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Cavity modified quantum beats

B. M. Garraway and P. L. Knight
Optics Section, The Blackett Laboratory, Imperial College, Prince Consort Road, London SW7 2BZ, United Kingdom
(Received 3 May 1996

The coupling of an atom to its environment can be strongly dependent on frequency when that atom is
placed in, for example, a cavity. We consider here the exact dynamics of a three-level atom for a resonant form
of the atom-environment coupling of the type found in a cavity. The three-level atom forms a quantuvh-beat
system in the general model that we consider. Without the use of perturbation theory, we derive a set of three
coupled differential equations that describe the system. Results are compared to quantum beats in free space
and an interpretation is provided in terms of the coupling of the three-level systenpseualomodeThe
pseudomode is defined by the differential equations involving its amplitude and possesses the properties of a
finite-Q cavity mode. The signal from a detector is formulated in terms of a resonant coupling between the
detector and the cavity modes. Limits for a broadband and a narrow-band detector are considered.
[S1050-294{@6)05310-3

PACS numbgs): 42.50.Lc, 42.50.Dv, 42.50.Md

I. INTRODUCTION free-space spontaneous-emission linewidth is greater than
the cavity linewidth.

The process of spontaneous emission is well known to be The current interest in this kind of regime is stimulated by
dependent not only on the properties of the excited atomiefforts to make microscopic lasing devices, that is, microcav-
system, but also on the nature of the environment to whiclity lasers, ormicrolasers[4—6]. These devices comprise an
that system is optically coupled. That environment has nog@ctive medium inside a microscopic cavity. Current aims of
been of particular interest while spectroscopic measurementbe technology are to increase the coupling of the active re-
on atomic systems have been performed in free space, b@ton to an extent that there is no longer a threshold for laser
environmental considerations play an important role wherction[5]. This will enable the production of high-efficiency,
the atom is placed in a structure such as a cavity. The infludnd low-power, devices. However, the necessity to obtain an
ence of a cavity on spontaneous emission was noted long agbitPut from the devicg¢7] (that is, the built-in need for a
by Purcell[1] and has been the subject of much stuegd ‘cavity loss”) combined with the trend to high couplings

recently reviewed ifi2]). Very often, for lowQ cavities, the 2" lead us directly into the nonperturbative regime that we
theoretical treatment involves the atom coupling to a modi_consuder in this paper. The experimental observation of Rabi

fied density of states, leading to enhanced, or inhibited, sponQSC'"fat'onS 'n.a semlﬁondugt%r mlcrocar\]n@] (v.vhef.relden— d
taneous emission, which can still be based on a Wigner(-ergy Is reversibly exchanged between the cavity field and a

. ' o Y P quantum two-level systendemonstrates the need for non-
Weisskopf theory of decaj8]. Spontaneous emission inside

" . o Perturbative treatments.
cavities has been largely undesirable within the context of 1ha focus in this paper will be on the nonperturbative

such cavity-atom systems as micromasers and in optical ca¥yyity coupling of a three-leveV system in a microcavity.
ity QED. When highQ cavities have been realized, they ecause both of the transitions of tesystem will be nearly
have allowed a perturbative treatment of spontaneous emigasonant with the cavity there is a possibility for quantum
sion as, essentially, the leaking of a cavity mode. In this caseyeats of the radiated field in the cavity. The atom may be
the strong coupling of the atom to the cavity leads to reversembedded in a dielectric cavity, as considered in Refs.
ible dynamics where the radiated photon can return to th€9,10], or it may be suspended in the cavity by means of a
atom. However, sometimes the photon escapes from the catrapping mechanism. Another possible realization of the sys-
ity and then the environmental coupling is treated perturbatem is that there is no real three-level atom, but the existence
tively. This paper addresses situations where neither kind abf the energy levels is provided by a quantum-well structure
perturbative treatment is possible. in a semiconductor microcavity. Quantum beats from exci-
A nonperturbative treatment of the atom-cavity problemtons have already been observdd] and there has been
becomes desirable when the width of the cavity resonance iheoretical consideration of quantum beats from coupled
comparable to the width of the spontaneous emission of thquantum welld12], though in the absence of cavity effects
atom placed in that cavity. The previous treatments of losspuch as those considered here.
cavity-atom problems cover, as mentioned, the two extreme There have been some theoretical explorations of the non-
scenarios. In the lov® cavity the spontaneous-emission perturbative cavity regime. Frericles$ al. [9] have examined
width is rather smaller than the cavity linewidth and de-a three-level ladder system in which the upper pair of levels
creases as the caviQ is further decrease(n line with the  are coupled to the cavity. Rippin and Knidii0] have made
Purcell formulation. In a highQ cavity, as we shall see, the calculations of the mode structures in distributed Bragg re-
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proach based on a density matrix. Finally, some concluding
remarks are presented in Sec. VI.

