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The coupling of an atom to its environment can be strongly dependent on frequency when that atom is
placed in, for example, a cavity. We consider here the exact dynamics of a three-level atom for a resonant form
of the atom-environment coupling of the type found in a cavity. The three-level atom forms a quantum-beatV
system in the general model that we consider. Without the use of perturbation theory, we derive a set of three
coupled differential equations that describe the system. Results are compared to quantum beats in free space
and an interpretation is provided in terms of the coupling of the three-level system to apseudomode. The
pseudomode is defined by the differential equations involving its amplitude and possesses the properties of a
finite-Q cavity mode. The signal from a detector is formulated in terms of a resonant coupling between the
detector and the cavity modes. Limits for a broadband and a narrow-band detector are considered.
@S1050-2947~96!05310-3#

PACS number~s!: 42.50.Lc, 42.50.Dv, 42.50.Md

I. INTRODUCTION

The process of spontaneous emission is well known to be
dependent not only on the properties of the excited atomic
system, but also on the nature of the environment to which
that system is optically coupled. That environment has not
been of particular interest while spectroscopic measurements
on atomic systems have been performed in free space, but
environmental considerations play an important role when
the atom is placed in a structure such as a cavity. The influ-
ence of a cavity on spontaneous emission was noted long ago
by Purcell@1# and has been the subject of much study~and
recently reviewed in@2#!. Very often, for low-Q cavities, the
theoretical treatment involves the atom coupling to a modi-
fied density of states, leading to enhanced, or inhibited, spon-
taneous emission, which can still be based on a Wigner-
Weisskopf theory of decay@3#. Spontaneous emission inside
cavities has been largely undesirable within the context of
such cavity-atom systems as micromasers and in optical cav-
ity QED. When high-Q cavities have been realized, they
have allowed a perturbative treatment of spontaneous emis-
sion as, essentially, the leaking of a cavity mode. In this case,
the strong coupling of the atom to the cavity leads to revers-
ible dynamics where the radiated photon can return to the
atom. However, sometimes the photon escapes from the cav-
ity and then the environmental coupling is treated perturba-
tively. This paper addresses situations where neither kind of
perturbative treatment is possible.

A nonperturbative treatment of the atom-cavity problem
becomes desirable when the width of the cavity resonance is
comparable to the width of the spontaneous emission of the
atom placed in that cavity. The previous treatments of lossy
cavity-atom problems cover, as mentioned, the two extreme
scenarios. In the low-Q cavity the spontaneous-emission
width is rather smaller than the cavity linewidth and de-
creases as the cavityQ is further decreased~in line with the
Purcell formulation!. In a high-Q cavity, as we shall see, the

free-space spontaneous-emission linewidth is greater than
the cavity linewidth.

The current interest in this kind of regime is stimulated by
efforts to make microscopic lasing devices, that is, microcav-
ity lasers, ormicrolasers@4–6#. These devices comprise an
active medium inside a microscopic cavity. Current aims of
the technology are to increase the coupling of the active re-
gion to an extent that there is no longer a threshold for laser
action@5#. This will enable the production of high-efficiency,
and low-power, devices. However, the necessity to obtain an
output from the device@7# ~that is, the built-in need for a
‘‘cavity loss’’ ! combined with the trend to high couplings
can lead us directly into the nonperturbative regime that we
consider in this paper. The experimental observation of Rabi
oscillations in a semiconductor microcavity@8# ~where en-
ergy is reversibly exchanged between the cavity field and a
quantum two-level system! demonstrates the need for non-
perturbative treatments.

The focus in this paper will be on the nonperturbative
cavity coupling of a three-levelV system in a microcavity.
Because both of the transitions of theV system will be nearly
resonant with the cavity there is a possibility for quantum
beats of the radiated field in the cavity. The atom may be
embedded in a dielectric cavity, as considered in Refs.
@9,10#, or it may be suspended in the cavity by means of a
trapping mechanism. Another possible realization of the sys-
tem is that there is no real three-level atom, but the existence
of the energy levels is provided by a quantum-well structure
in a semiconductor microcavity. Quantum beats from exci-
tons have already been observed@11# and there has been
theoretical consideration of quantum beats from coupled
quantum wells@12#, though in the absence of cavity effects
such as those considered here.

There have been some theoretical explorations of the non-
perturbative cavity regime. Frerichset al. @9# have examined
a three-level ladder system in which the upper pair of levels
are coupled to the cavity. Rippin and Knight@10# have made
calculations of the mode structures in distributed Bragg re-
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flecting cylinders and examined the two-level system dynam-
ics in the nonperturbative regime in such a cylinder. These
papers both go beyond the usual assumptions of Markovian
behavior, as used in the Wigner-Weisskopf description of
spontaneous decay and other treatments of spontaneous
emission in microcavities@13–15#. However, there is some
conceptually related work on the spontaneous emission of
two-level atoms into photonic band gaps@16,17#. There is
much interest in the behavior of photons confined in semi-
conductor structures@18#.

The three-level system that we consider here is illustrated
in Fig. 1. It comprises two upper states 1 and 2 that are
coupled by dipole transitions to the ground state 0. The three
states of the system will be denoted asu0&, u1&, andu2& and,
relative to the lower level 0, the energy of the states 1 and 2
will be v1 and v2 ~throughout this paper we will take
\51 so that frequencies are equivalent to energies!. With
these definitions it will be convenient to denote the fre-
quency separation of the two upper levels asv215v22v1,
which plays a central role in the quantum beats. Indeed, in
free space,v21 is the frequency of the beats, which, in this
paper, will be seen to be modified by the presence of a cav-
ity.

