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It is shown, under mild assumptions, that classical degrees of freedom dynamically coupled to quantum ones
do not inherit their quantum fluctuations. It is further shown that if the assumptions are strengthened by
imposing the existence of a canonical structure, only purely classical or purely quantum dynamics is allowed.
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I. INTRODUCTION

There is consensus among physicists that quantum me-
chanics is the correct description of nature, at least within the
range of presently observable scales. Nevertheless, some sys-
tems are routinely described using a classical, and thus ap-
proximated, dynamics. This can be so either for simplicity or
due to the lack of a consistent quantum theory. Einstein’s
theory of general relativity is an example of the latter. In an
excellent speculative paper@1#, Boucher and Traschen con-
sidered several physical systems that require a mixed de-
scription in terms of quantum and classical degrees of free-
dom, mutually interacting. A good example is provided by
early universe physics, where fully quantum matter fields are
coupled to classical gravitational fields. The traditional ap-
proach to this problem has been to couple the gravitational
fields to the expectation values of the quantum energy-
momentum tensor; see, e.g., Ref.@2#. This kind of approach
has been criticized@1# on the grounds that the classical fields
evolve deterministically, hence the quantum fluctuations in
these fields, induced by their coupling to the quantum fields,
are missed.

This criticism, as well as presumably the challenge it pre-
sents, has led to the search for a mathematically consistent
description of semiquantized systems, i.e., mixed classical-
quantum systems@3,1,4–6#. These systems are considered by
themselves, that is, not as the limit of a fully quantum theory.
The fact that the classical description is just an approxima-
tion is disregarded in this context since the purpose is to
define a mathematical structure with some physical input.
Let us remark that the use of approximated treatments mix-
ing classical and quantum degrees of freedom of enormous
success, particularly in molecular theory and optics, is not
under debate here. Only the existence of mathematically ex-
act and consistent semiquantization schemes is.

In this work it is shown that, in fact, there are severe
obstructions to constructing such a description and, if it ex-

ists at all, it will not enjoy the elegant mathematical struc-
tures common to classical and quantum mechanics. A similar
conclusion was reached by De Witt using uncertainty prin-
ciple arguments@7#. Since presently there is no widely ac-
cepted definition of what is meant by a semiquantized sys-
tem, and in order not to discard potentially interesting
choices, we should rely on properties as general as possible,
which must hold, in particular, for the purely classical and
purely quantum cases.

II. ASSUMPTIONS

It is assumed~i! that the observables are~in an algebraic
sense! constructed out of the coordinatesqi and the conju-
gate momentapi , i51, . . . ,N, as well as the identityE.
These generators satisfy some commutation relations to be
specified. In classical mechanics we have the set of complex
functions in phase space andE is the unity function. In quan-
tum mechanics it is the algebra of operators in the Hilbert
space of the system. Here the word ‘‘observable’’ is being
used in a slightly wider sense than usual since it includes
nonreal functions and non-Hermitian operators as well.

A second axiom~ii ! refers to the time evolution of the
observables~Heisenberg picture!. We assume that the evolu-
tion is a bijection that preserves the algebraic structure, that
is, if two observablesA(t0) andB(t0) evolve toA(t) and
B(t), respectively, anda,b are constant complex numbers,
the observableaA(t0)1bB(t0) evolves toaA(t)1bB(t)
andA(t0)B(t0) evolves toA(t)B(t). Certainly, this axiom
holds both in classical and in quantum mechanics and it is
hard to imagine an interesting formulation that would violate
it. Note that we are referring only to the dynamic time-
dependence of observables. On the other hand, it is not as-
sumed that the system is conservative; there can be time
dependent external fields that break invariance under time
translations. Similarly, time-reversal invariance is not re-
quired.

Some relevant conclusions can be extracted from these
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two axioms. If a set of elements generates the algebra, this
property is maintained through time evolution. Also, the ob-
servableE is time independent. Finally, commutation rela-
tions of the form@A(t0),B(t0)#5cE are also preserved since
they evolve to@A(t),B(t)#5cE. In particular, if two observ-
ables commute at any given time, they do so at any other
time.

