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Generalized quantum measurements can be used to separate deterministically two nonorthogonal quantum
states. However, such measurements also lead to inconclusive results, where the initial state remains unknown.
We introduce a particular type of generalized quantum measurement, which we term loss induced generalized
~LIGe! quantum measurement, and present an experimental realization. This LIGe measurement achieves
optimal deterministic separation of two nonorthogonally polarized single photons.@S1050-2947~96!01311-X#

PACS number~s!: 03.65.Bz, 42.81.Gs

I. INTRODUCTION

Let us assume that you are given spin-1
2 particles in one of

two nonorthogonal states, say,uc1& or uc2&, satisfying

z^c1uc2& z[cosaÞ0 ~1!

and with the samea priori probability.1 For each particle,
your task is to try to identify the preparation. Rushing
through your lecture notes from your quantum mechanics
course@1#, you quickly realize that it is impossible to achieve
your goal: two nonorthogonal states cannot be distinguished
with certainty. In fact, if you restrict yourself to standard
quantum measurements~also known as Von Neuman mea-
surements@2#!, the best you can do is to project your states
onto two orthogonal statesuf1& and uf2&, chosen to be ‘‘as
close as possible’’ to the original states, while keeping the
orthogonality condition~see Fig. 1!. The result of your mea-
surement will be eitheruf1& or uf2&, which you will identify
with uc1& and uc2&, respectively@3#. This setup gives you a
probability of error

q[Prob~error!5 z^c1uf2& z25 z^c2uf1& z25
1

2
~12sina! .

~2!

If you had noa priori information on the initial state, the
initial entropy of your system wasH ini51 ~in bits!. After
your measurement, with a probability of errorq, the entropy
becomesHfin52qlog2q2(12q)log2(12q), where we use
the base 2 logarithm (log2) to obtain the entropy in bits. The
average information gain~in bits! given by this measurement
strategy is

I vN[H ini2Hfin511qlog2q1~12q!log2~12q!. ~3!

It is well known that this is the best you can do in terms of
information gain@4,5#.2

However, in some cases, this may not be the optimal mea-
surement for your particular purposes. For example, your
loss may be so high if you make the wrong decision that
what you require is not to gain the maximum information,

but rather to avoid making any mistake. It is slightly less
well known that quantum mechanics still allows you to do so
@7,8#. Instead of having a binary answer, eitheruc1& or
uc2&, with a given probability of error, you add a third pos-
sibility, known as an inconclusive result. At the end of your
test, you therefore know with certainty that the particle was
either in stateuc1& or in stateuc2&, or that you do not know
the initial state. A simple way to implement this test is to
choose at random whether to project your particle onto
uc1

'&, orthogonal touc1&, or onto uc2
'&. If you choose to

project ontouc1
'& and get a positive result, you know that the

initial state could not have beenuc1& and was therefore
uc2&. If you get a negative result, you cannot make a deter-
ministic conclusion: the state may have been either. In order
to avoid making a wrong decision, you simply discard the
measurement and call the result inconclusive~it is obvious
that there is still information left in the inconclusive results,
which means that this simple procedure is not optimal; we
will present an optimal setup in the following!. This particu-
lar scheme is a somewhat trivial example of a generalized
quantum measurement. This type of measurement, also
known as positive operator-valued measure~POVM! @3,7,9#,
cannot be reduced to standard projections of the initial state
onto orthogonal states spanning the initial Hilbert space
alone. Our example already shows that, in some cases, they
may be preferable to a standard quantum measurement.

In Sec. II we shall first give a brief theoretical overview
on generalized measurements, followed by the introduction
of a particular type of measurement, which we term the loss
induced generalized~LIGe! measurement. In Sec. III we

1This restriction is not necessary, but will be adopted in this work
to simplify the algebra.
2Note that this is not true in higher dimensions: a standard mea-

surement need not give the highest information gain@4,6#.

