PHYSICAL REVIEW A VOLUME 54, NUMBER 5 NOVEMBER 1996
Random walks, continuum limits, and Schralinger’s equation
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By considering the simple binary symmetric random walk on a discrete lattice indimensions, we show
that the discrete analog of Schklinger's equation describes a simple counting problem involving the sample
paths on the lattice. Schiimger’s equation is obtained in the continuum limit with the result that this equation
is confirmed to have a classical as well as a quantum corf®k050-2947®6)08710-0

PACS numbsg(s): 03.65—w, 03.20:+i, 05.40:+j

[. INTRODUCTION in quantum mechanics, has no known physical counterpart
and is not observable in nature.

Although the character of the solutions of the diffusion The comparison of classical and quantum equations that
and free-particle Schdinger equations are qualitatively very differ by a FAC may be extended to more interesting quan-
different, the two equations themselves bear a strong formdbm systems by considering the path-integral formulation of
resemblance. Mathematically one may obtain Sdimger's  quantum mechanics and its relation to the classical Wiener
free-particle equation by letting the time coordinate in theintegral. The resulting connection between quantum field
diffusion equation be imaginary. This process is a formaltheory and statistical mechanics has been of considerable in-
analytic continuation(FAC) and it suggests that we may terest in both fields now for some ye#8s4]. In addition, the
compare solutions of the two equations in spite of theirformal similarity between the quantum and classical equa-

gualitative difference. tions has encouraged efforts to effect an analytic continua-
The limitations of the FAC may be seen by examining thetion by invoking physical processes that mimic self-
simplest case. Consider the diffusion equation #1ldi- interference, thereby motivating an otherwise formal
mensions procedure. Some references include the works af/Es{5],
Nelson[6], and Nottald 7] who have proposed physical sys-
du é°u tems that combine diffusion and antidiffusion to produce in-
EzD ENG (1) terference and El Naschie and co-workfss9], who have

used a variational principle to time symmetrize a diffusive
As shown by Einstein in 1905, Brownian motion provides process to accomplish the same effect. In the relativistic do-
this phenomonological equation with a microscopic modelmain, the relationship between random walks and quantum
That is, theu(x,t) of Eq. (1) describes the ensemble averagepropagators is discussed in Reff§0-13.
concentration of small particles undergoing Brownian mo- In Fig. 1 we illustrate the different context in which
tion on a scale much less than the scale of observation. Angchralinger's equation appears in this paper. Heoth the
lytically continuing the diffusion equation to imaginary time diffusion and Schrdinger equations occur within the domain

we obtain the Schidinger equation of classical statistical mechanics. The model that we use is
the standard lattice random-walk model of Brownian motion
ay Y [14,15. Schralinger's equation appears in the solution of
at X2 this model without having to alter the dynamics in any way

[16]; however, to show this one has to retain more informa-
If we graft an interpretation that is appropriate for quantum

mechanics onto this equation, then we have arrived at quan-

tum mechanics in a formal way. The mathematical relation Classical mechanics

between the two equations is useful ficulationspertain-

ing to Schralinger’s equation, but it is not particularly useful Random Walk model of Brownian Motion

in the interpretation of the equation itself. Note that the FAC,

which transplants the diffusion equation into the domain of H@n

guantum mechanics, does not transfer the microscopic model

that goes with it. The random walks of Brownian particles | Diffusion Equation | | Schrodinger's Equation |
that underlie the diffusion equation have a correspondence in | e e
the Feynman paths of Schiinger’s equatiori1,2], but the

mapping also takes the real, positive Boltzman weights of

these paths and converts them into complex numbers, thus giG. 1. In this paper, both the diffusion and Satirayer equa-
removing the transformed “model” from the domain of tions occur within the domain of classical statistical mechanics,
classical probability. The easily interpreted concentration oboth equations occurring as projections from the same random-walk
probability densityu(x,t) of Eq. (1) becomes a “wave func- model. This provides a context for Sckinger's equation that is
tion” under the FAC. This object, while exceedingly useful independent of its context in quantum mechanics.
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tion about the random walks than previously considered.
This information is described by a vector in a four- A
dimensional space. Solutions of the diffusion equation ap- 3 o=-1

pear directly in a first-order projection out of this space and 1 s T
solutions of Schrdinger’'s equation appear directly in a + o=+1

second-order projection. The fact that these two projections
are orthogonal allows the two qualitatively different behav- T . .
iors to coexist in the same physical system. No formal ana-
lytic continuation is required to produce the Sdfirmer .
equation from this classical model and, figuratively speaking, T o=-1
both equations simply represent different “views” of a
single object, the object being an ensemble of Brownian par-

