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In earlier work we proposed a family of nonlinear time-evolution equations for quantum mechanics associ-
ated with certain unitary group representations@Doebner and Goldin, Phys. Lett. A162, 397 ~1992!; J. Phys.
A 27, 1771~1994!#. Such nonlinear Schro¨dinger equations are expected to describe irreversible and dissipative
quantum systems. Here we introduce and justify physically the group of nonlinear gauge transformations
necessary to interpret our equations. We determine the parameters that are actually gauge invariant and
describe some of their properties. Our conclusions contradict, at least in part, the view that any nonlinearity in
quantum mechanics leads to unphysical predictions. We also show how time-dependent nonlinear gauge
transformations connect our equations to those proposed by Kostin@J. Chem. Phys.57, 3589~1972!# and by
Bialynicki-Birula and Mycielski@Ann. Phys.100, 62 ~1976!#. We believe our approach to be a fundamental
generalization of the usual notions about gauge transformations in quantum mechanics.
@S1050-2947~96!06710-8#

PACS number~s!: 03.65.2w

I. INTRODUCTION AND BACKGROUND

Infinite-dimensional local current algebras and groups
play a fundamental role in quantum mechanics@1–7#. In try-
ing to understand and interpret certain unitary representa-
tions of such groups, we obtained in our earlier work a fam-
ily of nonlinear Schro¨dinger equations different from those
commonly studied@8,9#. In the present article we consider a
group of nonlinear transformations on the Hilbert spaceH
that can linearize a subset of these equations. We observe
that the significance of these transformations goes consider-
ably beyond providing a technique for obtaining solutions.
We argue for their interpretation asnonlinear gauge trans-
formationsor gauge transformations of the third kind,in that
distinct nonlinear Schro¨dinger equations of our type, related
by such transformations, are properly understood as forming
equivalence classes within which the time evolutions de-
scribe the same physics. Our view is that this provides a
fundamental generalization of the usual notions about~lin-
ear! gauge transformations. Of course, the theory is of inter-
est due to the existence of gauge classes that areinequivalent
to ordinary quantum mechanics.

One consequence of our perspective is that a whole fam-
ily of nonlinear Schro¨dinger equations are in fact physically
equivalent to the linear theory. This immediately contradicts
the claim thatanynonlinearity in the time evolution of pure
states in quantum mechanics leads to some unphysical pre-
dictions @10–13# and demonstrates that a more sensitive
analysis is necessary. Another implication is that the coeffi-
cients in our nonlinear Schro¨dinger equation are not suscep-
tible to direct interpretation, as they are not invariant under
nonlinear gauge transformations. Rather, gauge-invariant
combinations must be found and their physical meaning de-
termined. We obtain a set of gauge invariants and describe
some of their properties. We also consider the case of time-
dependent nonlinear gauge transformations and show how

these connect our equations with those proposed by Kostin
@14# and by Bialynicki-Birula and Mycielski@15#. Our analy-
sis implies that nonlinear gauge transformations must be ex-
plicitly considered in interpreting the results of experiments
investigating possible deviations from linearity in quantum
mechanics@16–21#.

We provide here the necessary background. Letc(x,t) be
a time-dependent quantum-mechanical wave function for a
particle of massm, with probability densityr(x,t) and prob-
ability flux density j (x,t) defined as usual fromc by the
formulas

r5c̄c, j5
\

2mi
@c̄“c2~“c̄ !c#. ~1.1!

Our previously derived equations may be written

i\
]c

]t
5H0c1 i I @c#c1R@c#c, ~1.2!

whereH0 is the usual, linear Hamiltonian operator with po-
tential energyV(x,t), given ~in the absence of any external
magnetic field! by

H0c52
\2

2m
¹ 2c1Vc, ~1.3!

and I @c#,R@c# are real-valued nonlinear functionals. The
latter are given by

R@c#5\D8(
j51

5

cjRj@c#, I @c#5
1

2
\DR2@c#, ~1.4!

where
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ĵ5
m

\
j5

1

2i
@c̄“c2~“c̄ !c#. ~1.6!