FIG. 1. Standard projection measurement of two nonorthogonal
statesuc1& and uc2&, verifying ^c1uc2&5cosa. These states are
projected onto the two orthogonal statesuf1& and uf2&
(b5p/42a/2).
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present our system for implementing such a measurement
using polarized single photons. Our measurement strategy
achieves the theoretical optimum for separating nonorthogo-
nally polarized single photons. In Sec. IV we show the ex-
perimental realization and present our results. We finally
conclude in Sec. V.

II. QUANTUM MEASUREMENTS

A. Standard measurements

Returning to our lecture notes on quantum mechanics, or
to any good textbook@1#, we discover that any measurable
physical quantity, sayA, is represented by a Hermitian op-
eratorA in our Hilbert spaceH, known as an observable.
The main property of an observable is that it has a complete
set of eigenvectors. Moreover, two eigenvectors correspond-
ing to different eigenvalues are orthogonal. In an
n-dimensional Hilbert space, we can write the completeness
condition as

(
i51, . . . ,n

Pi51, ~4!

wherePi is the projection operator on eigenvectoruf i& and
1 is the identity operator. A measurement of the physical
quantityA can only give one of the eigenvalues ofA and the
initial stateuc& is projected onto the corresponding eigenvec-
tor. Such a measurement is also known as an orthogonal
measurement@10#. The probability of obtaining the resulti is
given by the overlap with the corresponding eigenstate

p~ i !5 z^f i uc& z2. ~5!

More generally, if the initial state is described by a density
matrix r, the probability becomes

p~ i !5Tr~rPi !, ~6!

which reduces to Eq.~5! for a pure state.

B. Generalized measurements

The above notion of quantum measurements is, however,
too restrictive. For example, it was shown by Benioff@11#
that, in general, a succession of two such measurements can-
not be represented by a single standard measurement. A
more general measurement is not a direct projection onto a
set of orthogonal states, but involves coupling the system
under consideration to an auxiliary one, known as an ancilla.
This is followed by a standard measurement of either the
ancilla alone or the global system@3,10,12#. Mathematically,
this type of measurement can also be defined in terms of the
original Hilbert space alone, by a generalization of Eq.~4!.
Instead of describing it in terms of a set of orthogonal pro-
jection operatorsPi , the generalized measurement can be
described by a number of, possibly noncommuting, positive
operatorsQi , which satisfy

(
i51, . . . ,m

Qi51, ~7!

wherem can now be larger than the dimension of the Hilbert
space. As theQi are not orthogonal projection operators,

such a measurement is sometimes known as a nonorthogonal
measurement@10#. This is the type of measurement that we
need for the problem discussed in the Introduction: even
though we are in a two-dimensional Hilbert space, we need a
measurement with three possible answers: the state was
uc1&; the state wasuc2&; or the state is unknown. The prob-
ability of obtaining the resulti is given by

p~ i !5Tr~rQi !, ~8!

wherer is the density matrix of the initial state.
The link between the formal description of Eq.~7! and the

more physical introduction of an ancilla followed by a stan-
dard orthogonal measurement is given by the Neumark theo-
rem @3,12,13#. This theorem states that any generalized mea-
surement described by Eq.~7! can be obtained from an
orthogonal measurement in a higher-dimensional space. The
choice of either description is therefore more or less a matter
of convenience. However, two points are worth emphasizing.

~i! In the laboratory, the result given by a measuring de-
vice is always one in a set of macroscopically distinguishable
states~e.g., the position of a meter or a number of counts in
a counter!. Therefore, the final states of at least the apparatus
are necessarily orthogonal. So the physical description of the
measurement needs to include an orthogonal projection.

~ii ! The description in terms of noncommuting operators
Qi is incomplete in the sense that it does not specify
uniquely the state of the system after the measurement. In
fact, this state depends on the exact implementation in terms
of an ancilla@14#.

