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By considering the simple binary symmetric random walk on a discrete lattice in 111 dimensions, we show
that the discrete analog of Schro¨dinger’s equation describes a simple counting problem involving the sample
paths on the lattice. Schro¨dinger’s equation is obtained in the continuum limit with the result that this equation
is confirmed to have a classical as well as a quantum context.@S1050-2947~96!08710-0#

PACS number~s!: 03.65.2w, 03.20.1i, 05.40.1j

I. INTRODUCTION

Although the character of the solutions of the diffusion
and free-particle Schro¨dinger equations are qualitatively very
different, the two equations themselves bear a strong formal
resemblance. Mathematically one may obtain Schro¨dinger’s
free-particle equation by letting the time coordinate in the
diffusion equation be imaginary. This process is a formal
analytic continuation~FAC! and it suggests that we may
compare solutions of the two equations in spite of their
qualitative difference.

The limitations of the FAC may be seen by examining the
simplest case. Consider the diffusion equation in 111 di-
mensions

]u

]t
5D

]2u

]x2
. ~1!

As shown by Einstein in 1905, Brownian motion provides
this phenomonological equation with a microscopic model.
That is, theu(x,t) of Eq. ~1! describes the ensemble average
concentration of small particles undergoing Brownian mo-
tion on a scale much less than the scale of observation. Ana-
lytically continuing the diffusion equation to imaginary time
we obtain the Schro¨dinger equation
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. ~2!

If we graft an interpretation that is appropriate for quantum
mechanics onto this equation, then we have arrived at quan-
tum mechanics in a formal way. The mathematical relation
between the two equations is useful forcalculationspertain-
ing to Schro¨dinger’s equation, but it is not particularly useful
in the interpretation of the equation itself. Note that the FAC,
which transplants the diffusion equation into the domain of
quantum mechanics, does not transfer the microscopic model
that goes with it. The random walks of Brownian particles
that underlie the diffusion equation have a correspondence in
the Feynman paths of Schro¨dinger’s equation@1,2#, but the
mapping also takes the real, positive Boltzman weights of
these paths and converts them into complex numbers, thus
removing the transformed ‘‘model’’ from the domain of
classical probability. The easily interpreted concentration or
probability densityu(x,t) of Eq. ~1! becomes a ‘‘wave func-
tion’’ under the FAC. This object, while exceedingly useful

in quantum mechanics, has no known physical counterpart
and is not observable in nature.

The comparison of classical and quantum equations that
differ by a FAC may be extended to more interesting quan-
tum systems by considering the path-integral formulation of
quantum mechanics and its relation to the classical Wiener
integral. The resulting connection between quantum field
theory and statistical mechanics has been of considerable in-
terest in both fields now for some years@3,4#. In addition, the
formal similarity between the quantum and classical equa-
tions has encouraged efforts to effect an analytic continua-
tion by invoking physical processes that mimic self-
interference, thereby motivating an otherwise formal
procedure. Some references include the works of Fe´nyes@5#,
Nelson@6#, and Nottale@7# who have proposed physical sys-
tems that combine diffusion and antidiffusion to produce in-
terference and El Naschie and co-workers@8,9#, who have
used a variational principle to time symmetrize a diffusive
process to accomplish the same effect. In the relativistic do-
main, the relationship between random walks and quantum
propagators is discussed in Refs.@10–13#.

In Fig. 1 we illustrate the different context in which
Schrödinger’s equation appears in this paper. Hereboth the
diffusion and Schro¨dinger equations occur within the domain
of classical statistical mechanics. The model that we use is
the standard lattice random-walk model of Brownian motion
@14,15#. Schrödinger’s equation appears in the solution of
this model without having to alter the dynamics in any way
@16#; however, to show this one has to retain more informa-

FIG. 1. In this paper, both the diffusion and Schro¨dinger equa-
tions occur within the domain of classical statistical mechanics,
both equations occurring as projections from the same random-walk
model. This provides a context for Schro¨dinger’s equation that is
independent of its context in quantum mechanics.
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tion about the random walks than previously considered.
This information is described by a vector in a four-
dimensional space. Solutions of the diffusion equation ap-
pear directly in a first-order projection out of this space and
solutions of Schro¨dinger’s equation appear directly in a
second-order projection. The fact that these two projections
are orthogonal allows the two qualitatively different behav-
iors to coexist in the same physical system. No formal ana-
lytic continuation is required to produce the Schro¨dinger
equation from this classical model and, figuratively speaking,
both equations simply represent different ‘‘views’’ of a
single object, the object being an ensemble of Brownian par-
ticles. In contrast to the usual FAC that links the two equa-
tions, this derivation produces a ‘‘wave function’’ that is an
observable property of ensembles of real point particles.