;

ticles. In contrast to the usual FAC that links the two equa- 1 s T

tions, this derivation produces a “wave function” that is an {

observable property of ensembles of real point particles. o=+l
In Sec. Il we introduce the discrete random-walk model !

that produces both the diffusion and Safirger equations —_— > X

as part of its description. However in this section, we con-

centrate on the dynamics of the ensemble of walks without |G, 2. A typical path on the space-time lattice. The particle
regard to the spatial distribution of the walks. In Sec. Ill We changes state cyclically with each collision, the “state” being a
reintroduce the distribution of walks in space and consider @eans of counting the number of times a direction occurs modulo 2.
continuum limit. The “spin” of the trajectory changes every two collisions.

Il. BINARY RANDOM WALKS AND MARKQOV CHAINS pl(mg'(s+ De= %pl((m_ 1)8,s€)+ %p4((m+ 1)d,se),
In this paper we will consider only symmetric random P2(m&,(s+1)e)=3p,(m+1)8,5€)+3p:1((M—1)4,Se),
walks in discrete time. There will be no internal or external
mechanism to change the dynamics of the walks. Instead wePs(M3,(s+1)€)=3ps((M—1)8,5€)+ zpo((M+1) 8,s€),
shall simply retain more information about the dynamics
than is usually considered and we shall see that this isPa(M&,(s+1)e)=3p,s((M+1)35,5€)+3p3z((M—1)4,5€).
enough to show that Schiimger's equation occurs naturally ()]

in the description of such walks. . i i i
Upon multiplying these equations b§, the first equation

Consider a space-time lattice with respective spacifigs ~F~. - X
ande. Particles hop on this lattice a distante at each time  IMPlies that the probability that a particle leaves néai, (s
+1)e) in state one is equal to the sum of two probabilities.

stepe. The walks are symmetric and at each lattice site walks 7 . o
are equally likely to take either direction. We shall be inter-ON€ iS3P1((Mm—1)4,s€)é that is the probability that a par-
cle leaves nodé(m—1)4,se) in state one and remains in

ested in the statistics of the number of direction changes if’L, ,
trajectories on the lattice. In particular, between lattice sitestS State when it leaves the nodad, (s+1)e). The other

each particle will be in one of two direction stateght or ~ °"€ is 3p4((M+1)3,5€)8 that is the probability that a par-
left moving and one of two “spin” states. We use the Ising tcl® Iéaves nodé(m+1)4,se) in state four and changes to
spin variableo==*1 to describe these two states. The direc-Stat€ one when it leaves the noges, (s+1)¢). The remain-

tion state will change with every “collision”(direction INg three equations have a similar interpretation, and the
change and the spin will change with every two collisions probab|llty Pu |§_un|quely determined once the initial condi-
(Fig. 2. Thus, a particle starting off in state ofright moy-  tions are specified. F®=0 we take
ing, o=+1) changes to state tweft moving,o=+1) at the 4
first collision, state threéright moving, o=—1) at the sec- _
ond collision, state foufleft moving, o=—1) at the third ;1 m;w Pu(md,se)6=1, @
collision, and back to state one at the fourth collision. Note
that states one and three both correspond to right-movinghich establishes the fact that the probability that a particle
particles and states two and four correspond to left-movings somewhere on the lattice at a given time is one.
particles. A particle that starts in state oitwo) and ends in We will be interested in the statistics of these binary ran-
the samedirection state three(four) has changed its spin dom walks and, especially, in the difference in the number of
from +1 to —1. Notice here that the Ising spini®ta new particles reaching a given space-time point with opposite
property that has been added to our particles. It is simply &pin. However, before we perform this analysis, we examine
convenient label that helps to classify particle trajectories. Irthe walks with regard to the distribution of particles in the
Ord [16], the difference between two states with identicalfour states before considering in Sec. Il the additional com-
directions was called parity. plexity of the motion of particles in space. Lei(s) be the

