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Introducing nonlinear gauge transformations in a family of nonlinear Schrodinger equations
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In earlier work we proposed a family of nonlinear time-evolution equations for quantum mechanics associ-
ated with certain unitary group representatippeebner and Goldin, Phys. Lett. 262, 397 (1992; J. Phys.
A 27, 1771(1994]. Such nonlinear Schdinger equations are expected to describe irreversible and dissipative
guantum systems. Here we introduce and justify physically the group of nonlinear gauge transformations
necessary to interpret our equations. We determine the parameters that are actually gauge invariant and
describe some of their properties. Our conclusions contradict, at least in part, the view that any nonlinearity in
guantum mechanics leads to unphysical predictions. We also show how time-dependent nonlinear gauge
transformations connect our equations to those proposed by Kdst®hem. Phys57, 3589(1972] and by
Bialynicki-Birula and Mycielskif/Ann. Phys.100, 62 (1976]. We believe our approach to be a fundamental
generalization of the wusual notions about gauge transformations in quantum mechanics.
[S1050-294{@6)06710-9

PACS numbd(s): 03.65—w

I. INTRODUCTION AND BACKGROUND these connect our equations with those proposed by Kostin
[14] and by Bialynicki-Birula and MycielsKi15]. Our analy-
Infinite-dimensional local current algebras and groupssis implies that nonlinear gauge transformations must be ex-
play a fundamental role in quantum mecharits7. In try-  plicitly considered in interpreting the results of experiments
ing to understand and interpret certain unitary representdnvestigating possible deviations from linearity in quantum
tions of such groups, we obtained in our earlier work a fam nechanic§16-21.
ily of nonlinear Schidinger equations different from those ~ We provide here the necessary background./(att) be
commonly studied8,9]. In the present article we consider a & time-dependent quantum-mechanical wave function for a
group of nonlinear transformations on the Hilbert spate Particle of massn, with probability densityp(x,t) and prob-
that can linearize a subset of these equations. We obser@®ility flux densityj(x,t) defined as usual frony by the
that the significance of these transformations goes consideformulas
ably beyond providing a technique for obtaining solutions. .
We argue for their interpretation a®nlinear gauge trans- — — —
formationsor gauge transformations of the third kinia, that p=yi, 1= 5 [YVY— (V) 4] 1.9
distinct nonlinear Schidinger equations of our type, related
by such tl’anSformationS, are prOperly understood as formin@ur previous'y derived equations may be written
equivalence classes within which the time evolutions de-
scribe the same physics. Our view is that this provides a oy
fundamental generalization of the usual notions akifiot ihﬁz o Hil[ Y]+ R 4]y, 1.2
eap gauge transformations. Of course, the theory is of inter-

est due to the existence of gauge classes thahaggiivalent . . o .
to ordinary quantum mechanics. whereH, is the usual, linear Hamiltonian operator with po-

One consequence of our perspective is that a whole fard€ntial energy(x,t), given(in the absence of any external
ily of nonlinear Schrdinger equations are in fact physically magnetic field by
equivalent to the linear theory. This immediately contradicts
the claim thatany nonlinearity in the time evolution of pure
states in quantum mechanics leads to some unphysical pre-
dictions [10-13 and demonstrates that a more sensitive
analysis is necessary. Another implication is that the coeffiand I[y],R[ 4] are real-valued nonlinear functionals. The
cients in our nonlinear Schdinger equation are not suscep- |atter are given by
tible to direct interpretation, as they are not invariant under
nonlinear gauge transformations. Rather, gauge-invariant 5 1
combinations must be found and their physical meaning de- R[¢]=hD' >, ¢Ri[¥], I[¢]=5ADRJIy], (1.4
termined. We obtain a set of gauge invariants and describe j=1 2
some of their properties. We also consider the case of time-
dependent nonlinear gauge transformations and show howhere