In Sec. II of this paper we present the formulation of the
problem starting from a fundamental Hamiltonian. The gov-
erning differential equations are derived and the pseudomode
amplitude is identified. In Sec. III we describe features of the
time evolution of the atomic state amplitudes. This includes
the low-Q behavior and the values of the eigenvalues for
different limiting cases. In Sec. IV we determine the energy
of the cavity field and the signal from a photodetector. The
photodetector is coupled to the cavity in a way that is similar
to the coupling of the three-level system to the cavity. The
relationship of the detector signal to the pseudomode ampli-
tude and three-level system amplitudes is shown in the
broadband detector and narrow-band detector limits. In Sec.
V we explore the connections between the amplitude ap-
proach used in Secs. II and III and a master-equation ap-

proach based on a density matrix. Finally, some concluding
remarks are presented in Sec. VI.

II. MATHEMATICAL DESCRIPTION

The three-level system is coupled to a bath of oscillators
that may be the quantized modes of a cavity, microcavity,
waveguide, or free space. For brevity we will refer to a cav-
ity throughout the rest of this paper. The creation and anni-
hilation operators for each oscillator areak

† and ak , where
the oscillator, which has frequencyvk , is labeled here by the
indexk. This index can be understood as the wave vector of
the mode~which need not satisfy the free-space dispersion
relationvk5ck), but it also stands for the directional and
polarization labels. Then, within the rotating-wave approxi-
mation and with only dipole interactions, the Hamiltonian for
the system can be written as

H5(
k

vkak
†ak1v1u1&^1u1v2u2&^2u

1(
k
gk

~1!~ak
†u0&^1u1aku1&^0u!

1(
k
gk

~2!~ak
†u0&^2u1aku2&^0u!, ~1!

wheregk
(1) and gk

(2) are the frequency-dependent couplings
of the atomic transitions 2-0 and 1-0 to the mode denoted
k when the atomic system is within the cavity. The sum over
modesk is trivially converted to an integral by including the
density of statesrk and taking account of any polarizations
~or geometric factors depending on the orientation of the
radiating dipole! so that

(
k
→E dvkrk . ~2!

For example, this would mean that in free space, when we
have rk}vk

2 we will find that gk
( j )}dj0 for j51,2, where

dj0 are the atomic dipole matrix elements. This case, which
is not the focus of this article, leads to the well-known
spontaneous-emission rate that is proportional to the cube of
the transition frequency and the square of the dipole mo-
ment. In general, consideration of a frequency-dependent
density of states can lead, for example, to modified Maxwell-
Bloch equations@19# and to changes in the usual resonance
fluorescence@20#.

In a cavity we could expect to have a Lorentzian form for
the coupling that reflects the phenomenon of resonance and
the decay of the field. However, a cavity can also have a
density of states that varies rapidly with frequency~and
rather more so than in free space!. Recently, Rippin and
Knight have made detailed calculations of the spontaneous
emission of a two-level atom in a cylindrical cavity contain-
ing distributed Bragg reflectors@10#. In that case they find
that the Lorentzian approximation to thek dependence of the
product of the square of the couplings and the density of
statesrk(gk

( j ))2 ~where j51,2) is an extremely good ap-
proximation for practical cases. In this paper we will take
gk
( j ) to be defined by

FIG. 1. Three-level system considered in this paper. The ground
state 0 is coupled to the upper states 1 and 2 by transitions with
frequenciesv1 andv2. The frequency separation of the two upper
levels isv215v22v1.
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rk~gk
~ j !!25

G0gj
2/2p

~vk2v0!
21~G0/2!2

, ~3!

whereG0/2 is the frequency width of the resonance,v0 is the
center frequency of the resonance, andgj ( j51,2) is a cou-
pling constant. The weight of the resonance isgj

2 . Here we
are assuming that these peak couplings are real, but it is very
easy to generalize the results to the case of complex cou-
plings. We may now also define the detunings of the energy
levels from the center frequency of the cavity resonance as

v105v12v0 ,

v205v22v0 , ~4!

as well as the mode detuning

vk05vk2v0 . ~5!

These frequencies and the coupling Eq.~3! are illustrated in
Fig. 2. Again, we emphasize that the coupling~3! contains
contributions fromboth the density of states and consider-
ation of the orientation of the atomic dipole with respect to
the electric fields of the modesk at the position of the dipole.

For convenience, we may split the Hamiltonian Eq.~1!
into two pieces comprising the interacting part and the non-
interacting part so that

H5H01HI ,

H05(
k

vkak
†ak1v1u1&^1u1v2u2&^2u, ~6!

HI5(
k
gk

~1!~ak
†u0&^1u1aku1&^0u!

1(
k
gk

~2!~ak
†u0&^2u1aku2&^0u!.

Now it is clear that at zero temperature~an excellent approxi-
mation in the optical regime!, if the atomic system is initially
in a general state~a superposition of the levels 0, 1, and 2!,
we can only have the exchange of energy between one of the
upper levels and the vacuum modesk. Because the total
number of excitations in this model system cannot change
we write down all the possible states to which the initial state
can be coupled by the interaction. These states are

c15u1& ^ u000•••000&,

c25u2& ^ u000•••000&, ~7!

ck5u0& ^ u000•••010•••000&,

where the ketu000•••000& indicates the field state where all
the radiation modes are in a vacuum state and the ket
u000•••010•••000& indicates a state of the radiation field
where all of the modes are in a vacuum state apart from
mode k, which is in the first excited state. The unexcited
state

c05u0& ^ u000•••000& ~8!

is not coupled to anything else.
Now for the noninteracting part of the Hamiltonian we

will trivially obtain

H0c15v1c1 ,

H0c25v2c2 , ~9!

