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Quantum tunneling in a dissipative system
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Applying a technique developed recenfly H. Yu and C. P. Sun, Phys. Rev.49, 592(1994; L. H. Yu,
Phys. Lett.202, 167 (1995] for a harmonic oscillator coupled to a bath of harmonic oscillators, we present an
exact solution for the tunneling problem in an Ohmic dissipative system with inverted harmonic potential. The
result shows that while the dissipation tends to suppress the tunneling, the Brownian motion tends to enhance
the tunneling. Whether the tunneling rate increases or not would then depend on the initial conditions. We give
a specific formula to calculate the tunneling probability determined by various parameters and the initial
conditions.[S1050-294{®6)00511-3

PACS numbd(s): 03.65.Bz

[. INTRODUCTION potential is now an inverted harmonic potential well. Assum-
ing the Ohmic bath oscillator density to be the same as given
Quantum tunneling with dissipation has been studied byn [6],
many people after the work by Caldeira and Leg@i&tt4].
These studies use different approximations to calculate the 27M mj@j
tunneling probability. Among these works, there is a widely p(w))=—— 7 2
discussed question about whether the dissipation suppresses J
or enhances the quantum tunnel(ad In this paper we shall
show that for a special potential barrier, the inverted har-
monic potential well, the tunneling problem can be solved
exactly, thus we shall answer this question precisely. The . . 2
technique we used for this solution has been developed re- q+ 79— wpd=F(1), S
cently to solve the wave function evolution for another dis-
sipative system problem: a harmonic oscillator coupled to afvith the Brownian motion driving force
environmen{6,7]. In this paper we shall show that this tech-
nique is equally applied to the inverted harmonic potential.
The simplest example of a dissipative system, a harmonic
oscillator coupled to an environment of a bath of harmonic
oscillators, has been the subject of extensive studies/6] This equation is easily solved to give
for referencep In a recent papel6] we obtained a simple
and exact solution for the wave function of the system plus ) :
the bath, in the Ohmic case. It is described by the direct A(t)=a;(t)do+ax(t)do+ > [bj1(t)Xjo+bja()Xjol,
product in two independent Hilbert spaces. One of them is ) 5)
described by the Caldirola-KandiCK) Hamiltonian, the
other represents the effect of the bath, i.e., the Brownian
motion. In a second papé¥], using this wave function so-
lution, we derived a simple formula for the probability dis-
tribution at finite temperature, expressed in terms of the

2

Following exactly the same procedure[&3, we derive the
Langevin equation of motion for the system

Sinwjt

C; .
f(t):_g MJ onCOS(th+Xj0 (4)

whereqy,do,X Jo, jo are the initial position and velocity op-
erators of the system and bath, respectively, and

wave fu_nction solution for the CK Hamiltonian only. _ a :e—(n/2)t<cosmt+ lsinhwt , a2=e‘<’7/2>t3inh”t,
In this paper we shall apply these results to a different (0] (0]
system, the inverted harmonic potential well, to study the (6)
quantum tunneling problem of dissipative system. We shall
use the same notations as R€f§,7] and quote formulas ,
from there. The Hamiltonian of this system is by ()= az(t Jcoswj(t—t")dt’,
2
p 1
H= “M(wi+Aw?)q? +q2 CiX;
2m 20 ) bjy(t)=— faz(t )sin;(t—t")dt’, @)
2,2
+2 2m, 2] XJ) @D With w=(wi+ (72142

Then, based on the same argument$&sthis solution
The only difference of this Hamiltonian from that in RE6]  can be used to show that the wave function of the system
is the sign of the second term of the right hand side, i.e., th@lus the bath can be written as
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N tered at the right of the peak of the potential hywith a
\If(q,{gj},t)zw(q—; & ,t)j]:[l Xi(&,0), (8)  velocity vy=—#k/M towards the potential barrier peak:

= ‘t=0)= 2 l/ —(q— 2)2/402+|kq
where the wave functiog(Q,t) is a solution of Schidinger Yo(@)=¥(q;t=0)=(2m0%) " °

. . . - . 1
equation with the time dependent CK Hamiltonian (15)
- First, following exactly the same method aq &, we derive
Ho=e" m___ —nge’?th, 9) the Green function of the time dependent Hamiltonian Eg.
2M 2 (9):
and the commutation[Q,P]=i%, while &=bj(t)x; 172
+ bjz(t)kjo is the contribution of théth bath oscillator to the
Brownian motion. The functiony;(§;,t) is given by
X (& ,t)=(6§j|xj0>, wherey;o(Xjo) is the initial state of the

bath oscillator, andlegj) is an eigenstate of the operatgr

G(q1q01t10): ( 2’7Tiﬁa.2

iM a2 _
><exp[2ﬁ (a105+aze7'q”—~ 2qo0) |

with eigenvalueg;, as given by Eq(4) of [7]: (16)
m, 172 im; ) Then we calculate the wave functiaf(q,t):
6§j(Xj0,t): 27Thb]2) exp — Tblz(b]lX]O—ZXJogj) .
(10 w(q,t)= J' G(0,90:t,0) ¢o(do)dag 17
According the analysis of7], assuming the bath is at o 14 . )
temperaturel, averaging over the Boltzmann distribution of =(2m0%) (@ tiwea )

the wave functiony;o(x;o) of the bath oscillators, and using

—-(q—-z )2/402+i(c q2+c g+cq)
Eq. (8), we find the probability distribution the same as de- xe ° SR (18

rived in [7]: This result represents a Gaussian distribution centered at
g.=a1Zp— &y, (the classical trajectory of a particle initially
p(g,t) = e &R0y ¢ (11) at zy with velocity —vo) and with a width of

o2=o0?(a+rwiad), (19

whereo, is the Brownian motion width: o )
wherer=g4y/0. The coefficients in the phase factor expo-

) ch h b 24 oo 2 nent are
t)=| ——[|bj1(t)|?+ w?|b;,(t
HO= | G LI+ oflbiz(DI] -
)'(ﬁ ) ( ) Co=—7— A% dt(lno-ﬂ) (20)
X cotl p(wj)dw; . 12
T _Me” 2 d Ino2)+ 4c ) 21
This result is apparently the same as that givefvinbut 145 cht(no(’) Ge) (2Y)
the expressions fdp;,(t)andb;,(t) are different. There are
also subtleties associated with a logarithmic divergence of _ka2 ot UcZo 5
the integration ove;, which is removed by introducing a Co=7~ qut(ln‘Tﬁ) 20| + 402 wodar . (22)

cutoff frequencyw,. This width is zero initially, but then
increases exponentially to infinity as time evolves. In theThis phase factor is related to the current density, as will be
following, for simplicity, we consider only the low tempera- explained later. It is straightforward to verify that Ed.8)
ture limit, then the width approaches in a time range of abouindeed satisfies the Schiinger equation with the time de-
1l/w to the asymptotic value pendent Hamiltonian Eq9). With these provisions, we are
ready to calculate the tunneling probability.
ot=eo gl L 20 (13
w Il. THE TUNNELING PROBABILITY
AND CURRENT DENSITY
with O'(Z)Eﬁ/(ZM wg) (the width of the ground state of a har- ) ] .
monic oscillator with frequency,) and ~ Using the density Eq11) and wave function Eq18), we
find a very simple expression for the probability density:

1
B=—In
T

)
1|
w—

2
Cc
. (149 1
’7/2> } p(a,t)= g e~ (a-a0%207, (23
t

II. THE WAVE FUNCTION EVOLUTION
where

To calculate the tunneling probability, we assume that o 2 o
initially the wave function is a Gaussian wave packet cen- oy=0,t o (24)
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is the total width including the Brownian motion width.