Another axiom~iii ! is needed referring to the commuta-
tion relations since we have to specify in what sense our
system is composed of a classical sector plus a quantum one.
The classical dynamics is characterized by commuting coor-
dinates and momenta that evolve according to Hamilton’s
equations. On the other hand, the quantum dynamics satisfies
the canonical commutation relations and the Heisenberg evo-
lution equationdA/dt52 i @A,H(t)#. For the semiquantum
dynamics it is postulated that the classical commutation re-
lations hold among the classical generators and similarly for
the quantum sector. Furthermore, the generators of the clas-
sical sector commute with those of the quantum one. In other
words, the commutation relations are

@qi ,qj #5@pi ,pj #50 , @qi ,pj #5 il id i j E,

i , j51, . . . ,N, ~1!

where l i is zero if i is the label of a classical degree of
freedom and unity~or \) if it labels a quantum one. These
are the defining identities of the algebra of the semiquantized
system.

This axiom can be justified as follows. Certainly, it is
natural to demand Eqs.~1! if the semiquantized system con-
sists of a classical sector and a quantum sector without any
interaction among them. Since in both classical and quantum
dynamics the commutation relations are unaffected by the
choice of the interaction, one should expect that this is true
as well in the semiquantized case and hence Eqs.~1! follow.
For another argument, assume that the coupling among the
two sectors can be switched on and off by playing with suit-
able time-dependent coupling constants. Now we can imag-
ine starting with an uncoupled system, which satisfies the
relations~1!, and then switching on the interaction to end up
with any given fully coupled system. Since the commutation
relations are preserved by time evolution~even for noncon-
servative dynamics! Eqs. ~1! will hold too in an arbitrary
coupled semiquantized system. We think that these consid-
erations make axiom~iii ! inescapable.

Before extracting further conclusions, let us show that
axiom ~ii ! is needed in order to exclude unacceptable behav-
iors of the semiquantized dynamics. Assume that the two
sectors, classical and quantum, are coupled only during some
time intervalt1,t,t2. If axiom ~ii ! is dropped the commu-
tation relations will no longer be preserved during that time
interval. As a consequence, one finds that, except in particu-
lar cases, they will not hold either even when the two sectors
are completely decoupled, i.e., beforet5t1 or after t5t2.
This is evident since one simply has to consider an arbitrary
nontrivial coupled evolution and match it with free evolu-
tions att,t1 and t.t2 using the values of the generators at
t1 and t2 as boundary conditions. This feature is certainly
undesirable: physicists living before or after the coupling
takes place, who can check that their systems are composed

of a classical plus a quantum sector without relative cou-
pling, will find a strange behavior~the classical variables do
not commute and so on! just because there was or will be a
coupling among sectors at a remote time in the past or in the
future. Such a lack of locality in time is avoided if the time
evolution preserves the algebraic structure of the observ-
ables. Further, if axiom~ii ! is dropped it is problematic to
define the dynamics. For instance, in order to define the Pois-
son bracket one may assume, as done, e.g., in Ref.@4#, that
the classical variables commute at zero time. If the commu-
tation relations are not preserved by the evolution there will
be a privileged timet50: an observer in that world would
find that the ‘‘classical’’ degrees of freedom commute~e.g.,
are fully classical! at some special time but not before or
after. This privileged time is universal since it is independent
of the Hamiltonian. Such behavior is nonexistent in classical
or quantum dynamics.