H0ck5vkck ,

while for the interacting part of the Hamiltonian

HIc15(
k
gk

~1!ck ,

HIc25(
k
gk

~2!ck , ~10!

HIck5gk
~1!c11gk

~2!c2 .

It is clear from these equations that we have a closed system
of equations for the time evolution. We will now expand a
general state vector of the system as

C~ t !5c0c01c1~ t !c11c2~ t !c21(
k
ck~ t !ck ~11!

in terms of the states~7! and insert this into the Schro¨dinger
equation i (d/dt)C5HC to obtain the ~infinite! set of
coupled equations

i
d

dt
c15v1c11(

k
gk

~1!ck ,

i
d

dt
c25v2c21(

k
gk

~2!ck , ~12!

FIG. 2. Cavity resonance, Eq.~3!, illustrated as a function of
frequency. The center frequencyv0 and the transition frequencies
v1 andv2 are illustrated with vertical lines.
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i
d

dt
ck5vkck1gk

~1!c11gk
~2!c2 .

The coefficientc0 is constant in time. It is convenient to
move to an interaction representation by means of the time-
dependent transformations

c̃1~ t !5eiv1tc1~ t !,

c̃2~ t !5eiv2tc2~ t !, ~13!

c̃k~ t !5eivktck~ t !,

so that we obtain the coupled equations

i
d

dt
c̃15(

k
gk

~1!e2 iDk
1tc̃k , ~14!

i
d

dt
c̃25(

k
gk

~2!e2 iDk
2tc̃k , ~15!

i
d

dt
c̃k5gk

~1!eiDk
1tc̃11gk

~2!eiDk
2tc̃2 , ~16!

with the two detunings from the modek defined by

Dk
15vk2v1 ,

Dk
25vk2v2 . ~17!

Now we can eliminate the coefficientsc̃k by integrating Eq.
~16! ~in time! and substituting the resulting expression for
c̃k into Eqs.~14! and~15!. The integration of Eq.~16! yields

c̃k~ t !52 i E
0

t

dt8@gk
~1!eiDk

1t8c̃1~ t8!1gk
~2!eiDk

2t8c̃2~ t8!#, ~18!

where the initial condition assumed is

c̃k~0!5ck~0!50, ~19!

which simply means that there are no photons in the external
bath ~or cavity!. We thus obtain the two coupled integro-
differential equations

d

dt
c̃1~ t !52E

0

t

dt8@G11~ t,t8!c̃1~ t8!1G12~ t,t8!c̃2~ t8!#,

d

dt
c̃2~ t !52E

0

t

dt8@G21~ t,t8!c̃1~ t8!1G22~ t,t8!c̃2~ t8!#,

~20!

where the functionsGi j (t,t8) are defined by

Gi j ~ t,t8!5(
k
gk

~ i !gk
~ j !exp@ i ~Dk

j t82Dk
i t !# ~21!

for i , j51,2. In writing down Eq.~20! we have exchanged
the order of summation overk and integration over time.
This then allows us to write down the expressions~21! that
can be evaluated analytically for a specific expression of the
coupling such as given in Eq.~3!. In that case we find

Gi j ~ t,t8!5
gigj
2p E dvk

G0exp@ i ~Dk
j t82Dk

i t !#

~vk2v0!
21~G0/2!2

5gigjexp@~ iv i02G0/2!t2~ iv j02G0/2!t8#,

~22!

wherev i0 andv j0 are defined in Eq.~4!. Thev integration
in Eq. ~22! can be performed as a contour integral closed in
the lower-half complexv plane@given thatt8<t is found in
Eq. ~20!#.

At this point, the Lorentzian form of the couplings, Eq.
~3!, proves very useful because thet andt8 parts of Eq.~22!
factorize as a result. Thus, while Eqs.~20! can be expressed
as two coupled second-order differential equations, whatever
the form ofGi j , we can use the factorization to obtain three
coupled first-order differential equations~a form that is more
convenient for numerical evaluation!

i
d

dt
c̃15g1e

iv10tc̃ f ,

i
d

dt
c̃25g2e

iv20tc̃ f , ~23!

i
d

dt
c̃f52 i

G0

2
c̃f1g1e

2 iv10tc̃11g2e
2 iv20tc̃2 .

We have introduced the variablec̃f ,

c̃ f52 ie2G0t/2E
0

t

dt8@g1e
2~ iv102G0/2!t8c̃1~ t8!

1g2e
2~ iv202G0/2!t8c̃2~ t8!#, ~24!

which plays the role of an amplitude for a single fictional
pseudomode. The pseudomode is an abstract construction:
the quantity uc0u21uc1u21uc2u21ucf u2 is not conserved in
time and in fact decays as2G0ucf u2. The initial condition
c̃f(0)50 is satisfied by Eq.~24!. We emphasize that Eqs.
~23! are exact, and the same equations could be obtained
from a non-Hermitian Hamiltonian for the three-level system
coupled to the pseudomode that has a complex frequency
v02 iG0/2. That is,

H[~v02 iG0/2!af
†af1v1u1&^1u1v2u2&^2u

1g1~af
†u0&^1u1af u1&^0u!1g2~af

†u0&^2u1af u2&^0u!