II. MATHEMATICAL DESCRIPTION

The three-level system is coupled to a bath of oscillators
that may be the quantized modes of a cavity, microcavity,
waveguide, or free space. For brevity we will refer to a cav-
ity throughout the rest of this paper. The creation and anni-
hilation operators for each oscillator aaé and a,, where
the oscillator, which has frequenay,, is labeled here by the
indexk. This index can be understood as the wave vector of
the mode(which need not satisfy the free-space dispersion
relation w,=cKk), but it also stands for the directional and
polarization labels. Then, within the rotating-wave approxi-
mation and with only dipole interactions, the Hamiltonian for

FIG. 1. Three-level system considered in this paper. The ground€ System can be written as
state 0 is coupled to the upper states 1 and 2 by transitions with

frequenciesw; and w,. The frequency separation of the two upper H= E wkaﬁak‘F w1| 1><1| + w2|2><2|
IeVelS iSw21= Wy~ W1. k

0

+§ g (af|0)(1|+ay1)(0])

flecting cylinders and examined the two-level system dynam-
ics in the nonperturbative regime in such a cylinder. These +> 9P (al]oy(2|+a2)(0)), 1)
papers both go beyond the usual assumptions of Markovian K

behavior, as used in the Wigner-Weisskopf description of

(1) (2) - i
spontaneous decay and other treatments of spontaneoff§€rédi andg,” are the frequency-dependent couplings
emission in microcavitie§13—15. However, there is some of the atomic transitions 2-0 and 1-0 to the mode denoted

conceptually related work on the spontaneous emission df When the atomic system is within the cavity. The sum over
two-level atoms into photonic band gaf5,17. There is modesk is trivially converted to an integral by including the

much interest in the behavior of photons confined in semidensity of statep, and taking account of any polarizations
conductor structuregl8]. (or_ge_zome_trlc factors depending on the orientation of the
The three-level system that we consider here is illustratefi@diating dipolg so that
in Fig. 1. It comprises two upper states 1 and 2 that are
coupled by dipole tran_sitions to the ground state 0. The three 2 _,J doypy. 2
states of the system will be denoted @5, |1), and|2) and, k
relative to the lower level 0, the energy of the states 1 and 2 _ )
will be w; and w, (throughout this paper we will take FOr example, this would mean that in free space, when we
#i=1 so that frequencies are equivalent to enejgigdth  have pyxwi we will find that gi’«dj, for j=1,2, where
these definitions it will be convenient to denote the fre-djo are the atomic dipole matrix elements. This case, which
quency separation of the two upper levelswas= w,— w1, is not the focus of this article, leads to the well-known
which plays a central role in the quantum beats. Indeed, igPontaneous-emission rate that is proportional to the cube of
free spacew,, is the frequency of the beats, which, in this the transition frequency and the square of the dipole mo-
paper, will be seen to be modified by the presence of a caynent. In general, consideration of a frequency-dependent
ity. density of states can lead, for example, to modified Maxwell-
In Sec. Il of this paper we present the formulation of theBloch equationg19] and to changes in the usual resonance
problem starting from a fundamental Hamiltonian. The gov-fluorescenCQZO].
erning differential equations are derived and the pseudomode N & cavity we could expect to have a Lorentzian form for
amplitude is identified. In Sec. Il we describe features of thethe coupling that reflects the phenomenon of resonance and
time evolution of the atomic state amplitudes. This includeghe decay of the field. However, a cavity can also have a
the low-Q behavior and the values of the eigenvalues fordensity of states that varies rapidly with frequen@nd
different limiting cases. In Sec. IV we determine the energyrather more so than in free spac&®ecently, Rippin and
of the cavity field and the signal from a photodetector. TheKnight have made detailed calculations of the spontaneous
photodetector is coupled to the cavity in a way that is similarmission of a two-level atom in a cylindrical cavity contain-
to the coupling of the three-level system to the cavity. Theing distributed Bragg reflectorfslO]. In that case they find
relationship of the detector signal to the pseudomode amplithat the Lorentzian approximation to tkelependence of the
tude and three-level system amplitudes is shown in th@roduct of the square of the couplings and the density of
broadband detector and narrow-band detector limits. In Sestatespy(gl’)? (where j=1,2) is an extremely good ap-
V we explore the connections between the amplitude approximation for practical cases. In this paper we will take
proach used in Secs. Il and Ill and a master-equation apg{’ to be defined by
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Now it is clear that at zero temperatuen excellent approxi-
mation in the optical regimeif the atomic system is initially

in a general statéa superposition of the levels 0, 1, ang 2
we can only have the exchange of energy between one of the
upper levels and the vacuum modks Because the total
number of excitations in this model system cannot change
we write down all the possible states to which the initial state
can be coupled by the interaction. These states are

#1=]1)®|000- - - 000),
>,=12)®|000- - - 000, (7

¥=|0)®|000- - -010- - - 000),

T where the ket00O0- - - 000 indicates the field state where all
0,0 o, the radiation modes are in a vacuum state and the ket
|000- - -010- - -000) indicates a state of the radiation field
where all of the modes are in a vacuum state apart from
mode k, which is in the first excited state. The unexcited
state

FIG. 2. Cavity resonance, Eq3), illustrated as a function of
frequency. The center frequenay, and the transition frequencies
w; and w, are illustrated with vertical lines.

$o=0)®|000- - - 000 (8
Tog?/2m is not coupled to anything else.