ﬁZ
Hoy=— %V 2h+ Vi, (1.3
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V.i V2 J-Az f-Vp marize some of the already-established properties of these
Ri=—, Ry=—, R3=—, R4y=——7, equations, which will be useful in the later development. The
P P P p total probability [ p(x,t)dx is conserved by the time evolu-
(Vp)? tion for all values of the coefficients. Furthermore, the equa-
Rg=—>5—, (1.5)  tions arestrictly homogeneoys.e., if ¢ is a solution, then
p ay is a solution for any complex numbet. This means one

can construct a hierarchy of-particle equations, satisfying
the separation property, i.e., for which initially uncorrelated,
- m 1 — _ noninteracting subsystems remain uncorrel@i€g37. With
jzﬁjzz[l//Vl/i—(Vl//) ¥]. (1.6 VEQ, plane waves are alwlays. solu.tlo[rw] and we have
Euclidean and time-translation invariance. Whéris a sta-
¢ tionary potential that in ordinary quantum mechanics would
accommodate bound states, there exist corresponding
stationary-state solutions td.2). These typically go over

ation of the representations of an infinite-dimensional grouM00thly to the stationary solutions of the linear Sclmger
and the corresponding Lie algebra of local currents. Certaifduation, as we leb,D’—0. .
unitary group representations led us to replace the usual con- 1hrough(1.7), the sign ofD appears to introduce aar-

tinuity equation forp andj by a Fokker-Planck type of equa- "W of ti'mginto the quantum mechanics in a fundamental
way. This is one of the reasons for interest in our model.

with

In (1.4), D andD’ are real numbers with the dimensions o
diffusion coefficients.
Equations(1.2—(1.6) were first derived from consider-

tion N "
However, the discussion in Secs. Il and Ill below modifies
ap _ ) this direct interpretation importantly.
- VitDVip 1.7 When one calculates the time-rate of change of the expec-

tation values (—iZV)=[y(x,t)[—inVy(x,t)]dx and
and to accompany this by appropriate conditions on the corid,) = [ (X, t)[ifd,4(x,t)]dx, one obtains extra terms
responding Schidinger equation. The parameterin (1.7)  that aredissipative.There is a subfamily of our equations,
then characterizes the original group representation up toharacterized by the condition®’c,=D=-D’c, and
unitary equivalence, via the dimensionless quantityc,+2cs=c;=0, for which the dissipative terms in
I'=Dm/%. The other diffusion coefficienD’ in (1.4) per-  (d/dt)(—i%V) are zero, i.e., for which Ehrenfest’s theorem
mits the real coefficients; to be dimensionless parameters. formally holds. Equations in this subfamily are linearizable
Thus far the product®’c; take arbitrary values. by means of nonlinear transformatiof®3,40,4]. A larger

Some related nonlinear Sclliager equations have been subfamily of the equations are Galileian invariant; necessary
considered by others, though without the group-theoreticand sufficient conditions for Galileian invariance of the
motivation. A nonlinear Schdinger equation proposed by equations arec;+c,=c;=0, so that the family obeying
Guerra and Pusterl22] falls within our class of equations, Ehrenfest’'s theorem is Galileian invariant, as are other sub-
but always withl[ #]=0. The interpretation of this equation families. In addition to the above results, we mention that
and its relation with ours is clarified by the analysis in theexplicit time-dependent solutions (t.2) have been obtained
present paper; see also papers by Smolin, Kaloyerou, arsly several authorgt2—45 and that symmetries of the equa-
Vigier [23—-25. Equation (1.7) was applied by Schuch, tions have also been studied in some dg#fi—49.
Chung, and Hartmann to the quantum-mechanical probabil- In Sec. Il we introduce a two-parameter group of nonlin-
ity density and currenf26—28, but in place of the nonlin- ear transformations, and justify its interpretation as a nonlin-
earity in (1.4 they introduced a logarithmic nonlinear term ear gauge group. Then we rewrite our nonlinear Sdimger
that is actually independent @.7). Equations of Stenflo, equation in a more convenient general form and display the
Yu, and Shukla governing surface waves at a boundary begroup action on the space of coefficients. In Sec. Il we write
tween (non-quantum-mechanigaplasmas29] were gener- a set of mutually independent, gauge-invariant quantities in
alized by Malomed and Stenflo to a family that intersects theerms of the original coefficients and discuss further the
above for special values of the coefficients in one space diphysical interpretation of our equations in terms of the gauge
mension[30]. Another special equation of this sort was con- invariants. Explicitly time-dependent nonlinear gauge trans-
sidered but rejected by Kibblg1], and a related class of formations are treated in Sec. IV. These require the widening
equations is discussed by Auberson and Sab§82r33.  of our class of equations to include terms of the type intro-
Still more general nonlinear quantum time-evolution equa-duced by Kostin and by Bialynicki-Birula and Mycielski. We
tions, motivated by those discussed here, were developed lyimmarize our conclusions in Sec. V.
Dodonov and Mizrah{34-36§. Comments on the relation-
ship with the rather different equations of Kostin and of
Bialynicki-Birula and Mycielski are given by Goldin and 1l. THE NONLINEAR GAUGE GROUP AND ITS ACTION
Svetlichny[37]. This relationship turns out to be a deep one,
as shown below. A discussion of nonlinearity in the Sehro
dinger equation and two-level atoms is given by Czachor Gauge transformations of both the first and second kind in
[38]. guantum mechanics are implementedunytary (linear op-

