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Integral and differential cross sections for the Ps-formation channel fore1–alkali-metal-atom collisions are
calculated, with considerable success, by means of a model optical potential. The atomic targets discussed here
are Li, Na, and K. The potential is obtained without empirical parameters via a global modeling of the
dynamical polarization potential and of the short-range correlation forces, with the use of generalized damping
functions. The absorption part of the potential is obtained by means of a dispersion relation. We present here
a full account of this simple and promising technique.@S1050-2947~96!02707-2#

PACS number~s!: 36.10.Dr, 34.10.1x

I. INTRODUCTION

The interest in positron-atom collisions is rapidly increas-
ing owing to the recent progress in positron-beam technol-
ogy, which gives experimental research a new tool for inves-
tigating the properties of atomic, molecular, and solid-state
matter. It is now possible to make comparisons betweene1

ande2 collision data and learn about the relative importance
of the interaction terms by comparing similar dynamical at-
tributes in the two processes. Together with the change of
sign for the static interaction, the main difference between
these two kinds of probe is that the positron is distinguish-
able from the target electrons. As there are no symmetry
requirements for the total wave function, the nonlocal ex-
change part of the potential can be dropped, with a conse-
quent simplification of the whole quantum-mechanical prob-
lem.

Among the various inelastic atomic collisions, the forma-
tion of a bounde1e2 state plays indeed a special role, and,
additionally, the relative cross section is often found to be
dominant in the low-energy region with respect to the other
channels, including the elastic one.

Positronium-formation cross sections for alkali-metal va-
pors ~Na,K! have been recently measured by Zhouet al. @1#
and have been found to be two orders of magnitude larger
than the analogous cross-section measurements for room-
temperature gases@2–4# and atomic hydrogen@5#. This spe-
cific feature, together with the fact that it is only for
e1–alkali-metal-atom collisions that the reaction

e11A→A11Ps ~1!

is exothermic~the ionization potentials are in fact lower than
the Ps ground-state binding energy!, renders the positron in-
teraction with this class of atoms a very interesting subject
for investigation.

There are several theoretical results for Ps formation in
e1-Li scattering @6–10#, while the literature is still rather

poor as regards sodium and potassium targets. We give be-
low an extensive list of the most recente1-Na,K theoretical
studies and further report the corresponding approximations:
Abdel-Raouf@11,12# carried out a two-state close-coupling
~CC! computation, Mandal and Guha@13# used the first Born
approximation, Nahar and Wadehera@15# and Guha and
Mandal @14# employed the distorted-wave approach, while
Hewitt, Noble, and Bransden@16# carried out full coupled-
channels computations, further extended by McAlinden,
Kernoghan, and Walters@10,17#. These calculations gave
only the integral Ps(1s)-formation cross sections, except for
the CC calculations of Refs.@10,16,17# where are reported
the cross sections for Ps formation in the lower excited
states. It is also worth noting here that there is a marked lack
of systematic studies of differential cross sections for any of
the processes involved in Ps formation.

In this work we aim to extend to this class of atoms a
technique which has been successfully used@18# when inves-
tigating the hydrogen and helium positron scattering param-
eters. This method is based on the projection operator for-
malism, by which—defining an effective Hamiltonian—we
project the solutions of the Schro¨dinger equation onto an
arbitrarily chosen basis set~in this case, the asymptotic in-
coming and outgoing channels!. This feature radically sim-
plifies the solution of the scattering equations as one can
concentrate on finding a good model for the optical potential
rather than on making approximations to both the interaction
potential and the total wave function. With this purpose, we
develop below a model for the nonadiabatic, energy-
dependent polarization potential. We also describe the short-
range correlation forces by means of a set parameter-free
damping functions which correct the short-range diverging
terms in the Rayleigh-Schro¨dinger expansion series. Finally,
we obtain the imaginary part of the optical potential by using
an integral relation which connects it to the real part ofVopt.

The search for simpler methods is certainly an attractive
challenge for a theoretical study, as models always give
some additional physical insight within their formulation.
We will show below how the present method turns out to be
more efficient than the lengthy procedures involved in the
CC calculations, while, however, still giving comparably
good results, a feature which renders it suitable for applica-
tions to a wide range of collision problems.
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II. OPTICAL POTENTIAL AND DISPERSION RELATIONS

The projection operator formalism has been successfully
used in nuclear and atomic physics research during the last
three decades, since the time that it was introduced in its
mature form in Feshbach’s seminal paper@19#. We will
briefly review in the following the fundamental aspects of
this theory, showing how it naturally leads to the definition
of a complex optical potential and to a dispersion relation
between its real and imaginary parts. This mathematical fea-
ture undoubtedly plays a central role in the present study and
will be exploited when constructing our final equations.