Therefore, in the following, we shall mainly use the more
physical picture and describe our generalized measurement
in terms of orthogonal projections in a higher-dimensional
Hilbert space.

C. Geometrical representation

Let us return to the example given in the Introduction of
two nonorthogonal statesuc1& and uc2&, as shown in Fig. 1.
The two-dimensional Hilbert space spanned by the system
can be embedded in a three-dimensional~3D! space. The
third dimension is given by the stateuf0&, orthogonal to the
two initial states. This is described in Fig. 2. We first per-
form a unitary evolution of the system in the 3D space. Geo-
metrically, this evolution, denoted byU, is a rotation in 3D
around vectoruu1&[(1/A2)(uf1&2uf2&), with angleu. It is
easy to see that the initial stateuc1& is transformed into

Uuc1&5
1

A2
S sina2 1cos

a

2
cosu D uf1&

1
1

A2
S 2sin

a

2
1cos

a

2
cosu D uf2&

1cos
a

2
sinuuf0&, ~9!
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while the initial stateuc2& is transformed into

Uuc2&5
1

A2
S 2sin

a

2
1cos

a

2
cosu D uf1&1

1

A2

3S sina2 1cos
a

2
cosu D uf2&1cos

a

2
sinuuf0&.

~10!

The angle of rotationu is chosen to be

cosu5tan
a

2
, ~11!

which gives

Uuc1&5A2sin
a

2
uf1&1Acosauf0&, ~12!

Uuc2&5A2sin
a

2
uf2&1Acosauf0&. ~13!

Since the three statesuf0&, uf1&, anduf2& are orthogonal, it
is possible to separate them deterministically with a standard
measurement. For initial stateuc1&, the result of the mea-
surement can be eitheruf1&, with probability 2sin2a/2, or
uf0&, with probability cosa, but it cannot beuf2&, and con-
versely for initial stateuc2&. Therefore, this system imple-
ments the unambiguous identification of the two initial
states. The probability of obtaining an inconclusive result is

p~?!5cosa. ~14!

This is indeed the optimal that can be achieved for two states
with overlapz^c1uc2& z5cosa @12,15#.

D. Formal definition of a LIGe measurement

We now expand the previous discussion to higher-
dimensional space and formally define a LIGe measurement.
We start with a system in ap-dimensional spaceHS , which
we embed in a largerN-dimensional spaceHT . This can be
done, for example, by explicitly introducing an ancilla and
performing the tensor product withHS . The space
HS^ ua0&, whereua0& is the initial state of the ancilla, is then
a subspace of the total spaceHT . A generalized measure-
ment on the system consists first of a unitary transformation
U in HT , followed by a standard measurement.3 An initial
state, which may be characterized by its density matrixr in, is
first transformed intoUr inU

†. The measurement then corre-
sponds to projections onto one of theN orthogonal states:
uf1&, . . . , ufN&. The probability to get the resulti is

p~ i !5Tr~Ur inU
†uf i&^f i u!5Tr~r inU

†uf i&^f i uU !.
~15!

Therefore, the set of operatorsPi corresponding to this mea-
surement~see Sec. II A! is given by

Pi5U†uf i&^f i uU. ~16!

For reasons that shall become clear in the following, we
define a LIGe measurement as a measurement for which the
first p vectors uf1&, . . . , ufp& are insideHS ~this implies
that the other vectors are inHS

'). We group all the other
vectors together and consider this result as inconclusive. In
this case, it is possible to express the measurement inHS
alone as a nonunitary transformation, followed by a standard
measurement projecting on the vectorsuf1&, . . . , ufp&. For
initial stateuc&, the transformation gives

uc&→PUuc&, ~17!

whereP is the orthogonal projection onHS . The transfor-
mationPU is known as a contraction@16# fromHT toHS . It
is also possible to define a nonunitary transformationT
within HS

4 by

T5PUP. ~18!