To understand the physics of quantum mechanics with therators in#; i.e., they preserve inner products between wave
above nonlinear time-development, we must determine th&nctions. Gauge transformations of the first kind correspond
physical content of the set of coefficients(th4). We sum-  to the unitary group (@), and leave the form of both posi-

A. Rationale for nonlinear gauge transformations
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tion and momentum operators unchanged. Gauge transfor- Thus we consider, in general, transformationsHnthat
mations of the second kind correspond to the group @4 leave the positional probability density invariant. Such trans-
valued functions ofx andt. They leave the form of all formations change the time-evolution equation, but do not
functions of the position operator invariant, while the form change the physical content of a theory. If they are linear
of operators depending on the momentum operator ighey must be implemented by unitary operators and we have
changed. gauge transformations of the first or second kind. A well-
Now it has been remarked by various authors ththt known additional possibility is that of antilinearity, so that

actual quantum-mechanical measurements consist of or afg€ transformations are implemented by antiunitary opera-
obtained from positional measurements performed at variou®rs- This enlarges the group by admitting the operation of

times, for example, the Feynman—Hibbs statentee¢[50], complex conjugation of wave functions, which yields the
p. 96: time-reversed Schdinger equation. In this paper we discuss

. a particular, two-parameter group obnlinear transforma-
Indeed all measurements of quantum-mechanical systemns acting on Eqgs(1.2). In addition, we investigate the

could be made to reduce eventually to position and timease where the two parameters depend explicitly on time.
measurements. Because of this possibility a theory formu-

lated in_ terr_ns _Of position _measurements is completqs. A two-parameter group of nonlinear gauge transformations
enough in principle to describe all phenomena. ) ) )
To motivate the group of transformations introduced here,

~ Adopting this point of view, quantum theori¢whether e consider linearizing transformations for the subfamily of
linear or no_nllnea_)rfor which corresponding time-dependent oyr equations obeying Ehrenfest's theoréd0,41). This
wave functions give the same probability density in space agybfamily is characterized by the conditions
all times, are “in principle” (as well as in practigeequiva-
lent. Two different time evolution equations thus related will D'c;=D=-D'cs, D’cy+2D’'cs=D’c3=0.
not predict different physical effects. This is also consistent 23
with the analysis of Mielnik[51], who considers quantum ) . ) .
logic with an eye to possible nonlinear time evolutions. Fur-Consider the nonlinear transformation given by
ther discussion of related issues is provided bygka({52]. )

The preceding statement about the physical equivalence g =" =N(g)=[glexdi(yIn|y|+ Aargy)], (2.2
of different time-evolution equations doest simply mean
that one theory has been obtained from the other through Where y and A are real numbers#0). If ¢ solves an
mathematical change of coordinates in the Hilbert space. gauation in the Ehrenfest clag$.2—(1.5 under the con-
embodies thehysical assumptiostated by Feynmann and straints(2.1), theny’ solves the linear Schdinger equation
Hibbs about the special nature of positional measurements. , )

To say that all measurements are fundamentally positional E % __ h 2.1 /

" , [ = — V' +V(x,t)y', (2.3

means that when we “measure” momentum, energy, angular Ag ot 2Agm
momentum, etc., in quantum mechanics, we are really mak-
ing inferences(i.e., performing calculationsfrom the out- when
comes of positional measurements at various different times.
But theprocess of inferringnomentum, energy, angular mo- 2mD 4m_ 4m?D?|"172
mentum, etc., from positional outcomdse., the actual Y=YET T 7(1_7'3 02_7) ,
choice of calculation to performdepends on what igs-
sumedabout the time evolution. am Am2D?2\ ~ 12