The probability for the particle to pass to the left of posi-

tion q att is then

P(q,t)zfq p(q’,t)dt’zF(q_qc), (25)
- \/Efft
where the functiorF is
1 [w 2
F(W E\/—;J'we‘“ du. (26)

Hence the current density is found to be

JP(q,t 1 d .
7P )—lez(g(q—qc)a(lno?Hqc- (27)

a

On the other hand, if the Brownian motion can be ignored

(replacingo; by o), the solution Eq(18) of the time de-

pendent Schidinger equation should also satisfy the expres

sion for the current density:

W *W)_
9q 7 9

h 2
Me' |4]%(2c,9+cq).
(28)

h
1= 2Me™ 4

The expressions foc; andc,, Egs.(21) and (20), indeed

satisfy Eq. (27), hence they acquire the following clear
physical meaning. If we denote the velocity of the “fluid”

distribution | /|? asv, the current density is thein=||? v.
Therefore a comparison of ER7) with Eq. (28) leads to

h 1 d PN
v= W(ZCZQ‘FCQ: E(q_QC)a(|n00)+QC' (29

Thus those particles with largey acquire larger velocity

falling from the apex of the potential. Since the Widﬂj is

3781

z v o

z=2 y=0 =7 22

o woZg 20 o

2
Cc
=—Inl1+

B Inf1 _77/2) } (31

Then, using Eq(6) for a; ,a,, and Eq.(13) for the Brownian
motion width, we have

W—i 1-VVJ(l—-e)l(1+e)
V2 1+ (1—€)/(1+ €)r*+4Bey1— €2

Notice that by the definition of following Eq. (7) and the
definition of € in Eq. (31), we always have<1. ThusW is
always a real number, as required by the physical meaning of
this variable.

To understand the meaning of this expression, we remark
thatZ>1 represents a case where the wave packet width is

. (32

‘much smaller than its distance from the origin. We also re-

mark that if =0, as time approaches infinity,
g.=e“"(zg—vo/wp)/2 . HenceV<1 means that a classical
particle with initial velocityv, and positiorz, does not have
enough kinetic energy to pass the potential barrier if there is
no dissipation. ThuZ>1 andV<1 represent a case rel-
evant to the quantum tunneling problem.

The term Be\1— €?r? comes from the Brownian mo-
tion. If e<1, i.e., if the dissipation is small, this term in-
creases ag increases, and reduc&¥, which in turn in-
creases$ (—W), hence enhances the tunneling. This effect is
reduced ifr <1, or, in other words, if the initial wave packet
width is much larger tham, the increase due to the Brown-
ian motion is insignificant. If the initial velocity is not zero,
the second term in the numerator increadéase increases,
thus the damping suppresses the tunneling. Intuitively this
can be explained as that the damping makes the classical

proportional to exp(@— 7)t, as time evolves, most particles particle unable to move to the barrier peak as close as if there
move rapidly away from the apex of the potential. In theis no damping, and hence increases the barrier height.

meantime, for any fixed|#0, the wave number @&q+c;
also increases exponentially by a factét according to Egs.
(21) and(20) because the equivalent massMg™ instead of

To get an idea about the effect of dissipation on the tun-
neling probability, in Fig. 1 we ploP as a function o and
e forZ=3,r=0.3, andB=3, which corresponds to a cutoff

M. Hence the wavelength decays exponentially, as pointetiequency about 100 time larger than Because of the loga-
out by Ref.[7]. Whent>1/7 the system approaches the rithmic dependence d@ on w., the result is very insensitive

classical limit.

IV. TUNNELING PROBABILITY
AS TIME APPROACHES INFINITY

We define the tunneling probability as the probability

for the particle to be at the left of the peak. Then, applying

Egs.(25), (24), and(19), we find P=F(—W), with

_ Ac _ a1Zp— AV
2 2,2 21"
V2o, 2[o?(al+r%whad) + 2]

(30

Because, ,a,, ando; are all proportional t@(“~ 72" as
time approaches infinityyv approaches a finite limit, which

determines the final tunneling probability. To simplify the
expression for this limit, we use the following scaled vari-

ables:

to the cutoff frequency. The plot clearly shows that when
V is large, the tunneling is suppressed by the dissipation,
while if initial velocity is zero, the dissipation enhances the
tunneling.