It is easily seen that this transformation is diagonalizable and
has eigenvalues with a modulus bounded by one. Therefore,
it can be written as

T5e2 iH2A5e2 iHe2A, ~19!

whereH andA are two commuting Hermitian operators and
A is positive. The operatore2A represents the losses in the
system. Indeed, the transformationT does not conserve the
norm, but introduces state-dependent losses. Following the

3It is also possible to perform the standard measurement directly
in HT without any unitary transformation first. We prefer to keep
these two stages as this corresponds more closely to the experimen-
tal situation where the system is first coupled to a measuring appa-
ratus and then measured.
4Formally,T is aN3N matrix, but it has zeros everywhere, ex-

cept in the leadingp3p block, and so can be considered as a
transformation withinHS .

FIG. 2. Geometrical representation of a generalized measure-
ment. The initial 2D Hilbert space is embedded into a 3D space by
adding an extra stateuf0&, which is orthogonal to the two initial
states. The measurement consists of one rotationU around vector
uu1& with angleu, followed by a standard projection measurement
in the 3D space onto the three orthogonal vectorsuf0&, uf1&, and
uf2&. Vectoruc1& is transformed intoUuc1&, which is orthogonal to
uf2&, and reciprocally foruc2&.
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demonstration leading to Eqs.~15! and ~16! and replacing
U by T, we can write the family of operators corresponding
to the LIG measurement asQi , i51, . . . ,p, with

Qi5T†uf i&^f i uT, ~20!

which give the conclusive results, and

Qp11512(
i51

p

Qi512e22A, ~21!

which gives the inconclusive result. SinceA is positive, all
these operators are positive. Following the results of Sec.
II B, Eqs. ~20! and ~21! therefore define a POVM.

This rather abstract formalism can be made clearer by
using the previous example of Sec. IIC. HereU is a 3D
rotation, which is followed by an orthogonal measurement
along the three vectorsuf0&, uf1&, and uf2&. As both uf1&
and uf2& are in the initial two-dimensional Hilbert space
HS , this is a LIG measurement. It is easy to obtain the ex-
plicit expression forT acting onuf1& and uf2&:

Tuf1,2&5
1

A2cosS a

2 D uc2,1
' &, ~22!

whereuc1
'& and uc2

'& are the normalized vectors orthogonal
to uc1& anduc2&, as defined in Sec. I. The norm ofTuf1,2& is
less than one, which means thatT introduces loss in the
system. We can also write the projection operatorsQi ,

Q1,25
1

2cos2S a

2 D uc2,1
' &^c2,1

' u ~23!

and

Q3512Q12Q2. ~24!

This shows how the more physical picture of a POVM as a
coupling between the system and an auxiliary one is related
to the mathematical definition of a POVM in terms of non-
commuting operators in the initial space. We now turn to a
practical implementation of this type of measurement.

III. THEORETICAL MODEL FOR LIGe MEASUREMENT

A. Macroscopic regime

The setup for a practical LIGe measurement is shown in
Fig. 3. Let us first examine it in the macroscopic regime,
with classical electromagnetic fields. We shall consider two
incoming states, linearly polarized with angles6h with re-
spect to the vertical axis. An incoming field is split by a
polarization beam splitter~PBS1! into horizontal and vertical
components. The horizontal polarization continues on a
straight line, while the vertical one is deviated at 90°. The
vertical branch is attenuated by a beam splitter~BS1!, with a
transmission coefficientt. The two branches are then recom-
bined at a second PBS~PBS2!. The optical paths of the two
branches are adjusted to be equal. When the transmission
coefficientt is chosen to be

t5tanh, ~25!

the two fields at6h are transformed into two orthogonally
polarized fields oriented at645°, and can be easily sepa-
rated by PBS3~as shown in Fig. 3!.

The above setup enables us to take two nonorthogonally
polarized fields and transform them into two orthogonally
polarized ones, at the expense of introducing some attenua-
tion. We shall now turn to the quantum regime and analyze
the same setup with single photons.