For instance, consider the idea that the linear operator A=AE=(1——D'C2——2—> , (2.9
—i#V describes the momentum of a particle. This assertion h h
means that thelistribution of the outcomes of a large num-
ber of repeated momentum measurements on identically pr
pared pure stateg, outcomes that areecessarily obtained 5o
by making positional measurements at different times on the —mD’c <1-— 4m™D (2.5
. . K 2 —z2 - .
identically prepared stategan be predicted from the opera- h fi
tor —iA 'V according to the usual mathematical rules of quan-
tum mechanics. But the way that we infer momentum fromWe remark that the transformatiad is not actually well
the positional outcomes is based on #ssumptiorthat the ~ defined by(2.2) as a mapping having a domain whose ele-
time evolution is given by the usual linear ScHirger equa- Mments are wave functionsince the argument af is only
tion, which has the propertgfor a noninteracting particle definedmodulointeger multiples of zr). This is not a seri-
that the Fourier transform of the wave function time evolvesous difficulty; giveny obeying one of our nonlinear Schro
so as to conserve any particular value of momentuen, so  dinger equations, it is sufficient for our purposes thlét
as to preserve the probability density in momentum spdte exists obeying the transformed equation. An appropriate se-
the time evolution is assumed to be given by a differentlection of ¢’ can always be made, and we thus have a con-
equation, e.g., a nonlinear one, this property may no longegrete example of a nonlinear gauge transformation.
hold. The inferred “momentum” outcomes will then be dif- Now two transformations! having different arbitrary val-
ferent for the same positional measurements and the operatoes of y and A, with A #0, can be performed successively
—iAV will no longer predict the momentum distribution.  to yield a third, i.e.,

on condition that
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(2.6) the class of equations and is essential to understanding the
physical meaning of the set of coefficients.

so that we have the group law of the affine group in one. With &"=N, )(#), we have the transformation pfand
dimension. Let us call this grouft (for “nonlinear”). Any  j given by

transformationN, ,ye A is local in the sense that it de- —

pends only on the value af at a point, not on its derivatives p' =y Y =p,

or its values at other points. TransformationsAhalso re-

spectraysin the Hilbert space; i.e., for any complex number ~ 1 — — -y

a, the vector @)’ belongs to the same ray as dogs. V' =5 [V = (VY)Y 1=Aj+ 5Vp. (210
Furthermore, the transformatiohg,, ,) leave the probability
density p invariant for allx andt. In accordance with our
earlier discussion, the guantum theory in which wave func-
tions ¢ obey a particular nonlinear time-evolution equation
is physically equivalent to the corresponding theory, trans-
formed byN, ), in which wave functiong/’ obey a trans-

Ny .a0° Niyya =N

y1tA1y2.AAp)

DeflnlngR [#]1=Rj[NA) () ]=Rj[¢'], we have

Ri=AR;+39YR;, R3=Ry,

formed equation. Distinct nonlinear Schinger equations Ry=A’Rs+ AyRy+57°Rs,
related by elements 0¥/ should then be regarded as belong-
ing to equivalence classes predicting exactly the same phys- R,=AR;+3yRs, R.L=Rs, (2.11

ics. In particular, this means that the parametBrsand
D’c; in (1.4) are not themselves susceptible to direct physi-and writing the inverse transformation R[]
cal interpretation, as the coefficients that depend immedi— R[N~ 1(4)], we have
ately on them are not invariant undaf.
RI:Ail(Rl_ %7R2), Ry =Ry,
C. Action of the nonlinear gauge group
on nonlinear Schradinger equations R; = A 2(Ry— yR4+ 1 +?Rs)
3 4 l

To determine just howN transforms a general nonlinear
Schralinger equation in the category under consideration, R;=A"YR,~%yRs), R:=Rs. (2.12
we now rewrite the entire right-hand side (@£2), including
Ho, as a nonlinear function of the densjtyand the current Now if ¢ obeys(2.8), theny’ satisfies
j, multiplied by . From (1.5 we have ’

v, 2¢ 1 1 1 (91!1

7=iRl[¢]+ER2[¢]—R3[¢]—ZR5[¢], (2.7 ¢ ot '2 ViR Ty’ 1 72 ViR 4]
5

giving us a general form for the nonlinear Satirger equa- BT
tion that includes the linear case +AZ‘ mR TP IHAUGD, - (213

2

P U ¥ where R"[¢']=R;[¢]. Using (2.12 to substitute for the
o Ry [#'] in (2.13, we find thaty’ obeys an equation of the
(2.8 type (2.8), but with new coefficients and a scaled potential

