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Broadband phase-noise squeezing of traveling waves in electromagnetically induced transparency
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We show that drivem\-type atoms in a cell under conditions of electromagnetically induced transparency
squeeze the phase noise of a traveling-wave input field in a broad spectral region. The maximum squeezing is
about 41% below the shot-noise levigh1050-29476)03910-9

PACS numbd(s): 42.50.Dv, 42.50.Lc

In the course of the search for sources of bright phase- oh,=|c)al;, (4)
squeezed light we recently suggested the utilization of elec-
tromagnetically induced transparengyt]. The proposed
setup was based on an atomlicscheme driven on one tran-
sition as in the experiments of Harris and co-workers5] . _— . .
(see Fig. 1 A medium consisting of such atoms placed in- by means of the follqwmg .defln.ItIOI’]. The interaction vol-
side a cavity was shown to reduce the phase noise of apme of total lengthL is divided into M +1 layers, each

iniected field up to 50%in th tout of th ; d of thickness L/(2M+1) with the center atz=IL/
I;I;I)?i(r:nim IceoncIIIIor?s in the output of the cavityunder (2M+1), (I=—M,...,M). Then the space- and time-

The use of cavity setups has, however, technical drawd€Pendent variables are

backs(necessity of correct frequency locking, eétand leads

o =|x)(Xl; , (5)

to a noise reduction only in a relatively narrow band deter- 1 -

. Lo tH)== lim (2M+1 bt , 6
mined by the cavity width. In the present report we show that 7z N M'ﬁw( ); (V) ©®
squeezing is also possible in a traveling-wave configuration. 34—z

If we shine traveling-wave laser light onto a cell containing o )
the transparent medium, the input light is shown to be phas@here the sum ovey is to be taken over all atoms in the
squeezed up to about 41% at the output under optimum cor@yer | aroundz. These collective atomic operators inherit
ditions. The bandwidth of noise reduction is thereby deterthe Heisenberg equations of motion from their one-atom
mined by the width of the\ resonance which, in the case of counterpart{Egs.(3a—(3e) of Ref.[1])
strong driving, is the Rabi frequency of the driving field. )

The method we employ to obtain a propagation equation ga=—(y+y)oa—i(Q"*o,—Ha)
for the mean value and the fluctuations of the probe field g
closely follows the formulation of Ref[8] based on the —ig(a’op—Ha)+F,, @)
original approach of Refl9]. In exactly the same way as .
described in Ref(8], we define a slowly varying space- and op=yoat yeootig(a'og—H.a)+Fy, (8)
time-dependent field annihilation operatfz,t) that obeys
the propagation equation oo=—3(y+y)optiga(op,—o,)+iQ o+ Fopr 9

(a d

o P a(z,t)=igNoy(zt), (D)

where N is the total number of atoms interacting with the
field. Here we have assumed that the carrier frequency
v is resonant with the atomic transitiofa)—|b). ¢
=p\vl2fiexAL is the corresponding coupling strength, with
@ representing the atomic dipole moment ghd the quan-
tization volume(which we here identify with the cell volume
for simplicity). oy(z,t) is a space- and time-dependent col-
lective variable describing the atomic dipole. The collective !
atomic variables are related to the single atom operators b
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FIG. 1. Atomic level scheme. A quantized probe fiEld¢ouples

i = .
ao=|b)(ali., 2) to the transitiona)—|b), whose upper state is coupled to lej&)
i by a classical driving field of Rabi frequen¢y. y, v/, andy, are
oy =|b){(cl;, () longitudinal relaxation rates.
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b’l=—%7cal—iga05+iﬂ’*ao+Fgl, (10) ao(z):ao(o)e—ylzlc. (18)

0y=— 2yt ¥ +y) o +iQ (0s— 0y +igaci+F, . On the other hand, the propagation equation for the Fou-
fll) rier transform of the field fluctuations is

Q' is the Rabi frequency of the driving-field resonant with

the|a)—|c) transition. In the present paper, the driving field

is treated as a classical or coherent field with undepleted -

amplitude. This approximation is justified if we assume that — 02 Nay(2)Fs(z,0). 19

the coupling on théa)— |c) transition is much weaker than

the coupling on th¢a)— |b) transition, which implies/<y. ~ We now define the Fourier transform of the phase fluctuation
Following Ref.[1], we now resort to &-number formu-

lation of the problem. To this end we introduce a generalized 1 (da(z,w) dSa*(z,—w)

P distribution[10] by choosing a normal operator ordering §p(z,0)= 7 2o(2) @) (20

c diz da(z,w)=—(y;—iw)da(z,w)

vttt
a',o,,01,00,04,04,0¢,00,01,05,a. 12 . .
27170 TaTby Ter 70, T T2 (12 and the corresponding noise operator

Using standard scaling argumeni®], we obtain a Fokker- _ -
Planck-type equation of motion f&, which is equivalent to ~ Fs(z,0)—Fy(z,~ )
el 0 Fuzw)=g\N .

a set ofc-number stochastic differential equations formally 2i @D
identical to the operator equations. Then the field variable
a(z,t) obeys the equation F 4(z,) has the correlation functioft,8]
Jd J ~ =
—+c¢ —|a(z,t)=—0g?N2y(z,1), (13 (Fp(z,)F 4(2',0"))=(F4F y)L8(z— 2" ) 275w+ 0"),
at 0z (22

where we used the variabl&y(z,t) defined through e - — : e
iga(z,t)3(z,t)=0y(zt) in analogy to Ref[1]. In order to mf}ir?)riiﬂ;ftfi]lon coefficiert,F4) is given in the limit
simplify the problem, we restrict our analysis to field fluc- '

tuations slow compared to the time scale of the atomic evo- 2
lution. In this limit we may eliminate the atomic degrees of (FyFg)=— 5 9 712 5.
freedom adiabatically and find in the limit of strong driving ¢ |Q' 1+ k()]
(|Q/|2>77017, o)

(23

o k(z) is the ratio of the probe Rabi frequency to the driving-
So(z,t)=3p(z,t) +Fs(z,t), (14)  field Rabi frequency(z)=|Q(2)/Q’|.

