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Applying a technique developed recently@L. H. Yu and C. P. Sun, Phys. Rev. A49, 592 ~1994!; L. H. Yu,
Phys. Lett.202, 167~1995!# for a harmonic oscillator coupled to a bath of harmonic oscillators, we present an
exact solution for the tunneling problem in an Ohmic dissipative system with inverted harmonic potential. The
result shows that while the dissipation tends to suppress the tunneling, the Brownian motion tends to enhance
the tunneling. Whether the tunneling rate increases or not would then depend on the initial conditions. We give
a specific formula to calculate the tunneling probability determined by various parameters and the initial
conditions.@S1050-2947~96!00511-2#

PACS number~s!: 03.65.Bz

I. INTRODUCTION

Quantum tunneling with dissipation has been studied by
many people after the work by Caldeira and Leggett@1–4#.
These studies use different approximations to calculate the
tunneling probability. Among these works, there is a widely
discussed question about whether the dissipation suppresses
or enhances the quantum tunneling@5#. In this paper we shall
show that for a special potential barrier, the inverted har-
monic potential well, the tunneling problem can be solved
exactly, thus we shall answer this question precisely. The
technique we used for this solution has been developed re-
cently to solve the wave function evolution for another dis-
sipative system problem: a harmonic oscillator coupled to an
environment@6,7#. In this paper we shall show that this tech-
nique is equally applied to the inverted harmonic potential.

The simplest example of a dissipative system, a harmonic
oscillator coupled to an environment of a bath of harmonic
oscillators, has been the subject of extensive studies~see@6#
for references!. In a recent paper@6# we obtained a simple
and exact solution for the wave function of the system plus
the bath, in the Ohmic case. It is described by the direct
product in two independent Hilbert spaces. One of them is
described by the Caldirola-Kanai~CK! Hamiltonian, the
other represents the effect of the bath, i.e., the Brownian
motion. In a second paper@7#, using this wave function so-
lution, we derived a simple formula for the probability dis-
tribution at finite temperature, expressed in terms of the
wave function solution for the CK Hamiltonian only.

In this paper we shall apply these results to a different
system, the inverted harmonic potential well, to study the
quantum tunneling problem of dissipative system. We shall
use the same notations as Refs.@6,7# and quote formulas
from there. The Hamiltonian of this system is
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The only difference of this Hamiltonian from that in Ref.@6#
is the sign of the second term of the right hand side, i.e., the

potential is now an inverted harmonic potential well. Assum-
ing the Ohmic bath oscillator density to be the same as given
in @6#,
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Following exactly the same procedure as@6#, we derive the
Langevin equation of motion for the system
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with the Brownian motion driving force
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This equation is easily solved to give
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whereq0 ,q̇0 ,xj0 ,ẋ j0 are the initial position and velocity op-
erators of the system and bath, respectively, and
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a2~ t8!sinv j~ t2t8!dt8, ~7!

with v5(v0
21 (h2/4))1/2.

Then, based on the same arguments as@6#, this solution
can be used to show that the wave function of the system
plus the bath can be written as
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where the wave functionc(Q,t) is a solution of Schro¨dinger
equation with the time dependent CK Hamiltonian
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and the commutation@Q,P#5 i\, while j j5bj1(t)xj0
1bj2(t) ẋ j0 is the contribution of thej th bath oscillator to the
Brownian motion. The functionx j (j j ,t) is given by
x j (j j ,t)5^uj j

ux j0&, wherex j0(xj0) is the initial state of the

bath oscillator, anduuj j
& is an eigenstate of the operatorj j

with eigenvaluej j , as given by Eq.~4! of @7#:
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According the analysis of@7#, assuming the bath is at
temperatureT, averaging over the Boltzmann distribution of
the wave functionx j0(xj0) of the bath oscillators, and using
Eq. ~8!, we find the probability distribution the same as de-
rived in @7#:
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wheresj is the Brownian motion width:
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This result is apparently the same as that given in@7#, but
the expressions forbj1(t)andbj2(t) are different. There are
also subtleties associated with a logarithmic divergence of
the integration overv j , which is removed by introducing a
cutoff frequencyvc . This width is zero initially, but then
increases exponentially to infinity as time evolves. In the
following, for simplicity, we consider only the low tempera-
ture limit, then the width approaches in a time range of about
1/v to the asymptotic value
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25e~2v2h!ts0

2 h

2v

v0

v
B, ~13!

with s0
2[\/(2Mv0)~the width of the ground state of a har-

monic oscillator with frequencyv0) and

B[
1

p
lnF11S vc

v2h/2D
2G . ~14!

II. THE WAVE FUNCTION EVOLUTION

To calculate the tunneling probability, we assume that
initially the wave function is a Gaussian wave packet cen-

tered at the right of the peak of the potential byz0 with a
velocity v052\k/M towards the potential barrier peak:
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First, following exactly the same method as in@6#, we derive
the Green function of the time dependent Hamiltonian Eq.
~9!:
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Then we calculate the wave functionc(q,t):
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This result represents a Gaussian distribution centered at
qc5a1z02a2v0 ~the classical trajectory of a particle initially
at z0 with velocity 2v0) and with a width of
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where r[s0 /s. The coefficients in the phase factor expo-
nent are
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This phase factor is related to the current density, as will be
explained later. It is straightforward to verify that Eq.~18!
indeed satisfies the Schro¨dinger equation with the time de-
pendent Hamiltonian Eq.~9!. With these provisions, we are
ready to calculate the tunneling probability.

III. THE TUNNELING PROBABILITY
AND CURRENT DENSITY

Using the density Eq.~11! and wave function Eq.~18!, we
find a very simple expression for the probability density:

r~q,t !5
1

A2ps t

e2~q2qc!2/2s t
2
, ~23!

where

s t
2[su

21sj
2 ~24!