The usual starting point is to define, given a complete
basis setufi&, the projection operatorsP andQ by the famil-
iar expressions

P5(
iPP

uf i&^f i u, Q5I2P. ~2!

The choice of the basis set can be adjusted to the physical
nature of the studied phenomena. When the interactions are
supposed to be short range, e.g., nuclear interactions, the
most natural choice is to project the solutions of the scatter-
ing problem outside a sphere of a given radius, as in the
outside region the nuclear forces can be neglected. In dealing
with atomic collisions, a convenient choice is to use the in-
coming and outgoing scattering channels, in either the coor-
dinate or the momentum representation@20#, as a suitable
basis set. Applying those operators to the Schro¨dinger equa-
tion, one can then write a completely equivalent projected
equation where the potential in the Hamiltonian is substi-
tuted by an optical potential:

~E2T2Vopt!Puc&50. ~3!

The termT1Vopt is called theeffective Hamiltonian. In the
same notation,Vopt, is shown to be equivalent to

Vopt~E!5PVP1PVQ
1

E2QHQ
QVP. ~4!

If the P space is spanned by the asymptotic states only, the
scattering problem reduces to a two-state one. It follows that
the whole dynamics of the colliding system is embodied in
the effective Hamiltonian, which is strictly connected to the
resolvent of the QHQ operator, as shown in Eq.~4!. To get a
full understanding of the effects that some of the following
approximations have on the scattering parameters, some pre-
liminary considerations on the operators spectrum are re-
quired. An important assumption in Feshbach’s theory,
which has been rigorously demonstrated by Bertero@21# in
the three-body case, is that the eigenvalue distribution of the
QHQ operator is similar to the spectrum of the full Hamil-
tonianH. In other words, we have a point spectrum in the
open interval @0,e!—with isolated eigenvalues of finite
multiplicity—and a continuous spectrum for higher energies.
Since the energy-dependent optical potential can have an
imaginary part only in the interval@e,`!, all the energies at
which theQ-projected channels become open will be larger
than e. The probability flux is in general not conserved
within theP space as it goes into the other channels as they

become energetically accessible. For this reason the optical
potential defined in Eq.~4! is complex and hence non-
Hermitian.

In our present model theQ space gathers all the excited
states of both the target and the outgoing compound, so that
e equals the energy of the lowest inelastic channel. In the
kind of collisions studied in the present work,e is the tran-
sition energy to the first excited level of the atom,E1.

We may regard the optical potential as a function of the
complex variableE, of which in general it will not be an
analytic function. However, by requiring theVopt to be ana-
lytic in the E plane, with a branch cut in@e,`!, a useful
dispersion relation can be obtained. As a first step, we split
Vopt(E) into three terms:

Vopt~E!5VS1VP~E!1 iVA~E!, ~5!

whereVS represents the interaction of the impinging positron
with the unperturbed atom, whileVP(E) and VA(E) are,
respectively, the polarization and absorption model poten-
tials. It can be further shown@22# that the following integral
relation holds:

VP~E!5
1

p
PE

E1

` VA~E8!

E82E
dE8. ~6!

This equation resembles the well known Konig-Kramers re-
lations for a linear response function, although we wish to
point out some specific differences from the latter: the inte-
gration is not extended onto the real axis, but starts fromE1,
and Eq.~6! does not have a symmetric counterpart. Further,
the interaction potential is in general nonlocal. However, the
present colliding particle is distinguishable from the atomic
electrons, so that the difficulties arising from nonlocality are
automatically removed. In the present approach the polariza-
tion potential is considered to be a known function, and
hence Eq.~6! becomes a Fredholm equation of the first kind.
This feature brings about some difficulties as this kind of
integral equation is ill conditioned, and therefore the math-
ematical problem has to be handled carefully. Further,
VA(E) has an arbitrary number of unphysical solutions out-
side the integration domain, so that the optical potential ob-
tained with the help of Eq.~6! cannot be used for projectile
energies lower thanE1.

III. THEORETICAL DEVELOPMENT OF THE MODEL

It is apparent from Eq.~6! that an energy dependency for
the polarization potential is also required and therefore the
atomic polarization potential cannot be derived adiabatically.
In fact, in the adiabatic approximation one describes the
atomic orbitals as instantaneously relaxing in a perturbed
configuration, and of course this is not true if the perturbat-
ing field varies with time, i.e., when a charged particle
moves in the atomic neighborhood. In this case the dynami-
cal polarization potential will be shallower than the adiabatic
potential.