Now, from the previous assumptions, a quite strong result
can be derived, namely, the classical variables cannot inherit
quantum fluctuations through their coupling to the quantum
ones. To simplify the reasoning, let us consider a system
with just two degrees of freedom—one of them (q,p) quan-
tum and the other (x,k) classical in the sense of the commu-
tation relations~1!—and let us denote the coordinates and
momenta att5t0 by q, x, p, and k. At any time t,
$E,q(t),p(t),x(t),k(t)% is a set of generators. Sincex(t)
commutes with all these generators, it commutes as well
with all other observables and, in particular, withq and p
and the same holds fork(t). On the other hand, again using
the commutation relations, every observableA is uniquely
characterized by a set of coefficientsCabcd, with
a,b,c,d50,1,2, . . . , asA5(abcdCabcdq

apbxckdE. We im-
mediately see that any observable commuting withq cannot
containp and vice versa. Therefore,x(t) must be of the form
(cdCcd(t)x

ckdE and similarly k(t). In other words, at all
timesx andk are commuting objects that evolve following
well-defined trajectories, without fluctuations. On the other
hand,q(t) andp(t) may depend onx(t) andk(t), which, in
this regard, behave as external sources. This is the main re-
sult of this section.

One realization of the above picture is the traditional ap-
proach to semiquantization, namely, the quantum degrees of
freedom move in the presence of the classical background,
whereas the classical degrees of freedom are coupled to the
expectation values of the quantum variables. Such an ap-
proach is thus mathematically consistent. On the other hand,
consider a naive approach in which both sectors are coupled
directly. To avoid ambiguities from operator ordering we
take the case of two coupled harmonic oscillators

dq~ t !

dt
5
p~ t !

m
,

dp~ t !

dt
52mv2q~ t !2g~ t !x~ t !, ~2a!

dx~ t !

dt
5
k~ t !

M
,

dk~ t !

dt
52MV2x~ t !2g~ t !q~ t !. ~2b!

Assuming the commutation relations~1! at t50, a simple
computation shows that@p(t),k(t)#5(l12l2) ig(0)tE
1O(t2), which only vanishes if eitherg50, and thus the
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two subsystems are decoupled, orl15l2, i.e., the purely
classical case if they vanish or the purely quantum case if
they do not. Similarly,@q(t),k(t)# breaks down atO(t2).
That is, Eqs.~2! do not preserve the algebraic structure in
general. As it is easily shown, this does not happens ifq(t) is
replaced by its expectation value in Eq.~2b!, i.e., the tradi-
tional approach.

III. CANONICAL STRUCTURE

The canonical structure of both classical and quantum me-
chanics~Poisson bracket and commutator, respectively! has
been invoked in the literature@1,4# as a guiding principle to
define semiquantized theories. From this point of view, it is
of interest to consider whether there exist canonical struc-
tures interpolating between the quantum and the classical
limits. Let us then study which constraints are found if, in
addition to previous assumptions~i!–~iii !, a canonical struc-
ture is present. For convenience, the relations~1! are rewrit-
ten in the form

@fa,fb#5habE, a,b51, . . . ,2N, ~3!

where the single symbolfa has been introduced to denote
bothqi andpi , andhab is an antisymmetric tensor.

The canonical structure is introduced by three postulates.
First, there exists~iv! a Lie bracket (,)~i.e., enjoying bilin-
earity, antisymmetry, and Jacobi’s identity! that generates
the ~infinitesimal! canonical transformations by
dAB5(A,B), A,B being arbitrary observables. In particular,
time evolution is a canonical transformation

dA~ t !

dt
5„A~ t !,H~ t !…, ~4!

where the Hamiltonian of the systemH(t) is an observable.
Second, it is assumed that~v! all canonical transformations
~not only time evolution! preserve the algebraic structure.
This is equivalent to saying thatdA is a derivation, i.e., it
satisfies the product ~Leibniz! rule:
dA(BC)5(dAB)C1B(dAC). Third, the following canonical
relations are assumed~vi!:

~fa,fb!5eabE, a,b51, . . . ,2N, ~5!

where eab is d i j for (qi ,pj ) and vanishes for (qi ,qj ) or
(pi ,pj ). Such relations are common to classical and quantum
mechanics, of course with different meanings for the bracket
in each case. The canonical structure encapsulates the infor-
mation that the dynamics derives from an action functional.
Axioms ~i!–~iii ! allowed for much more general dynamics,
for instance, a classical sector evolving by itself with a quan-
tum sector coupled to it. Such a violation of the action-
reaction principle is removed by the Lie bracket structure.