(7)y2= . : A
GO (w— wo)2+(I'/2)%’ © Now for the noninteracting part of the Hamiltonian we
will trivially obtain

wherel’(/2 is the frequency width of the resonaneg,is the

center frequency of the resonance, andj=1,2) is a cou- Ho1= w191,

pling constant. The weight of the resonanc«gj’rs Here we

are assuming that these peak couplings are real, but it is very Hoo= w292, 9
easy to generalize the results to the case of complex cou-

plings. We may now also define the detunings of the energy Hoth= oy iy,

levels from the center frequency of the cavity resonance as
while for the interacting part of the Hamiltonian
W10~ W1~ Wy,

— (1)
W= wy— g, (4) H|<//1—; Ok ¥

as well as the mode detuning
5) Hio= 2 0l i, (10

W= WK— Wq - k

These frequencies and the coupling ER).are illustrated in
Fig. 2. Again, we emphasize that the couplif) contains
contributions fromboth the density of states and consider-
ation of the orientation of the atomic dipole with respect to
the electric fields of the modésat the position of the dipole.
For convenience, we may split the Hamiltonian E#).

into two pieces comprising the interacting part and the non-

interacting part so that W (t)=cqipp+Ce(t) ihs+ cz(t)¢2+§k: ey, (11

Higw=0" v+ 90 v,

It is clear from these equations that we have a closed system
of equations for the time evolution. We will now expand a
general state vector of the system as

H=Ho+H,,
o in terms of the state§) and insert this into the Schdimger
equation i(d/dt)¥=HW¥ to obtain the (infinite) set of

Ho=§ wajat o1 1(1]+w,]2)(2), (6)  coupled equations

(gt iic =w1C1+ 2 gic,
H':; gk (a|0)(1]+a,1)(0]) dy 1 T4 Sk e

e
+ 2 g (ail0)(2l +ad2)(0)). I §iCe= 0202+ 2 9idc, (12
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d 9i9; Coexri(Alt’ —Al)]
= 0, C+ +g? (ot :JJ k k
dtCk ot g+ g Gij(t,t") OI“’k(wk—wo)er(FO/Z)2
The coefficientc, is constant in time. It is convenient to =gigjexfd (iwjo—T'o/2t—(iwjo—T/2)t'],
move to an interaction representation by means of the time- 22)

dependent transformations

wherew;o andwj, are defined in Eq(4). The o integration

= _ alwqt
Ci(t)=e®rey(t), in Eq. (22) can be performed as a contour integral closed in

To(t) =e@2ey (1), 13) ':the I((;v(\)/ﬁr-half complexvy plane[given thatt’ <t is found in
Te() =€y (1) At this point, the Lorentzian form of the couplings, EQ.
’ (3), proves very useful because thandt’ parts of Eq.(22)
so that we obtain the coupled equations factorize as a result. Thus, while Eq20) can be expressed

as two coupled second-order differential equations, whatever
.d 1 — the form of G;; , we can use the factorization to obtain three
c—z gl 1A, (14) o] ; . . .
dt 1 ke coupled first-order differential equatiofe form that is more
convenient for numerical evaluatipn

d

dtCZ_Ek glPe —iafrg S, (15 (;thl_gle o5,
d- (1) pidir (2) i A2t
57 Ck= 0K e7xe c,+0,7e'%kcy, (16) ddtcz_(‘],2e oot 23
with the two detunings from the modedefined by
Al= -, '%’6 on"c'ﬁ—gle*i“’lo"51+gze*“"20"62.
Af= o= w;. (17 We have introduced the variablg,
Now we can eliminate the coefficientg by integrating Eqg.
(16) (in time) and substituting the resulting expression for Ti=—ie rot’zf dt'[g e~ (w10~ To2U'E (1)

‘Cy into Egs.(14) and(15). The integration of Eq(16) yields

+gpe 10207 TIAVE (17)], 24

C(t)=—i f dt'[gle K Ty(t') +gPe*d Ty(t)],  (18) % ] =
which plays the role of an amplitude for a single fictional

pseudomodeThe pseudomode is an abstract construction:

the quantity|co|?+|c,|?+|c,|?+|cs]? is not conserved in

T (0)=c,(0)=0, (199 ftime and in fact decays as[olci|?. The initial condition

c:(0)=0 is satisfied by Eq(24). We emphasize that Egs.

which simply means that there are no photons in the externdR3) are exact, and the same equations could be obtained

bath (or cavity). We thus obtain the two coupled integro- from a non-Hermitian Hamiltonian for the three-level system

differential equations coupled to the pseudomode that has a complex frequency
(,00_|F0/2 That iS,

where the initial condition assumed is

d"‘" ! AY:S ’ AY:Y ’
&Cl(t):_Jodt’[Gll(tat )C1(t)+ Gyt t")Co(t") ], H=(wo—iT¢/2)ajas+ w1 1)(1] + w,|2)(2|

d . +91(af|0)(1]+ay|1)(0]) +g2(af|0)(2| +as2)(0|)
SEA0=— [ VTGt Eult) + Gt Bl 9

(20 where the operator&;r anda; are the creation and annihila-
where the functions;;(t,t') are defined by tion operators for the pseudomotlelt is clear that for very
smallT"y the pseudo-modé can be associated with the real
Al cavity mode with frequencw,.
Gij(t,t')= z gl g exeli (Alt' —AiD)] (2D Finally, a note on the form of the coupled differential
equations is in order. We see that by changing our ampli-
for i,j=1,2. In writing down Eq.(20) we have exchanged tudesEj for the originalc; we can also write the coupled
the order of summation oves and integration over time. equations23) in the form
This then allows us to write down the expressi@g@$) that
can be evaluated analytically for a specific expression of the d