3780 54LI HUA YU



is the total width including the Brownian motion width.
The probability for the particle to pass to the left of posi-

tion q at t is then
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where the functionF is
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Hence the current density is found to be
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On the other hand, if the Brownian motion can be ignored
~replacings t by su), the solution Eq.~18! of the time de-
pendent Schro¨dinger equation should also satisfy the expres-
sion for the current density:
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The expressions forc1 and c2, Eqs. ~21! and ~20!, indeed
satisfy Eq. ~27!, hence they acquire the following clear
physical meaning. If we denote the velocity of the ‘‘fluid’’
distribution ucu2 asv, the current density is thenI5ucu2 v.
Therefore a comparison of Eq.~27! with Eq. ~28! leads to
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Thus those particles with largerq acquire larger velocity
falling from the apex of the potential. Since the widthsu

2 is
proportional to exp(2v2h)t, as time evolves, most particles
move rapidly away from the apex of the potential. In the
meantime, for any fixedqÞ0, the wave number 2c2q1c1
also increases exponentially by a factoreht according to Eqs.
~21! and~20! because the equivalent mass isMeht instead of
M . Hence the wavelength decays exponentially, as pointed
out by Ref. @7#. When t@1/h the system approaches the
classical limit.

IV. TUNNELING PROBABILITY
AS TIME APPROACHES INFINITY

We define the tunneling probabilityP as the probability
for the particle to be at the left of the peak. Then, applying
Eqs.~25!, ~24!, and~19!, we findP5F(2W), with
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Becausea1 ,a2 , andsj are all proportional toe
(v2h/2)t as

time approaches infinity,W approaches a finite limit, which
determines the final tunneling probability. To simplify the
expression for this limit, we use the following scaled vari-
ables:
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Then, using Eq.~6! for a1 ,a2, and Eq.~13! for the Brownian
motion width, we have
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Notice that by the definition ofv following Eq. ~7! and the
definition of e in Eq. ~31!, we always havee<1. ThusW is
always a real number, as required by the physical meaning of
this variable.

To understand the meaning of this expression, we remark
thatZ@1 represents a case where the wave packet width is
much smaller than its distance from the origin. We also re-
mark that if h50, as time approaches infinity,
qc5ev0t(z02v0 /v0)/2 . HenceV,1 means that a classical
particle with initial velocityv0 and positionz0 does not have
enough kinetic energy to pass the potential barrier if there is
no dissipation. ThusZ@1 andV,1 represent a case rel-
evant to the quantum tunneling problem.

The term 4BeA12e2r 2 comes from the Brownian mo-
tion. If e!1, i.e., if the dissipation is small, this term in-
creases ase increases, and reducesW, which in turn in-
creasesF(2W), hence enhances the tunneling. This effect is
reduced ifr!1, or, in other words, if the initial wave packet
width is much larger thans0, the increase due to the Brown-
ian motion is insignificant. If the initial velocity is not zero,
the second term in the numerator increasesW ase increases,
thus the damping suppresses the tunneling. Intuitively this
can be explained as that the damping makes the classical
particle unable to move to the barrier peak as close as if there
is no damping, and hence increases the barrier height.

To get an idea about the effect of dissipation on the tun-
neling probability, in Fig. 1 we plotP as a function ofV and
e for Z53, r50.3, andB53, which corresponds to a cutoff
frequency about 100 time larger thanv. Because of the loga-
rithmic dependence ofB onvc , the result is very insensitive
to the cutoff frequency. The plot clearly shows that when
V is large, the tunneling is suppressed by the dissipation,
while if initial velocity is zero, the dissipation enhances the
tunneling.

V. TUNNELING PROBABILITY
AND UNCERTAINTY PRINCIPLE

Finally, it is interesting to examine the relation between
the initial momentum and position distribution and the tun-
neling probability. For simplicity, we consider here only the
case without dissipation. After Fourier transform of initial
wave function Eq.~15!, the wave function in momentum
space is

c0~k!5S 2s2

p D 1/4e2~k1k0!22 i ~k1k0!z0. ~33!
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Thus from the classical point of view, the probability for
the particle to pass the potential barrier is the probability of
the initial velocity v,2v0z0, or k,2z0/2s0

2 ~notice that
v5\k/M ):

P5E
2`

2z0/2s0
2

uc0~k!u2dk5FS 2
Z~12V!

A2r 2 D . ~34!

A comparison with Eq.~32! shows that ifr@1, i.e., if the
initial width s is much smaller than the minimum wave
packet widths0, or, in other words, if the initial momentum
spread is very large, this crude estimate is correct.

Another extreme is whenr!1, i.e., when we can consider
the initial momentum spread is very small, and all the par-
ticles have velocityv0, but initial position has large spread.
Then from the classical point of view, the probability for a
particle to pass the potential barrier is its initialq,v0 /v0,
i.e.,

P5E
2`

v0 /v0
uc0~q!u2dq5FS 2

Z~12V!

A2 D . ~35!

Again, a comparison with Eq.~32! shows that ifr!1, i.e., if
the initial width s is much larger than the minimum wave
packet widths0, this crude estimate is also correct. These
estimates indicate that the tunneling probability has a very
simple relation with the uncertainty principle, and we have a
very simple way to estimate the tunneling probability.
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FIG. 1. The tunneling probability as a function of the scaled
dissipation coefficiente and the scaled initial velocityV, assuming
the scaled initial positionZ53, the scaled inverse wave packet size
r50.3, and the scaled cutoff frequencyB53.

3782 54LI HUA YU