In ~1.4!, D andD8 are real numbers with the dimensions of
diffusion coefficients.

Equations~1.2!–~1.6! were first derived from consider-
ation of the representations of an infinite-dimensional group
and the corresponding Lie algebra of local currents. Certain
unitary group representations led us to replace the usual con-
tinuity equation forr andj by a Fokker-Planck type of equa-
tion

]r

]t
52“• j1D¹ 2r ~1.7!

and to accompany this by appropriate conditions on the cor-
responding Schro¨dinger equation. The parameterD in ~1.7!
then characterizes the original group representation up to
unitary equivalence, via the dimensionless quantity
G5Dm/\. The other diffusion coefficientD8 in ~1.4! per-
mits the real coefficientscj to be dimensionless parameters.
Thus far the productsD8cj take arbitrary values.

Some related nonlinear Schro¨dinger equations have been
considered by others, though without the group-theoretical
motivation. A nonlinear Schro¨dinger equation proposed by
Guerra and Pusterla@22# falls within our class of equations,
but always withI @c#50. The interpretation of this equation
and its relation with ours is clarified by the analysis in the
present paper; see also papers by Smolin, Kaloyerou, and
Vigier @23–25#. Equation ~1.7! was applied by Schuch,
Chung, and Hartmann to the quantum-mechanical probabil-
ity density and current@26–28#, but in place of the nonlin-
earity in ~1.4! they introduced a logarithmic nonlinear term
that is actually independent of~1.7!. Equations of Stenflo,
Yu, and Shukla governing surface waves at a boundary be-
tween ~non-quantum-mechanical! plasmas@29# were gener-
alized by Malomed and Stenflo to a family that intersects the
above for special values of the coefficients in one space di-
mension@30#. Another special equation of this sort was con-
sidered but rejected by Kibble@31#, and a related class of
equations is discussed by Auberson and Sabatier@32,33#.
Still more general nonlinear quantum time-evolution equa-
tions, motivated by those discussed here, were developed by
Dodonov and Mizrahi@34–36#. Comments on the relation-
ship with the rather different equations of Kostin and of
Bialynicki-Birula and Mycielski are given by Goldin and
Svetlichny@37#. This relationship turns out to be a deep one,
as shown below. A discussion of nonlinearity in the Schro¨-
dinger equation and two-level atoms is given by Czachor
@38#.

To understand the physics of quantum mechanics with the
above nonlinear time-development, we must determine the
physical content of the set of coefficients in~1.4!. We sum-

marize some of the already-established properties of these
equations, which will be useful in the later development. The
total probability*r(x,t)dx is conserved by the time evolu-
tion for all values of the coefficients. Furthermore, the equa-
tions arestrictly homogeneous, i.e., if c is a solution, then
ac is a solution for any complex numbera. This means one
can construct a hierarchy ofN-particle equations, satisfying
the separation property, i.e., for which initially uncorrelated,
noninteracting subsystems remain uncorrelated@15,37#. With
V[0, plane waves are always solutions@39# and we have
Euclidean and time-translation invariance. WhenV is a sta-
tionary potential that in ordinary quantum mechanics would
accommodate bound states, there exist corresponding
stationary-state solutions to~1.2!. These typically go over
smoothly to the stationary solutions of the linear Schro¨dinger
equation, as we letD,D8→0.

Through~1.7!, the sign ofD appears to introduce anar-
row of time into the quantum mechanics in a fundamental
way. This is one of the reasons for interest in our model.
However, the discussion in Secs. II and III below modifies
this direct interpretation importantly.