Let p,(mé,se)d (u=1,2,3,9 be the probability that a probability that a particle is in thih state(i=1,2,3,9 at the
particle leaving the space-time poinn§,se) is in statex.  sth step on the lattice. Then;(s) is equal to= % .
(m=0,%1,...;s=0,1,...). The difference equations for p;(mé,se)d. Multiplying Eq. (3) by § and summing ovem,
p, that we study in this paper are the equations reduce to
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FIG. 3. The underlying Markov chain for the lattice walks. The . ) o
probability of a state change at each time step. is FIG. 4. The probabilityg,(s) that a particle starting in state one
at time zero is in state one aftarsteps.

T
[Ax(sH1),qz(H1),qa(s+ 1), q4(s+ ] =T(1) In words, u,(s) is the sum of all occupation probabilities,
X[q1(s),02(S),q3(S),q4(s)]". (5)  Uy(s) is the difference of occupation probabilities by direc-
tion, andé,(s) andé,(s) are the differences of occupation of
The transition matrix (1), which we now consider, defines a the two spin states for right- and left-moving particles, re-

Markov chain. spectively. Rewriting Eq(9) in matrix form, we have
It is convenient to define the more general Markov chain
with four states where the transition matrix up a1 1 1 1 1
Uz dz 1 -1 1 -1
oo
_Z E o1 0 -1
T@=5|9 1 1 0 (6) & 4 10
0 0 1 1

To examine the dynamics d@f, we normalize it suitably by
With =1, T;; is the probability of a transition from stafe  defining &,(s)=(\/2)° £(s). Substituting Eq(10) into Eq.
to statei in one step(Fig. 3). [T°];; is the probability of a (5), the resulting system of equations is
transition from statg to statei in s steps. The behavior of
[T(1)]; with s is very simple andT°®] 1, is illustrated in Fig. &(s+1)
4. Since in the limit of large each state is equally likely, all &(s+1)
elements ofT3(1) approach3. The oscillation observed in
Fig. 4 reflects the “transient response” of the chain. Withwhere
a=2 the matrixT counts paths in the Markov process. Thus
[TS(2)]”- is the number of distinct paths fropto i in s steps. 1 {1 -1

u;(s+1)
us(s+1)

&1(s)
&2(s)

uy(s)
0

= =V (1))

’

(12

The powers of the matriX obey V= E 1 1

4
i; [T5(2)]j=2° (j=1234;s=12,..) ) These equations can also be expressed in the form

ui(s)=uy(0)=1, uy(s+1)=0, E(s)=VE(0),
expressing the fact that there arg dstinct s-step paths. (13
Note that Eq(7) may be reexpressed as an invariance prop-
erty of T; namely, £

4 4

1
1 4 ¥
s 2 [T(2)];=2 [TD]=1 (s=1.2,..).
(2 ) i=1 i=1
(8 0.5
This is in accord with the idea that the element3&fl) may > s
S 1 15 20 25 0

be regarded as probabilities.
Other features of the Markov process are easily under-
stood by considering a change _of variables from -o.5

d1(8),02(8),03(8),d4(S) to u1(8),uUx(8),£1(S),é2(s) where
-l

- FIG. 5. &(s) for particles starting in state one at time zero.
U,=(g:+0Q3)—(02+0qs), &=0,—04. (9)  Notice that¢, is periodic with period eight.

