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Finite-element calculations for the three-body Coulomb problem with two equal masses
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An accurate numerical finite-element meth®&®&EM) solution of the three-body Coulomb problem with two
equal masses is presented. The application of the FEM to systems with mass ratios ranging from 1836 to
1/1836 yields upper bounds for energy eigenvalues to a precision in the range'd£10 ° a.u. Expectation
values for different operators are computed and discu$Sd@50-294{@6)03507-X]

PACS numbgs): 32.10—f, 36.10.Dr, 02.70.Dh

. INTRODUCTION molecular ion H* in the Born-Oppenheimer approximation
[9—-14) have been presented by several groups. For the three-
The dynamical problem of three interacting bodies is onebody problem with arbitrary masses, the FEM has yielded a
of the oldest challenges in physics. The scientific work inprecision of one part in fofor the energiesand the expec-
this field can be traced back to the work of Euler in the 18thtation values of certain systenjd5,16. Recently it was
century. In the beginning of the 20th century, the failure ofshown that an adaptive FEM treatment of correlated two-
theory to describe correctly stable three-body Coulomb syselectron wave functions yields energy values to a precision
tems like the hydrogen molecular ion,H and the helium on the order of 10*! with moderate computational effort
atom stimulated the development of modern quantum meR8]. In the adaptive FEM the segmentation of the domain is
chanics beyond the Bohr-Sommerfeld quantization. Threerefined automatically; higher-order polynomials are used to
body problems continue to be of interest in many fields, suchieach high precision.

as exotic systems in atomi®s”) and molecular (du) There are several other desirable features of the adaptive
physics, two-neutron halo structures in nuclear physics, an8EM that justify its application to Coulombic three-body
three quark baryons in high-energy physics. problems. First, comparing a FEM and a global basis-set

Traditionally, three-body Coulomb systems are dividedwave function approximation with energy values of the same
into two “obvious” physical models: the atomic system in accuracy, the FEM often will yield much better expectation
which one mass is much heavier than the other two and thealues. This is a consequence of the local approximation
molecular system in which one mass is much lighter than théehavior of the FEM. LebW be the deviation from the exact
other two. These models give rise, respectively, to the infiwave function. Then, the error in the enerd¥ is given by
nite nuclear mass approximation for two-electron atoms and
the Born-Oppenheimer approximation for diatoms. SE=(8V|T|8V)+(s¥|V|5¥)=0, (1)

This partition is somewhat arbitrary, depending on the
mass ratios, and a system with three identical masses like
Ps (e"e”e™) falls into neither category. Many different whereT andV are the kinetic and the potential part of the
methods and global basis functions have been used to treltamiltonian. Now, an optimization according to the energy
three-body Coulomb systems; the precision of any particulaminimum principle may exploit the cancellation of the ki-
method is strongly dependent on the mass ratios. For atomigetic and potential part in the above expression. This unsat-
systems like the helium atom, the most accurate and widelisfactory situation, which can lead to a large deviation from
used is the variational method with a Hylleraas-type globakhe virial theorem, may occur for global as well as for local
basis sef1]. For molecular systems likeJ1, a global basis- approximations. The main difference is that the adaptive
set expansion in elliptic coordinates is more suitdBleWe  FEM tries to minimize 6E locally on each tetrahedron,
also mention the hyperspherical coordinate method, whiclwhereas a global scheme tries to minimie on the whole
has a rich history in this field; for a complete review of the domain. Thus the adaptive FEM cannot exploit the cancella-
literature see Ref.3]. tion of errors on different tetrahed(ar space regimesThis

In this work we present a different approach to Coulom-leads to a better description of the wave function in the FEM
bic three-body problems. The wave function is not expandedase.
in terms of global basis functions; rather, the domain of the Another attractive feature of the adaptive FEM is its flex-
wave function is segmented into tedrahedra, each serving algility. Since the grid is adapted automatically to the wave
the domain of a local polynomial basis set. The approximafunction, high-precision results are obtainable independent of
tion of the wave function as a linear combination of thesethe particular structure of the wave function. Finally, the
local polynomials is called a finite-element-meth@eEM) adaptive FEM is a variational method in the sense that the
description. FEM treatments for the helium atom in the infi-FEM energy values are true upper bounds to the exact en-
nite nuclear mass approximatiqd—8] and the hydrogen ergy. But the grid adaptation is not restricted to the energy
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(Zy,my) Q={(ry,r,,rp)|0=r;<e,
L Osry<oo, |ri—ry|sryosr,+ry} 4
Zx,mx)
and
dQ=8m2rr,r ,dr,drydry,. (5)
I
- The potential energy has the usual form
ZxZy  ZxZy  ZxZx
V(ry,ra,rip)= et (6)
(Zx,mx) 1 2 12
whereas the kinetic-energy operator is the expression:
FIG. 1. Two of the three point particles have identical charges 2 2 2
o : 11190 19 11 9
Zy and massemy . The remaining particle has the charge and =—|— =M+ — =3I+ ———T,
the massm, . The distance between the two identical particles is 2|1y drg ry dry Mx 12 9ry,
denoted byr,,, whereas the distances to the third particle mre 2 o 9 5
andr,. 1 ri+ry—ri, 4 1