B. Quantum regime

The two states we shall consider are nonorthogonally po-
larized single-photon states. We choose our basis for the po-
larization as the vertical and the horizontal axis and use the
usual Fock space representation@17# to denote the corre-
sponding states byu1,0& for the horizontal polarization~there
is one photon in the horizontal mode and zero in the vertical
one! and by u0,1& for the vertical polarization. The two
single-photon states polarized at6h with respect to the ver-
tical axis are then given by

uc1&5coshu0,1&1sinhu1,0&, ~26!

uc2&5coshu0,1&2sinhu1,0&, ~27!

which gives an overlap̂c1uc2&5cos2h. In order to intro-
duce BS1 in the vertical branch, we need to add the vacuum
state entering at the second port of BS1, which will get
coupled to the input state. The splitting is then represented
by a unitary operatorU, whose action on stateu0,1& is

Uu0,1& ^ u0&5tu0,1& ^ u0&1r u0,0& ^ u1&, ~28!

where^ represent the direct product of the initial space with
the new mode. A photon originally in the vertical polariza-
tion mode will either remain in the same state, with ampli-
tude t, or be transferred to the new mode, with amplitude
r . If the transmission amplitudet is again chosen to be
t5tanh, we easily obtain the states after splitting:

FIG. 3. Setup of an optimal LIGe measurement of the polariza-
tion of single photons. The incoming beam is split by a polarization
beam splitter~PBS1! into horizontal and vertical components. Part
of the vertical component is attenuated at a beam splitter~BS1! and
the two are then recombined at PBS2. Two states with polarization
6h with respect to the vertical axis are transformed into orthogonal
states, with polarization at645°, and can be deterministically sepa-
rated at PBS3.
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Uuc1& ^ u0&5A2sinhuf1& ^ u0&1Acos2hu0,0& ^ u1&,
~29!

Uuc2& ^ u0&5A2sinhuf2& ^ u0&1Acos2hu0,0& ^ u1&,
~30!

where uf1& and uf2& are the two orthogonal single-photon
states polarized at645°:

uf1&5
1

A2
~ u0,1&1u1,0&), ~31!

uf2&5
1

A2
~ u0,1&2u1,0&). ~32!

If we put single-photon detectors in the three output
branches, we can now get the full statistics for this measure-
ment system: a count in D1 corresponds to initial state
uc1&, a count in D2 corresponds to initial stateuc2&, and a
count in D0 corresponds to an inconclusive result. The prob-
ability for this is p(?)5cos2h. This system is therefore
equivalent to the one presented in Sec. IIC and realizes the
optimal separation of the two nonorthogonal states.

IV. EXPERIMENTAL REALIZATION

A. Setup

The appealing property of the setup suggested in the pre-
ceding section is that it enables us to obtain directly the
statistics for the three possible answers:p(f1), p(f2), and
p(?).However, it requires an interferometer that needs to be
kept stable. A much simpler setup was therefore chosen for
our experiment and is presented in Fig. 4. The main element
is a polarization maintaining fiber that possesses
polarization-dependent losses@18#. We will refer to it as a
PDL fiber. In this type of fiber, one linear polarization mode
propagates without attenuation, while the orthogonal mode is
attenuated~PDL fibers are usually used as polarizers: a long
enough fiber completely absorbs one mode, leaving only one
linear polarization at the output!. This fiber replaces the in-
terferometer of Fig. 3@19#. The advantage is that as the two
polarized states propagate in the same fiber, the stability of
the experiment is much better than with two spatially sepa-
rated beams. Also, since the PDL fiber enables us to modify
the polarization continuously during the propagation, it is
possible to change the attenuation by using different lengths
of fibers. Instead of having one discrete jump, like in ordi-
nary polarizers, we can in principle monitor the evolution of
the state of the polarization@20#. The disadvantage is that we
do not have access to the lossy mode anymore and so cannot
get directly the probability for inconclusive results.