\ 1SV : = +
coupling such as given in E¢3). In that case we find gt Cr= @101t GaCr,
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d frequencies and damping rates of these decaying oscillations
'&Cz: w3Cy 1 gsCs, (26) by a determination of the eigenvalues of E29). These are
found to be
i —c.= —i + + . witw + 1 - 2
Idth (wp—iT'o/2)Cs+g1C1+05C, Aoz | 12 2_714')’2i§\/(')’12’)’2+iwlz) 179
Further, if we define the new amplitudég(t) =e'“o'c;(t), 31

which are rotating at the cavity frequency, we obtain the . . . . .
differential equations which is essentially a result given in Ref21,22. The prop-

erties of these eigenvalues and the associated eigenvectors
d show that it is even possible to obtain quantum beats in the
id—61:w1061+ 016, case where a single atomic energy level is initially excited
t [23,22. This is because a single excited state is not an exact
eigenvector of Eq(29). The physical explanation for this is
iiézz wolot UoCs (27)  thatin a careful consideration of a three-level system we find
dt that the total system dipole couples to the vacuum and not
the dipole of any single transition. Clearly this is true, and

. Eé . &6 OGO this is why we can get quantum beats at all. But it also means
Tt 15 Cr701617 9202, that even if only a single upper level is excited, there is a
possibility for oscillations from another transition to become
which are convenient for numerical integration. “mixed in” [23]. We will see later in this paper that to
neglect this possibility is equivalent to making a secular ap-
Ill. FEATURES OF THE TIME EVOLUTION proximation on the master equation for the complete system.

A. Solution for large cavity width .
9 y B. The general eigenvalue problem

If the cavity width 'y becomes very large, we can ap-

proximate Eq/(24) by If we now return to the exact problem E®6) [or Eq.

(27)], we note that the eigenvalues are determined by the
—9i _ _ equation

Cr=—=—[gse7'“19C (1) +g,e™'“20C,(1)]. (29) ) ) .
I )\3+(|w1+|w2+|w0+I‘O/2))\2+(g§+g§—wlwz—a)owl

This allows us to make an adiabatic elimination of the

pseudomode. By substituting E8) into Eq. (26) we can

obtain the approximate equations

+iw T o/2— wowy+iTowyl2)\ +[iw195+1 0,03

—wiwy(iwg+14/2)] =0, (32
giC1= (ot y1/2)c1—(yI2)c,, which in a basis rotating at the cavity center frequency may
be expressed as
d _ . . .
acz=—(iw2+ vol2)co—(y/2)Cq, (29 p3+ (10 wag+ To/2) P+ (95 + 95— w10wp0t i 10l /2
] +Fiwylo/2) s+ (1 01095+ i 0297 — w1020 0/2) =0,
where we have defined the decay rates 33
=4g3/T,
71401 o whereu=\—iwg.
¥,=495/T o, (30 . .
C. Limits for a central cavity frequency
Y=V7172 In this section we will consider the limiting behavior for

some special cases of the three-level system. There are two
These decay rates are, apart from factors, the values of important simplifications. First, we will assume that we have
the couplings and density of states factors, B], at the 3 symmetric arrangement of the system frequencies such that
position of resonance. If we were to decouple one of thehe cavity frequency lies exactly midway between the atomic
energy levels, for example, by settigg=0, we would find  frequenciesw; and w,, i.e., wy = — w1o. We will also as-
the amplitudec, decaying at a ratgy/2. This would mean a sume that the two cavity-atom coupling constants are equal
decay of population at the ratg, which can be interpreted so that we can leg;=g,=g,. Under these special condi-

as a decay rate in free space. However, we note that whefbns the equation for the roots, E@3), reduces to
I’y is finite, v; need not be the free space decay rate because,

when defined as in Eqs(30), the factor g; necessarily p3+ou?l2+ (297 + wip) u+ wil o2=0. (34
changes when the environment changes.