The polarization potentialVP(r ,E) is usually expanded as

VP~r ,E!52
a1

2r 4
2

a2

2r 6
1

1

2r 6
~6b148gE!1O~r27!

~7!
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where the dipole and quadrupole polarizabilities and the first
two nonadiabatic corrections have been included. Consider-
ing the actual values of those coefficients for alkali-metal
atoms, it is straightforward to show that, if the energies in-
volved are larger than a few eV, the energy-independent
nonadiabatic term is negligible with respect to the energy-
dependent term. So, by dropping theb term, the polarizabil-
ity expansion can be written as

VP~r ,E!52
a1

2r 4
2

a2

2r 6
1

1

2r 6
48gE ~8!

and neglecting ther28 terms we have

VP~r ,E!5Vad
P ~r !S 12

48g

a1

E

r 2D , ~9!

whereVad
P (r ) is the full adiabatic polarizability. The last ex-

pression forVP(r ,E) gives a proper account of the charge-
atom interaction only for large values ofr . We now define
the adiabatic correlation-polarization potential asVad

CP(r ),
which is aimed at improving the asymptotic expansion and,
at this point of the discussion, is supposed to reproduce the
correct atomic adiabatic polarizability both in the internal
region of the atom and at large distances. We will describe
below the procedure adopted to model the short-range corre-
lation forces.

We can now factorizeVP:

VP~r ,E!5Vad
CP~r !G~r ,E!, ~10!

whereG(r ,E) is an energy-dependent function which still
has to be defined. There are some intuitively obvious con-
straints that can be used when making a model to describe
this function.

~i! When the perturbing charge is fixed, the energy-
dependent polarization potential equals the adiabatic poten-
tial, soG(r ,E)→1 asE→0.

~ii ! For high projectile velocities, the atom has not the
time to polarize under the influence of that high-frequency
perturbing field, so we haveG(r ,E)→0 asE→`.

~iii ! When the energy is fixed, the field varies more rap-
idly in time as the positron gets closer to the atom, thus
G(r ,E)→0 for r→0.

~iv! On the contrary, if, the energy being fixed, the
charged particle is far enough from the target, the perturba-
tion has only very low frequencies and so the adiabatic ap-
proximation is correct: G(r ,E)51 for r→`.

~v! As a last condition, we require that the product
Vad
CP(r )G(r ,E) reproduces for large values ofr the asymp-

totic polarization potential in its simplified version given by
Eq. ~9!.

In this study a functional form~which is, of course, not
unique! has been chosen forG(r ,E) following the one al-
ready used by Thirumalai, Staszewaska, and Truhlar@22# for
electron-atom scattering problems:

G~r ,E!5
1

11h~E/r 2!
. ~11!

It is straightforward to verify that the previous conditions
~i!–~iv! are satisfied by the above expression. Further, by
making a series expansion~for r@hE! we get

G~r ,E!512
hE

r 2
1••• , ~12!

so, withh548g/a1, the last condition is also satisfied. The
present derivation is somewhat different from the one given
in Ref. @22#, as the latter was developed in the framework of
the average energy approximation, and therefore the two
derivations lead to different values of the coefficienth.

The integral equation~6! has an analytical solution for the
functional form ofVP(r ,E) as given in Eq.~11!; thus we
have for the absorption potential

VA~r ,E!5Vad
CP~r !S E2E1

E1~a1r
2/12g! D

1/2

. ~13!

It should be noted that, as discussed before, the above poten-
tial is not defined forE,E1, so this theory cannot make
predictions fore1-atom impact energies lower than about 2
eV ~for alkali-metal atoms!.