Ur=0q:+0dx+03t0s, E1IQ1_Q3,
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where 2 (s) =[£,(s),£,(s)]T. Here we see thaR block di-
agonalizes the matriX. Equation(13) shows that whatever
the dynamic behavior of;, the behavior is intrinsic to the
four-state Markov chain described By and independent of
the dominant variable;. The dynamics of; become clear
when we notice thaV is just a rotation matrix with a rotation
angle of /4, and hencey®=1 wherel is the 2x2 identity
matrix. Thus, we see that®= V(™8 (k=0,+1, ...) so that
& is periodic with period eight. That is, replacisdy s+ 8k
in Eq. (13), we have

&(s)=¢&(s+8k) (i=1,2; k=0,1,2...). (14

In Fig. 5, the graph of;(s) illustrates this periodicity. In
contrast to the periodicity of;(s), u, is itself an invariant in
time. Finally, Eq.(13) shows thalZ|[* is invariant in discrete
time. SinceV' =V 1,

E(s)E(s)=ET(0)(V)AV)E(0)=ET(0)E(0).
(15

direction or spin statez,(mé,se) § is the expected differ-
ence in the probabilities for the two direction statgght or
left moving). ¢4 is the expected spinf{1)p;6+(—1)p3d
for right-moving particles; whileg,8 is the expected spin
(+21)p,6+(—1)p,6 for left-moving particles. The transfor-
mation (21) expresse#® in terms of an orthogonal basis,

b

_é T é _ 11T = _ T
P=" 11,137+ [1,-11,-1]"+ 5 [1,0,-1,0]
+ 2101017, (22

where[1,1,1,1" and[1,—1,1,~1]" are eigenvectors of(1).
As in the case of the Markov chaii, is a sum of four
orthogonal vectors such that the coefficient of each vector
involves only one ofz;, z,, ¢, and ¢,.

The change of variable®1) gives

2] [ E,+E; ' E'-E, O 0
Ill. THE CONTINUUM LIMIT el 2|2 1 0 0 91 0
. . . t ¢1 2 0 0 Ex - Ex
In this section we consider Eg&3) of the full random 5 0 0 E’l E
walk, and we show that the solutions of these equations can 2 - X X
be approximated in terms of solutions of the diffusion equa- [z,
tion and Schrdinger’s equation. Throughout this section we z
shall use the usual diffusive scaling for random walks in x|~ . (23
which for small s, ¢
52 52 -2
5¢-D+0O(9) or e= ﬁJFO(éQ), (16) In Eq. (23), z,(md,(s+1)e)=0[z,(m4,0) may not be D

whereD is a diffusion constant. To express Eg) in matrix
form, consider the shift operatoBs; * and E, such that

Es 'pi(md,se)=pi((m=1)3,s¢) (17)
and

E:pi(mé,se)=p;(ms,(s+1)e). (18
The difference equation®) may then be written as

Ex* 0 0 E

EP(ms _LIES B O % | p(ms
t (m 136)_5 0 EX E;l 0 (m ,SG),
o 0 E& E
(19
where
P(mdé,se)

:[pl(méySE)lpz(m(S:Sf)ap3(m5155)yp4(m5136)]1—- (20)
As in Sec. Il, we now consider the change of variables
2,=P1+ P2+ PatPa.  b1=P1—Pa.

Z,=(p1tpP3) —(P2+Pa), ’97)2=p2—p4. (21)

Here, z;(mé,s€)6 (m=0,x1,...; s=0,1,...) is the
probability that a particle is at=mé at timet=se in any

and we can analyzé; and z, separately. Hence, we start
with the equations fog; and consider the simpler case for
later. As in the case of the Markov chain, we normalize
suitably by defining

Bi(Mé,5€)=(12)5¢;(M8,s¢). (24)

In matrix notation, the equations faf in Eq. (23) may be
expressed as

E/®(mé,se)=EsP(MS,se), (25)

where®(mé,se) =[¢,(Mé,se€), p,(md,se)]" and

1 [EY -E, 26
5 \/E Ex—l EX
In the following, we consider the equations
Efd(mé,se)=E5D(ms,se), (27)

which are derived from Eq25) by applying the operatdg,
to Eqg. (25 k times and using Eq25) repeatedly.