In Sec. II we introduce the discrete random-walk model
that produces both the diffusion and Schro¨dinger equations
as part of its description. However in this section, we con-
centrate on the dynamics of the ensemble of walks without
regard to the spatial distribution of the walks. In Sec. III we
reintroduce the distribution of walks in space and consider a
continuum limit.

II. BINARY RANDOM WALKS AND MARKOV CHAINS

In this paper we will consider only symmetric random
walks in discrete time. There will be no internal or external
mechanism to change the dynamics of the walks. Instead we
shall simply retain more information about the dynamics
than is usually considered and we shall see that this is
enough to show that Schro¨dinger’s equation occurs naturally
in the description of such walks.

Consider a space-time lattice with respective spacingsd
ande. Particles hop on this lattice a distance6d at each time
stepe. The walks are symmetric and at each lattice site walks
are equally likely to take either direction. We shall be inter-
ested in the statistics of the number of direction changes in
trajectories on the lattice. In particular, between lattice sites,
each particle will be in one of two direction states~right or
left moving! and one of two ‘‘spin’’ states. We use the Ising
spin variables561 to describe these two states. The direc-
tion state will change with every ‘‘collision’’~direction
change! and the spin will change with every two collisions
~Fig. 2!. Thus, a particle starting off in state one~right mov-
ing,s511! changes to state two~left moving,s511! at the
first collision, state three~right moving,s521! at the sec-
ond collision, state four~left moving, s521! at the third
collision, and back to state one at the fourth collision. Note
that states one and three both correspond to right-moving
particles and states two and four correspond to left-moving
particles. A particle that starts in state one~two! and ends in
the samedirection state three~four! has changed its spin
from 11 to21. Notice here that the Ising spin isnot a new
property that has been added to our particles. It is simply a
convenient label that helps to classify particle trajectories. In
Ord @16#, the difference between two states with identical
directions was called parity.

Let pm(md,se)d ~m51,2,3,4! be the probability that a
particle leaving the space-time point (md,se) is in statem
~m50,61, . . . ; s50,1, . . .!. The difference equations for
pm that we study in this paper are

p1„md,~s11!e…5 1
2p1„~m21!d,se…1 1

2p4„~m11!d,se…,

p2„md,~s11!e…5 1
2p2„~m11!d,se…1 1

2p1„~m21!d,se…,

p3„md,~s11!e…5 1
2p3„~m21!d,se…1 1

2p2„~m11!d,se…,

p4„md,~s11!e…5 1
2p4„~m11!d,se…1 1

2p3„~m21!d,se….
~3!

Upon multiplying these equations byd, the first equation
implies that the probability that a particle leaves node„md,(s
11)e… in state one is equal to the sum of two probabilities.
One is 1

2p1„(m21)d,se…d that is the probability that a par-
ticle leaves node„(m21)d,se… in state one and remains in
this state when it leaves the node„md,(s11)e…. The other
one is 1

2p4„(m11)d,se…d that is the probability that a par-
ticle leaves node„(m11)d,se… in state four and changes to
state one when it leaves the node„md,(s11)e…. The remain-
ing three equations have a similar interpretation, and the
probabilitypm is uniquely determined once the initial condi-
tions are specified. Fors>0 we take

(
m51

4

(
m52`

1`

pm~md,se!d51, ~4!

which establishes the fact that the probability that a particle
is somewhere on the lattice at a given time is one.

