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Positronium formation in positron —alkali-metal-atom collisions: An optical potential approach
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Integral and differential cross sections for the Ps-formation channelfealkali-metal-atom collisions are
calculated, with considerable success, by means of a model optical potential. The atomic targets discussed here
are Li, Na, and K. The potential is obtained without empirical parameters via a global modeling of the
dynamical polarization potential and of the short-range correlation forces, with the use of generalized damping
functions. The absorption part of the potential is obtained by means of a dispersion relation. We present here
a full account of this simple and promising technigL®1050-294{®6)02707-2

PACS numbe(s): 36.10.Dr, 34.10tx

[. INTRODUCTION poor as regards sodium and potassium targets. We give be-
low an extensive list of the most recesit-Na,K theoretical

The interest in positron-atom collisions is rapidly increas-studies and further report the corresponding approximations:
ing owing to the recent progress in positron-beam technolAbdel-Raouf[11,17 carried out a two-state close-coupling
ogy, which gives experimental research a new tool for inves{CC) computation, Mandal and Guf&3] used the first Born
tigating the properties of atomic, molecular, and solid-stateapproximation, Nahar and Wadehefa5] and Guha and
matter. It is now possible to make comparisons betw&en \andal [14] employed the distorted-wave approach, while
ande" collision data and learn about the relative importanceHewitt, Noble, and Bransdefl6] carried out full coupled-
of the interaction terms by comparing similar dynamical at-channels computations, further extended by McAlinden,
tributes in the two processes. Together with the change dkernoghan, and Walter§10,17. These calculations gave
sign for the static interaction, the main difference betweerpnly the integral Ps(4)-formation cross sections, except for
these two kinds of probe is that the positron is distinguishthe CC calculations of Ref$10,16,17 where are reported
able from the target electrons. As there are no symmetryhe cross sections for Ps formation in the lower excited
requirements for the total wave function, the nonlocal ex-states. It is also worth noting here that there is a marked lack
change part of the potential can be dropped, with a consesf systematic studies of differential cross sections for any of
quent simplification of the whole quantum-mechanical probthe processes involved in Ps formation.
lem. In this work we aim to extend to this class of atoms a

Among the various inelastic atomic collisions, the forma-technique which has been successfully uge] when inves-
tion of a bounde”e™ state plays indeed a special role, and,tigating the hydrogen and helium positron scattering param-
additionally, the relative cross section is often found to beeters. This method is based on the projection operator for-
dominant in the low-energy region with respect to the otheimalism, by which—defining an effective Hamiltonian—we
channels, including the elastic one. project the solutions of the Schiimger equation onto an

Positronium-formation cross sections for alkali-metal va-arbitrarily chosen basis séin this case, the asymptotic in-
pors(Na,K) have been recently measured by Ztewal.[1]  coming and outgoing channglsThis feature radically sim-
and have been found to be two orders of magnitude largefiifies the solution of the scattering equations as one can
than the analogous cross-section measurements for roorBoncentrate on finding a good model for the optical potential
temperature gas¢2—4] and atomic hydrogefb]. This spe-  rather than on making approximations to both the interaction
cific feature, together with the fact that it is only for potential and the total wave function. With this purpose, we

et —alkali-metal-atom collisions that the reaction deve|0p below a model for the nonadiabatic, energy-
. . dependent polarization potential. We also describe the short-
e"+A—A"+Ps (1) range correlation forces by means of a set parameter-free

damping functions which correct the short-range diverging
is exothermidthe ionization potentials are in fact lower than terms in the Rayleigh-Schdinger expansion series. Finally,
the Ps ground-state binding energsenders the positron in- we obtain the imaginary part of the optical potential by using
teraction with this class of atoms a very interesting subjechn integral relation which connects it to the real parvaft.
for investigation. The search for simpler methods is certainly an attractive
There are several theoretical results for Ps formation irchallenge for a theoretical study, as models always give
e"-Li scattering[6—10], while the literature is still rather some additional physical insight within their formulation.
We will show below how the present method turns out to be
more efficient than the lengthy procedures involved in the
*Present address: Dipartimento di Chimica, Piazzale A. Moro, 5CC calculations, while, however, still giving comparably
00185 Roma, Italy. FAX:+39-6-49913305. Electronic address: good results, a feature which renders it suitable for applica-
FAG1@ITCASPUR.CASPUR.IT tions to a wide range of collision problems.
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[l. OPTICAL POTENTIAL AND DISPERSION RELATIONS become energetically accessible. For this reason the optical
The projection operator formalism has been successfullp?fg;;g:ndef'ned in Eq(4) is complex and hence non-

used in nuclear and atomic physics research during the las
three decades, since the time that it was introduced in itgt
mature form in Feshbach’'s seminal pagéd®]. We will