When one calculates the time-rate of change of the expec-
tation values ^2 i\“&5*c̄(x,t)@2 i\“c(x,t)#dx and
^ i\] t&5*c̄(x,t)@ i\] tc(x,t)#dx, one obtains extra terms
that aredissipative.There is a subfamily of our equations,
characterized by the conditionsD8c15D52D8c4 and
c212c55c350, for which the dissipative terms in
(d/dt)^2 i\“& are zero, i.e., for which Ehrenfest’s theorem
formally holds. Equations in this subfamily are linearizable
by means of nonlinear transformations@33,40,41#. A larger
subfamily of the equations are Galileian invariant; necessary
and sufficient conditions for Galileian invariance of the
equations arec11c45c350, so that the family obeying
Ehrenfest’s theorem is Galileian invariant, as are other sub-
families. In addition to the above results, we mention that
explicit time-dependent solutions to~1.2! have been obtained
by several authors@42–45# and that symmetries of the equa-
tions have also been studied in some detail@46–49#.

In Sec. II we introduce a two-parameter group of nonlin-
ear transformations, and justify its interpretation as a nonlin-
ear gauge group. Then we rewrite our nonlinear Schro¨dinger
equation in a more convenient general form and display the
group action on the space of coefficients. In Sec. III we write
a set of mutually independent, gauge-invariant quantities in
terms of the original coefficients and discuss further the
physical interpretation of our equations in terms of the gauge
invariants. Explicitly time-dependent nonlinear gauge trans-
formations are treated in Sec. IV. These require the widening
of our class of equations to include terms of the type intro-
duced by Kostin and by Bialynicki-Birula and Mycielski. We
summarize our conclusions in Sec. V.

II. THE NONLINEAR GAUGE GROUP AND ITS ACTION

A. Rationale for nonlinear gauge transformations

Gauge transformations of both the first and second kind in
quantum mechanics are implemented byunitary ~linear! op-
erators inH; i.e., they preserve inner products between wave
functions. Gauge transformations of the first kind correspond
to the unitary group U~1!, and leave the form of both posi-
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tion and momentum operators unchanged. Gauge transfor-
mations of the second kind correspond to the group of U~1!-
valued functions ofx and t. They leave the form of all
functions of the position operator invariant, while the form
of operators depending on the momentum operator is
changed.

Now it has been remarked by various authors thatall
actual quantum-mechanical measurements consist of or are
obtained from positional measurements performed at various
times, for example, the Feynman–Hibbs statement~see@50#,
p. 96!:

Indeed all measurements of quantum-mechanical systems
could be made to reduce eventually to position and time
measurements. Because of this possibility a theory formu-
lated in terms of position measurements is complete
enough in principle to describe all phenomena.

Adopting this point of view, quantum theories~whether
linear or nonlinear! for which corresponding time-dependent
wave functions give the same probability density in space at
all times, are ‘‘in principle’’ ~as well as in practice! equiva-
lent. Two different time evolution equations thus related will
not predict different physical effects. This is also consistent
with the analysis of Mielnik@51#, who considers quantum
logic with an eye to possible nonlinear time evolutions. Fur-
ther discussion of related issues is provided by Lu¨cke @52#.

The preceding statement about the physical equivalence
of different time-evolution equations doesnot simply mean
that one theory has been obtained from the other through a
mathematical change of coordinates in the Hilbert space. It
embodies thephysical assumptionstated by Feynmann and
Hibbs about the special nature of positional measurements.

To say that all measurements are fundamentally positional
means that when we ‘‘measure’’ momentum, energy, angular
momentum, etc., in quantum mechanics, we are really mak-
ing inferences~i.e., performing calculations! from the out-
comes of positional measurements at various different times.
But theprocess of inferringmomentum, energy, angular mo-
mentum, etc., from positional outcomes~i.e., the actual
choice of calculation to perform! depends on what isas-
sumedabout the time evolution.

For instance, consider the idea that the linear operator
2 i\“ describes the momentum of a particle. This assertion
means that thedistribution of the outcomes of a large num-
ber of repeated momentum measurements on identically pre-
pared pure statesc, outcomes that arenecessarily obtained
by making positional measurements at different times on the
identically prepared states,can be predicted from the opera-
tor2 i\“ according to the usual mathematical rules of quan-
tum mechanics. But the way that we infer momentum from
the positional outcomes is based on theassumptionthat the
time evolution is given by the usual linear Schro¨dinger equa-
tion, which has the property~for a noninteracting particle!
that the Fourier transform of the wave function time evolves
so as to conserve any particular value of momentum~i.e., so
as to preserve the probability density in momentum space!. If
the time evolution is assumed to be given by a different
equation, e.g., a nonlinear one, this property may no longer
hold. The inferred ‘‘momentum’’ outcomes will then be dif-
ferent for the same positional measurements and the operator
2 i\“ will no longer predict the momentum distribution.