_ _ ) term. Denoting these transformed values with primes, we
V\(here thev; (] =_1,2) gnd,uj (j=1,...,5) a_rere_al coeffi-  finally have[53]
cients. The relationship aR.8) to (1.2—(1.5) is given by

Y+

5
gl wiRi[¥]

(<
IE:I(E:L VJRJ[lﬂ]

]=

ﬁ _1 Vi:_ V2:
2m’

V1+ Vo,

V1= — 2A

Y Y
=D’ __ A ' r1== Vit py, M=o viT Yva— 5 Mt Ay,
,LL]_—D Cl! Mz—_m'f'D C2, M3= 2m+D C3, A 2A 2

h , M3 Y
=D'cy, M5=8—m+D’C5, M3="3"0 Ma= Ty Hat i,
1 .Yy ,
Ut =2 V(xb). (2.9 Ms=gx M3~ 5t Aps, U'=AU. (214

From here on we shall think of; not as having the fixed Thus the parametrized family of equations given(By8) is
value —#A/2m given by (2.9), but simply as one of our real invariant, as a family, under the affine group of nonlinear
parameters subject to variation like the others. This widengransformations.
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In accordance with our discussion, members of this famWe see thati/m may be found from either of the gauge
ily of nonlinear Schrdinger equations, when they are relatedinvariants r, or 75 (or a linear combination of themWe
by one of the transformationsl, ), describe the same mustrelate the physically observed value #ofm to gauge-
physics; there is indeed no measurement or sequence of meavariant quantities. Thougly, is changed by a nonlinear
surements that can distinguish them. Therefore we regargauge transformation;, and 75 are not; thus the ratié/m
this group\ as a nonlinear generalization of the linearly of physical constants is observable. But its observed value
acting U1) gauge group in the Hilbert space. It seems reawithin the class of linearizable Schtimger equations is not,
sonable to call such nonlinear transformations “gauge transin general, equal to the original value entering the coeffi-
formations of the third kind.” In particular, we have a class cients. We can write either
of nonlinear Schrdinger equations gauge equivalent to the

; G , fi

linear Schrdinger equation. Pl gy 3.3
m 2

obs
ll. GAUGE-INVARIANT PARAMETERS
AND PHYSICAL INTERPRETATION or, alternatively,
Next we look again at the physical interpretation(®18). 3 I

Since the two-dimensional gauge group acts on the seven- | =(=1675)™% (3.4

obs

dimensional space of coefficients, we exp@tigeneral five

independent, gauge invariant quantities labeling the class%here the subscript means “observed.” This is one impor-

of equations in the family. These gauge invariants are non; g
X L > L ) ant reason to distinguish thgauge-dependent parameter
linear combinations of the original coefficients. It is the g g P P

: ) o - , from the observable values of physical constants. The
gauge invariants, rather than the original coefficients, thaﬁtatement thak,= — #/2m is just a(partia) choice of gauge,

must in principle be the measurable quantit.ies characterizinglhiCh is natural to call schralinger gaugeFor the usual
the physics described by the nonlinear Sciimger equa- linear Schrdinger equation, eithe{3.3) or (3.4) gives the

tions. : .
Functionally independent gauge invariants can be obsoc value offi/mlops. Sincer, and 7 here are/g/ag/rllr;g

tained by straightforward calculations. The following are Onemdependently, the - effective  observables
y straig - VIng (—1675)Y? can have different values. We therefore antici-
such setr; (j=1,...,5), as may beerified by direct sub-

stitution using(2.14: patetwo in general distinguishable, observable physical con-
7 stants, defined by3.3) and (3.4), respectively, having the
1 ws same limiting value$#/m]qps in the special case of linear-
TIS VT S M1, T2TViloT Vala, T3S izable Schrdinger equationgsee below. Note also that if
! V(x,t)=0, m and# cannot be obtained individuallas is,
of course, directly evident from the Scldinger equatioh
TAZM_ME, Consider now the “Ehrenfest family” of equations,
v which are linearizable viaV using(2.4) and(2.5). The con-
ditions (2.1) characterizing them narrow the values of the