In our present model th@ space gathers all the excited
ates of both the target and the outgoing compound, so that

briefly review in the following the fundamental aspects of & equals the energy of the lowest inelastic channel. In the
y 9 P kind of collisions studied in the present workjs the tran-

this theory, showing how it naturally leads to the definition sition energy to the first excited level of the ato,.

of a complex optlcallpote_nnal and to a_dlspersmn r.elatlon We may regard the optical potential as a function of the
between its real and imaginary parts. This mathematical feag

ture undoubtedly plays a central role in the present study an omplex variableg, of which in general it will not be an
y pilay b y nalytic function. However, by requiring thé’™ to be ana-

will be exploited when constructing our final equations. lytic in the E plane, with a branch cut ifie), a useful

The usual starting point is to define, given a complete. : . . . .
basis setds ), the projection operator@ andQ by the famil- dispersion relation can be obtained. As a first step, we split

: . VP(E) into three terms:
iar expressions
VOPY(E)=V5+VP(E)+iVAE), (5)
P:;P |i)(il, Q=1-P. @ \wherevs represents the interaction of the impinging positron

with the unperturbed atom, whil¢"(E) and VA(E) are,

The choice of the basis set can be adjusted to the physicé@spectively, the polarization and absorption_ mo_del poten-
nature of the studied phenomena. When the interactions afialS- It can be further showf22] that the following integral

supposed to be short range, e.g., nuclear interactions, tifglation holds:

most natural choice is to project the solutions of the scatter- 1 = VAE')
ing problem outside a sphere of a given radius, as in the VP(E)=— pf - dE’. (6)
outside region the nuclear forces can be neglected. In dealing m Js E'-E

with atomic collisions, a convenient choice is to use the in-_ _ _
coming and outgoing scattering channels, in either the coorl NS equation resembles the well known Konig-Kramers re-
dinate or the momentum representati@)], as a suitable lations for a linear response function, although we wish to
basis set. Applying those operators to the $dhmger equa- point out some specific differences from the latter: the inte-

tion, one can then write a completely equivalent projected"@tion is not extended onto the real axis, but starts fflgm
equation where the potential in the Hamiltonian is substi-2Nd Ed.(6) does not have a symmetric counterpart. Further,
tuted by an optical potential: the interaction potential is in general nonlocal. However, the

present colliding particle is distinguishable from the atomic
(E—T—V°PYP|y)=0. 3) electrons, so that the difficulties arising from nonlocality are
automatically removed. In the present approach the polariza-
tion potential is considered to be a known function, and
hence Eq(6) becomes a Fredholm equation of the first kind.
This feature brings about some difficulties as this kind of
integral equation is ill conditioned, and therefore the math-
QVP. (4) ematical problem has to be handled carefully. Further,
VA(E) has an arbitrary number of unphysical solutions out-
side the integration domain, so that the optical potential ob-
If the P space is spanned by the asymptotic states only, thgyined with the help of Eq6) cannot be used for projectile
scattering problem reduces to a two-state one. It follows thagnergies lower tha#; .
the whole dynamics of the colliding system is embodied in
the effective Hamiltonian, which is strictly_ connected to the ||| THEORETICAL DEVELOPMENT OF THE MODEL
resolvent of the QHQ operator, as shown in Ej. To get a
full understanding of the effects that some of the following It is apparent from Eq(6) that an energy dependency for
approximations have on the scattering parameters, some prihe polarization potential is also required and therefore the
liminary considerations on the operators spectrum are reatomic polarization potential cannot be derived adiabatically.
quired. An important assumption in Feshbach’s theory)n fact, in the adiabatic approximation one describes the
which has been rigorously demonstrated by Berf@1] in  atomic orbitals as instantaneously relaxing in a perturbed
the three-body case, is that the eigenvalue distribution of theonfiguration, and of course this is not true if the perturbat-
QHQ operator is similar to the spectrum of the full Hamil- ing field varies with time, i.e.,, when a charged particle
tonianH. In other words, we have a point spectrum in themoves in the atomic neighborhood. In this case the dynami-
open interval [0,e)—with isolated eigenvalues of finite cal polarization potential will be shallower than the adiabatic
multiplicity—and a continuous spectrum for higher energies potential.
Since the energy-dependent optical potential can have an The polarization potentiat"(r,E) is usually expanded as
imaginary part only in the intervdle,«), all the energies at 1
which theQ-projected channels become open will be larger P o a1 _7
than e. The probability flux is in general not conserved VirB)= +2r6 (65+48yE)+O(r ")