We will be interested in the statistics of these binary ran-
dom walks and, especially, in the difference in the number of
particles reaching a given space-time point with opposite
spin. However, before we perform this analysis, we examine
the walks with regard to the distribution of particles in the
four states before considering in Sec. III the additional com-
plexity of the motion of particles in space. Letqi(s) be the
probability that a particle is in thei th state~i51,2,3,4! at the
sth step on the lattice. Thenqi(s) is equal to ( m52`

1`

pi(md,se)d. Multiplying Eq. ~3! by d and summing overm,
the equations reduce to

FIG. 2. A typical path on the space-time lattice. The particle
changes state cyclically with each collision, the ‘‘state’’ being a
means of counting the number of times a direction occurs modulo 2.
The ‘‘spin’’ of the trajectory changes every two collisions.
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@q1~s11!,q2~s11!,q3~s11!,q4~s11!#T5T~1!

3@q1~s!,q2~s!,q3~s!,q4~s!#T. ~5!

The transition matrixT~1!, which we now consider, defines a
Markov chain.

It is convenient to define the more general Markov chain
with four states where the transition matrix

T~a!5
a

2 F 110
0

0
1
1
0

0
0
1
1

1
0
0
1
G . ~6!

With a51, Ti j is the probability of a transition from statej
to statei in one step~Fig. 3!. [Ts] i j is the probability of a
transition from statej to statei in s steps. The behavior of
@Ts~1!#i j with s is very simple and [T

s] 11 is illustrated in Fig.
4. Since in the limit of larges each state is equally likely, all
elements ofTs~1! approach1

4. The oscillation observed in
Fig. 4 reflects the ‘‘transient response’’ of the chain. With
a52 the matrixT counts paths in the Markov process. Thus
@Ts~2!#i j is the number of distinct paths fromj to i in s steps.
The powers of the matrixT obey

(
i51

4

@Ts~2!# i j52s ~ j51,2,3,4; s51,2,...! ~7!

expressing the fact that there are 2s distinct s-step paths.
Note that Eq.~7! may be reexpressed as an invariance prop-
erty of T; namely,

1

~2s! (
i51

4

@Ts~2!# i j5(
i51

4

@Ts~1!# i j51 ~s51,2,...!.

~8!

This is in accord with the idea that the elements ofTs~1! may
be regarded as probabilities.

Other features of the Markov process are easily under-
stood by considering a change of variables from
q1(s),q2(s),q3(s),q4(s) to u1(s),u2(s),j̃1(s),j̃2(s) where

u15q11q21q31q4 , j̃15q12q3 ,

u25~q11q3!2~q21q4!, j̃25q22q4 . ~9!

In words,u1(s) is the sum of all occupation probabilities,
u2(s) is the difference of occupation probabilities by direc-
tion, andj̃1(s) andj̃2(s) are the differences of occupation of
the two spin states for right- and left-moving particles, re-
spectively. Rewriting Eq.~9! in matrix form, we have

F u1u2j̃1
j̃2

G5RF q1q2q3
q4

G , R5F 111
0

1
21
0
1

1
1

21
0

1
21
0

21
G .

~10!

To examine the dynamics ofj̃ i , we normalize it suitably by
defining j i(s)5(A2)s j̃ i(s). Substituting Eq.~10! into Eq.
~5!, the resulting system of equations is

Fu1~s11!

u2~s11!G5Fu1~s!

0 G , Fj1~s11!

j2~s11!G5VFj1~s!

j2~s!G , ~11!

where

V5
1

A2
F11 21

1 G . ~12!

These equations can also be expressed in the form

u1~s!5u1~0!51, u2~s11!50, J~s!5VsJ~0!,
~13!

FIG. 4. The probabilityq1(s) that a particle starting in state one
at time zero is in state one aftern steps.

FIG. 5. j1(s) for particles starting in state one at time zero.
Notice thatj1 is periodic with period eight.

FIG. 3. The underlying Markov chain for the lattice walks. The
probability of a state change at each time step is1

2.
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whereJ(s)5[ j1(s),j2(s)]
T. Here we see thatR block di-

agonalizes the matrixT. Equation~13! shows that whatever
the dynamic behavior ofj̃ i , the behavior is intrinsic to the
four-state Markov chain described byT, and independent of
the dominant variableu1. The dynamics ofji become clear
when we notice thatV is just a rotation matrix with a rotation
angle ofp/4, and hence,V85I whereI is the 232 identity
matrix. Thus, we see thatVs5V(s18k) ~k50,61, . . .! so that
ji is periodic with period eight. That is, replacings by s18k
in Eq. ~13!, we have

j i~s!5j i~s18k! ~ i51,2; k50,1,2,...!. ~14!