+
2my rqr, aridr,  2my
criteria. The grid can be optimized with respect to any arbi-
trary physical property of the wave function.

This work is organized as follows. Section Il is devoted to
a short description of the variational problem for the three- |
body Coulomb system with two identical masses. In Sec. IWIth u=mxmy/(mx+my). _ _
we give numerical details of the computations and present Before proceeding we first want to clarify the connection
our results. Our goal here is the systematic study of the thred? the atomic case. In the infinite nuclear mass approxima-
body system with the adaptive FEM, beginning with thefion (My—, my=me) for two-electron atoms, the kinetic-
atomic problem and ending with the molecular problem. [fEN€rgy operator is given Hg]
high-precision results are obtainable for all mass ratios, the 1 [1 &2 1 92 2 &
adaptive FEM will provide a unifying approach to the study Tozz_mx E ﬁrﬁ = Fgrﬁ o Erlz
of the three-body problem. We present results for the helium
atom “He, the hydrogen atomic iofH ~, the Mu~ system ri+ri—ry  ?  r3tri—ri 8
(ute"e”), the Ps -system €7 e e”), the Mu*-system +

2, ,2 2 2 2, .2 2 2
ri+ri,—r5; 4 rs+ri,—ri o

Mo drydryp Fofip  dradryp

rqr arqor rof Ar,0r 15|
(u*unte™), and the hydrogen molecular ion, H. The cor- v e 2 2712
responding charge-conjugated systems are identical at this (8)
Ils/vel of description. A short conclusion can be found in SecThus we can rewritd” in the form
. .y
T=—To+Tup, 9
Il. THEORY K
We consider the problem of three charged point particlesVith the mass polarization term given by
two having identical massesy and identical charge&y, L [rdtrird, P il P
and a third with the massy and the chargé&y _(see_ Fig. 1 TMP_ZmY Fif,  Orqdry  Tilyp  Irqdrgo
The Hamiltonian in nine space dimensions is given(aly
quantities in the following are given in atomic units ra+ri,—r? g2 2 92 10
- —— —T15.
Fof1p  OMpdlp T1p0r2, 2 (10
ZyZy ZyZy 12

1 1
H=—5—(Vi+ V) -5 —V3+ j -
2my 2my Iri—ral  |ro—rs Here we used the relation mi=1/x—1/my. In the limit
7.7 my—o the mass polarization term vanishes, whereas
XX 2 my/u goes to 1. Applying the scaling transformation,
ri=(ulmyry,  ra=(u/myry,  r=(u/myr,,
11

[ri—rol”

Subtracting the center-of-mass motion and applying an

angular-momentum decomposition of the Sclhinger equa-  allows us to reexpress E¢B) as
tion result in a system of coupled partial differential QU [T+ (u/my) Typ+ V(I 11T 2, F12) — (My /) ET¥ (£ 1,T5,F 1)
tions in the three coordinates=|r,—rs|, ro=|r,—rs|, and

ro=|ri—r,| [17]. For S states(angular momentuni. =0) =0, (12

t the Schidi ti . .
We get the schidinger equation where we have suppressed all primes. Neglecting the mass

(TH+V(rq,ro,ri9)—E)W(rq,ry,rip)=0 (3)  polarization term and settiney,= (my/w)E yield the Schre
dinger equation for the atomic infinite nuclear mass approxi-
on¥ e L2(QCR3,dQ). Here the domaitf) and the volume ~Mmation:
elementd() are given by [To+V(rq,rs,r1)—€glW¥o(rq,rs,r12)=0. (13
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TABLE |. Cutoff valuesr used for the different systems to ()(r ) is given in the positive half plane i {,r,,r,) by a
truncate the infinite domain to a finite tetrahedron and mass paramgatrahedron with vertices at the point®,=(0,0,0)
eters(from Ref.[31]) used in the numerical calculations. P,=(r./2,r./2,0) Po=(re/2,rc/2,r0) and