Thus we consider, in general, transformations inH that
leave the positional probability density invariant. Such trans-
formations change the time-evolution equation, but do not
change the physical content of a theory. If they are linear
they must be implemented by unitary operators and we have
gauge transformations of the first or second kind. A well-
known additional possibility is that of antilinearity, so that
the transformations are implemented by antiunitary opera-
tors. This enlarges the group by admitting the operation of
complex conjugation of wave functions, which yields the
time-reversed Schro¨dinger equation. In this paper we discuss
a particular, two-parameter group ofnonlinear transforma-
tions acting on Eqs.~1.2!. In addition, we investigate the
case where the two parameters depend explicitly on time.

B. A two-parameter group of nonlinear gauge transformations

To motivate the group of transformations introduced here,
we consider linearizing transformations for the subfamily of
our equations obeying Ehrenfest’s theorem@40,41#. This
subfamily is characterized by the conditions

D8c15D52D8c4 , D8c212D8c55D8c350 .
~2.1!

Consider the nonlinear transformation given by

c °c85N~c!5ucuexp@ i ~g lnucu1Largc!#, ~2.2!

where g and L are real numbers (LÞ0). If c solves an
equation in the Ehrenfest class~1.2!–~1.5! under the con-
straints~2.1!, thenc8 solves the linear Schro¨dinger equation

i
\

LE

]c8

]t
52

\2

2LE
2m

¹2c81V~x,t !c8, ~2.3!

when

g5gE52
2mD

\ S 12
4m

\
D8c22

4m2D2

\2 D 21/2

,

L5LE5S 12
4m

\
D8c22

4m2D2

\2 D 21/2

, ~2.4!

on condition that

4m

\
D8c2,12

4m2D2

\2 . ~2.5!

We remark that the transformationN is not actually well
defined by~2.2! as a mapping having a domain whose ele-
ments are wave functions~since the argument ofc is only
definedmodulointeger multiples of 2p). This is not a seri-
ous difficulty; givenc obeying one of our nonlinear Schro¨-
dinger equations, it is sufficient for our purposes thatc8
exists obeying the transformed equation. An appropriate se-
lection ofc8 can always be made, and we thus have a con-
crete example of a nonlinear gauge transformation.

Now two transformationsN having different arbitrary val-
ues ofg andL, with LÞ0, can be performed successively
to yield a third, i.e.,
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N~g1 ,L1!+ N~g2 ,L2!5N~g11L1g2 ,L1L2! , ~2.6!

so that we have the group law of the affine group in one
dimension. Let us call this groupN ~for ‘‘nonlinear’’ !. Any
transformationN(g,L)PN is local in the sense that it de-
pends only on the value ofc at a point, not on its derivatives
or its values at other points. Transformations inN also re-
spectrays in the Hilbert space; i.e., for any complex number
a, the vector (ac)8 belongs to the same ray as doesc8.
Furthermore, the transformationsN(g,L) leave the probability
densityr invariant for all x and t. In accordance with our
earlier discussion, the quantum theory in which wave func-
tions c obey a particular nonlinear time-evolution equation
is physically equivalent to the corresponding theory, trans-
formed byN(g,L) , in which wave functionsc8 obey a trans-
formed equation. Distinct nonlinear Schro¨dinger equations
related by elements ofN should then be regarded as belong-
ing to equivalence classes predicting exactly the same phys-
ics. In particular, this means that the parametersD and
D8cj in ~1.4! are not themselves susceptible to direct physi-
cal interpretation, as the coefficients that depend immedi-
ately on them are not invariant underN.