In this setup, the laser beam, at a wavelength of 1300 nm,
is first sent through al/4 wave plate, followed by a rotating
polarizer, which enables us to send any chosen linear polar-
ization towards the PDL fiber, with a fixed intensity. We
vary the polarization angleh, while monitoring the output
intensity ~after the PDL fiber!, to obtain the two principal
axes of the fiber. To keep the same notation as in Sec. III, we
shall call the nonlossy axis horizontal and the lossy one ver-
tical. We also choose the latter as the angular origin. If the

overall attenuation coefficient in the vertical axis ist, then
the two states polarized at6h, with t5tanh, will become
orthogonal. However, in a polarization maintaining fiber, be-
cause of the birefringence, the two modes do not propagate
at the same velocity.5 Therefore, the two output states need
not be linearly polarized, but can have any elliptical polar-
ization. In order to enable separation at a PBS, we need to
add another polarization controller, which transforms the two
elliptical polarizations into two linear ones. We set the con-
troller to send the state1h, say, in detector D1 and shall get
the state2h in detector D2. The setup is first aligned and
calibrated with strong pulses. Then the intensity is greatly
reduced to obtain very weak pulses, with, on average, 0.1
photon per pulse. This ensures that the probability to get
more than one photon in one pulse is negligible. Most pulses
have no photon at all and will simply not be counted. This
means that even though we do not create pure single photon
states, but rather weak coherent states, we select only the
cases where the initial pulse contains one photon. This justi-
fies our theoretical approach of Sec. III B. Therefore, during
the experiment, we send and detect the photons one by one.

5This is known as polarization mode dispersion~PMD! and exists
in all optical fibers. However, PMD is much larger in polarization
maintaining fibers.

FIG. 4. Implementation of a simple LIG measurement. A pulsed
laser ~wavelength 1300 nm, length of the pulses about 1 ns! is
strongly attenuated to obtain pulses with 0.1 photon on average. It
is first transformed into a circularly polarized beam by al/4 plate.
The following linear polarizer enables one to choose any linear
polarization, with a fixed intensity. The PDL fiber plays the role of
the interferometer in Fig. 3: the input state is split into the two
polarization components, one of which is attenuated during the
transmission. The polarization controller creates linearly polarized
output states that can be separated at the PBS. The light on each
side of the PBS is sent to Ge avalanche detectors D1 and D2 oper-
ating in the Geiger mode, to detect single photons. The signal is
amplified, discriminated, and combined at an ‘‘or’’ gate. The time
to pulse height converter~TPHC! ~EGG-Ortec! records the time of
arrival of each photons. The slightly different lengths in the two
output ports ensure that the photons coming from the two ports
arrive at different times. The multichannel buffer analyzer~MCBA!
~EGG-Ortec! analyzes the amplitudes produced by the TPHC,
which are then recorded in the PC.

54 3787UNAMBIGUOUS QUANTUM MEASUREMENT OF . . .



B. Results

The results are presented in Fig. 5. We choose a PDL
fiber @18# of 25 cm, which gave a differential attenuation of
4.54 dB. Using Eq.~25!, this corresponds to an angle
h530°. The two statesuc1& anduc2& are therefore polarized
at angle630° with respect to the lossy axis, which is chosen
as the origin. With strong pulses, we choose light polarized
at 230° and adjust the polarization controller to get the
maximum intensity in detector D1 and the minimum in D2.
We rotate the polarization to130° and check that the inten-
sity is now maximum in D2 and minimum in D1. We then
attenuate the pulses very strongly to get about 0.1 photon per
pulse on average and go to photon counting. The detectors
were Ge avalanche photodiodes, operating in the Geiger
mode @21#. When the initial state isuc1&, the number of
counts is maximum in D1 and minimum in D2@Fig. 5~a!#.
The error rate~ratio of counts in D2 over D1! is 2%. When
the initial state is along the lossy axis@Fig 5~b!#, there is
roughly the same number of counts in both detectors~the
difference is due to an unbalance between the two ports,
together with a slightly different efficiency of the detectors!.
With initial state uc2&, the number of counts in D2 is now
maximum and in D1 minimum. The error rate here is 1.7%.
In contrast, thetheoretical error rate given by a standard
projection measurement, corresponding to an overlap
^c1uc2&5cos2h, is about 6.7%@from Eq. ~2!#. This shows
that our LIGe measurement can indeed separate the two non-
orthogonal states in a better fashion than even the optimal
projection measurement with no experimental noise at all.

