafefs) and|y,) towards
at angle+ 30° with respect to the lossy axis, which is chosenthe orthogonal statelsh;) and|,). .
as the origin. With strong pulses, we choose light polarized Another somewhat counterintuitive featyrg |s.that LI_Ge
at —30° and adjust the polarization controller to get theMeasurements show that a well-chosen dissipative environ-
maximum intensity in detector D1 and the minimum in D2. ment need not be damaging. Indeed, at least in this particular

We rotate the polarization te 30° and check that the inten- case, losses in the measurement were utilized to obtain a
- . . L . better separation of the two initial states. This may be put in
sity is now maximum in D2 and minimum in D1. We then

arallel with a recent theoretical wofR2], where polariza-
attenuate the pulses very strongly to get about 0.1 photon per (2] P

| q h s The d ion dependent losses were shown to increase quantum cor-
puise on average and go to photon counting. The etecm'l"@lations, thus revealing hidden quantum nonlocality in pairs

were Ge avalanche photodiodes, operating in the Geigeft gpinl particles. These observations may have bearings
mode [21]. When the initial state igy), the number of yon the burgeoning field of quantum computation, where
counts is maximum in D1 and minimum in OFig. Y@)].  the interaction with a dissipative environment is generally
The error rateratio of counts in D2 over Dlis 2%. When  considered as the main difficulty for realizing a quantum
the initial state is along the lossy axisig 5(b)], there is  computer. Finally, this type of measurement may have prac-
roughly the same number of counts in both detectthhe tical applications in quantum cryptograpkfpr an introduc-
difference is due to an unbalance between the two portgjon see, e.g.J23]), which specifically makes use of nonor-

together with a slightly different efficiency of the detecors thogonal states to establish a secret cryptographic key
With initial state|,), the number of counts in D2 is NnoW petween two users.

maximum and in D1 minimum. The error rate here is 1.7%.
In contrast, thetheoretical error rate given by a standard
projection measurement, corresponding to an overlap
(1| ) =cos2y, is about 6.7%from Eqg. (2)]. This shows
that our LIGe measurement can indeed separate the two non- We would like to thank G. Brassard, |. Percival, and J.
orthogonal states in a better fashion than even the optima&arity for useful discussions and the Swiss Fonds National
projection measurement with no experimental noise at all. de Recherche Scientifique for financial support.

B. Results

ACKNOWLEDGMENTS



54 UNAMBIGUOUS QUANTUM MEASUREMENT OF ... 3789
[1] C. Cohen-Tannoudji, B. Diu, and F. Lalo®uantum Mechan- [11] P. A. Benioff, J. Math. Physl3, 231(1972.
ics (Wiley, Paris, 197Y. [12] A. Peres, Phys. Lett. A28 19 (1988.
[2] 3. von NeumannMathematische Grundlagen der Quanten- [13] M. A. Neumark, C. R. Acad. Sci. URS&L, 359 (1943.
mechanik(Springer, Berlin, 193p[ E. T. BeyerMathematical [14] S. L. Braunstein and C. M. Caves, Found. Phys. L&tt3

Foundations of Quantum Mechanig®rinceton University (1988.
Press, Princeton, 1955 [15] I. D. Ivanovic, Phys. Lett. AL23 257 (1987.
[3] C. W. Helstrom,Quantum Detection and Estimation Theory [16] B. Sz.-Nagy and C. Fojaslarmonic Analysis of Operators on
(Academic, New York, 1976 Hilbert Space(North-Holland, Amsterdam, 1970
[4] E. B. Davies, |IEEE Trans. Inf. Theoiif-24, 596 (1978. [17] R. Loudon, The Quantum Theory of Ligli©xford University
[5] L. B. Levitin, in Information Complexity and Control in Quan- Press, Oxford, 1983
tum Physicsedited by A. Blaquiere, S. Diner, and G. Lochak [18] M. J. Messerly, R. E. Budewitz, B. K. Nelson, and R. C.
(Springer, Berlin, 198) p. 15. Mikkelson, J. Light. Tech9, 817 (1991.
[6] A. S. Kholevo, Prob. Inf. Transm{USSR 9, 596 (1973. [19] A. Muller, Ph.D. thesis, University of Geneva, 199énpub-
[7] A. Peres,Quantum Theory: Concepts and Metha#suwer, lished.
Dordrecht, 1998 Chap. 9. [20] N. Gisin, Opt. Commun114, 399 (1995.
[8] A. K. Ekert, B. Huttner, G. M. Palma, and A. Peres, Phys. Rev.[21] P. C. M. Owens, J. G. Rarity, P. R. Tapster, D. Knight, and P.
A 50, 1047(1994. D. Townsend, Appl. Opt33, 6895(1994).
[9] J. M. Jauch and C. Piron, Helv. Phys. Ad@, 559 (1967). [22] N. Gisin, Phys. Lett. A210, 151(1996.

[10] V. B. Braginsky and F. Y. Khalili,Quantum Measurement [23] C. H. Bennett, G. Brassard, and A. K. Ekert, Sci. A267 (4),
(Cambridge University Press, Cambridge, 199%hap. lIl. 50 (1992.