~25!

where the operatorsaf
† andaf are the creation and annihila-

tion operators for the pseudomodef . It is clear that for very
smallG0 the pseudo-modef can be associated with the real
cavity mode with frequencyv0.

Finally, a note on the form of the coupled differential
equations is in order. We see that by changing our ampli-
tudes c̃ j for the originalcj we can also write the coupled
equations~23! in the form

i
d

dt
c15v1c11g1cf ,
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i
d

dt
c25v2c21g2cf , ~26!

i
d

dt
cf5~v02 iG0/2!cf1g1c11g2c2 .

Further, if we define the new amplitudesc5 j (t)5eiv0tcj (t),
which are rotating at the cavity frequency, we obtain the
differential equations

i
d

dt
c5 15v10c5 11g1c5 f ,

i
d

dt
c5 25v20c5 21g2c5 f , ~27!

i
d

dt
c5 f52 i

G0

2
c5 f1g1c5 11g2c5 2 ,

which are convenient for numerical integration.

III. FEATURES OF THE TIME EVOLUTION

A. Solution for large cavity width

If the cavity width G0 becomes very large, we can ap-
proximate Eq.~24! by

c̃f5
22i

G0
@g1e

2 iv10tc̃1~ t !1g2e
2 iv20tc̃2~ t !#. ~28!

This allows us to make an adiabatic elimination of the
pseudomode. By substituting Eq.~28! into Eq. ~26! we can
obtain the approximate equations

d

dt
c152~ iv11g1/2!c12~ ḡ/2!c2 ,

d

dt
c252~ iv21g2/2!c22~ ḡ/2!c1 , ~29!

where we have defined the decay rates

g154g1
2/G0 ,

g254g2
2/G0 , ~30!

ḡ5Ag1g2.

These decay rates are, apart from 2p factors, the values of
the couplings and density of states factors, Eq.~3!, at the
position of resonance. If we were to decouple one of the
energy levels, for example, by settingg250, we would find
the amplitudec1 decaying at a rateg1/2. This would mean a
decay of population at the rateg1, which can be interpreted
as a decay rate in free space. However, we note that when
G0 is finite,g j need not be the free space decay rate because,
when defined as in Eqs.~30!, the factor gj necessarily
changes when the environment changes.

The above equations~29! clearly result in decaying oscil-
lations of the amplitudescj . It is straightforward to find the

frequencies and damping rates of these decaying oscillations
by a determination of the eigenvalues of Eq.~29!. These are
found to be

l652 i
v11v2

2
2

g11g2

4
6
1

2
AS g12g2

2
1 iv12D 21g1g2

~31!

which is essentially a result given in Refs.@21,22#. The prop-
erties of these eigenvalues and the associated eigenvectors
show that it is even possible to obtain quantum beats in the
case where a single atomic energy level is initially excited
@23,22#. This is because a single excited state is not an exact
eigenvector of Eq.~29!. The physical explanation for this is
that in a careful consideration of a three-level system we find
that the total system dipole couples to the vacuum and not
the dipole of any single transition. Clearly this is true, and
this is why we can get quantum beats at all. But it also means
that even if only a single upper level is excited, there is a
possibility for oscillations from another transition to become
‘‘mixed in’’ @23#. We will see later in this paper that to
neglect this possibility is equivalent to making a secular ap-
proximation on the master equation for the complete system.

B. The general eigenvalue problem

If we now return to the exact problem Eq.~26! @or Eq.
~27!#, we note that the eigenvalues are determined by the
equation

l31~ iv11 iv21 iv01G0/2!l21~g1
21g2

22v1v22v0v1

1 iv1G0/22v0v21 iG0v2/2)l1@ iv1g2
21 iv2g1

2

2v1v2~ iv01G0/2!]50, ~32!

which in a basis rotating at the cavity center frequency may
be expressed as

m31~ iv101 iv201G0/2!m21~g1
21g2

22v10v201 iv10G0/2

1 iv20G0/2!m1~ iv10g2
21 iv20g1

22v10v20G0/2!50,

~33!

wherem5l2 iv0.

C. Limits for a central cavity frequency

In this section we will consider the limiting behavior for
some special cases of the three-level system. There are two
important simplifications. First, we will assume that we have
a symmetric arrangement of the system frequencies such that
the cavity frequency lies exactly midway between the atomic
frequenciesv1 andv2, i.e., v2052v10. We will also as-
sume that the two cavity-atom coupling constants are equal
so that we can letgf5g15g2. Under these special condi-
tions the equation for the roots, Eq.~33!, reduces to

m31G0m
2/21~2gf

21v10
2 !m1v10

2 G0/250. ~34!

Of course, this cubic equation cannot be solved in a simple
form, but by the use of approximate expansions in appropri-
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ate variables we can obtain approximate expressions for the
rootsm. We will denote these roots bym0 ,m1 , andm2 .

We present here the following approximate results
~a! SmallG0. This corresponds to the case of a very nar-

row cavity resonance, and an expansion inG0 yields

m5H 2
v10
2 /2

v10
2 12gf

2G02
gf
2v10

4 /4

~v10
2 12gf

2!4
G0
3

6 iAv10
2 12gf

22
gf
2/2

v10
2 12gf

2G0 .

~35!