Now Eg. (25) is an exact difference equation describing
the expected spin over our ensemble of symmetric random
walks. It may be solved for all finite positive valuesofnd
o. However, if we want to approximate these solutions for
small § by the solutions of a partial differential equation, we
first have to determine if th@ector ®(mé,se) is rotated
through large angles at each time step. If we assume that
pi(Mmdé= 8,s€) =p;(md,se) + O(S) for small 5, then



3776 G. N. ORD AND A. S. DEAKIN 54

choose a nearby pointM§,Se) on the lattice as follows.
7 7 Given § and e, we select (n,s) as (M,S) such that
L 32 "‘"—-—../
0 e <= MS<X<(M+1)5, Se<T<(S+8)e, S=0 mod 8.
> 3 > . > (33)
2ol L <=+ <= At this point, we extend the domain of definition Bfto all
'7 (x,t) and assume that this may be done in such a way that
8 & 16 T an 1“(x,t.)=[y1(x,t),y2(x,t)]T is a contin_uously diﬁergntiable _
>T 1 el function. We now proceed to determine the equation of this
10 8 9 function.
[ - We start WithE, y;(M 8,Se) = y;(M 8+ 8,Se) in Eq. (32)
. 5 ' and expandy;(M 6+ 8,Se) in a power series i to obtain
E,=1+L+2iL2+0(8%, (34)
(a) (b) (c) where L=6(d/dx). Henceforth, Ly;(M&,Se) denotes

Ly;(x,t) evaluated ati1 6,Se). Then
FIG. 6. The vectob=[¢;,¢,]" versus discrete time is shown in

(a). Note that the vector rotates through an anglé in a single L2 L2
time step. The vector§ [see(b)] and I'¥ [see(c)], which take 1-L+—= —-1-L——
eiah . ; L 1 2 2
ght steps, avoid the discontinuity between steps. Es=— L2 L2 + 0(53):\/+ BL
V2 1-L+— 1+L+—+
EsD (M, se)=VD(ms,se)+O(6), (29 2 2

whereV is the matrix(12). Thus&;, as an operator, rotates I E 2,
& through an angle of approximatety4 (see Fig. 5 and the 2 VLE+0(&%), (35
last paragraph of Sec. )l However, notice that
2D (mé,se) =P (mé,se) + O(8) and hence whereV is given by Eq.(12) and

®(M3,(s+8)e)=E D (M4, s€) = E50 (M5, (S+8)€) 171 1

=d(ms,se)+0( ). (29) __E[l —1}'

This shows that the vecteb(md,se) is changed by a small  Thg.
amount every eight steps of the discrete process, even though
it is rotated by abouti/4 at each single step. 2_\/24 I 1 (V2+B2)L 2+ 3y —C+

We will approximate the functiorb(mé,(k+8l)e) (I £=V H(VBHBVL+(VIABIHLTH+0(5)=C V2BL
=0,1,...) by eight different functions corresponding to +2VL2+0( 8%, (36)
k=0,1,...,7. Forclarity, we define the eight functiorig*!

(k=0,1, ...,9 as® where where

I'(ms,se)=d(ms,se), s=k+8l (1=0,1,..).
(30) C=

The domain of ™ involves the nodes on the lattice at times

wheres=k, s=k+8, etc. Thus, from the details in the last The coefficients follow readily from the definition & and
paragraphI™ changes byO(8) when we move by eight B. Similarly,

steps on the lattice. For simplicity, we defité”’=I" and

relateI'™ to I" by Ei=—1+2CL%+0(6%), (37)
— EXTI0]— _
K= gfrol=griol=£r. (B wherel is the 2x2 identity. Finally,
ionshi [1] i i-
The rglat[onshlp of” andI to ® is represented schemati ng | —4CL2+0(8°%). (39)
cally in Fig. 6.
. Wg are interested in approximating the solution of theThus, the right-hand side of E¢82) becomes
quation
2
E®'(ms,se)=E'(més,se), s=0 mod 8 (32 d
¢I'(mé,se)=E5l'(mé, se) (32) 8T (M 5,5€) = |—4azc§—xz+0(a3))r(|v|5,se).
for small § by a solution of a partial differential equation. (39

We set up the limit process as follows. Suppose we are in-
terested in X,t) in a neighborhood of a point{,T) and we  Upon expanding the left-hand side of E§2), we have