The following step is helpful to estimate the correct be-
havior of the adiabatic polarization potential for short
positron-atom distances. The asymptotic expansion of the
polarizability, which has the form

Vad
P ~r !52(

l51

`
a l

2r 2l12 , ~14!

is divergent at the origin, as each term has a pole atr50. A
natural way to deal with this difficulty is to introduce some
damping function aimed at rendering the behavior of
Vad
P (r ) correct at all distances. In this work we adopt a damp-

ing technique developed in our group@23,24# which has
given remarkably good results in electron- and positron-atom
scattering problems. It starts by noting that the necessary
correlation-polarization potential can be expressed as a series
of products of functions over the whole range of distances:

VCP~r !52 (
2l12

`

f 2l12~r !
a l

2r 2l12 , ~15!

wheref 2l12(r ) are still unknown functions. It can be shown
that the polarization series approximated to the second order
is given by

Vad
P~2!52

1

e K f0UF 1r p (
l51

` S r er pD
l

Pl~cosu!G2Uf0L , ~16!

whereuf0& is the atomic ground state,r e andr p are, respec-
tively, the electron-nucleus and positron-nucleus distances,u
is the angle between thee1 ande2 position vectors, ande is
the average atomic excitation energy. Using the orthogonal-
ity of the Legendre polynomials we have

Vad
P~2!52(

l51

`
Kl

2r p
2l12 E

0

`

r0~r e!r e
2l12dre , ~17!
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whereKl contains all the coefficients and the normalization
constant of the corresponding Legendre polynomial, while
r0(r e) is the electronic density of the atomic ground state. A
direct comparison with Eq.~14! gives the following expres-
sion for the polarizability coefficients:

al5KlE
0

`

r0~r e!r e
2l12dre . ~18!

The fundamental assumption of this model is now that only
the electronic density inside the sphere of radiusr p contrib-
utes to the target polarizability. The coefficientsal are now
dependent on the positron coordinater p , so we have

a l~r p!5KlE
0

r p
r0~r e!r e

2l12dre, ~19!

which can be written as

a l~r p!5 f 2l12~r p!a l , ~20!

and finally we obtain the expression for the damping func-
tions:

f 2l12~r p!5
*0
r pr0~r e!r e

2l12dre

*0
`r0~r e!r e

2l12dre
, ~21!

wherer0(r e) is the electronic density of the atomic ground
state. Observe that these functions correctly go to zero faster
than r c

2l12 and approach unity as the positron distance be-
comes large.

The present approach does not preclude a multielectron
treatment@18#. We adopt, however, a single-electron model
~frozen-core approximation!, which is a natural and widely
accepted simplification when dealing with alkali-metal at-
oms. Additionally, the positron trajectory usually runs over
barely penetrating orbits at these energies. Further, from Eqs.
~10! and ~15! it is apparent that the parameters which deter-
mine the size of theT matrix element are the polarizability
coefficientsal and those coefficients are much larger—for
alkali metals—when referred to the valence electron than the
corresponding values for the core electrons.

An important approximation within this model is the fol-
lowing: the nuclear charge is considered as perfectly
screened by the electronic cloud, so our ‘‘atom’’ is treated as
a pure multipole source. In ignoring the effects of the partial
screening, we have tried to be consistent with our physical
picture of this reaction. The target electron is considered to
go through successive excitations of the polarized orbitals,
which for this class of atoms are considerably spread in
space, and not simply ejected via the interaction with the
impinging positron. We may conclude that the static short-
range part of the potential should not affect strongly the col-
lision dynamics in the energy range considered here and
therefore we do not need to calculate it explicitly.

Figure 1 displays the real and imaginary parts of the op-
tical potential for the Li target at different energies, obtained
with the present modeling. The complicated structure of the
potential at small distances is due to the nodes in the elec-
tronic density, which in turn define the damping functions.

IV. THE SCATTERING EQUATIONS

The transition matrix for a two-state system—in this case
the asymptotic states onto which the Schro¨dinger equation
has been projected—has a very simple expression:

Tf i5^ f uVoptu i &. ~22!

This equation is exact if we know the exact potential, that is,
if we use a complete basis set. In actualab initio calcula-
tions, the spectral series of theQHQ eigenstates is always
truncated, so researchers use the Lippman-Schwinger
equation—of which Eq.~22! can be seen as a zero-order
implementation—in order to obtain a double-basis represen-
tation for theT matrix. The use of this procedure is indeed
more problematic~if not impossible! when dealing with
model potentials, as in this case there is not, in our opinion,
a transparent way to distinguish the ‘‘residual’’ states in the
P space. However, we argue, leaving it as a task for further
investigations, that a suitable basis in theP space could be
the set of the~outgoing! positronium excited-state channels.

Writing Eq. ~22! in a more explicit form, we have there-
fore that

Tf i~k f ,k i !

