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An accurate numerical finite-element method~FEM! solution of the three-body Coulomb problem with two
equal masses is presented. The application of the FEM to systems with mass ratios ranging from 1836 to
1/1836 yields upper bounds for energy eigenvalues to a precision in the range of 10211–1029 a.u. Expectation
values for different operators are computed and discussed.@S1050-2947~96!03507-X#
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I. INTRODUCTION

The dynamical problem of three interacting bodies is one
of the oldest challenges in physics. The scientific work in
this field can be traced back to the work of Euler in the 18th
century. In the beginning of the 20th century, the failure of
theory to describe correctly stable three-body Coulomb sys-
tems like the hydrogen molecular ion H2

1 and the helium
atom stimulated the development of modern quantum me-
chanics beyond the Bohr-Sommerfeld quantization. Three-
body problems continue to be of interest in many fields, such
as exotic systems in atomic~Ps2) and molecular (tdm)
physics, two-neutron halo structures in nuclear physics, and
three quark baryons in high-energy physics.

Traditionally, three-body Coulomb systems are divided
into two ‘‘obvious’’ physical models: the atomic system in
which one mass is much heavier than the other two and the
molecular system in which one mass is much lighter than the
other two. These models give rise, respectively, to the infi-
nite nuclear mass approximation for two-electron atoms and
the Born-Oppenheimer approximation for diatoms.

This partition is somewhat arbitrary, depending on the
mass ratios, and a system with three identical masses like
Ps2(e1e2e2) falls into neither category. Many different
methods and global basis functions have been used to treat
three-body Coulomb systems; the precision of any particular
method is strongly dependent on the mass ratios. For atomic
systems like the helium atom, the most accurate and widely
used is the variational method with a Hylleraas-type global
basis set@1#. For molecular systems like H2

1 , a global basis-
set expansion in elliptic coordinates is more suitable@2#. We
also mention the hyperspherical coordinate method, which
has a rich history in this field; for a complete review of the
literature see Ref.@3#.

In this work we present a different approach to Coulom-
bic three-body problems. The wave function is not expanded
in terms of global basis functions; rather, the domain of the
wave function is segmented into tedrahedra, each serving as
the domain of a local polynomial basis set. The approxima-
tion of the wave function as a linear combination of these
local polynomials is called a finite-element-method~FEM!
description. FEM treatments for the helium atom in the infi-
nite nuclear mass approximation@4–8# and the hydrogen

molecular ion H2
1 in the Born-Oppenheimer approximation

@9–14# have been presented by several groups. For the three-
body problem with arbitrary masses, the FEM has yielded a
precision of one part in 106 for the energiesand the expec-
tation values of certain systems@15,16#. Recently it was
shown that an adaptive FEM treatment of correlated two-
electron wave functions yields energy values to a precision
on the order of 10211 with moderate computational effort
@8#. In the adaptive FEM the segmentation of the domain is
refined automatically; higher-order polynomials are used to
reach high precision.

There are several other desirable features of the adaptive
FEM that justify its application to Coulombic three-body
problems. First, comparing a FEM and a global basis-set
wave function approximation with energy values of the same
accuracy, the FEM often will yield much better expectation
values. This is a consequence of the local approximation
behavior of the FEM. LetdC be the deviation from the exact
wave function. Then, the error in the energydE is given by

dE5^dCuTudC&1^dCuVudC&>0, ~1!

whereT andV are the kinetic and the potential part of the
Hamiltonian. Now, an optimization according to the energy
minimum principle may exploit the cancellation of the ki-
netic and potential part in the above expression. This unsat-
isfactory situation, which can lead to a large deviation from
the virial theorem, may occur for global as well as for local
approximations. The main difference is that the adaptive
FEM tries to minimizedE locally on each tetrahedron,
whereas a global scheme tries to minimizedE on the whole
domain. Thus the adaptive FEM cannot exploit the cancella-
tion of errors on different tetrahedra~or space regimes!. This
leads to a better description of the wave function in the FEM
case.

Another attractive feature of the adaptive FEM is its flex-
ibility. Since the grid is adapted automatically to the wave
function, high-precision results are obtainable independent of
the particular structure of the wave function. Finally, the
adaptive FEM is a variational method in the sense that the
FEM energy values are true upper bounds to the exact en-
ergy. But the grid adaptation is not restricted to the energy
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criteria. The grid can be optimized with respect to any arbi-
trary physical property of the wave function.