The eigenvalues show weak damping at a rate depending on
the cavity width andv10, and oscillations at a modified fre-
quencyAv10

2 12gf
2. If we let gf become small, such that

uv10u@gf@G0, we obtain a limit for large separationsv10
with a damped mode atG0/2 and oscillatory modes at
6v10. Despite the presence of a rather definite frequency
for the cavity resonance, this limit leads to oscillations at the
usual beat frequency. If instead we letv10 become small,
such thatgf@uv10u@G0, we obtain a limit for strong cou-
pling of the atomic system to a high-Q cavity mode. In this
case the damping of them0 mode is simplyv10

2 G0 /(4gf
2)

and remains strongly dependent onv10
2 and the dipole matrix

elements of the atomic transitions. This regime may be real-
ized in microcavities with strong-coupling constants.

We note that this limit has been obtained by varyingG0
and keeping fixedgf . Now in a practical case we would try
to changeG0 by changing, for example, the cavity geometry.
However, this is likely to change not justG0, butgf as well.
In this waygf effectively becomes a function ofG0, and in
that case it is possible, though not inevitable, that the physi-
cal behavior in the limits of large and smallG0 ~as achieved
by physically changing the cavity! could differ from the re-
sults presented here. An example is presented below.

~b! Small gf . This case corresponds to the weak-coupling
limit

m5H 2G0/21
G0

v10
2 1~G0/2!2

gf
2

6 iv102
1

G0/26 iv10
gf
2 .

~36!

It is not surprising to see that if we neglect the higher-order
terms in Eq.~36! above, we simply obtain the free evolution
of the cavity, them0 mode, damped atG0/2, and the free
evolution of the atomic transitions at6v10 ~relative to
v0). The limit for uv10u@G0@gf is shared with the
uv10u@gf@G0 limit found above for smallG0. This means
that for uv10u@(gf ,G0)

m5H 2G0/21
gf
2G0

v10
2

6 iv10@11~gf /v10!
2#2

gf
2G0

2v10
2 .

~37!

~c! Large-G0 limits. The weak-coupling limit, Eqs.~36!,
also allows us to approach a broadband cavity limit where
G0@uv10u@gf and

m5H 2G0/21
4gf

2

G0

6 iv102
2gf

2

G0
.

~38!

Here the amplitudes of the atomic states decay at
2gf

2/G0[g1,2/2 and oscillate at6v10. There is a possibility
of quantum beats in this case. The fact that the decay rate of
the atomic states increases as the cavityQ increases
(Q5v0 /G0) is also reflected in the Purcell formula where,
with g regarded as a function ofQ, g(Q)}Qg(Q50).

As mentioned above, the large-G0 limit can be ap-
proached in several ways. We can choose to fix the peak
value of the density of states, Eq.~3!, while we change the
resonance width. In that case we rewrite Eq.~34! in the form

m31G0m
2/21~gG0/21v10

2 !m1v10
2 G0/250, ~39!

with g54gf
2/G0. Then we will obtain the limit for

G0@(g,v10), which on using the expressiong54gf
2/G0 be-

comes

m55
2G0/21g12g2/G0

2g/26A~g/2!22v10
2

2
g2

G0
F17

1

g

g2/22v10
2

A~g/2!22v10
2 G ~40!

In this equation we clearly see that we cannot expect to have
beats in a broad width~low-Q) cavity unlessuv10u.g/2.
That is, the upper energy levels must be well separated.

~d! Small v10. This is the case where the two atomic
energy levels are extremely close together. However, as we
see below, the levels are thentoo close for quantum beats at
the atomic energy separation:

m5H 2
G0

4gf
2v10

2 1
G0

8gf
4 S 12

G0
2

8gf
2Dv10

4

2
G0

4
6AS G0

4 D 222gf
22O~v10

2 !.

~41!

There can be beats caused by a Rabi splitting when
gf@G0 /(4A2).

~e! A nontrivial exact solution. Given appropriate param-
eters, we can always find simple solutions of Eq.~34! for
given values of parameters. One such solution occurs if
gf52uv10u5G0 /(6A3) ~with v2052v10). The determinant
Eq. ~34! then factorizes exactly and we have the three coin-
cident roots

m52G0/6. ~42!

In this case we can solve the coupled differential equations
exactly and we obtain
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c̃1~ t !2c1~0!5 c̃2~ t !2c1~0!

52
2gf
63/2G0

„271e2G0t/61 iG0t/~6A3!$3@~G0t/2!2

2~3/2!G0t29#1 i ~A3/2!G0t~G0t/213!%…,

c̃ f~ t !52 i S 23D
3/2

~G0t/2!~12G0t/12!e
2G0t/6. ~43!

D. Large-G0 limit for fixed g1Þg2 and arbitrary v10,v20

For future reference we include the approximate eigenval-
ues for largeG0 with fixedg1Þg2. In this case we find from
Eq. ~33! that

m55
2

G0

2
1

g11g2

2
1

~g11g2!
212i ~g1v101g2v20!

2G0

2 i
v101v20

2
2

g11g2

4

6
1

2
AS g12g2

2
1 iv12D 21g1g2.

~44!

The m6 eigenvalues are consistent with the values in Eq.
~31!.

IV. THE RADIATED FIELD

The dynamics of the system are determined by Eqs.~23!
@or by Eqs.~26!#, and these dynamics can exhibit damped
oscillations at up to three different frequencies. To make
sense of the results it is necessary to determine a feature of
the system that can be directly measured. The natural choice
is the fluorescent signal, that is, the time-dependent intensity
of the light radiated by the atom. To determine this there are
two important considerations: first, the quantum mechanics
of the radiation field, and second, complications in determin-
ing the fluorescence arising from the geometry of the cavity
and specific orientation of the detecting system. The first
consideration is dealt with by choosing the proper observ-
able. We will avoid the second problem by choosing a rather
general form for the coupling of the detector to the cavity-
atom system.