C. Action of the nonlinear gauge group
on nonlinear Schrödinger equations

To determine just howN transforms a general nonlinear
Schrödinger equation in the category under consideration,
we now rewrite the entire right-hand side of~1.2!, including
H0, as a nonlinear function of the densityr and the current
ĵ , multiplied byc. From ~1.5! we have

¹ 2c

c
5 iR1@c#1

1

2
R2@c#2R3@c#2

1

4
R5@c#, ~2.7!

giving us a general form for the nonlinear Schro¨dinger equa-
tion that includes the linear case

i
]c

]t
5 i S (

j51

2

n jRj@c# Dc1S (
j51

5

m jRj@c# Dc1U~x,t !c,

~2.8!

where then j ( j51,2) andm j ( j51, . . . ,5) arereal coeffi-
cients. The relationship of~2.8! to ~1.2!–~1.5! is given by

n152
\

2m
, n25

1

2
D,

m15D8c1 , m252
\

4m
1D8c2 , m35

\

2m
1D8c3 ,

m45D8c4 , m55
\

8m
1D8c5 ,

U~x,t !5
1

\
V~x,t !. ~2.9!

From here on we shall think ofn1 not as having the fixed
value2\/2m given by ~2.9!, but simply as one of our real
parameters subject to variation like the others. This widens

the class of equations and is essential to understanding the
physical meaning of the set of coefficients.

With c85N(g,L)(c), we have the transformation ofr and
ĵ given by

r85c̄8c85r,

ĵ 85
1

2i
@c̄8“c82~“c̄8!c8#5L ĵ1

g

2
“r. ~2.10!

DefiningRj8@c#5Rj@N(g,L)(c)#5Rj@c8#, we have

R185LR11
1
2gR2 , R285R2 ,

R385L2R31LgR41
1
4g2R5 ,

R485LR41
1
2gR5 , R585R5 , ~2.11!

and writing the inverse transformation Rj
;@c#

5Rj@N
21(c)#, we have

R1
;5L21~R12

1
2gR2!, R2

;5R2 ,

R3
;5L22~R32gR41

1
4g2R5!,

R4
;5L21~R42

1
2gR5!, R5

;5R5 . ~2.12!

Now if c obeys~2.8!, thenc8 satisfies

i
1

c8

]c8

]t
5 i(

j51

2

n jRj
;@c8#2g(

j51

2

n jRj
;@c8#

1L(
j51

5

m jRj
;@c8#1LU~x,t !, ~2.13!

whereRj
;@c8#5Rj@c#. Using ~2.12! to substitute for the

Rj
;@c8# in ~2.13!, we find thatc8 obeys an equation of the

type ~2.8!, but with new coefficients and a scaled potential
term. Denoting these transformed values with primes, we
finally have@53#

n185
n1
L
, n2852

g

2L
n11n2 ,

m1852
g

L
n11m1 , m285

g2

2L
n12gn22

g

2
m11Lm2 ,

m385
m3

L
, m4852

g

L
m31m4 ,

m585
g2

4L
m32

g

2
m41Lm5 , U85LU. ~2.14!

Thus the parametrized family of equations given by~2.8! is
invariant, as a family, under the affine group of nonlinear
transformations.
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In accordance with our discussion, members of this fam-
ily of nonlinear Schro¨dinger equations, when they are related
by one of the transformationsN(g,L) , describe the same
physics; there is indeed no measurement or sequence of mea-
surements that can distinguish them. Therefore we regard
this groupN as a nonlinear generalization of the linearly
acting U~1! gauge group in the Hilbert space. It seems rea-
sonable to call such nonlinear transformations ‘‘gauge trans-
formations of the third kind.’’ In particular, we have a class
of nonlinear Schro¨dinger equations gauge equivalent to the
linear Schro¨dinger equation.

III. GAUGE-INVARIANT PARAMETERS
AND PHYSICAL INTERPRETATION

Next we look again at the physical interpretation of~2.8!.
Since the two-dimensional gauge group acts on the seven-
dimensional space of coefficients, we expect~in general! five
independent, gauge invariant quantities labeling the classes
of equations in the family. These gauge invariants are non-
linear combinations of the original coefficients. It is the
gauge invariants, rather than the original coefficients, that
must in principle be the measurable quantities characterizing
the physics described by the nonlinear Schro¨dinger equa-
tions.