In Fig. 5, the graph ofj1(s) illustrates this periodicity. In
contrast to the periodicity ofj i(s), u1 is itself an invariant in
time. Finally, Eq.~13! shows thatiJi2 is invariant in discrete
time. SinceVT5V21,

JT~s!J~s!5JT~0!~VT!s~Vs!J~0!5JT~0!J~0!.
~15!

III. THE CONTINUUM LIMIT

In this section we consider Eqs.~3! of the full random
walk, and we show that the solutions of these equations can
be approximated in terms of solutions of the diffusion equa-
tion and Schro¨dinger’s equation. Throughout this section we
shall use the usual diffusive scaling for random walks in
which for smalld,

d2

2e
5D1O~d! or e5

d2

2D
1O~d3!, ~16!

whereD is a diffusion constant. To express Eq.~3! in matrix
form, consider the shift operatorsE x

61 andEt such that

Ex
61pi~md,se!5pi„~m61!d,se… ~17!

and

Etpi~md,se!5pi„md,~s11!e…. ~18!

The difference equations~3! may then be written as

EtP~md,se!5
1

2 F Ex
21

Ex
21

0
0

0
Ex

Ex

0

0
0
Ex

21

Ex
21

Ex

0
0
Ex

G P~md,se!,

~19!

where

P~md,se!

5@p1~md,se!,p2~md,se!,p3~md,se!,p4~md,se!#T. ~20!

As in Sec. II, we now consider the change of variables

z15p11p21p31p4 , f̃15p12p3 ,

z25~p11p3!2~p21p4!, f̃25p22p4 . ~21!

Here, z1(md,se)d ~m50,61, . . . ; s50,1, . . .! is the
probability that a particle is atx5md at time t5se in any

direction or spin state.z2(md,se)d is the expected differ-
ence in the probabilities for the two direction states~right or
left moving!. f̃1d is the expected spin (11)p1d1(21)p3d
for right-moving particles; while,f̃2d is the expected spin
(11)p2d1(21)p4d for left-moving particles. The transfor-
mation ~21! expressesP in terms of an orthogonal basis,

P5
z1
4

@1,1,1,1#T1
z2
4

@1,21,1,21#T1
f̃1

2
@1,0,21,0#T

1
f̃2

2
@0,1,0,21#T, ~22!

where@1,1,1,1#T and@1,21,1,21#T are eigenvectors ofT~1!.
As in the case of the Markov chain,P is a sum of four
orthogonal vectors such that the coefficient of each vector
involves only one ofz1, z2, f̃1, andf̃2.

The change of variables~21! gives

EtF z1
z2
f̃1

f̃2

G5
1

2 F Ex1Ex
21

0
0
0

Ex
212Ex

0
0
0

0
0
Ex

21

Ex
21

0
0

2Ex

Ex

G
3F z1

z2
f̃1

f̃2

G . ~23!

In Eq. ~23!, z2„md,(s11)e…50 @z2(md,0) may not be 0#
and we can analyzef̃ i and z1 separately. Hence, we start
with the equations forf̃ i and consider the simpler case forz1
later. As in the case of the Markov chain, we normalizef̃ i
suitably by defining

f i~md,se!5~A2!sf̃ i~md,se!. ~24!

In matrix notation, the equations forfi in Eq. ~23! may be
expressed as

EtF~md,se!5EdF~md,se!, ~25!

whereF(md,se)5@f1(md,se),f2(md,se)#T and

Ed5
1

A2
FEx

21

Ex
21

2Ex

Ex
G . ~26!

In the following, we consider the equations

Et
kF~md,se!5Ed

kF~md,se!, ~27!

which are derived from Eq.~25! by applying the operatorEt
to Eq. ~25! k times and using Eq.~25! repeatedly.