C 1" C ’ ’ C il c il e/

P53=(r.,0,r.). In our calculations we use cutoff values be-

System Cutofirc Mass parametefin a.u) tweenr =120, andr .= 1200, (see Table)l. These values
“He 12Ga, are sufficiently large not to affect the numerical results pre-
14~ 6008, m, 10%1.37093354  sented here. . N .
Mu~ 6008, m, 1836.152 701 Starting with the single tetrahedron describing the domain
Ps™ 1200, m, 206.768 262 Q(rc).V\_/e split succes;ivel(/six time9g only the tetrahedron .
Mu™* 6008, me 1 containingPy. The refinement of each te‘Frahedron reSl_JIts in
H,* 6008, eight smaller tetrahedri@ee Ref[8]). In this way a grading

in the grid is produced that locates smaller tetrahedra near
the pointP,. Local Lagrange polynomialgl8] of order p

In the case of a sufficiently small parameter u/my the ~ are defined on each of the tetrahedra. These Lagrange poly-
neglected mass polarization term can be accounted for byomials #{* are continuous onQ and form a basis
perturbation theory. Then the ener@yfor the three-body {d)i(p) ,i=1,2,... M} for the FEM approximation ofV" in

problem assumes the form the domain:
2 M
M M e ~
E=m—x €t m—Y61+(m—Y €xt -, (14 \P%\I’%)E)M:izzo Ciqﬁi(p). (17)

with €;=(W¢|(my/my) Tye|¥o) and thee; for i>1 being Inserting this ansatz into the variational probléh%), com-

the corresponding higher-order energy coefficients. puting the integrals via a numerical Gaussian integration, and
The molecular Born-Oppenheimer limit of E@) is dis-  carrying out a variation with respect to the expansion coef-

cussed in Ref{17]. TheL =0 case corresponds to electronic ficientsC; leads to a general matrix eigenvalue problem that

3, states. Adiabatic corrections to the Born-Oppenheimer encan be solved by standard methods.

ergy can also be treated with perturbation theory. In general, the resulting FEM approximation will be very
In our FEM we treat the Coulomb three-particle problemcrude. To improve this first FEM approximation we look for
in the unscaled variational form tedrahedra on which the error of the FEM wave function is
2 2 2 larger than the average local approximation error. The local
11[o¥ v 1 (0¥ e
J dQ[ - (_) (_) }4_ _(_) FEM approximation error can be measured by a local error
Q 2pl\dry arp My \ drip estimator based on the energy norm of the difference
1 r2—r24r2, 0¥ o0 1 VRen— Ve, Wheref‘l’i(,p%EM and {4} are the continu-
y - - £ e -4 T ous local FEM approximations of ordprandp+ 1, respec-
2my  rqfp  drg drp  2my tively, on theith tedrahedron. For a detailed description and
2,.,2 _ 2 2,,.2 2 discussion of the local error estimator we refer to Réd].
MitTip—rp oW 0¥ Totri,— I ¥ oW ) Only the tetrahedra collected by the local error estimator are
Fifiz  dry drp Foliz drp dryp refined. The resulting new grid is used to compute an im-

proved FEM approximation. The grid can be successively

+V(r1,r2,r12)\If2} =1 in=E. (15) refingd level by .IeveI until the d(_asired precision is reached
and is only restricted by the available computer power. The
dimensions of the sparse matrices in these calculations are

Depending on the parameters, My, Zx, andZy the so-  perween 3 10° and 4x 10°. The CPU times range from a
lution of the above variational problem describes the zerote\y hours up to several days on a Silicon Graphics

angular-momentum states of different atomic or m0|eCU|arPowerChaIIenge workstation.

systems, see Table I. Solutions for fixéd, Zy and mass First we apply the adaptive FEM to the atomic system
ratio my /my are identical except for a trivial scale transfor- pejiym 4He and to the hydrogen atomic ion systé# . In
mation (11), as we can see from the ScHioger equation Tapje |1 we list the final FEM results: energy eigenvalues,
(12 expectation values for powers of the interparticle distances,
and the deviations from the virial theorem. These results are
. NUMERICAL PROCEDURE AND RESULTS compared with the high-precision results (#0a.u. in the
In order to obtain an initial triangulation we must first en?:rg]?hcgliﬁggkﬁ%]érid contains 2037 grid points after nine

truncate the infinite domain to a sufficiently large but finite refinement steps according to the local error estimator; quin-

domain. Outside the finite domain the wave function is as-. . .
. tic Lagrange polynomials were used. The FEM energy eigen-
sumed to be zero. Therefore we introduce a cutoff vajue grange po'y 9y €ig

d take advant £ th tati v imnd value lies 410 12 a.u. above the value of Drake. This is
and take advantage of the permutation Symmetry,iian consistent with the error<10 ! a.u) we would expect
r, by considering the domain

from the convergence behavior and from the error estimator

Q(ro)={(rq,,r,,r1p)|0sry=<rg, implemented. The deviation from the virial theorem given by
A+ v is an indicator of the precision of the expectation values