Functionally independent gauge invariants can be ob-
tained by straightforward calculations. The following are one
such sett j ( j51, . . . ,5), as may beverified by direct sub-
stitution using~2.14!:

t15n22
1

2
m1 , t25n1m22n2m1 , t35

m3

n1
,

t45m42m1

m3

n1
,

t55n1m52n2m41n2
2m3

n1
. ~3.1!

In addition, letÛ52n1U to obtain a potential that is invari-
ant under the groupN. Note that neither the diffusion coef-
ficientD nor its dimensionless counterpartG5Dm/\, whose
introduction led originally to the above development, is ac-
tually physically measurable, in that the coefficientn2 is not
invariant under gauge transformations. Note also that the co-
efficient n1 is not a gauge invariant, so that the ratio\/m
also requires more careful interpretation. These conclusions
force us to change the perspective we took in our earlier
papers about the physical interpretation of our equation.

We now begin the process of understanding the quantities
t j in terms of their physical effects. First consider the usual
linear Schro¨dinger equation~with D5D850 ). We have,
from ~2.9!, the values n152\/2m, n250, m150,
m252\/4m, m35\/2m, m450, m55\/8m, and
U5(1/\)V. The corresponding gauge invariants are

t150 , t25
\ 2

8m 2 , t3521 , t450 , t552
\ 2

16m 2 ,

Û5
1

2m
V. ~3.2!

We see that\/m may be found from either of the gauge
invariantst2 or t5 ~or a linear combination of them!. We
mustrelate the physically observed value of\/m to gauge-
invariant quantities. Thoughn1 is changed by a nonlinear
gauge transformation,t2 andt5 are not; thus the ratio\/m
of physical constants is observable. But its observed value
within the class of linearizable Schro¨dinger equations is not,
in general, equal to the original value entering the coeffi-
cients. We can write either

F \

mG
obs

5~8t2!
1/2 ~3.3!

or, alternatively,

F \

mG
obs

5~216t5!
1/2, ~3.4!

where the subscript means ‘‘observed.’’ This is one impor-
tant reason to distinguish thegauge-dependent parameter
n1 from the observable values of physical constants. The
statement thatn152\/2m is just a~partial! choice of gauge,
which is natural to call aSchrödinger gauge.For the usual,
linear Schro¨dinger equation, either~3.3! or ~3.4! gives the
same value of@\/m#obs. Sincet2 and t5 here are varying
independently, the effective observables (8t2)

1/2 and
(216t5)

1/2 can have different values. We therefore antici-
patetwo in general distinguishable, observable physical con-
stants, defined by~3.3! and ~3.4!, respectively, having the
same limiting values@\/m#obs in the special case of linear-
izable Schro¨dinger equations~see below!. Note also that if
V(x,t)[0, m and\ cannot be obtained individually~as is,
of course, directly evident from the Schro¨dinger equation!.

Consider now the ‘‘Ehrenfest family’’ of equations,
which are linearizable viaN using~2.4! and~2.5!. The con-
ditions ~2.1! characterizing them narrow the values of the
gauge-invariant parameters as

t150 , t25
\ 2

8m 22k, t3521 , t450 ,

t552
1

2 S \ 2

8m 22k D , ~3.5!

where the parameterk is given by

k5
\

2m
D8c21

1

2
D 2. ~3.6!

The casek50 is the linear Schro¨dinger equation. As long as
k,\ 2/8m 2 so thatt2 is positive, the equation is linearizable
by means of a nonlinear gauge transformation. The condition
t2.0 is just ~2.5!. Equations in the Ehrenfest family are a
one-parameter subset of gauge-inequivalent theories, but
they differ from~3.2! and from each other only in the physi-
cally observable,effectivevalue of @\/m#obs described by
means of either~3.3! or ~3.4!. This result also motivates the
possible replacement@41# of the gauge invariant parameter
t5 with the parameter i55(1/2)t21t5 , so that the
Ehrenfest family can be characterized byt150,
t2.0, t3521, t450, andi550. Letting i5Þ0 moves one
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outside the Ehrenfest family, but as we shall shortly see,
maintains Galileian and time-reversal invariance.