The termT +V°'is called theeffective Hamiltonianin the
same notationy°”, is shown to be equivalent to

VOP(E)=PVP+PVQ ﬁ

2r% 218
within the P space as it goes into the other channels as they @
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where the dipole and quadrupole polarizabilities and the firstt is straightforward to verify that the previous conditions
two nonadiabatic corrections have been included. Considefi)—(iv) are satisfied by the above expression. Further, by
ing the actual values of those coefficients for alkali-metalmaking a series expansidfor r> yE) we get

atoms, it is straightforward to show that, if the energies in-

volved are larger than a few eV, the energy-independent nE
nonadiabatic term is negligible with respect to the energy- I'(rB)=1- e (12)
dependent term. So, by dropping tBdgerm, the polarizabil-
ity expansion can be written as so, with 7=48y/«a;, the last condition is also satisfied. The
present derivation is somewhat different from the one given
P a; ap; 1 in Ref.[22], as the latter was developed in the framework of
v (rvE)z_W_ﬁJfﬁ“&’E @  the average energy approximation, and therefore the two

derivations lead to different values of the coefficient

The integral equatiofB) has an analytical solution for the
functional form of VP(r,E) as given in Eq.(11); thus we
have for the absorption potential

and neglecting the "® terms we have

48y E
1—a—7—2), ©

1 I

VP(rE)=Vgdr)

VA(r,E)=VSi(r) (13

E— Zl 1/2
E+(a1r2/127)>
wherevg’o(r) is the full adiabatic polarizability. The last ex-

pression forvP(r,E) gives a proper account of the charge- It should be noted that, as discussed before, the above poten-
atom interaction only for large values of We now define tial is not defined forE<#;, so this theory cannot make
the adiabatic correlation-polarization potential ugg’(r), predictions fore™-atom impact energies lower than about 2
which is aimed at improving the asymptotic expansion andgV (for alkali-metal atoms

at this point of the discussion, is supposed to reproduce the The following step is helpful to estimate the correct be-
correct atomic adiabatic polarizability both in the internalhavior of the adiabatic polarization potential for short
region of the atom and at large distances. We will describgositron-atom distances. The asymptotic expansion of the
below the procedure adopted to model the short-range corrgolarizability, which has the form

lation forces.

We can now factoriz&/": b - a
Vad )=~ 24 502 (14
VP(r,E)=VSH(r)T(r,E), (10)

is divergent at the origin, as each term has a pole=dl. A
where I'(r,E) is an energy-dependent function which still natural way to deal with this difficulty is to introduce some
has to be defined. There are some intuitively obvious condampmg function aimed at rendering the behavior of
straints that can be used when making a model to describé>{(r) correct at all distances. In this work we adopt a damp-
this function. ing technique developed in our grod@3,24] which has

(i) When the perturbing charge is fixed, the energy-given remarkably good results in electron- and positron-atom
dependent polarization potential equals the adiabatic poterscattering problems. It starts by noting that the necessary
tial, soI'(r,E) —1 asE—O0. correlation-polarization potential can be expressed as a series

(i) For high projectile velocities, the atom has not theof products of functions over the whole range of distances:
time to polarize under the influence of that high-frequency
perturbing field, so we havE(r,E) -0 asE—x. a

(iii) When the energy is fixed, the field varies more rap- VER(r)= = 3 fy.a(r) PTERS (15
. o . 2I+2 r
idly in time as the positron gets closer to the atom, thus