Te= Vi pg— Vot sz? (3.1) gauge-invariant parameters as
1 5 2
In addition, letU = — v, U to obtain a potential that is invari- m1=0, 2T gm2 K TsT T 1, 7,=0,
ant under the groupV. Note that neither the diffusion coef-
ficientD nor its dimensionless counterpére Dm/#, whose 1/ %2
introduction led originally to the above development, is ac- T5= — §<W—K>, (3.5

tually physically measurable, in that the coefficientis not
invariant under gauge transformations. Note also that the cQyhere the parametex is given by
efficient v, is not a gauge invariant, so that the ratibm
also requires more careful interpretation. These conclusions ) 5
force us to change the perspective we took in our earlier k=5 D'+ D" (3.6)
papers about the physical interpretation of our equation.
We now begin the process of understanding the quantitie$he casec=0 is the linear Schidinger equation. As long as
7j in terms_of their physical effects. First consider the usualc<7 2/8m 2 so thatr, is positive, the equation is linearizable
linear Schrdinger equation(with D=D'=0). We have, by means of a nonlinear gauge transformation. The condition
from (2.9, the values v;=—#/l2m, v,=0, wu,=0, 7,>0 is just(2.5. Equations in the Ehrenfest family are a
Mo=—hlAm, uz=f/2m, us=0, wus=A/B8m, and one-parameter subset of gauge-inequivalent theories, but
U=(1/4)V. The corresponding gauge invariants are they differ from(3.2) and from each other only in the physi-
52 52 cally observablegffectivevalue of [#/m],,s described by
_ _ __ — - _ means of eithe(3.3) or (3.4). This result also motivates the
n=0, mTgmz Tl =0 sm e possible replacemen#1] of the gauge invariant parameter
75 Wwith the parameteris=(1/2)7,+ 75, so that the
1 (3.2 Ehrenfest family can be characterized by;=0,
2m ' 75>0, 3= —1, 7,=0, andz=0. Letting c5#0 moves one

C»
Il
|
<
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outside the Ehrenfest family, but as we shall shortly seethe dissipative equation we considered[8] breaks both

maintains Galileian and time-reversal invariance. invariances, withmy=—-7,#0, and 7,>0, 73=—1, and
Next consider the conditions on our family of equations.z=0.
that (in the absence of interactionsstablish Galileian in- As noted in[9], the “simplest” way to introduce a non-

variance:c, +c,=c3=0. The coefficients, from2.9), take linearity associated withD#0 is to choose all the
the  values wv;=—%/2m, v,=D/2, n1=D'cq, D’c;=0. Then we have the values

umo=—nhl4dm+D’cy, uz=h/2m, wu,=-D’c;, and

us=#%/8m+D’'cg, where#/m, D, D'cy, D'c,, andD’cs 1 h?

are all freely chosen. We obtain the following values for the n=5D, =g 71, 74=0,
gauge invariants:
h: o1,
1 , he ko 1, ™=~ Tan2 40 (3.9
Tl:E(D_D Cl), TZ:W_ﬁD CZ_EDD Cq,
We may regard this as a two-parameter class of gauge-
3=—1, 7,=0, inequivalent, Galileian-invariant but non-time-reversal in-
variant theories, withm;#0, 7,>0, 73=—1, 7,=0, and
he  h 1 1 5=~ 71,

= — —— D' _ [
5=~ gz~ 5-D'Cs+ 5DD'c;— 7D% (3.7
IV. CONSEQUENCES OF TIME DEPENDENCE

. ) . IN THE NONLINEAR GAUGE TRANSFORMATIONS
Here the conditionc;=0 fixes 73=—1, the condition

Cc1+c,=0 fixes7,=0, while 71, 75, and 75 (or ¢5) vary In this section we consider the consequences of letting
freely and independently. The gauge invariamisand 7, v and A depend explicitly ont. Writing y=y(t) and
therefore describe two different possible sources of deviatior = A(t), the transformation rules for the coefficientsand
from Galileian invariance, insofar as the former differs from «; in Eq. (2.8) are unchanged, but the coefficients are now
—1 and/or the latter from 0. also time dependent. In addition, the class of nonlinear
Consider finally the effect of time reversal on the nonlin- Schralinger equations is automatically extended to include
ear Schrdinger equation. Sending— —t is equivalent to two additional terms on the right-hand side of E2.9):
setting new  coefficients VJ-TZ -7 (j=12) and
pj=—w; (j=1,....5) and setting) "= — U, where the su- (aslnp) i+ (azargy) ¥, (4.9)
perscriptT denotes time reversal. Of courdé,, ,)(¢)= ¢
wheny=0 andA = —1. From(2.14), we see that ii solves

Eq.(2.8), 4 solves the time-reversed equation just as 10ng ag;,|ynicki-Birula and Mycielski, while the second term was
vo,=pu1=us=0. But in terms of ther's, we have that