Before proceeding, let us point out the importance of Ja-
cobi’s identity since it seems to have been overlooked so far
in this context @1,3,4#. The identity can be written as
dA(B,C)5(dAB,C)1(B,dAC) and thus expresses that the
bracket itself is invariant under canonical transformations. In

particular, the relationship (A,B)(t)5„A(t),B(t)… will be
consistent with the equations of motion. Such an identity is
required if the canonical relations~5! are to be preserved by
the canonical transformations and hence to prevent the same
kind of inconsistencies as noted for the commutation rela-
tions in Sec. II~e.g., lack of locality in time and the existence
of universal privileged times in the dynamics!. After some
algebra, it can be shown, in fact, that (q,p) differs from its
canonical value atO(t2) with the bracket in Ref.@4# and at
O(t3) with that of Refs.@1,3#, for generic Hamiltonians. The
antisymmetry property of the bracket also seems to be an
obvious requirement to guarantee that the energy is con-
served and that the evolution preserves Hermiticity@8,9#.

It is important to note that the bracket (A,B) of any two
observables can be completely worked out using only bilin-
earity, antisymmetry, the product rule, and the canonical re-
lations ~5!, hence the bracket is, in fact, completely deter-
mined. In particular, Jacobi’s identity follows as a by-
product @10#. On the other hand, the same is true for the
commutator using Eq.~3!. We have to check whether both
sets of equations are compatible. Noting thatdAE vanishes,
we find the following chain of equalities for arbitrary
a,b,m,n51, . . . ,2N:

05~fafb,hmnE!5~fafb,@fm,fn#!

5ebmhan1eamhbn1ebnhma1eanhmb. ~6!

The last equality follows from repeatedly applying the prod-
uct rule. Contracting this equation withemb, it is found that
consistency is achieved only ifhab5 ileab for somel. In
fact, from Eqs.~1!, all thel i are equal tol. In other words,
there can be just one sector. Furthermore,
@A,B#5 il(A,B), for arbitraryA,B. There are only two pos-
sibilities: first, thatl is nonvanishing. In this case, we end up
with the usual purely quantum dynamics. Second, ifl van-
ishes, all variables are commuting. Moreover, since the
bracket is completely determined, it coincides with the Pois-
son bracket. That is, the dynamics is purely classical. This is
the main conclusion of this section. Note that this result is
consistent with that found regarding Eq.~2!, namely, the
canonical evolution generated by an arbitrary quadratic
Hamiltonian fafb does not preserve the semiquantized
commutation relations~1!.

IV. CONCLUSION

We conclude that assumptions~i!–~iii ! prevent the classi-
cal sector from inheriting quantum fluctuations and, further,
assumptions~i!–~vi! actually discard any nontrivial semi-
quantized theory. Note that further details on how to actually
extract physical information from the observables~e.g., ex-
pectations values in the quantum case! are not required to
reach the previous results. They are not completely conclu-
sive, however. The seemingly harmless assumption of a
Heisenberg picture formulation is, in fact, relevant to the
conclusion. The Schro¨dinger picture formulation of Ref.@1#
is obviously free from universal privileged times and is thus
inequivalent to~an antisymmetric version of! Ref. @4#. That

54 3659BRIEF REPORTS



both pictures are no longer equivalent in the semiquantized
context can also be seen from uncertainty principle consid-
erations since the commutation relations are trivially pre-
served in one picture but not in the other. The semiquantiza-
tion proposed in Ref.@1#, as well as that in Ref.@5#, based
directly on time-ordered vacuum expectation values must
also be discarded, but this requires further physical argu-
ments, namely, physical positivity of the expectation values
@11#. It is entirely possible that there is no nontrivial~or at

least elegant! semiquantization scheme since, after all, such a
concept is not presently known to be physically required.
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