Now Eq. ~25! is an exact difference equation describing
the expected spin over our ensemble of symmetric random
walks. It may be solved for all finite positive values ofe and
d. However, if we want to approximate these solutions for
smalld by the solutions of a partial differential equation, we
first have to determine if thevector F(md,se) is rotated
through large angles at each time step. If we assume that
pi(md6d,se)5pi(md,se)1O(d) for small d, then
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EdF~md,se!5VF~md,se!1O~d!, ~28!

whereV is the matrix~12!. ThusEd , as an operator, rotates
F through an angle of approximatelyp/4 ~see Fig. 5 and the
last paragraph of Sec. II!. However, notice that
Ed
8F(md,se)5F(md,se)1O(d) and hence

F„md,~s18!e…5Et
8F~md,se!5Ed

8F„md,~s18!e…

5F~md,se!1O~d!. ~29!

This shows that the vectorF(md,se) is changed by a small
amount every eight steps of the discrete process, even though
it is rotated by aboutp/4 at each single step.

We will approximate the functionF„md,(k18l )e… ~l
50,1, . . .! by eight different functions corresponding to
k50,1, . . . ,7. Forclarity, we define the eight functionsG[k]

~k50,1, . . . ,7! asF where

G@k#~md,se!5F~md,se!, s5k18l ~ l50,1,...!.
~30!

The domain ofG[k] involves the nodes on the lattice at times
wheres5k, s5k18, etc. Thus, from the details in the last
paragraph,G[k] changes byO~d! when we move by eight
steps on the lattice. For simplicity, we defineG@0#5G and
relateG[k] to G by

G@k#5Et
kG@0#5Ed

kG@0#5Ed
kG. ~31!

The relationship ofG andG@1# to F is represented schemati-
cally in Fig. 6.

We are interested in approximating the solution of the
equation

Et
8G~md,se!5Ed

8G~md,se!, s50 mod 8 ~32!

for small d by a solution of a partial differential equation.
We set up the limit process as follows. Suppose we are in-
terested in (x,t) in a neighborhood of a point (X,T) and we

choose a nearby point (Md,Se) on the lattice as follows.
Given d ande, we select (m,s) as (M ,S) such that

Md<X,~M11!d, Se<T,~S18!e, S50 mod 8.
~33!

At this point, we extend the domain of definition ofG to all
(x,t) and assume that this may be done in such a way that
G(x,t)5@g1(x,t),g2(x,t)#

T is a continuously differentiable
function. We now proceed to determine the equation of this
function.

We start withExg i(Md,Se)5g i(Md1d,Se) in Eq. ~32!
and expandg i(Md1d,Se) in a power series ind to obtain

Ex511L1 1
2L

21O~d3!, ~34!

where L5d(]/]x). Henceforth, Lg i(Md,Se) denotes
Lg i(x,t) evaluated at (Md,Se). Then

Ed5
1

A2 F 12L1
L2

2

12L1
L2

2

212L2
L2

2

11L1
L2

2

G1O~d3!5V1BL

1
1

2
VL21O~d3!, ~35!

whereV is given by Eq.~12! and

B52
1

A2
F11 1

21G .
Thus,

Ed
25V21~VB1BV!L1~V21B2!L21O~d3!5C1A2BL

1A2VL21O~d3!, ~36!

where

C5F01 21
0 G .

The coefficients follow readily from the definition ofA and
B. Similarly,

Ed
452I12CL21O~d3!, ~37!

whereI is the 232 identity. Finally,

Ed
85I24CL21O~d3!. ~38!

Thus, the right-hand side of Eq.~32! becomes

Ed
8G~Md,Se!5S I24d2 C

]2

]x2
1O~d3! DG~Md,Se!.

~39!

Upon expanding the left-hand side of Eq.~32!, we have

FIG. 6. The vectorF5@f1,f2#
T versus discrete time is shown in

~a!. Note that the vector rotates through an anglep/4 in a single
time step. The vectorsG @see ~b!# and G@1# @see ~c!#, which take
eight steps, avoid the discontinuity between steps.
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Et
8G~Md,Se!5G~Md,Se18e!5S 118e

]

]t

1O~e2! DG~Md,Se!. ~40!