A. Field energy

As a precursor to determining a radiated fluorescent field,
it is instructive to determine the energy of the radiation field
Uf as a function of time. One could naively propose that this
corresponds to the total energy lost by the atom and that the
rate of change ofUf could be the total intensity of radiated
light. This quantity will be denotedI f . We can formally
write down the field energy as

Uf5(
k

vkucku25(
k

vkuc̃ku2 ~45!

so that the derivative is given by

I f5
d

dt
U f5(

k
vkc̃k

d

dt
c̃ k*1c.c. ~46!

Then, by substituting Eq.~18! for ck and the conjugate of Eq.
~16! for the derivative ofck* we can show that

I f52E
0

t

dt8@G118 ~ t,t8!c̃ 1* ~ t !c̃1~ t8!1G128 ~ t,t8!c̃ 1* ~ t !c̃2~ t8!

1G218 ~ t,t8!c̃ 2* ~ t !c̃1~ t8!1G228 ~ t,t8!c̃ 2* ~ t !c̃2~ t8!#1c.c.,

~47!

which bears a close resemblance to Eqs.~20!. However, this
time the integration kernels are given by

Gi j8 ~ t,t8!5(
k
gk

~ i !gk
~ j !vkexp@ i ~Dk

j t82Dk
i t !#

→~v02 iG0/2!Gi j ~ t,t8!. ~48!

In the last line of Eq.~48! the sum has been converted to an
integral, which has again been determined by a contour in-
tegration. If we now use the expressions~22! for the
Gi j (t,t8) and the exact equation~24! we obtain the rate of
change of the field energy in the form

I f5 iv0~g1c1* cf2g1c1cf*1g2c2* cf2g2c2cf* !

1
G0

2
~g1c1* cf1g1c1cf*1g2c2* cf1g2c2cf* !. ~49!

The typical ratio of cavity width to frequency would suggest
that theG0 term can be ignored. Indeed, in the limit of large
G0, if we were to use the approximation~28!, the G0 term
would vanish from Eq.~49!. NeglectingG0, we may write

I f→2v0 Im@~g1c11g2c2!cf* #52v0

d

dt
~ uc1u21uc2u2!

~50!

with some help from Eqs.~23! and ~28!. This laboriously
derived though straightforward result shows that the cavity
field picks up energy from population loss of the three-level
system, as would be expected. It also shows that, in this
limit, the energy feeds into the pseudomode. Note, however,
that the 1-0 and 2-0 transitions contribute energy at the cav-
ity resonance frequency rather than at the separate transition
frequencies. This seems fair for a high-Q cavity, but not for
a low-Q cavity or in the free-space limit when the separate
photon energiesv1 and v2 would be expected to appear.
This problem results from the neglect of theG0 term from
Eq. ~49!.

In fact, neglecting theG0 term in Eq.~50! amounts to a
neglect of the interaction energy of the atom and cavity~en-
hanced by the factorG0). The interaction energy is formally
UI5^HI& with HI given by Eq.~6!. By inserting the state
vector ~11! we obtain

UI~ t !5c1* ~ t !(
k
gk

~1!ck~ t !1c2* ~ t !(
k
gk

~2!ck~ t !1c.c.

~51!
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and if we then make use of the sums in Eq.~12! we finally
obtain

UI~ t !5cf~g1c1*1g2c2* !1cf* ~g1c11g2c2!, ~52!

which is theG0 term in Eq.~49!. Thus we actually have

I f52v0

d

dt
~ uc1u21uc2u2!1

G0

2
UI . ~53!

The rate of change of the field energy can also be cast in
the form

I f5 iv0~V11V2!1
G0

2
UI , ~54!

where we introduce the quantitiesVj ( j51,2) such that

Vj5gf
~ j !~cj* cf2cjcf* !. ~55!

Now we observe that for the rate of change of the interaction
energy

d

dt
UI~ t !5 iv10V1~ t !1 iv20V2~ t !2

G0

2
UI~ t !, ~56!

so that we canexactlywrite

I f~ t !52
d

dt
@v1uc1~ t !u21v2uc2~ t !u21UI~ t !#. ~57!

This form shows the contributions ofuc1(t)u2 anduc2(t)u2 at
the appropriate energies. However, the equation is nothing
more than a statement of the conservation of energy. We
note that att50 any initial coherence does not contribute to
I f , so that the initialI f is determined by the populations
alone. This is because the initial rate of change ofUI in Eq.
~57! is zero. This rate of change is zero becauseUI and
V1 ,V2 are zero in Eq.~56!. However, as the system evolves
in time, theUI term introduces coherence intoI f through Eq.
~57!.

If we now consider the low-Q cavity we can deduce from
Eq. ~56! that

UI→
iv10V11 iv20V2

G0/2
, ~58!

and on utilizing Eqs.~53! and ~23! we have

I f~ t !; iv1V1~ t !1 iv2V2~ t !

5~v1Ag1c1*1v2Ag2c2* !~Ag1c11Ag2c2!

3~Ag1c1*1Ag2c2* !~v1Ag1c11v2Ag2c2!,

~59!

where we have used Eq.~28! in the last line. In this limit the
cavity frequency plays no role and the rate of change of the
field energy contains interference terms of the kind expected
in quantum beats.