2 ] _ s _ proposed by Kostin. Although neither of these terms is
my=—r;for j=1 orj=4, while 7=+ for j=2, 3, or 5  strictly homogeneous, they are both consistent with the sepa-

where a4, and «, are also real, time-dependent coefficients.
The first term in(4.1) is just the nonlinear term proposed by

andUT=+U. Nonzero values foeither of the two param- ration property for N-particle hierarchies of quantum-
eterst, or 7, introduce an “arrow of time” into quantum mechanical time evolutionsl5,37. This justifies our inter-

mechanics through nonlinear time evolutions. pretation of (2.2) as a gauge transformation in the time-
We see that the condition of Galileian invariance still per-dependent case.
mits some irreversibility. Galileian invariance sets=0, but Again it cannot be the coefficients; that have direct

one can still haver;#0 in a Galileian invariant theory. physical meaning, as these change under gauge transforma-
Sincew, is proportional toD, we see thaD #0 contributes  tion. In fact, a straightforward calculation gives
to a possibly nonzero value fot;. But u;=D’c; also con-

tributes tor;. Thus the condition thaD#0 is, by itself, , Y 1/ A .

neither necessary nor sufficient to break the time-reversal a=Aai—Zats 7K_7)*

invariance. This is a direct consequence of the fact that both

the magnitude and the sign of, can change under nonlin- A

ear gauge transformations. ay=a,— X (4.2

The nonlinear Schitinger equations proposed from basic
rinciples by Guerra and Pustef22] are obtained from the . . ) L )

ﬁnearpSch'r'()i/inger equation by nonlinear gauge transforma-Wherey andA are time derivatives. It is apparent fra.2)
tions in our class withy=0. They pose the question as to how the time depend_ence Qfam_jA y|§lds non-zero values
whether observable consequences are associated with tHff @1 and ay, even if one begins withy; =a,=0. Equa-
class of equations. The above discussion indicates there cafions (4-2) together with(2.14) describe the transformation
not be. rules for all the tlme-dependent coefﬂments. . N

The particular dissipative equation studied by Ushveridze 1he next step is to introduce gauge-invariant quantities
[43,44) corresponds to the valu&=0 andD’c,#0 (with associated with the; . A fairly simple choice is
the remainingc;=0). This equation breaks both time-
reversal and Galileian invariance, in that;#0 and

Vq . Vi
° } ' Bi=viai—voartvo——1v,, Bo=a——. (4.3
4= — 27170, while 7,>0, /3= —1, and;=0. Likewise e 2 27y
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These are the quantities that, like thg are susceptible to ply, at least not with the generality that they are usually
physical interpretation. We note that, changes sign under stated. The most compelling of these arguments is based on
time reversal, which is consistent with Kostin’s original in- the idea that in systems with long-range correlations of the
terpretation of his equation as describing an externalEinstein-Podolsky-Rosen type, nonlinearity in the time evo-
velocity-dependent frictional force. On the other hafid,is  lution would necessarily permit instantaneo(i®., faster

time-reversal invariant. than ligh) communication. This is not exactly paradoxical in
a nonrelativistic theory, but it does pose a problem of com-
V. CONCLUSIONS AND FURTHER DISCUSSION patibility with special relativity. It has been noted that if one

wishes to avoid this problem entirely, it is possible to main-

The results of this paper are all CO”Si?tent with our Origi'tain (17) by rep|ac|ng(12)_(l5) with a stochastic alterna-
nal intuition that the general, nonlinear Sctlimger equation  tjye [54]. But we have shown here, explicitly for the Ehren-
we proposed describes possible intrinsic, dissipative profest class, that some nonlinear theories of the type considered
cesses in quantum mechanics in a fundamental way. A grougio not permit arbitrarily fast communication when the more
of nonlinear transformations is to be interpretEd as a gaUngneraJ notion of gauge invariance we have proposed is
group for the theory, with the gauge-invariant parametersaken into account. We believe this notion of nonlinear
71,...,7s (OF t5) characterizing the physical nature of the gayge invariance to have other profound consequences for
dissipation. Nonzero values for two of theparametersr;  our understanding of quantum mechanics; this is a subject of
and 7, break the time-reversal invariance. The parametergur ongoing research.
m3# —1 or7,#0 break the Galileian invariance. For time-
reversal invariant, Galileian-invariant theories# 0 charac- ACKNOWLEDGMENTS
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