5E e2 ik f•Rx0~r!Vopt~r p ,ki !e
iki•rpf0~r e!dr pdre ,

~23!

where re and r p are the electron and positron coordinates,
x0~r! and f0(r e) are the positronium and atomic ground
states, respectively, andR51

2~r p1re!, r5ur p2reu.
Imposing the conservation of the total energy of the sys-

tem, and remembering that the scattering problem from a
central potential has a cylindrical symmetry, it is possible to
reduce the number of variables in theT matrix element. We
have thus

FIG. 1. Computed real and imaginary parts of the present optical
potential for positron scattering from lithium atoms. Top: real com-
ponent. Bottom: imaginary component. The various curves refer to
different collision energies while the dashed curve represents the
asymptotic behavior of ImVopt.
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Tf i~k f ,k i !→Tf i~u,E!,

whereE andu are the initial projectile energy and the scat-
tering angle. Finally, we can write the differential cross sec-
tion ~with the reduced masses put asmP51 andmPs52, in
atomic units!

ds

dV
~u,E!5

1

A2p2 SE1EPs2EI

E D 1/2uT~u,E!u2, ~24!

whereEPs is the binding energy of positronium~56.8 eV!
andEI is the ionization energy of the target atom.

V. COMPUTATIONAL DETAILS

The calculation of the Ps-formation differential cross sec-
tions has now been reduced to the evaluation of six-
dimensional integrals, one for each value ofE and u, as
given in Eq.~23!, plus a supplementary integration onu in
order to obtain the integral cross sections. We adopted for
this purpose the standard Gauss-Legendre quadrature
method. It is useful to remember here the input parameters of
the code:

~1! the atomic polarizability coefficients;
~2! the ionization and the first atomic excitation levels;
~3! the ground-state orbitals of the target.
The polarizability series has been truncated at the octu-

pole term and the adopted Hartree-Fock atomic orbitals used
are tabulated in Ref.@25#. It is interesting to observe that,
although the dynamics is dominated by the excited states of
the target~and for this reason the close-coupling calculations
need a large number of atomic and positronic states to con-
verge!, the present approach does not require an explicit
knowledge of such states. The direct integration has the ad-
vantage of producing the differential cross sections automati-
cally, but it is indeed more demanding than an expansion in
partial waves, owing to the high degree of nesting of theDO

loops. The computational time, in fact, grows asNd, where
N is the number of integration points andd is the dimension
of the integral. The number of steps to reach convergence
depends mainly on the oscillatory part of the integrand func-
tion that is on the energy of the plane waves in Eq.~23!. We
report a useful empirical law to estimate this number:N
.RA2mE/\, whereR is the maximum radius of the inte-
gration domains~16–20 atomic units in the present work!
referred to thee1 ande2 coordinates.

All calculations have been performed on a RISC 6000
workstation, with about 30 h of CPU time consumed for each
atomic system. In concluding this section we wish to point
out that the CC methods, the results of which are reported for
comparison against our calculations, are~owing to the large
number of coupled integro-differential equations to solve!
about two orders of magnitude more demanding in compu-
tational time than the present approach.

VI. DISCUSSION OF RESULTS

Some preliminary remarks are the following.
~1! The required analyticity of the polarization potential

on the complexE plane cancels the information on the opti-
cal potential poles. It follows that Feshbach’s resonances are

not considered within this application and the calculated
curves are expected to be smooth.

~2! The imaginary part ofVopt is not defined below the
excitation energyE1, so the calculations start above this
limit at about 2 eV.

~3! In the high-energy region the present method repro-
duces the mathematical form as described in the first Born
approximation. This can be seen by just observing the high-
energy behavior, in Eqs.~11! and~13!, of the real and imagi-
nary parts ofVopt and remembering that the cross sections
are related touTu2.

~4! Experimental data are available for sodium and potas-
sium targets, but they do not discriminate between the Ps
ground-state formation and the electron capture in other ex-
cited states, so that a homogeneous comparison with our
theoretical Ps(1s) cross sections cannot be done.

Figure 2 shows the present computed Ps(1s) integral
cross sections~solid lines! together with two earlier calcula-
tions, namely, the Hewitt-Noble-Bransden CC data@6#
~dashed lines! and the McAlinden-Kernoghan-Walters re-
sults @10# ~dotted lines!. It is interesting to note that the CC
curves are comparable in shape and size with the outcomes
of the present calculations, thereby showing a good conver-
gence of the present model for impact energies larger than 5
eV.

This general trend of the present calculation is indeed
confirmed by the results which we have obtained for more
complicated systems like sodium and potassium. Figure 3,
for instance, presents our calculations for the Ps-formation
cross sections in the ground state of the compound during
e1-Na collisions. They are given by a solid line while the
earlier coupled-channel results are given by a dashed line
~from Ref. @16#! and by a dotted line~from Ref. @10#!.