The above equation®9) clearly result in decaying oscil- Of course, this cubic equation cannot be solved in a simple
lations of the amplitudes; . It is straightforward to find the ~form, but by the use of approximate expansions in appropri-
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ate variables we can obtain approximate expressions for the 4gf2
roots u. We will denote these roots by, ., andu_ . —Ty/2+ T
We present here the following approximate results = % (39)

(@ Smalll'y. This corresponds to the case of a very nar-

. T *iwyg—
row cavity resonance, and an expansiod fyields “10 I'y
w32 g wid4 . .
- 1 ST Zf 1 I3 Here the amplitudes of the atomic states decay at
w1t 207 (wip+297)* 292/T =1, J2 and oscillate at- w,o. There is a possibility

(39 of quantum beats in this case. The fact that the decay rate of

m= 2
. g¢/2
2 2 . . .
TiVoiet29f— w2202 +og2 the atomic states increases as the caw@y increases
10 f (Q=wg/I'y) is also reflected in the Purcell formula where,

The eigenvalues show weak damping at a rate depending gith ¥ regarded as a function &, ¥(Q)*Q¥(Q=0).
the cavity width andwy,, and oscillations at a modified fre-  AS_mentioned above, the lardg; limit can be ap-

hed in several ways. We can choose to fix the peak
uency w2+ 2g7. If we let g; become small, such that proac . .
|qwlo| >ygf>f°0 V\?ef obtain a Iir?wfit for large separationsq value of the density of states, E@), while we change the

with a damped mode af'y2 and oscillatory modes at resonance width. In that case we rewrite B3fl) in the form

+wqo. Despite the presence of a rather definite frequency

for the cavity resonance, this limit leads to oscillations at the w3+ TTou?l2+ (Yl of2+ (u%o),u,-i- wfol“o/2=0, (39
usual beat frequency. If instead we let, become small,
such thatg;>|w,d>T,, we obtain a limit for strong cou-
pling of the atomic system to a hig@-cavity mode. In this
case the damping of thg, mode is simplywi,l'o/(4g?)
and remains strongly dependent@ﬁb and the dipole matrix
elements of the atomic transitions. This regime may be real-

with y:4gf2/l“0. Then we will obtain the limit for
I'o>(y,10), Which on using the expression=4g?/T, be-
comes

ized in microcavities with strong-coupling constants. —To/2+ y+ 22T

We note that this limit has been obtained by varylng — yl2+ \/m
and keeping fixedj; . Now in a practical case we would try w= 5 20 2 (40)
to changd’, by changing, for example, the cavity geometry. Y —1 Y2— wig

However, this is likely to change not juB, butgs as well. To| ™ (v12)%— wi,
In this way g; effectively becomes a function df,, and in

that case it is possible, though not inevitable, that the physi- . .
cal behavior in the limits of large and smél} (as achieved In this equation we clearly see that we cannot expect to have

by physically changing the cavitycould differ from the re- _tl)_ﬁais_ intr? broad widtlﬁlov:/-Q)l cavityt gnlessillw10|> 7{ Z'd
sults presented here. An example is presented below. at 1s, (né upper energy Ievels must be well separated.

(b) Small g . This case corresponds to the weak-coupling (d) Small wo. This is the case where the two atomic
limit energy levels are extremely close together. However, as we

see below, the levels are th&oo close for quantum beats at
the atomic energy separation:

_ T et (g2 ,

w= 1 , (36) Iy > r0<1 ro) .
i _ - w b - w
B DV E [ 497 10" 8gf |~ 8g7) "1

m= r T2 (41)
. .. . . _20, _0 —20%2—0O(w?
It is not surprising to see that if we neglect the higher-order 4 \V/ ( 4 ) Ot (w7p).

terms in Eq.(36) above, we simply obtain the free evolution

of the cavity, thexy mode, damped afy/2, and the free

evolution of the atomic transitions at w,, (relative to There can be beats caused by a Rabi splitting when
wg). The limit for |wi>T¢>g; is shared with the g;>To/(412).

|w19>gs>T ¢ limit found above for small’y. This means (e) A nontrivial exact solutionGiven appropriate param-
that for|wyg > (gs,T ) eters, we can always find simple solutions of E8g) for
given values of parameters. One such solution occurs if
g, 9¢=2| w10 =To/(6+/3) (With wyg=— w1g). The determinant
—To/2+ o2 Eq. (34) then factorizes exactly and we have the three coin-
u= 10 5 (37)  cident roots
gtlo

Fiwyd 1+(9t/w10)?]— S0l
1o u=—T/6. 42)

(c) LargeT' limits. The weak-coupling limit, EqS36),
also allows us to approach a broadband cavity limit wherdn this case we can solve the coupled differential equations
I'y>|w19>g; and exactly and we obtain
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T1(t)—c41(0)=T,(t)—c4(0 d _d_

1)~ ea(0)=Cz(t) = €2(0) Ifzaufzz wka&C;-FC.C. (46)

2 ) _ k

- _ 63?; (27+ e*FOtIGJrIrot/(6\53){3[(rot/2)2
0

Then, by substituting Eq18) for ¢, and the conjugate of Eq.
—(3/2)F0t—9]+i(\/5/2)Fot(1"ot/2+ 3, (16) for the derivative ofcy we can show that

t
5 312 If=—f dt'[G1y(t,t")C T (D (L") + Gyt t')T T(HTH(L")
Ce(t)y=—1i ( 5) (Tot/2)(1-Tt/12)e o6, (43 0

+G5y(t,t')C 5 (1)Ce(t)+Goy(t,t')C 5 (t)Cx(t’)]+c.C.,

D. Large-T'; limit for fixed y,#vy, and arbitrary @y, w5 (47)

For future reference we include the approximate eigenvalwhich bears a close resemblance to Eg§). However, this
ues for largd’, with fixed y,# v,. In this case we find from time the integration kernels are given by
Eq. (33) that