This work is organized as follows. Section II is devoted to
a short description of the variational problem for the three-
body Coulomb system with two identical masses. In Sec. III
we give numerical details of the computations and present
our results. Our goal here is the systematic study of the three-
body system with the adaptive FEM, beginning with the
atomic problem and ending with the molecular problem. If
high-precision results are obtainable for all mass ratios, the
adaptive FEM will provide a unifying approach to the study
of the three-body problem. We present results for the helium
atom 4He, the hydrogen atomic ion1H2, the Mu2 system
(m1e2e2), the Ps2-system (e1e2e2), the Mu1-system
(m1m1e2), and the hydrogen molecular ion H2

1 . The cor-
responding charge-conjugated systems are identical at this
level of description. A short conclusion can be found in Sec.
IV.

II. THEORY

We consider the problem of three charged point particles,
two having identical massesmX and identical chargesZX ,
and a third with the massmY and the chargeZY ~see Fig. 1!.
The Hamiltonian in nine space dimensions is given by~all
quantities in the following are given in atomic units!

H52
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2mX
~¹1

21¹2
2!2

1
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¹3
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ZXZY
ur12r3u
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ZXZY

ur22r3u

1
ZXZX

ur12r2u
. ~2!

Subtracting the center-of-mass motion and applying an
angular-momentum decomposition of the Schro¨dinger equa-
tion result in a system of coupled partial differential equa-
tions in the three coordinatesr 15ur12r3u, r 25ur22r3u, and
r 125ur12r2u @17#. For S states~angular momentumL50)
we get the Schro¨dinger equation

~T1V~r 1 ,r 2 ,r 12!2E!C~r 1 ,r 2 ,r 12!50 ~3!

onCPL2(V,R3,dV). Here the domainV and the volume
elementdV are given by

V[$~r 1 ,r 2 ,r 12!u0<r 1,`,

0<r 2,`, ur 12r 2u<r 12<r 11r 2% ~4!

and

dV[8p2r 1r 2r 12dr1dr2dr12. ~5!

The potential energy has the usual form

V~r 1 ,r 2 ,r 12!5
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1
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1
ZXZX
r 12

, ~6!

whereas the kinetic-energy operator is the expression:
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with m[mXmY /(mX1mY).
Before proceeding we first want to clarify the connection

to the atomic case. In the infinite nuclear mass approxima-
tion (mY→`, mX5me) for two-electron atoms, the kinetic-
energy operator is given by@8#
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~8!

Thus we can rewriteT in the form

T5
mX

m
T01TMP, ~9!

with the mass polarization term given by
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Here we used the relation 1/mX51/m21/mY . In the limit
mY→` the mass polarization term vanishes, whereas
mX /m goes to 1. Applying the scaling transformation,

r 185~m/mX!r 1 , r 285~m/mX!r 2 , r 128 5~m/mX!r 12,
~11!

allows us to reexpress Eq.~3! as

@T01~m/mX!TMP1V~r 1 ,r 2 ,r 12!2~mX /m!E#C~r 1 ,r 2 ,r 12!

50, ~12!

where we have suppressed all primes. Neglecting the mass
polarization term and settinge05(mX /m)E yield the Schro¨-
dinger equation for the atomic infinite nuclear mass approxi-
mation:

@T01V~r 1 ,r 2 ,r 12!2e0#C0~r 1 ,r 2 ,r 12!50. ~13!

FIG. 1. Two of the three point particles have identical charges
ZX and massesmX . The remaining particle has the chargeZY and
the massmY . The distance between the two identical particles is
denoted byr 12, whereas the distances to the third particle arer 1
and r 2 .
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In the case of a sufficiently small parameterk[m/mY the
neglected mass polarization term can be accounted for by
perturbation theory. Then the energyE for the three-body
problem assumes the form

E5
m

mX
Fe01 m

mY
e11S m

mY
D 2e21••• G , ~14!

with e15^C0u(mY /mX)TMPuC0& and thee i for i.1 being
the corresponding higher-order energy coefficients.

The molecular Born-Oppenheimer limit of Eq.~3! is dis-
cussed in Ref.@17#. TheL50 case corresponds to electronic
S states. Adiabatic corrections to the Born-Oppenheimer en-
ergy can also be treated with perturbation theory.