V. CONCLUSION

In this paper we have shown that generalized quantum
measurements, where the system under consideration is
coupled to an auxiliary quantum system~the ancilla! before
performing a standard projection measurement on the full
system, are not a mathematical curiosity, but can indeed be
implemented in the laboratory. We specifically introduced
and performed a LIGe quantum measurement to demonstrate
this point. This type of generalized measurement is interest-
ing because, on the one hand, it is easily performed in the
laboratory~the auxiliary system being simply an extra degree
of freedom in the vacuum state, which is coupled to the
original system!, while, on the other hand, its results are not
obtainable with a standard measurement. Our measurement,
for example, enabled us to separate two quantum states with
overlap 1/2 with only about 2% error rate. The price to pay
was of course that many measurement results were inconclu-
sive, corresponding to the absorption of the photon.

One could argue that our measurement is not a purely
quantum effect, in the sense that it can be understood in
terms of macroscopic fields as well: two nonorthogonally
polarized fields are transformed into orthogonally polarized
ones, at the expense of losing part of the fields. However, an
implementation with single photons is somewhat similar to
well-known interferometric experiments with single photons,
where the interference pattern is built from one detection at a
time. Here the counterintuitive feature is that a single photon
is not only split coherently into the two polarization compo-
nents, but also ‘‘knows’’ that it went through an absorbing
medium even though it was not absorbed. The use of a PDL
fiber is also interesting because the evolution of the polariza-
tion in the fiber is continuous. On the one hand, for all the
photons that were eventually detected, there was no real ab-
sorption in the fiber. On the other hand, the polarization
component along the lossy axis was, nevertheless, slowly
reduced, thus rotating the initial statesuc1& anduc2& towards
the orthogonal statesuf1& and uf2&.

Another somewhat counterintuitive feature is that LIGe
measurements show that a well-chosen dissipative environ-
ment need not be damaging. Indeed, at least in this particular
case, losses in the measurement were utilized to obtain a
better separation of the two initial states. This may be put in
parallel with a recent theoretical work@22#, where polariza-
tion dependent losses were shown to increase quantum cor-
relations, thus revealing hidden quantum nonlocality in pairs
of spin-12 particles. These observations may have bearings
upon the burgeoning field of quantum computation, where
the interaction with a dissipative environment is generally
considered as the main difficulty for realizing a quantum
computer. Finally, this type of measurement may have prac-
tical applications in quantum cryptography~for an introduc-
tion see, e.g.,@23#!, which specifically makes use of nonor-
thogonal states to establish a secret cryptographic key
between two users.
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FIG. 5. Time histogram of the detected photons. The horizontal
scale represents the channels in the MCBA converted in nanosec-
onds~one channel represents 3 ps!. The vertical scale is the corre-
sponding number of detected photons. The differential attenuation
in the PDL fiber is 4.54 dB, corresponding toh530°. The first
window corresponds to photons arriving in D1~shorter path! and
the second window to the photons arriving in D2~longer path!. ~a!
The input angle is230° and most photons arrive in D1, with an
error rate of about 2.0%~ratio of the number of counts in D2 with
respect to D1!. ~b! The input angle is 0° and the photons are equally
split in the two ports.~c! The input angle is 30° and most photons
arrive in D2, with an error rate of about 1.7%.
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