[ & Yit v n (y1+¥2)?+2i (y1010% Y2050) Gi’i(t’t,)ZEK gk o wrexili (At — AyD)]
2 2 2T, _
i Wit W Y1+ Vo —(wo—iTe/2)Gjj(t,t"). (48
p=4{ - _
2 4 In the last line of Eq(48) the sum has been converted to an
+1\/ Yi— Y2 . 5 integral, which has again been determined by a contour in-
L 2 2 Tlew] Tnye tegration. If we now use the expressiofi@2) for the

(44  Gjj(t,t') and the exact equatiof24) we obtain the rate of
change of the field energy in the form

The u. eigenvalues are consistent with the values in Eq. .
(31).#“7 ’ a l+=1w0(91C] Ct—g1C1CF +72C3 Cr—G2CoCY )

Iy
+—(g,C¥ci+ g C,CF +0,C5Ci+0,C,CF). (49
V. THE RADIATED FIELD > (91C7 Ct+91C1CF +0oC5 Cr+02C,CF ). (49

The dynamics of the system are determined by E28.  The typical ratio of cavity width to frequency would suggest
[or by Egs.(26)], and these dynamics can exhibit dampedthat thel', term can be ignored. Indeed, in the limit of large
oscillations at up to three different frequencies. To maker, if we were to use the approximatiq@8), the ', term

sense of the results it is necessary to determine a feature @fould vanish from Eq(49). Neglectingl', we may write
the system that can be directly measured. The natural choice

is the fluorescent signal, that is, the time-dependent intensity d

of the light radiated by the atom. To determine this there are |1—2wo IM[(91C1+02C)CF 1=~ woa(|01|2+ |cal?)

two important considerations: first, the quantum mechanics (50)

of the radiation field, and second, complications in determin-

ing the fluorescence arising from the geometry of the cavityyith some help from Eqs(23) and (28). This laboriously

and specific orientation of the detecting system. The firstierived though straightforward result shows that the cavity

consideration is dealt with by choosing the proper observfield picks up energy from population loss of the three-level

able. We will avoid the second problem by choosing a rathesystem, as would be expected. It also shows that, in this

general form for the coupling of the detector to the cavity-limit, the energy feeds into the pseudomode. Note, however,

atom system. that the 1-0 and 2-0 transitions contribute energy at the cav-

ity resonance frequency rather than at the separate transition

frequencies. This seems fair for a higGheavity, but not for

o ) ~alow-Q cavity or in the free-space limit when the separate
As a precursor to determining a radiated fluorescent f'e|dphoton energiess; and w, would be expected to appear.

it is instructive to determine the energy of the radiation fieldTp;g problem results from the neglect of thg term from

Uy as a function of time. One could naively propose that thisgq, (49).

corresponds to the total energy lost by the atom and that the |y tact, neglecting thd™, term in Eq.(50) amounts to a

rate of change ob; could be the total intensity of radiated peglect of the interaction energy of the atom and caféty

light. This quantity will be denoted;. We can formally  hanced by the factdF). The interaction energy is formally

write down the field energy as U,=(H,) with H, given by Eq.(6). By inserting the state

vector (11) we obtain

A. Field energy

UfZEK wklck|2:2k o Cyl? (45
Ui=ci ()X giled®+cs (2 gPe(t) +c.c.
k k
so that the derivative is given by (51
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and if we then make use of the sums in EfR) we finally B. A photodetection signal

obtain The rate of change of field energy is not a suitable quan-

. o tity for the signal from a photodetector. For example, in a
Ui()=c1(91€1 +0263) +C7 (91€1+02C2), (52 phighQ cavity, there can be a reversible exchange of energy
between the atom and the cavity, which means that the quan-
tity 1; can be negative as energy returns to the atomic sys-
tem. The signal from a photodetector, which is weakly

| = _w0£(|01|2+|02|2)+ &Uu- (53) coupled tf) the cavity fi+eld modes, \{vjll be proporti'onal to
dt 2 l4(t)=(E4Eq4), whereE, are the positive and negative fre-
quency components of the electric field operator at the sur-
The rate of change of the field energy can also be cast iface of the detector. The electric field operaEy can be
the form expanded in terms of the mode functiamsand photon an-
nihilation operators as

which is thel'y term in Eq.(49). Thus we actually have

r
li=iwg(Vi+Vo)+ 5 Uy, (54)
Ei=2 Uay, (60)
k
where we introduce the quantiti&§(j =1,2) such that

_ so that if we utilize the expansion of the state vector @4)
Vi=g{(ctci—cjc). (55  we can obtain the expression