In our FEM we treat the Coulomb three-particle problem
in the unscaled variational form
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Depending on the parametersmX , mY , ZX , andZY the so-
lution of the above variational problem describes the zero-
angular-momentum states of different atomic or molecular
systems, see Table I. Solutions for fixedZX , ZY and mass
ratiomX /mY are identical except for a trivial scale transfor-
mation ~11!, as we can see from the Schro¨dinger equation
~12!.

III. NUMERICAL PROCEDURE AND RESULTS

In order to obtain an initial triangulation we must first
truncate the infinite domain to a sufficiently large but finite
domain. Outside the finite domain the wave function is as-
sumed to be zero. Therefore we introduce a cutoff valuer c
and take advantage of the permutation symmetry inr 1 and
r 2 by considering the domain

V~r c!5$~r 1 ,r 2 ,r 12!u0<r 1<r c ,

0<r 2<r 1 ,r 12r 2<r 12<r 11r 2%. ~16!

V(r c) is given in the positive half plane in (r 1 ,r 2 ,r 12) by a
tetrahedron with vertices at the pointsP05(0,0,0),
P15(r c /2,r c /2,0), P25(r c /2,r c /2,r c), and
P35(r c ,0,r c). In our calculations we use cutoff values be-
tweenr c5120a0 andr c51200a0 ~see Table I!. These values
are sufficiently large not to affect the numerical results pre-
sented here.

Starting with the single tetrahedron describing the domain
V(r c) we split successively~six times! only the tetrahedron
containingP0 . The refinement of each tetrahedron results in
eight smaller tetrahedra~see Ref.@8#!. In this way a grading
in the grid is produced that locates smaller tetrahedra near
the pointP0 . Local Lagrange polynomials@18# of order p
are defined on each of the tetrahedra. These Lagrange poly-
nomials f i

(p) are continuous onV and form a basis
$f i

(p) ,i51,2, . . . ,M % for the FEM approximation ofC in
the domain:

C'C̃FEM
~p! 5(

i50

M

Cif i
~p! . ~17!

Inserting this ansatz into the variational problem~15!, com-
puting the integrals via a numerical Gaussian integration, and
carrying out a variation with respect to the expansion coef-
ficientsCi leads to a general matrix eigenvalue problem that
can be solved by standard methods.

In general, the resulting FEM approximation will be very
crude. To improve this first FEM approximation we look for
tedrahedra on which the error of the FEM wave function is
larger than the average local approximation error. The local
FEM approximation error can be measured by a local error
estimator based on the energy norm of the difference
C̃i ,FEM

(p) 2C̃i , FEM
(p11) , whereC̃i ,FEM

(p) andC̃i ,FEM
(p11) are the continu-

ous local FEM approximations of orderp andp11, respec-
tively, on thei th tedrahedron. For a detailed description and
discussion of the local error estimator we refer to Ref.@14#.
Only the tetrahedra collected by the local error estimator are
refined. The resulting new grid is used to compute an im-
proved FEM approximation. The grid can be successively
refined level by level until the desired precision is reached
and is only restricted by the available computer power. The
dimensions of the sparse matrices in these calculations are
between 33105 and 43105. The CPU times range from a
few hours up to several days on a Silicon Graphics
PowerChallenge workstation.

First we apply the adaptive FEM to the atomic system
helium 4He and to the hydrogen atomic ion system1H2. In
Table II we list the final FEM results: energy eigenvalues,
expectation values for powers of the interparticle distances,
and the deviations from the virial theorem. These results are
compared with the high-precision results (10216 a.u. in the
energy! of Drake @1#.

For helium, the grid contains 2037 grid points after nine
refinement steps according to the local error estimator; quin-
tic Lagrange polynomials were used. The FEM energy eigen-
value lies 4310212 a.u. above the value of Drake. This is
consistent with the error (,10211 a.u.! we would expect
from the convergence behavior and from the error estimator
implemented. The deviation from the virial theorem given by
DT,V is an indicator of the precision of the expectation values
for ^1/r & and ^1/r 12&. Let us writeDT,V in the form @8#

TABLE I. Cutoff values r c used for the different systems to
truncate the infinite domain to a finite tetrahedron and mass param-
eters~from Ref. @31#! used in the numerical calculations.

System Cutoffr c Mass parameter~in a.u.!