Next consider the conditions on our family of equations
that ~in the absence of interactions! establish Galileian in-
variance:c11c45c350. The coefficients, from~2.9!, take
the values n152\/2m, n25D/2, m15D8c1,
m252\/4m1D8c2, m35\/2m, m452D8c1, and
m55\/8m1D8c5, where\/m, D, D8c1, D8c2, andD8c5
are all freely chosen. We obtain the following values for the
gauge invariants:

t15
1

2
~D2D8c1!, t25

\ 2

8m 22
\

2m
D8c22

1

2
DD8c1 ,

t3521 , t450 ,

t552
\ 2

16m 22
\

2m
D8c51

1

2
DD8c12

1

4
D 2. ~3.7!

Here the conditionc350 fixes t3521, the condition
c11c450 fixes t450 , while t1 , t2 , and t5 ~or i5) vary
freely and independently. The gauge invariantst3 and t4
therefore describe two different possible sources of deviation
from Galileian invariance, insofar as the former differs from
21 and/or the latter from 0.

Consider finally the effect of time reversal on the nonlin-
ear Schro¨dinger equation. Sendingt→2t is equivalent to
setting new coefficients n j

T52n j ( j51,2) and
m j
T52m j ( j51, . . . ,5) and settingUT52U, where the su-

perscriptT denotes time reversal. Of course,N(g,L)(c)5c̄
wheng50 andL521. From~2.14!, we see that ifc solves
Eq. ~2.8!, c̄ solves the time-reversed equation just as long as
n25m15m450. But in terms of thet ’s, we have that

t j
T52t j for j51 or j54, while t j

T51t j for j52, 3, or 5
and ÛT51Û. Nonzero values foreither of the two param-
eterst1 or t4 introduce an ‘‘arrow of time’’ into quantum
mechanics through nonlinear time evolutions.

We see that the condition of Galileian invariance still per-
mits some irreversibility. Galileian invariance setst450, but
one can still havet1Þ0 in a Galileian invariant theory.
Sincen2 is proportional toD, we see thatDÞ0 contributes
to a possibly nonzero value fort1. But m15D8c1 also con-
tributes to t1. Thus the condition thatDÞ0 is, by itself,
neither necessary nor sufficient to break the time-reversal
invariance. This is a direct consequence of the fact that both
the magnitude and the sign ofn2, can change under nonlin-
ear gauge transformations.

The nonlinear Schro¨dinger equations proposed from basic
principles by Guerra and Pusterla@22# are obtained from the
linear Schro¨dinger equation by nonlinear gauge transforma-
tions in our class withg50. They pose the question as to
whether observable consequences are associated with this
class of equations. The above discussion indicates there can-
not be.

The particular dissipative equation studied by Ushveridze
@43,44# corresponds to the valuesD50 andD8c1Þ0 ~with
the remaining cj50). This equation breaks both time-
reversal and Galileian invariance, in thatt1Þ0 and
t4522t1Þ0, while t2.0, t3521, and i550. Likewise

the dissipative equation we considered in@8# breaks both
invariances, witht152t4Þ0, and t2.0, t3521, and
i550.

As noted in@9#, the ‘‘simplest’’ way to introduce a non-
linearity associated withDÞ0 is to choose all the
D8cj50. Then we have the values

t15
1

2
D, t25

\ 2

8m 2 , t3521 , t450 ,

t552
\ 2

16m 22
1

4
D 2. ~3.8!

We may regard this as a two-parameter class of gauge-
inequivalent, Galileian-invariant but non-time-reversal in-
variant theories, witht1Þ0, t2.0, t3521, t450, and
i552t1

2 .