O<Iosrq, M= TSI p=<r{+ry}. (16)  for (1/r) and(1/ryy). Let us writeAt , in the form[8]
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TABLE Il. FEM expectation values for atomic three-particle Coulomb problems including the mass
polarization term explicitly in the Hamiltonian. Included are benchmark values of OrbkeDrake uses
slightly different mass values, which account for the relativistic mass effect due to the atomic binding energy.
The difference in the reduced mass isx 10~ *4 a.u. for helium and 2.2 10" 13 a.u. for the hydrogen atomic
ion, which is at least two orders of magnitude smaller than the accuracy reached here by the FEM calcula-
tions. The energy values listed here are corrected to our mass parameters, whereas Drake’s expectation values
for various operators are computed with his original mass values, see [rake

Quantity “He H-

Number of gridpoints 2037 2333

E (a.u) —2.903 304 557 734 390 —0.527 445881 114 178
Erem (@.U) —2.903 304 557 730 —0.527 445 881 110
Estimated errofa.u) <1071 <1071

Aty (a.u) 1.5x10 10 1.8x 10"

(1/r) (ag 1) 1.688 076 584 672 0.682 853 384 851

(117 ) eem (a(;l)

(LIr1) (80"
(17 1) Fem (a(;l)

(r) (ao)

(M eem (A0)

1.688 076 584 77

0.945 697 223 221
0.945 697 223 30

0.929 607 915 011
0.929 607 914 91

0.682 853 384 96

0.310815007 474
0.310 815 007 66

2.712 095 626 608
2712095621 4

(r1(ao) 1.422 247 512 605 4.415 692 603 5PB
(r 12kem (a0) 1.422 247 512 43 4.415 692 593 4
(r?) (ad) 1.193 834 894 419 11.931 747 75636

1.193 834 894 05 11.931 747 62

(r?)eem (a9)

2.517 061 842 475
2.517 061 841 70

25.237 175 606LY
25.237 175 34

(riy (ad)

(rirem (a5)

(V) (V) V) not indicative of a more precise FEM wave function. Since
Ary=(M+ 5 =T+ ——=0E-—— &(1/ry=1.1x10"a;" and &(1/r1)=1.9x10 %, *, the
two contributions in(18) nearly cancel foZ= 1, resulting in
&(1Ir 1) a value forAr, that is on the order of 1810 ** a.u. The
=OE+Z&1r)-——F—, (18)  precision of the expectation valués/r) and(1/r ;,) is com-

parable to that of the helium results. We note that the non-
_ _ Hamiltonian expectation valués?) and(rZ,) for the hydro-
where JE is the error in the energy an& ) denotes the gen atomic ion are significantly less accurate than the helium
deviation from the exact expectation value. Since in OUlegyits. One explanation is the difference in the screening
FEM calculations the error in the energy is minimized, thegffect forz=1 andZ=2. The hydrogen ion wave function
value forA+ y is dominated by the errors in the expectationgecays asymptotically with a preexponential factor

values for the operatorsrland 1f ;. For helium A,y ison  (14r,)~%, [19] which is harder to describe by polynomials
the order of 1.5 10" a.u. Indeed, the difference between than the asymptotic wave function for the helium atom.