54 RANDOM WALKS, CONTINUUM LIMITS, AND.. .. 3777

Y2

100

FIG. 7. v, on the lattice along with the projection of the con- FIG. 8. The real part of the Feynman propagatgf for a point
tours. The light cone in the figure is a result of the finite hoppingsource evaluated on the lattice, as well as the projection of the
speed on the lattice. contours. The “effective” light cone is an artifact of evaluating the

exact propagator on a lattice with lattice spacing larger than the
J wavelength of the propagator.
EST'(M8,Se)=T'(M6,Se+ 86)=(1+86 =
Both of these equations are of the Satinger form, and it is

interesting that the derivation produces both the Sdiliger
+O(62))F(M 5,Se€). (40 equation and its complex conjugate simultaneously. The im-
portance of the complex conjugate equation has been
Equating Eqs(39) and(40), we have stressed by El Naschi@]. _ _
Finally, as stated earlier, the analysis of the equation for

d 82 92 z; in Eq. (23) is much simpler than the equations fér. In
5 T(M8,Se)=—5-C -3 I'(M5,Se)+O(8). (41)  this case it is unnecessary to define the limit process as in
(33). Instead, we defin8 asSe<T<(S+1)e and defineM
In Eq. (41), we have used the fact that diffusive scaling re-as in (33). Assuming there exists a continuously differen-
quires thats and e are related by Eq(16). Hence, for small  tiable functionz,(x,t), the expansion oE, is the same as
5, T(M&,Se)=T*(Ms,Se)+0(5), where T*(x,t) Eq.(34). From Eq.(23),
=[5 (x,1), 75 (x,t)]" satisfies

1+ &+o 2 M 8,Se) = 1+521‘92
9 . (92 . € ot (6) Zl( 3 E)_ 2 (?XZ
E Yl(xyt)_D W 72 (th)a
, +0(53)> z,(M 8,Se). (46)
J J
— v5(X,1)=—D — vi (X,1). 42
at 72 (%) ax? 7% 42 Thus, we require=0(&%) so that we have
Note that they;, which solves the original difference equa- d &5 92
tions on the lattice, is approximated by continuously differ- ot 2,(M6,Se)= 2¢ ox2 2:(M5,Se)+0(5).  (47)

entiable functionsy* that are solutions of the partial differ-
ential equations. Finally, the remaining functiohS! are  For small 5, z(M 5,S€)=27; (M 8,Se)+0(8), where

expressed as z37 (x,t) is a solution of the diffusion equation
T'kI(M 8,Se) =V T* (M 8,S€) + O( 5). (43) d 5?
— Z7 (X,1)=D — Z] (X,t). (48
L . . ot X
To see the significance of* (x,t) in Eq. (42), write
¢+(X,t)=y’é(x,t)-}—iy’l‘(x,t), IV. CONCLUSIONS
. o, The pair of equation&42) which are equivalent to the two
- (X1 =y (X,t) =iy (X1). (44) Schralinger equationg45) were obtained from the binary

random-walk model without a formal analytic continuation.
The y, and vy, that correspond to the real and imaginary part
J o) of ¢, are observable as expectations on the Iattice_._ In this
=i = (X0)=D —— ¢ (X,1), classical context, the “wave functions” that satisfy Sottro
at IX inger's equation have unambiguous interpretations in terms
) of ensembles of random walks. In Fig. %, is calculated for
i 9 J_(x,)=D 9 U (x.1) (45) a point source on a lattice. The light cone is a result of the
ot " axe T finite speed of the particles on the lattice, and the lack of

Substituting Eq(44) into Eq. (42) gives



3778 G. N. ORD AND A. S. DEAKIN 54

smoothness in the wave function near the light cone is due to In future work, we will show how this result may be
the relatively few paths nearby. As the lattice is refined, thegeneralized to include higher dimensions and smooth
cone flattengapproaching the half plane as-0) and the bounded potentials.

region of agreement with the exact wave functidtg. 8)

increases. For comparison, in Fig. 8 the real part of the so-

lution of Schralinger’s equation is plotted on the lattice. The ACKNOWLEDGMENT

noisy values near the “light cone” are a result of the fact
that the wavelength of the solution is smaller than the lattice
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