V. TUNNELING PROBABILITY
AND UNCERTAINTY PRINCIPLE

Finally, it is interesting to examine the relation between
the initial momentum and position distribution and the tun-
neling probability. For simplicity, we consider here only the
case without dissipation. After Fourier transform of initial
wave function Eq.(15), the wave function in momentum
space is

1/4

e~ (k+ko)?=i(k+ko)zg

20°
Po(k)= (7) (33



3782 LI HUA YU 54

A comparison with Eq(32) shows that ifr>1, i.e., if the
initial width o is much smaller than the minimum wave
packet widtha, or, in other words, if the initial momentum
spread is very large, this crude estimate is correct.

Another extreme is when<1, i.e., when we can consider
the initial momentum spread is very small, and all the par-
ticles have velocity, but initial position has large spread.
Then from the classical point of view, the probability for a
particle to pass the potential barrier is its initgK v/ wo,
ie.,

Z(1-V)

V2

(35

volwg )
P:f_w |ho(@)|*dg=F| —

Again, a comparison with Eq32) shows that if <1, i.e., if
FIG. 1. The tunneling probability as a function of the scaledthe initial width o is much larger than the minimum wave
dissipation coefficient and the scaled initial velocity, assuming  packet widthog, this crude estimate is also correct. These
the scaled initial positio@ =3, the scaled inverse wave packet size estimates indicate that the tunneling probability has a very
r=0.3, and the scaled cutoff frequenBy= 3. simple relation with the uncertainty principle, and we have a
very simple way to estimate the tunneling probability.

Thus from the classical point of view, the probability for

the particle to pass the potential barrier is the probability of ACKNOWLEDGMENTS
the initial velocity v < — wqzy, Or k< —Zzo/203 (notice that :
o ikIM): YU=T @oZo o/205 ( The author thanks Professor C.N. Yang for many sessions

of stimulating discussions. The author also likes to thank

Z(1-V) C.P. Sun for interesting discussions. The work is performed

(_> (34) under the auspices of the U.S. Department of Energy under
2

— /20’2
p:f 0270 (k) 2dk:F(—
(k)] Jor Contract No. DE-AC02-76CHO0016.

[1] A.O. Caldeira and A.J. Leggett, Phys. Rev. Let6, 211 enhances the quantum tunneling, see, for example, A. J. Leg-
(1981); Ann. Phys.(N.Y.) 149 374(1983. gett and Satoshi Iso, in Proceedings of the 4th International
[2] A.J. Bray and M.A. Moore, Phys. Rev. Le#t6, 1545(1982); Symposium: Foundations of Quantum Mechanics in the Light
S. Chakravartyibid. 49, 681 (1982. of New Technology, edited by M. Tsukata, S. Kobayashi, S.
[3] G. Schm and A.D. Zaikin, Phys. Refl98 237 (1990, and Kurihara, and S. Nomur@Jpn. J. Appl. Phys(1992]; K.
references therein. Fujikawa, S. Iso, M. Sasaki, and H. Suzuki, Phys. Rev. Lett.
[4] S. Chakravarty and A.J. Legget, Phys. Rev. L&#.5 (1984); 68, 1093(1992.

A.J. Leggett, S. Chakravarty, A.T. Dorsey, M.P.A. Fisher, A. [6] L.H. Yu and C.P. Sun Phys. Rev. 49, 592 (1994.

Garg, and W. Zweger, Rev. Mod. Phys, 1 (1987). [7] L.H. Yu, Phys. Rev. Lett. A202, 167 (1995.
[5] About the discussion on whether the dissipation suppresses or