One clearly sees that, from about 5 up to 20 eV, our
model reproduces remarkably well the CC calculations,
while the latter also agree with each other within the same
range of energies. As the collision energy decreases, how-
ever, we see that the three sets of calculations begin to differ

FIG. 2. Ps-formation channel cross sections as function of col-
lision energy for the lithium target. The state considered is the Ps
ground state. Solid line: present calculations. Dashed line: from
Ref. @6#. Dotted line, from Ref.@10#.
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from each other: the two CC results are markedly different in
magnitude and the present model appears to follow the pre-
dictions of the results from Ref.@10#. It should be kept in
mind, however, that the present use of a model optical po-
tential and the physical assumptions outlined in the previous
sections appear to handle very well the size and energy de-
pendence of the reactive process we are describing here and
afford a tremendous reduction of the required computational
times, especially when compared with the earlier CC calcu-
lations.

If we now move to an even more complicated system, the
potassium target, we see in Fig. 4 that the general behavior
indicated by the previous results is indeed confirmed. From
about 5 eV of collision energy and up to 20 eV our model
calculations follow remarkably closely the energy behavior

of the same cross sections produced in the CC calculations
given by the dashed@16# and the dotted@17# lines. Below
that energy the CC results agree with each other only in part
and differ markedly below 4 eV. As in the previous Na case,
our calculations appear to favor the results from McAlinden,
Kernoghan, and Walters@17#. Considering the good agree-
ment of its outcomes with those from the more complicated
CC computations, it seems possible to say that the present
optical potential is including all the relevant physical ingre-
dients and that both the dispersion relation and the global
damping functions do a very good job in describing the cor-
rect final states of the scattering process.

As a further application of our calculatedT matrix ele-
ments, we see that Eq.~24! allows us to produce easily the
corresponding angular distributions at any of the required
collision energies. Although such quantities are still not
available from experiments, one could envisage a time when
even the angular distributions for partial channels of positron
scattering will become accessible. This is especially true
when the rapid, recent increase of the availability of intense
positron sources is considered@26–28#. Within this context it
therefore will become useful to have available the general
behavior of angular distributions for several systems and at
several collision energies.

Figures 5, 6, and 7 therefore report our calculations for Li,
Na, and K targets and for three of the collision energies in
the range where our model was the most successful in repro-
ducing the CC results. The three systems behave, as ex-
pected, rather differently from each other although all of
them show rather marked forward scattering, especially at
the higher collision energies. Furthermore, the Li and K tar-
gets indicate the presence of very marked oscillations and
large dips in the cross sections as the scattering angle in-
creases, while the Na target exhibits smoother differential
cross sections~DCS’s! and much less marked oscillations. In
sum, however, one sees from our DCS calculations that the
intensity of the scattered Ps is strongest within a rather nar-
row cone in the forward direction and that cone gets nar-
rower with increasing energy of the projectile.

FIG. 3. Same as in Fig. 2 but for the case of the sodium target.
Solid line: present calculations. Dashed line: from Ref.@16#. Dotted
line, from Ref.@10#.

FIG. 4. Same as in Fig. 2 but for the case of the K atom as
target. Solid line: present calculations. Dashed line: from Ref.@16#.
Dotted line, from Ref.@17#.

FIG. 5. Computed angular distributions for the Ps(1s)-
formation channel in the case of Li atoms. The calculations refer to
three different collision energies.~CS denotes cross section.!
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VII. CONCLUSIONS

We have discussed in the previous sections the formula-
tion of a model treatment of the Ps-formation channel in
positron-atom scattering and found that the use of an optical
potential based on this model allows us to obtain the relevant
scattering attributes of the process rather directly and by per-
forming fairly straightforward numerical quadratures. In
comparison with the more conventional, and computationally
more demanding, close-coupled expansion over a large num-
ber of states, the present method turns out to produce rather
good results and to follow closely the CC outcomes even for
very complicated atomic targets.

One could therefore conclude from this analysis, and from
what we have found with the much more popular H and He
targets@18#, that the present model can constitute an easy

and simple starting point for extending the predictive value
of calculations in the search for the most efficient targets for
Ps formation at low collision energies. Furthermore, since
we have also shown that angular distributions could also be
obtained rather directly with the present method, we can ex-
pect that such calculations for a broad variety of atomic tar-
gets would provide indications and suggestions for the new
generation of experiments which are currently in preparation.
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