IV. CONSEQUENCES OF TIME DEPENDENCE
IN THE NONLINEAR GAUGE TRANSFORMATIONS

In this section we consider the consequences of letting
g and L depend explicitly ont. Writing g5g(t) and
L5L(t), the transformation rules for the coefficientsn j and
m j in Eq. ~2.8! are unchanged, but the coefficients are now
also time dependent. In addition, the class of nonlinear
Schrödinger equations is automatically extended to include
two additional terms on the right-hand side of Eq.~2.8!:

~a1lnr!c1~a2argc!c, ~4.1!

wherea1 anda2 are also real, time-dependent coefficients.
The first term in~4.1! is just the nonlinear term proposed by
Bialynicki-Birula and Mycielski, while the second term was
proposed by Kostin. Although neither of these terms is
strictly homogeneous, they are both consistent with the sepa-
ration property for N-particle hierarchies of quantum-
mechanical time evolutions@15,37#. This justifies our inter-
pretation of ~2.2! as a gauge transformation in the time-
dependent case.

Again it cannot be the coefficientsa j that have direct
physical meaning, as these change under gauge transforma-
tion. In fact, a straightforward calculation gives

a185La12
g

2
a21

1

2 S g
L̇

L
2ġ D ,

a285a22
L̇

L
, ~4.2!

whereġ andL̇ are time derivatives. It is apparent from~4.2!
how the time dependence ofg andL yields non-zero values
for a1 anda2, even if one begins witha15a250. Equa-
tions ~4.2! together with~2.14! describe the transformation
rules for all the time-dependent coefficients.

The next step is to introduce gauge-invariant quantities
associated with thea j . A fairly simple choice is

b 15n1a12n2a21n2
ṅ1
n1

2 ṅ2 , b 25a22
ṅ1
n1
. ~4.3!
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These are the quantities that, like thet j , are susceptible to
physical interpretation. We note thatb 2 changes sign under
time reversal, which is consistent with Kostin’s original in-
terpretation of his equation as describing an external,
velocity-dependent frictional force. On the other hand,b 1 is
time-reversal invariant.

V. CONCLUSIONS AND FURTHER DISCUSSION

The results of this paper are all consistent with our origi-
nal intuition that the general, nonlinear Schro¨dinger equation
we proposed describes possible intrinsic, dissipative pro-
cesses in quantum mechanics in a fundamental way. A group
of nonlinear transformations is to be interpreted as a gauge
group for the theory, with the gauge-invariant parameters
t1 , . . . ,t5 ~or i5) characterizing the physical nature of the
dissipation. Nonzero values for two of thet parameterst1
and t4 break the time-reversal invariance. The parameters
t3Þ21 or t4Þ0 break the Galileian invariance. For time-
reversal invariant, Galileian-invariant theories,i5Þ0 charac-
terizes the deviation from linearizability. Allowing the gauge
transformations to be time-dependent requires the addition of
Bialynicki-Birula-Mycielski and Kostin terms, with corre-
sponding additional gauge-invariant parametersb1 andb2.
A nonzero value forb2 also breaks time-reversal invariance.

The fact that a certain class of nonlinear time evolutions is
physically equivalent to ordinary quantum mechanics also
means that the usual arguments about nonlinearity in quan-
tum mechanics having unphysical consequences do not ap-

ply, at least not with the generality that they are usually
stated. The most compelling of these arguments is based on
the idea that in systems with long-range correlations of the
Einstein-Podolsky-Rosen type, nonlinearity in the time evo-
lution would necessarily permit instantaneous~i.e., faster
than light! communication. This is not exactly paradoxical in
a nonrelativistic theory, but it does pose a problem of com-
patibility with special relativity. It has been noted that if one
wishes to avoid this problem entirely, it is possible to main-
tain ~1.7! by replacing~1.2!–~1.5! with a stochastic alterna-
tive @54#. But we have shown here, explicitly for the Ehren-
fest class, that some nonlinear theories of the type considered
do not permit arbitrarily fast communication when the more
general notion of gauge invariance we have proposed is
taken into account. We believe this notion of nonlinear
gauge invariance to have other profound consequences for
our understanding of quantum mechanics; this is a subject of
our ongoing research.
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