the FEM expectation values and Drake’s benchmark results Haying established the precision of the FEM in the atomic

are on the order of 10%,*. For the other non-Hamiltonian case, we now address the more difficult problem of applying
expectation values we would expect an increase in error. Buthe method to systems that are neither atomic nor molecular
comparing the FEM expectation values with the benchmarkn character. Here we study the negative muonium ion
values of Drake, the error 1) and(r,) is still on the order  (,,*e~e™), the negative positronium ionete e~), and
of 10 ¥, whereas the error ifr2) and(ri,) increases to the muonic molecular ioni{* «*e~). These exotic systems
4x10 a2 and 8x10 %3, respectively. have been the subject of many theoretical treatments that
The final grid for the hydrogen atomic ion contains 2333predict them to bémetgstable. To our knowledge only the
grid points after 11 refinement steps. The precision of thenegative muonium ioh20,21] and the positronium negative
energy eigenvalue for the hydrogen atomic ion reaches thien [22] have been observed experimentally.
same level as in the helium case. The main difference is that Although my=~207my for the negative muonium ion
A+ y is lowered by one order of magnitude; however, this isMu™, the mass polarization term is sufficiently large that the
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TABLE lIl. FEM energy values for the negative muonium iop(e”e”), the negative positronium ionete e~), the muonic
molecular ion " u*e”), and hydrogen molecular iop{ p*e~). We assume the extrapolated exact FEM values to be exact to all figures
given(further digits are put in parenthesescluded are energy values computed by several other groups. Since often different muon masses
are used, high-precision results for the muonic ion have been corrected wifh4tdo the muon mass in Table I. For the energy values
obtained for the muonic molecular ion in the literature the muon mass shift plays no role. The binding energy is computed by the difference

between the FEM energy and the threshold enetgy —0.5mymy /(my+my) (in a.u.; conversion factor 1 a.e= 27.211 396 181 e\

+

+

+ o+

+nt

pre e’ e'e e prute ppTe”
Number of gridpoints 2388 2267 3325 3612
Estimated errofa.u) <104 <1071 ~107 % <10°°
Energy(a.u) 0.525 054 806 239 0.262 005 070 231 0.585 126 097 208 0.597 139 062 3
extrapolated exact 0.525 054 80624 0.262 005 070 2) 0.585 126 097 16) 0.597 139 0&2 6)
0.525 054 815 7376 0.262 005 070 232%2 0.585 128 0.597 139 06372
0.525 054 811 0646 0.262 005 070 232 0.585 128 0.597 139 06311
0.525 054 806 16FK 0.262 005 069 0.584 928 68
0.525 054 807 % 0.262 004 88
0.525 054 803 3¢ 0.262 004 857
0.262 000 ¥
Binding energy(eV) 0.747 261227 3 0.326 674722 2 2.381 884 925 2.650 695 370

®Frolov and Yeremir{23] (m,=206.769).
®Frolov and Yeremir23] (m,,=206.768 64).
“Petelenz and Smitf24] (m,, —206 768 6).
“Frolov and Bishog25] (m,=206.768 64).
®Ho [26].

"Haftel and Mandelzwei28].

gMohallem[27] (m,=206.7686).

PMcKenna and Webste{|29] (m,=206.768 65).
'Wolniewicz and Pol[2] (mp—l836 1528).
JMOSS[32] (m,=1836.152 701).

“Corrected tam, = 206.768 262.

system cannot be treated as purely atomic. Variational caktudy withmy>my ; however, the mass ratio is such that the
culations with Hylleraas-type functions converge moreadiabatic terms cannot be treated by low-order perturbation
slowly than in the case of helium. The FEM result for theory as in a truly molecular system. The 600-term expo-
Mu~ energy is lower than any values found in the literaturenential variational expansion of Frolov and Bish@&b] has
(see Table Il). A direct comparison to the energy values of only a precision of one part in #0Here the molecular ap-
other groups is complicated by the use of different masgroach of Mohallen{27] yields a precision of %10 ©
values. The mass dependence of the energy can be seen MgKenna and Webstd29] used a nonadiabatic wave func-
comparing the high-precision energy values for two differention expansion in prolate spheroidal elliptic coordinates and
values form,, of Frolov and Yeremirj23]. Using this “iso-  their result given, unfortunately only up to six digits, agrees
tope shift” for an extrapolation of their energy to our masswith the FEM result. The FEM energy for Mis by far the
value (Table ) according to expansiofl4) reduces the dif- most accurate in the literature; with a slight increase in nu-
ference between their result and the FEM result to less thamerical effort, a precision of one part in *f0was reached
10 1%a.u. FEM results for the expectation values are also th¢see Table Il). The FEM expectation values for Muare the
most accurate to date. In Table IV we compare them with thdirst to appear in the literaturesee Table 1V.
results of Petelenz and SmifB4], who applied the integral Finally, we apply the FEM to the hydrogen molecular ion.
transform method with a trial wave function containing 150As the masses of the two identical particles increase the
exponential basis functions. amount of numerical work to reach a certain precision in-
The negative positronium ion Psis the only three-body creases(This is a direct consequence of the use of interpar-
Coulomb system with equal masses that has been observédie distances for all systems studiedhe FEM reaches the
experimentally. The challenge to calculate the binding en{relatively low) precision of 10° a.u. on a grid with 3612
ergy of this system has been the subject of many theoreticglrid points. Since the nonadiabatic ground-state energy of
studies, including the variational meth¢@4—-26, the mo-  this system has been computed by many groups to a high
lecular approacti27], and the hyperspherical meth$ag]. precision, we include in Table Il only the results of
The most accurate result for the energy has been obtained Wolniewicz and Pol[2] and Mosgq30]. The FEM expecta-
Frolov and Bishofd25], who used 900 basis functions in an tion values for ", like those of the other nonatomic sys-
exponential variational expansion in the interparticle dis-tems studied, are the most accurate in the literature.
tances. The FEM eigenvalue is identical with their result to
12 significant digitgsee Table Ill. The FEM results for the
expectation values are the most accurate in the literature and
are compared with the variational results of Petelenz and The adaptive finite-element method offers an alternate ap-
Smith[24] in Table IV. proach to studying three-body Coulomb systems. In terms of
The positive muonium ion MU is the first system we accuracy, it is competitive over the entire range of masses; in