4He 120a0
1H2 600a0 ma 104/1.370 933 54
Mu2 600a0 mp 1836.152 701
Ps2 1200a0 mm 206.768 262
Mu1 600a0 me 1
H2

1 600a0
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DT,V[^T&1
^V&
2

5d^T&1
d^V&
2

5dE2
d^V&
2

5dE1Zd^1/r &2
d^1/r 12&

2
, ~18!

where dE is the error in the energy andd^ & denotes the
deviation from the exact expectation value. Since in our
FEM calculations the error in the energy is minimized, the
value forDT,V is dominated by the errors in the expectation
values for the operators 1/r and 1/r 12. For helium,DT,V is on
the order of 1.5310210 a.u. Indeed, the difference between
the FEM expectation values and Drake’s benchmark results
are on the order of 10210a0

21 . For the other non-Hamiltonian
expectation values we would expect an increase in error. But,
comparing the FEM expectation values with the benchmark
values of Drake, the error in̂r & and^r 12& is still on the order
of 10210a0 , whereas the error in̂r 2& and^r 12

2 & increases to
4310210a0

2 and 8310210a0
2 , respectively.

The final grid for the hydrogen atomic ion contains 2333
grid points after 11 refinement steps. The precision of the
energy eigenvalue for the hydrogen atomic ion reaches the
same level as in the helium case. The main difference is that
DT,V is lowered by one order of magnitude; however, this is

not indicative of a more precise FEM wave function. Since
d^1/r &51.1310210a0

21 andd^1/r 12&51.9310210a0
21 , the

two contributions in~18! nearly cancel forZ51, resulting in
a value forDT,V that is on the order of 1.8310211 a.u. The
precision of the expectation values^1/r & and^1/r 12& is com-
parable to that of the helium results. We note that the non-
Hamiltonian expectation values^r 2& and^r 12

2 & for the hydro-
gen atomic ion are significantly less accurate than the helium
results. One explanation is the difference in the screening
effect for Z51 andZ52. The hydrogen ion wave function
decays asymptotically with a preexponential factor
(11r 1)

21, @19# which is harder to describe by polynomials
than the asymptotic wave function for the helium atom.

Having established the precision of the FEM in the atomic
case, we now address the more difficult problem of applying
the method to systems that are neither atomic nor molecular
in character. Here we study the negative muonium ion
(m1e2e2), the negative positronium ion (e1e2e2), and
the muonic molecular ion (m1m1e2). These exotic systems
have been the subject of many theoretical treatments that
predict them to be~meta!stable. To our knowledge only the
negative muonium ion@20,21# and the positronium negative
ion @22# have been observed experimentally.

Although mY'207mX for the negative muonium ion
Mu2, the mass polarization term is sufficiently large that the

TABLE II. FEM expectation values for atomic three-particle Coulomb problems including the mass
polarization term explicitly in the Hamiltonian. Included are benchmark values of Drake@1#. Drake uses
slightly different mass values, which account for the relativistic mass effect due to the atomic binding energy.
The difference in the reduced mass is 1.1310214 a.u. for helium and 2.7310213 a.u. for the hydrogen atomic
ion, which is at least two orders of magnitude smaller than the accuracy reached here by the FEM calcula-
tions. The energy values listed here are corrected to our mass parameters, whereas Drake’s expectation values
for various operators are computed with his original mass values, see Drake@1#.

Quantity 4He 1H2

Number of gridpoints 2037 2333

E ~a.u.! 22.903 304 557 734 390 20.527 445 881 114 178
EFEM ~a.u.! 22.903 304 557 730 20.527 445 881 110
Estimated error~a.u.! ,10211 ,10211

DT,V ~a.u.! 1.5310210 1.8310211

^1/r & (a0
21) 1.688 076 584 672 0.682 853 384 851

^1/r &FEM (a0
21) 1.688 076 584 77 0.682 853 384 96

^1/r 12& (a0
21) 0.945 697 223 221 0.310 815 007 474

^1/r 12&FEM (a0
21) 0.945 697 223 30 0.310 815 007 66

^r & (a0) 0.929 607 915 011 2.712 095 626 603~1!

^r &FEM (a0) 0.929 607 914 91 2.712 095 621 4

^r 12&(a0) 1.422 247 512 605 4.415 692 603 503~2!

^r 12&FEM (a0) 1.422 247 512 43 4.415 692 593 4

^r 2& (a0
2) 1.193 834 894 419 11.931 747 756 25~5!

^r 2&FEM (a0
2) 1.193 834 894 05 11.931 747 62

^r 12
2 & (a0

2) 2.517 061 842 475 25.237 175 606 7~1!