From Eq.(19) we see thab¢(z,w) is governed by
whereFs(z,t) is the effective Langevin force corresponding
to Fx(t) in Eq. (14) of Ref.[1] and d ~  ~ ~
Cd—z5¢(Z,w)=|w&;b(z,w)—Fd,(Z,w). (29
- ve  [QUzHP+]QTy+]Qz 0%y

2 (th): 5 ’ [ ' .
0 2 [v'[Qz*+ QP10 +]Q 7] Formally integrating this differential equation, we find for
the correlation function of the phase fluctuations

Here we have usef(z,t) =ga(z,t). In the limit ' <y and

for 0(z,t)|~|0], we have (06(2,0)8¢(2,0") = (54(00) 8¢(0"))
. 1 z z
J— c i(w+w')zlc dz’ dz’
zo(z,t)=ﬁz. (16) e +EZJ0 z jo

. . . X(Fy(Z',0)F 4(Z",0"))
We proceed by assuming stationary conditions and small

fluctuations of the field around the semiclassical steady-state x gle(z=2)letion’ (z=2")c
value ay(z), a(z,t)=ay(2)+ da(z,t). With Egs. (13) and )
(16) we find for the semiclassical amplitude the equation of _ 2m8(w+w")Lgy;
motion = Q2

d Nye L 1
© g 90(2)=~ 57 a0(2) a7 <Joo? @

which corresponds to linear absorption with ratg In_ the _second equation the term containing
=g?NyJ(2|Q'P), i.e., (6¢(0,0)54(0,0")) has been dropped, because it leads to
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FIG. 2. Squeezing spectrum over normalized propagation depth
for different values of(0). In the order of stronger squeezir¢D) FIG. 3. Maximum achievable squeezing@t0 vs loss in co-
=1/2,12,...9. herent amplitude for traveling-wave configurati¢ill line) and
cavity setup(dashed ling
no contribution for coherent input light. The squeezing spec-

trum S(z,w), normalized such th&(z,w) =1 corresponds to 2+ kK2(0)e~ % 1 [1+ «2(0)]e 2
no squeezing at all an®(z,)=0 corresponds to perfect 5 o . . —7|=0.
squeezing, is given in terms of our quantities by (1+x%(0)e )" 1+«x%(0) 1+«%(0)e (29

For example, for «(0)=2, we find (,=1.14 and
S(£y,w)=0.59. In this case, the coherent amplitude of the
o’ input is attenuated to aboef '*=1/3. It can be seen that
Jo -~ ~ ' S(¢,w) does not reach considerably below 41% squeezing.
% j 2w (86(2,0)34(z.0"). (26) Thus we have found a scheme in which for reasonably strong
input intensities, an attenuated but possibly still bright trans-
Inserting Eq.(25) into Eq. (26) and subsequent integration Mitted signal displays squeezed phase noise of at best 41%
yields below the shot-noise level.
A seeming drawback of the present scheme is the
relatively large attenuation of the input field proportional to

S(z,w)=1+4a§(2)ag(2) E

B 1 1 iy . . :
=1+2x2 2¢ - e ““. However, as pointed out in a recent work by Gheri,
Sz @)=Lk 2x(0)e |1+’<2(0)ez§ 1+«%(0) Walls, and Marte [6], the optimum conditions under
[1+ «2(0)]e 2% which squeezing occurs in the cavity setup are such
N~ 2 ] (27)  that destructive interference of the circulating and the re-
1+x%(0)e flected component of the field lead to a small coherent

amplitude at the outpuf7]. In fact one finds, that under
where we introduced the dimensionless propagation lengtbtherwise optimum conditions squeezing and output-
{=vyz/lc. This is the main result of the present paper. Weamplitude reduction scale in the same way with the cavity
see that the squeezing spectrum depends only on thend medium loss rate:
propagation length and the ratio of the probe input inten-
sity to the driving-field intensity at the entrance plane of the Eow|? (70— 71)?
medium. The spectrum does not depend @ras a con- S(w=0)= ENE ~ (vot 702" (30)
sequence of the adiabatic limit and is valid for Fourier " o

frequencies smaller than the reciprocal values of typical/vhereyo represents the cavity-loss rate apcthe effective-
atomic time scales. Depending on the atomic parametergyss rate due to thd medium. In Fig. 3 we have plotted the
the corresponding spectral width may be of the order Ofyayimum achievable squeezing@t0 as a function of the
the dr_lve-fleld Ra_bl frequency and thgs substantially broadefyss in coherent amplitude for both configurations, the cavity
than in our previously analyzed cavity-based setup, whergeyydashed lingand the traveling-wave configuraticfull

it is determined by the cavity-decay rdt]. In Fig. 2, We  jine) "Except for the region of very large losses both curves
plot the behavior 0fS(z,w) for several different values of 5 jgentical, showing that both schemes are equally efficient
the ratio x(0) as a function of the normalized propagation ;, generating bright squeezed output. However, the band-

length. _ _ _ width of noise reduction in the traveling-wave setup can be
At the point{, of maximum squeezing, the spectrum can made much larger as compared to the cavity scheme.
be shown to take the form
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where(, is the solution of Volkes.

2x%(0)e” %o
S(§Oaw):1_ [1+K2(0)e—2{o]2’ (28)
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