IV. CONCLUSION
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TABLE IV. FEM expectation values of various operators for the negative muoniumydre(e™), the
negative positronium iong'e"e~), the muonic molecular iong* x*e~), and hydrogen molecular ion
(p"p*e). The deviation from the virial theorem is given iy y=(T)+(V)/2. We assume the FEM
values to be exact to all figures givéiurther digits are put in parenthegebcluded are expectation values
obtained by several other groups. For the number of digits given for the expectation values in the literature
the use of different muon masses plays no role. All values are given in atomic units.

Property ue e efe e nrute” ptpte”
Number of 2388 2267 3325 3612
grid points
Ayt (au) 1.7x10° % 1.1x10" 11 —1.8x 10710 2.4x10°°
(1Iry (a7) 0.679 654 50084)  0.339821 02312  0.820 339 78) 0.842 492 963
0.679 654 68 0.339 82102 0.842 492
0.3398318 0.842 494
0.339 8 0.842 49
(1/r1p) (a7§)  0.30919938917)  0.155 631 90576) 0.470 427 314) 0.490 707(799
0.309 199 58 0.155 631 99
0.155654 8
0.155 6
(r) (ap) 2.727 182 977) 5.489 633 £39) 1.769302452)  1.692 966(20)
27271822 5.489 633 8 1.692 97
5.489 1 1.692 96
5.488 352 1.693 6
5.506
(r12) (ag) 4.439 280 0(81) 8.548 580 &26) 2.205 215 247) 2.063913(89)
44392788 8.548 580 8 2.205 214 2.063918
8.547 6 2.063 91
8.546 111 29 2.063 92
8.58(9
(r?) (ad) 12.074 193(85) 48.418 936(25) 3.938458 0059  3.558 797(87)
12.074 159 48.418 938
48.415 %
48.393 6
48.379 319
48.79
(r2, (ad) 25.514 53(6 1) 93.178 631(90) 5.036 585 6(10)  4.313 286(038
25.514 462 93.178 633 43132779
93.171 4 431329
93.128 3 4.31331
93.100 697 &
93.94
Petelenz and Smitf24] (m,=206.768 6). "Ho [26].

"McKenna and Webstd29] (m, = 206.768 65).
“Bishop and Cheunf5] (m,=1836.152 75).
“Bishop[36] (m,=1836.152 75).

*Haftel and Mandelzweid28].

9%olos et al. [33].

PBhatia and DrachmafB4].
iBabb and Shertzdtl6] (PT).
IBabb and Shertzdi16] (FEM).

some cases, the FEM values for the energy and expectati@pace. Finally, the ability to optimize the grid with respect to
values are the most accurate in the literature. The adaptivehysical parameters other than the energy suggests that the
FEM also has the advantage of allowing one to solve thé~=EM will be a valuable tool for future studies in atomic and
Schralinger equation in identical coordinates for atomic andmolecular physics.

molecular systems, and everything in between, with exactly
the same basis functions. The local polynomials are flexible
enough to provide an accurate approximation to the cusps in
the wave function at the singularities; they are equally effi- Thanks are extended to G.W.F. Drake for giving his
cient in the asymptotic region, where relatively few basisbenchmark results in Table Il prior to publication and to A.
functions can be used over a large region of coordinat®8hatia for helpful discussions on the three-body problem.
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