^r 12
2 &FEM (a0

2) 2.517 061 841 70 25.237 175 34
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system cannot be treated as purely atomic. Variational cal-
culations with Hylleraas-type functions converge more
slowly than in the case of helium. The FEM result for
Mu2 energy is lower than any values found in the literature
~see Table III!. A direct comparison to the energy values of
other groups is complicated by the use of different mass
values. The mass dependence of the energy can be seen by
comparing the high-precision energy values for two different
values formm of Frolov and Yeremin@23#. Using this ‘‘iso-
tope shift’’ for an extrapolation of their energy to our mass
value ~Table I! according to expansion~14! reduces the dif-
ference between their result and the FEM result to less than
10210 a.u. FEM results for the expectation values are also the
most accurate to date. In Table IV we compare them with the
results of Petelenz and Smith@24#, who applied the integral
transform method with a trial wave function containing 150
exponential basis functions.

The negative positronium ion Ps2 is the only three-body
Coulomb system with equal masses that has been observed
experimentally. The challenge to calculate the binding en-
ergy of this system has been the subject of many theoretical
studies, including the variational method@24–26#, the mo-
lecular approach@27#, and the hyperspherical method@28#.
The most accurate result for the energy has been obtained by
Frolov and Bishop@25#, who used 900 basis functions in an
exponential variational expansion in the interparticle dis-
tances. The FEM eigenvalue is identical with their result to
12 significant digits~see Table III!. The FEM results for the
expectation values are the most accurate in the literature and
are compared with the variational results of Petelenz and
Smith @24# in Table IV.

The positive muonium ion Mu1 is the first system we

study withmX.mY ; however, the mass ratio is such that the
adiabatic terms cannot be treated by low-order perturbation
theory as in a truly molecular system. The 600-term expo-
nential variational expansion of Frolov and Bishop@25# has
only a precision of one part in 104. Here the molecular ap-
proach of Mohallem@27# yields a precision of 331026 a.u.
McKenna and Webster@29# used a nonadiabatic wave func-
tion expansion in prolate spheroidal elliptic coordinates and
their result given, unfortunately only up to six digits, agrees
with the FEM result. The FEM energy for Mu1 is by far the
most accurate in the literature; with a slight increase in nu-
merical effort, a precision of one part in 1011 was reached
~see Table III!. The FEM expectation values for Mu1 are the
first to appear in the literature~see Table IV!.

Finally, we apply the FEM to the hydrogen molecular ion.
As the masses of the two identical particles increase the
amount of numerical work to reach a certain precision in-
creases.~This is a direct consequence of the use of interpar-
ticle distances for all systems studied.! The FEM reaches the
~relatively low! precision of 1029 a.u. on a grid with 3612
grid points. Since the nonadiabatic ground-state energy of
this system has been computed by many groups to a high
precision, we include in Table III only the results of
Wolniewicz and Poll@2# and Moss@30#. The FEM expecta-
tion values for H2

1 , like those of the other nonatomic sys-
tems studied, are the most accurate in the literature.

IV. CONCLUSION

The adaptive finite-element method offers an alternate ap-
proach to studying three-body Coulomb systems. In terms of
accuracy, it is competitive over the entire range of masses; in

TABLE III. FEM energy values for the negative muonium ion (m1e2e2), the negative positronium ion (e1e2e2), the muonic
molecular ion (m1m1e2), and hydrogen molecular ion (p1p1e2). We assume the extrapolated exact FEM values to be exact to all figures
given~further digits are put in parentheses!. Included are energy values computed by several other groups. Since often different muon masses
are used, high-precision results for the muonic ion have been corrected with Eq.~14! to the muon mass in Table I. For the energy values
obtained for the muonic molecular ion in the literature the muon mass shift plays no role. The binding energy is computed by the difference
between the FEM energy and the threshold energye th520.5mXmY /(mX1mY) ~in a.u.; conversion factor 1 a.u.5 27.211 396 181 eV!.

m1e2e2 e1e2e2 m1m1e2 p1p1e2

Number of gridpoints 2388 2267 3325 3612

Estimated error~a.u.! ,10211 ,10211 ;10211 ,1029

Energy~a.u.! 0.525 054 806 239 0.262 005 070 231 0.585 126 097 208 0.597 139 062 3
extrapolated exact 0.525 054 806 24~1! 0.262 005 070 23~2! 0.585 126 097 2~16! 0.597 139 06~2 6!