2

Now we observe that for the rate of change of the interaction —|v,|? 1)
=|V4|%,

energy la(t)= ; Ci(t)uk

d . . L'y which will also serve as a definition of the detector field
aqr V1 (V=1 e1Va(D) FloxVa(H) = Z Ui, (56) V4. The mode functions depend on spatial position and thus
the detected signal will also be sensitive to the position and
so that we carexactlywrite orientation of the detector system. This is not such a crucial
issue in the case of an atom radiating in free space, but
d ) ) clearly the location of the detecting element is important
l(t)=~— a[“’1|cl(t)| +wolc(O)*+UI(D]. (57)  \yhen'the atom is inside a cavity. For example, if the detector
is near an antinode of dominating modes of a higlcavity
This form shows the contributions ¢, (t)|? and|c,(t)|2 at ~ critical parts of the fluorescence will be absent. We can avoid
the appropriate energies. However, the equation is nothing discussion of specific cavity geometries and detecting ar-
more than a statement of the conservation of energy. WEangements by choosing a general form of the detector cou-
note that at=0 any initial coherence does not contribute to Pling that is similar to Eq.(3), but with modified center
I;, so that the initiall; is determined by the populations frequency and width. An appropriate limit can theni be taken
alone. This is because the initial rate of chang&Jpin Eq. for a broadband detector or for a spectrally resolvmg detec-
(57) is zero. This rate of change is zero becaukeand O We proceed thendby replacing the mode functions by
V11V2 are zero in Eq(56) However, as the System evolves generalized Couplingg(k ) of the detector to the Ca.Vity field.
in time, theU, term introduces coherence initpthrough Eq. ~ Then by using Eq(18) we find that
(57).
. . . t 1
Eq!f(\évg ?ﬁ;\tl consider the low® cavity we can deduce from Vy=—i zk: g(kd)eflwktfodt/[gl((l)elAkt (1)

| w1V1+i wagVs +gPe A, (t)]. 62)
I_)—FOIZ , (58)
We should emphasize that in this equation the sum over
and on utilizing Eqs(53) and (23) we have modesk is now at the site of the detector and so depends on
the density of states at the position of the detector. We pro-
Le(t) ~i V(1) +iwoVa(t) ceed to generalize E¢3) with
= (0171€] + 0217265 (Vy1c1+72C2) pglg@— T840 /(2m) 63
k9k Yk T 2 2
w—wq) +(Ty/2
X (V761 + V7208 (0337261 + 02 7C2), RURCEES

(590  where the widthl4/2 gives a detection width in the specific
cavity-detector arrangement. This should not be confused
where we have used E(28) in the last line. In this limit the  with any free-space frequency response of the detector. In-
cavity frequency plays no role and the rate of change of theleed, if the detector is assumed to be broadbandlfeand
field energy contains interference terms of the kind expectedy will depend on the cavity parameters and relative location
in quantum beats. of the detector alone. By converting the sum over mddis
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Eqg. (62) to an integral and using E@63) together with the tonian type of evolution. We will now assert that the equa-

same argument used in Eq21) and (22), we will find tions (23) [or Egs.(26) and (27)] are exactly equivalent to
the Lindblad master equation
t
Vd: _igde—(iwd+rd/2)tJ dt/[gle—(iwl—iwd—rd/Z)t’El(t/) d
0

; o t t t
giP= "[Hs.pl— - (afasp—2aspas + pasay), (68)
+gze—(iwz—iwd—Fd/Z)t"éz(t/)]. (64)
where the Hermitian system Hamiltonian is
At this stage it is interesting to examine E4) for sev-
eral limiting types of detector arrangement. First, we con- Hs= woaIaf+w1|1><1|+w2|2><2|
sider the broadband detector coupling whEge— . In this

(69)
204
Vy(t)— —i F—d[glcl(t)+92C2(t)], (65 The definition ofp is crucial:
so that on using Eq$28), (61), and(49) Moo CoCT CoC3 CoCf 0 O
ciCy |cq]? cich cicf 0 O
B L (9dlo 2 L 93l ] 1 22 1C¢
la(D)=|Va(D]*— T e (t)|*= Th(t), (66) C,CE €€ |cy|? ccf 0 O
d wol ¢ p= (70
ciCy CcfCi cic; cicf 0 O
in the low-Q cavity limit. Then the detector signal is propor- 0 0 0 0 0 0
tional to the “population” of the pseudomode, which in turn
is proportional to the rate of change of the energy of the 0 0 0 0 00
cavity field.

Second, in the narrow-band detector lifig—0 ensures The basis used is identified by a pair of states, where the first
that the detector becomes very frequency selective. For largdate refers to the excitation of théictional) pseudomode

timet— the detector signal is no more than the square of &which may be zero photons or one photamd the second

2 (10£)[0),]01)11),105)[2),]11)|0), 1)[1),]11)|2)), -

l4()—05 f:dt’emdt’[glclm+gzcz<t'>] . (67

where the subscript is used to distinguish the pseudomode

V. MASTER-EQUATION APPROACHES baSlS The';el’o elements mdo not exist because of the
_ _ _ initial conditions and because the master equation does not
A. An equivalent cavity-atom master equation couple them to nonzero elements. The amplitaglés fixed

The conventional approach to the study of the interactiorfit its initial value and the amplitudes, c,, andc¢ obey the
between a cavity and a multi-level system almost alwaydlifferential equatior(26). We have a new variablH y, the
involves a description in terms of a master equation. Thérobability of finding the atomic system in the ground state
master equation is usually derived using time-dependent pe@nd no photons in the pseudomode. The initial value of
turbation theory and the Markov approximation and is validIloo is clearly|co|® and it satisfies
in the low-Q regime, where the dissipation applies directly to .
atomic operators, and |n.the_h|@1{eg|mt_a, wherg the dissi- Hoo(t):|Co|2+Fof lc(t)]2dt. (72)
pation applies to the cavity field, which in turn is coupled to 0
the atomic system.