B. A photodetection signal

The rate of change of field energy is not a suitable quan-
tity for the signal from a photodetector. For example, in a
high-Q cavity, there can be a reversible exchange of energy
between the atom and the cavity, which means that the quan-
tity I f can be negative as energy returns to the atomic sys-
tem. The signal from a photodetector, which is weakly
coupled to the cavity field modes, will be proportional to
I d(t)5^Ed

2Ed
1&, whereEd

6 are the positive and negative fre-
quency components of the electric field operator at the sur-
face of the detector. The electric field operatorEd

1 can be
expanded in terms of the mode functionsuk and photon an-
nihilation operators as

Ed
15(

k
ukak , ~60!

so that if we utilize the expansion of the state vector Eq.~11!
we can obtain the expression

I d~ t !5U(
k
ck~ t !ukU2[uVdu2, ~61!

which will also serve as a definition of the detector field
Vd . The mode functions depend on spatial position and thus
the detected signal will also be sensitive to the position and
orientation of the detector system. This is not such a crucial
issue in the case of an atom radiating in free space, but
clearly the location of the detecting element is important
when the atom is inside a cavity. For example, if the detector
is near an antinode of dominating modes of a high-Q cavity
critical parts of the fluorescence will be absent. We can avoid
a discussion of specific cavity geometries and detecting ar-
rangements by choosing a general form of the detector cou-
pling that is similar to Eq.~3!, but with modified center
frequency and width. An appropriate limit can then be taken
for a broadband detector or for a spectrally resolving detec-
tor. We proceed then by replacing the mode functions by
generalized couplingsgk

(d) of the detector to the cavity field.
Then by using Eq.~18! we find that

Vd52 i(
k
gk

~d!e2 ivktE
0

t

dt8@gk
~1!eiDk

1t8c̃1~ t8!

1gk
~2!eiDk

2t8c̃2~ t8!#. ~62!

We should emphasize that in this equation the sum over
modesk is now at the site of the detector and so depends on
the density of states at the position of the detector. We pro-
ceed to generalize Eq.~3! with

rkgk
~ j !gk

~d!5
Gdgdgj /~2p!

~vk2vd!
21~Gd/2!2

, ~63!

where the widthGd/2 gives a detection width in the specific
cavity-detector arrangement. This should not be confused
with any free-space frequency response of the detector. In-
deed, if the detector is assumed to be broadband thenGd and
vd will depend on the cavity parameters and relative location
of the detector alone. By converting the sum over modesk in
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Eq. ~62! to an integral and using Eq.~63! together with the
same argument used in Eqs.~21! and ~22!, we will find

Vd52 igde
2~ ivd1Gd/2!tE

0

t

dt8@g1e
2~ iv12 ivd2Gd/2!t8c̃1~ t8!

1g2e
2~ iv22 ivd2Gd/2!t8c̃2~ t8!#. ~64!

At this stage it is interesting to examine Eq.~64! for sev-
eral limiting types of detector arrangement. First, we con-
sider the broadband detector coupling whereGd→`. In this
limit we obtain

Vd~ t !→2 i
2gd
Gd

@g1c1~ t !1g2c2~ t !#, ~65!

so that on using Eqs.~28!, ~61!, and~49!

I d~ t !5uVd~ t !u2→S gdG0

Gd
D 2ucf~ t !u25 gd

2G0

v0Gd
2 I f~ t !, ~66!

in the low-Q cavity limit. Then the detector signal is propor-
tional to the ‘‘population’’ of the pseudomode, which in turn
is proportional to the rate of change of the energy of the
cavity field.

Second, in the narrow-band detector limitGd→0 ensures
that the detector becomes very frequency selective. For large
time t→` the detector signal is no more than the square of a
Fourier component of the upper state amplitudes

I d~`!→gd
2U E

0

`

dt8eivdt8@g1c1~ t8!1g2c2~ t8!#U2. ~67!

V. MASTER-EQUATION APPROACHES

A. An equivalent cavity-atom master equation

The conventional approach to the study of the interaction
between a cavity and a multi-level system almost always
involves a description in terms of a master equation. The
master equation is usually derived using time-dependent per-
turbation theory and the Markov approximation and is valid
in the low-Q regime, where the dissipation applies directly to
atomic operators, and in the high-Q regime, where the dissi-
pation applies to the cavity field, which in turn is coupled to
the atomic system.

In this paper the exact equations require no approxima-
tions from time-dependent perturbation theory or specific
correlation times of a ‘‘heat bath.’’ But the question remains
as to the relationship between the approach presented here,
which utilizes an atomic state vector extended to include a
pseudomode and the conventional master-equation approach
where the description is in terms of a density matrix. More
complex problems involving three-level systems can entail
the use of the state vector Monte Carlo methods, which solve
a dissipative problem usingstochasticstate vectors@24#.
However, that method only applies for problems with a mas-
ter equation specified in the Lindblad form@25#. In this sec-
tion we seek to find the master equation decribing the atomic
system and determine if it has Lindblad form.

We have already seen, in Eq.~25!, that the state vector,
including the pseudomode, obeys a~non-Hermitian! Hamil-

tonian type of evolution. We will now assert that the equa-
tions ~23! @or Eqs.~26! and ~27!# are exactly equivalent to
the Lindblad master equation

d

dt
r52 i @Hs ,r#2

G0

2
~af

†afr22afraf
†1raf

†af !, ~68!

where the Hermitian system Hamiltonian is

Hs5v0af
†af1v1u1&^1u1v2u2&^2u

1g1~af
†u0&^1u1af u1&^0u!1g2~af

†u0&^2u1af u2&^0u!.

~69!