0.525 054 815 7326a 0.262 005 070 232 2a 0.585 126h 0.597 139 063 2i

0.525 054 811 0646b 0.262 005 070 232d 0.585 123g 0.597 139 063 1j

0.525 054 806 163a,b,k 0.262 005 069c 0.584 928 65d

0.525 054 807 4c 0.262 004 89e

0.525 054 803 3c,k 0.262 004 857f

0.262 000 7g

Binding energy~eV! 0.747 261 227 3 0.326 674 722 2 2.381 884 925 2.650 695 370

aFrolov and Yeremin@23# (mm5206.769).
bFrolov and Yeremin@23# (mm5206.768 64).
cPetelenz and Smith@24# (mm5206.768 6).
dFrolov and Bishop@25# (mm5206.768 64).
eHo @26#.
fHaftel and Mandelzweig@28#.

gMohallem @27# (mm5206.7686).
hMcKenna and Webster@29# (mm5206.768 65).
iWolniewicz and Poll@2# (mp51836.1528).
jMoss @32# (mp51836.152 701).
kCorrected tomm5206.768 262.
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some cases, the FEM values for the energy and expectation
values are the most accurate in the literature. The adaptive
FEM also has the advantage of allowing one to solve the
Schrödinger equation in identical coordinates for atomic and
molecular systems, and everything in between, with exactly
the same basis functions. The local polynomials are flexible
enough to provide an accurate approximation to the cusps in
the wave function at the singularities; they are equally effi-
cient in the asymptotic region, where relatively few basis
functions can be used over a large region of coordinate

space. Finally, the ability to optimize the grid with respect to
physical parameters other than the energy suggests that the
FEM will be a valuable tool for future studies in atomic and
molecular physics.
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TABLE IV. FEM expectation values of various operators for the negative muonium ion (m1e2e2), the
negative positronium ion (e1e2e2), the muonic molecular ion (m1m1e2), and hydrogen molecular ion
(p1p1e2). The deviation from the virial theorem is given byDT,V[^T&1^V&/2. We assume the FEM
values to be exact to all figures given~further digits are put in parentheses!. Included are expectation values
obtained by several other groups. For the number of digits given for the expectation values in the literature
the use of different muon masses plays no role. All values are given in atomic units.

Property m1e2e2 e1e2e2 m1m1e2 p1p1e2

Number of
grid points

2388 2267 3325 3612

DV,T ~a.u.! 1.7310211 1.1310211 21.8310210 2.431029

^1/r & (a 0
21) 0.679 654 500~84! 0.339 821 023~12! 0.820 339 75~9! 0.842 492 9~63!

0.679 654 66a 0.339 821 02a 0.842 492i

0.339 831 3e 0.842 494j

0.339 8f 0.842 49c

^1/r 12& (a 0
21) 0.309 199 389~17! 0.155 631 905~76! 0.470 427 32~4! 0.490 707~798!

0.309 199 50a 0.155 631 90a

0.155 654 3e

0.155 6f

^r & (a0) 2.727 182 9~77! 5.489 633 2~38! 1.769 302 45~2! 1.692 966~20!
2.727 182 2a 5.489 633 3a 1.692 97i

5.489 1f 1.692 96j

5.488 352e 1.693 0c

5.506g

^r 12& (a0) 4.439 280 0~81! 8.548 580 6~26! 2.205 215 24~7! 2.063 913~88!
4.439 278 5a 8.548 580 8a 2.205 214b 2.063 913b

8.547 6f 2.063 91j

8.546 111 29e 2.063 92i

8.580g

^r 2& (a0
2) 12.074 193~85! 48.418 936~25! 3.938 458 0~59! 3.558 797~87!

12.074 159a 48.418 936a

48.415 2h

48.393 6f

48.379 317e

48.75g

^r 12
2 & (a0

2) 25.514 53~6 1! 93.178 631~90! 5.036 585 6~10! 4.313 286~038!
25.514 462a 93.178 633a 4.313 277 9d

93.171 4h 4.313 29j

93.128 3f 4.313 31i

93.100 697 0e

93.94g

aPetelenz and Smith@24# (mm5206.768 6).
bMcKenna and Webster@29# (mm5206.768 65).
cBishop and Cheung@35# (mp51836.152 75).
dBishop @36# (mp51836.152 75).
eHaftel and Mandelzweig@28#.

fHo @26#.
gKolos et al. @33#.
hBhatia and Drachman@34#.
iBabb and Shertzer@16# ~PT!.
jBabb and Shertzer@16# ~FEM!.
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