Equating Eqs.~39! and ~40!, we have

]

]t
G~Md,Se!52

d2

2e
C

]2

]x2
G~Md,Se!1O~d!. ~41!

In Eq. ~41!, we have used the fact that diffusive scaling re-
quires thatd ande are related by Eq.~16!. Hence, for small
d, G(Md,Se)5G* (Md,Se)1O(d), where G* (x,t)
5@g1* (x,t),g2* (x,t)#

T satisfies

]

]t
g1* ~x,t !5D

]2

]x2
g2* ~x,t !,

]

]t
g2* ~x,t !52D

]2

]x2
g1* ~x,t !. ~42!

Note that thegi , which solves the original difference equa-
tions on the lattice, is approximated by continuously differ-
entiable functionsg i* that are solutions of the partial differ-
ential equations. Finally, the remaining functionsG[k] are
expressed as

G@k#~Md,Se!5VkG* ~Md,Se!1O~d!. ~43!

To see the significance ofg i* (x,t) in Eq. ~42!, write

c1~x,t !5g2* ~x,t !1 ig1* ~x,t !,

c2~x,t !5g2* ~x,t !2 ig1* ~x,t !. ~44!

Substituting Eq.~44! into Eq. ~42! gives

2 i
]

]t
c1~x,t !5D

]2

]x2
c1~x,t !,

i
]

]t
c2~x,t !5D

]2

]x2
c2~x,t !. ~45!

Both of these equations are of the Schro¨dinger form, and it is
interesting that the derivation produces both the Schro¨dinger
equation and its complex conjugate simultaneously. The im-
portance of the complex conjugate equation has been
stressed by El Naschie@8#.

Finally, as stated earlier, the analysis of the equation for
z1 in Eq. ~23! is much simpler than the equations forfi . In
this case it is unnecessary to define the limit process as in
~33!. Instead, we defineS asSe<T,(S11)e and defineM
as in ~33!. Assuming there exists a continuously differen-
tiable functionz1(x,t), the expansion ofEx is the same as
Eq. ~34!. From Eq.~23!,

S 11e
]

]t
1O~e2! D z1~Md,Se!5S 11d2

1

2

]2

]x2

1O~d3! D z1~Md,Se!. ~46!

Thus, we requiree5O~d2! so that we have

]

]t
z1~Md,Se!5

d2

2e

]2

]x2
z1~Md,Se!1O~d!. ~47!

For small d, z1(Md,Se)5z1* (Md,Se)1O(d), where
z1* (x,t) is a solution of the diffusion equation

]

]t
z1* ~x,t !5D

]2

]x2
z1* ~x,t !. ~48!

IV. CONCLUSIONS

The pair of equations~42! which are equivalent to the two
Schrödinger equations~45! were obtained from the binary
random-walk model without a formal analytic continuation.
Theg2 andg1 that correspond to the real and imaginary part
of c1 are observable as expectations on the lattice. In this
classical context, the ‘‘wave functions’’ that satisfy Schro¨d-
inger’s equation have unambiguous interpretations in terms
of ensembles of random walks. In Fig. 7,g2 is calculated for
a point source on a lattice. The light cone is a result of the
finite speed of the particles on the lattice, and the lack of

FIG. 7. g2 on the lattice along with the projection of the con-
tours. The light cone in the figure is a result of the finite hopping
speed on the lattice.

FIG. 8. The real part of the Feynman propagator~g2* for a point
source! evaluated on the lattice, as well as the projection of the
contours. The ‘‘effective’’ light cone is an artifact of evaluating the
exact propagator on a lattice with lattice spacing larger than the
wavelength of the propagator.
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smoothness in the wave function near the light cone is due to
the relatively few paths nearby. As the lattice is refined, the
cone flattens~approaching the half plane ase→0! and the
region of agreement with the exact wave function~Fig. 8!
increases. For comparison, in Fig. 8 the real part of the so-
lution of Schrödinger’s equation is plotted on the lattice. The
noisy values near the ‘‘light cone’’ are a result of the fact
that the wavelength of the solution is smaller than the lattice
spacing there.

In future work, we will show how this result may be
generalized to include higher dimensions and smooth
bounded potentials.
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