The definition ofr is crucial:

r5S P00 c0c1* c0c2* c0cf* 0 0

c1c0* uc1u2 c1c2* c1cf* 0 0

c2c0* c2c1* uc2u2 c2cf* 0 0

cfc0* cfc1* cfc2* cfcf* 0 0

0 0 0 0 0 0

0 0 0 0 0 0

D . ~70!

The basis used is identified by a pair of states, where the first
state refers to the excitation of the~fictional! pseudomode
~which may be zero photons or one photon! and the second
state refers to the atomic state, that is, we use the basis

~ u0 f&u0&,u0 f&u1&,u0 f&u2&,u1 f&u0&,u1 f&u1&,u1 f&u2&),
~71!

where the subscriptf is used to distinguish the pseudomode
basis. The zero elements inr do not exist because of the
initial conditions and because the master equation does not
couple them to nonzero elements. The amplitudec0 is fixed
at its initial value and the amplitudesc1 , c2, andcf obey the
differential equation~26!. We have a new variableP00, the
probability of finding the atomic system in the ground state
and no photons in the pseudomode. The initial value of
P00 is clearly uc0u2 and it satisfies

P00~ t !5uc0u21G0E
0

t

ucf~ t8!u2dt8. ~72!

The master equation~68! contains a ‘‘sandwich’’ term
2afraf

† and the density matrixr, Eq. ~70!, clearly does not
remain in the form of a pure ‘‘state’’ during the whole of the
time evolution.@The term ‘‘state’’ is placed in quotes, be-
cause the pseudomode, in this paper, is a mathemati-
cal construct derived from Eqs.~23!.# We recall that
the original normalization of the extended system
uc0u21uc1u21uc2u21ucf u2 is not conserved in time. How-
ever, the trace of the density matrix~70! is preserved during
the time evolution of the system because of the presence of
the sandwich term. In this system the sandwich term feeds
the P005^0u^0 f uru0 f&u0& element in the master equation,
but has no other effect. If we were to trace out the fictional
pseudomode from the master equation~68!, we would obtain
an equation of motion for the reduced atomic density matrix.
The sandwich term contributes to a diagonal element. This
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means that if we wish to know the equation of motion gov-
erning the probability of being in the ground state, we re-
quire

d

dt
P05

d

dt
~^0u^0 f uru0 f&u0&1^0u^1 f uru1 f&u0&!

5
d

dt
ucf u21G0ucf u2, ~73!

where the right-hand side has been evaluated from Eqs.~70!
and~68!. Now we see that this result corresponds exactly to
that found from a fundamental approach. In the original
model the ground-state population is the same as the total
population of the field@see Eq.~11!# and the original popu-
lation of the ground state~which is constant in time!. Thus
we may write

d

dt
P05

d

dt(k ck* ck52
d

dt
@ uc1~ t !u21uc2~ t !u2# ~74!

on using Eqs.~12!, first for the derivative ofck and then for
the sum overk. Then if we use Eqs.~23! we can obtain
exactly Eq.~73!.

B. Low-Q atomic master equation

In order to derive the low-Q atomic master equation we
focus on the reduced atomic density matrix obtained by trac-
ing over the pseudomode in Eq.~70!:

rA5S P001ucf u2 c0c1* c0c2*

c1c0* uc1u2 c1c2*

c2c0* c2c1* uc2u2
D . ~75!

It is now useful to define a collective dipole operatorD such
that

D5Ag1u0&^1u1Ag2u0&^2u ~76!

~where it is straightforward to generalize to the case where
g1 ,g2 are complex!. Then, given that in the low-Q limit,
ucf u25uAg1c11Ag2c2u2/G0, Eq.~28!, we find, by using Eqs.
~29! and ~30!, the low-Q master equation

d

dt
rA52 i @HA ,rA#2

1

2
D†DrA2

1

2
rAD

†D1DrAD
†,

~77!

where the effective atomic Hamiltonian is simply

HA5v1u1&^1u1v2u2&^2u. ~78!

Of course, the cavity frequencyv0 no longer plays a direct
role in the atomic dynamics in this limit. We can, however,
determine the excitation of the pseudomode, which is

ucf u25
Tr~D†DrA!

G0
. ~79!

As shown in Eq.~66!, this is proportional to the signal of a
broadband detector.

In the case of conventional quantum beats, where
uv12u@(g1 ,g2), we are also able to make the secular ap-
proximation. Then the density-matrix coherences and popu-
lations evolve independently and we obtain the familiar mas-
ter equation

d

dt
rA52 i @HA ,rA#2

1

2
D1
†D1rA2

1

2
rAD1

†D11D1rAD1
†

2
1

2
D2
†D2rA2

1

2
rAD2

†D21D2rAD2
† , ~80!

where we have defined separate dipole operators for the 1-0
and 2-0 transitions:

D15Ag1u0&^1u,

D25Ag2u0&^2u. ~81!

Making the secular approximation removes the coupling be-
tween the coherences and populations. It is this coupling that
makes it possible to have oscillations even if only one of the
two excited states is excited@23,22#.

VI. CONCLUDING REMARKS

The master equation~68! has the obvious interpretation
that a three-level atomic system is coupled to a lossy mode:
the pseudomode. Yet the theoretical development in this pa-
per did not require the explicit use of a heatbath or perturba-
tion theory, even if these concepts are implicit in the creation
of a Lorentzian distribution in Eq.~3!.

The pseudomode did not exist at the outset of this paper:
we merely had a Lorentzian distribution of a density of states
~and an atom-field coupling!. However, it is clear that by the
time we reach the master equation~68! the pseudomode has
acquired reality; the complexity of a distribution of many
modes has simplified to a single entity.
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