In this paper the exact equations require no approxima- The master equatiof68) contains a “sandwich” term
tions from time-dependent perturbation theory or specifia;pa; and the density matrip, Eq. (70), clearly does not
correlation times of a “heat bath.” But the question remainsremain in the form of a pure “state” during the whole of the
as to the relationship between the approach presented hetamne evolution.[The term “state” is placed in quotes, be-
which utilizes an atomic state vector extended to include ®ause the pseudomode, in this paper, is a mathemati-
pseudomode and the conventional master-equation approachl construct derived from Eqs(23).] We recall that
where the description is in terms of a density matrix. Morethe original normalization of the extended system
complex problems involving three-level systems can entai|co|?+ 1|2+ |c,|?+]|cs|? is not conserved in time. How-
the use of the state vector Monte Carlo methods, which solvever, the trace of the density matfix0) is preserved during
a dissipative problem usingtochasticstate vectord24].  the time evolution of the system because of the presence of
However, that method only applies for problems with a masthe sandwich term. In this system the sandwich term feeds
ter equation specified in the Lindblad fofi®5]. In this sec-  the I15,=(0|(0¢|p|0;)|0) element in the master equation,
tion we seek to find the master equation decribing the atomibut has no other effect. If we were to trace out the fictional
system and determine if it has Lindblad form. pseudomode from the master equati68), we would obtain

We have already seen, in E@®5), that the state vector, an equation of motion for the reduced atomic density matrix.
including the pseudomode, obeygron-Hermitian Hamil-  The sandwich term contributes to a diagonal element. This
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means that if we wish to know the equation of motion gov-Of course, the cavity frequenay, no longer plays a direct
erning the probability of being in the ground state, we re-role in the atomic dynamics in this limit. We can, however,
quire determine the excitation of the pseudomode, which is

Tr(D'Dpp)

2:
|Cf| FO

d d (79
ano:a(<o|<0f|ﬁ’|0f>|0>+<O|<1f|P|1f>|0>)
As shown in Eq.(66), this is proportional to the signal of a
) ) broadband detector.
- a|cf| +Toler|%, (73 In the case of conventional quantum beats, where
|w1]>(7y1,72), we are also able to make the secular ap-
proximation. Then the density-matrix coherences and popu-

where the right-hand side has been evaluated from @@s. lations evolve independently and we obtain the familiar mas-
and(68). Now we see that this result corresponds exactly td€r equation

that found from a fundamental approach. In the original
model the ground-state population is the same as the total
population of the fieldsee Eq.(11)] and the original popu-
lation of the ground statéwhich is constant in time Thus

we may write

, 1+ 1 s t
qiPA” —i[Ha,pal— 5D1D1pa= 5paD1D1+D1paDy

1+ 1 + +

~5D2D2pa= 5paD2D2+D2paD2, (80)

C =S choe= e OP+ea0 (74

dt 0 dtg kKT gttt 2 where we have defined separate dipole operators for the 1-0
and 2-0 transitions:

on using Eqs(12), first for the derivative ot, and then for
the sum overk. Then if we use Eqs(23) we can obtain Dlz\/71|0><1|1
exactly Eq.(73).

Dy=1/72/0)(2]. (81)

B. Low-Q atomic master equation _ o )
Making the secular approximation removes the coupling be-

In order to derive the low atomic master equation We yyeen the coherences and populations. It is this coupling that
focus on the reduced atomic density matrix obtained by tracy,ayes it possible to have oscillations even if only one of the

ing over the pseudomode in E(0): two excited states is excitd@3,22.

Moot+|cel® cocT  CoC3

pPa= C1Cp |Cl|2 C1Cy

C2Ch coct  [cyl?

75 VI. CONCLUDING REMARKS

The master equatiof68) has the obvious interpretation
that a three-level atomic system is coupled to a lossy mode:
the pseudomode. Yet the theoretical development in this pa-
per did not require the explicit use of a heatbath or perturba-
tion theory, even if these concepts are implicit in the creation
of a Lorentzian distribution in Eq.3).

The pseudomode did not exist at the outset of this paper:
we merely had a Lorentzian distribution of a density of states

D = y1/0)(1]+ V7,]0)(2] (76)  (and an atom-field couplingHowever, it is clear that by the
o _ ) time we reach the master equati@8) the pseudomode has

(where it is straightforward to generalize to the case Wher%cquired reality; the complexity of a distribution of many
91,9, are complex Then, given that in the lowQ limit,  modes has simplified to a single entity.
Ics|2=|y161+ V2|4 T, Eq.(28), we find, by using Egs.
(29) and (30), the low-Q master equation

It is now useful to define a collective dipole operaidisuch
that
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