I'(r,E)—0 forr—0. wheref,,»(r) are still unknown functions. It can be shown

(iv) On the contrary, if, the energy being fixed, the
charged particle is far enough from the target, the perturbaitgeg“t/gi ;t))(;/larlzatlon series approximated to the second order

tion has only very low frequencies and so the adiabatic ap-
proximation is correct: I'(r,E) =1 for r—oe,
VP(Z)_ _Z <

o)

2

(v) As a last condition, we require that the product

CP(r)I'(r,E) reproduces for large values ofthe asymp-
totic polarization potential in its simplified version given by
Eq. (9). where|dy) is the atomic ground state, andr, are, respec-

In this study a functional fornfwhich is, of course, not tively, the electron-nucleus and positron-nucleus distartes,
unique has been chosen fdf(r,E) following the one al- is the angle between tles” ande™ position vectors, and is
ready used by Thirumalai, Staszewaska, and TryR2ffor  the average atomic excitation energy. Using the orthogonal-
electron-atom scattering problems: ity of the Legendre polynomials we have

2

¢O> ’ (16)

I'(r,E)= (12) Vit = - IZl ?H_zfo po(rra odrg, (17
- p

1+ 5(Elr?)
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whereK, contains all the coefficients and the normalization

0.00

constant of the corresponding Legendre polynomial, while i
po(re) is the electronic density of the atomic ground state. A -0.01

direct comparison with Eq14) gives the following expres- 3 —
sion for the polarizability coefficients: _:, -0.02
w -0.03

a|=K,f po(re)rd2dr,. (18 i

0 -0.04 o
0.00

The fundamental assumption of this model is now that only
the electronic density inside the sphere of radiysontrib- -0.05
utes to the target polarizability. The coefficiemisare now

dependent on the positron coordinajg so we have 0.10
, 0.15
p
it =K | “potrard dr, 19 s
¢

which can be written as
FIG. 1. Computed real and imaginary parts of the present optical

(20) potential for positron scattering from lithium atoms. Top: real com-
ponent. Bottom: imaginary component. The various curves refer to
different collision energies while the dashed curve represents the
asymptotic behavior of IW°P

a(rp)="faa(rpay,
and finally we obtain the expression for the damping func
tions:

r 2142 IV. THE SCATTERING EQUATIONS
foppo(l’e)l’e dre

E3 21+2 ’
fopO(re)re i dre

foria(rp)= (22) The transition matrix for a two-state system—in this case
the asymptotic states onto which the Sainger equation

. . . . has been projected—has a very simple expression:
where py(re) is the electronic density of the atomic ground pro) y P P

state. Observe that these functions correctly go to zero faster Tei=(f|VOPli). (22)
thanr 2'*2 and approach unity as the positron distance be-
comes large. This equation is exact if we know the exact potential, that is,

The present approach does not preclude a multielectroi we use a complete basis set. In actadl initio calcula-
treatment{18]. We adopt, however, a single-electron modeltions, the spectral series of tigHQ eigenstates is always
(frozen-core approximationwhich is a natural and widely truncated, so researchers use the Lippman-Schwinger
accepted simplification when dealing with alkali-metal at-equation—of which Eq(22) can be seen as a zero-order
oms. Additionally, the positron trajectory usually runs overimplementation—in order to obtain a double-basis represen-
barely penetrating orbits at these energies. Further, from Eqgation for theT matrix. The use of this procedure is indeed
(10) and(15) it is apparent that the parameters which determore problematic(if not impossiblé when dealing with
mine the size of thd matrix element are the polarizability model potentials, as in this case there is not, in our opinion,
coefficientse; and those coefficients are much larger—for a transparent way to distinguish the “residual” states in the
alkali metals—when referred to the valence electron than th@ space. However, we argue, leaving it as a task for further
corresponding values for the core electrons. investigations, that a suitable basis in thespace could be

An important approximation within this model is the fol- the set of theloutgoing positronium excited-state channels.

lowing: the nuclear charge is considered as perfectly Writing Eq. (22) in a more explicit form, we have there-
screened by the electronic cloud, so our “atom” is treated agore that

a pure multipole source. In ignoring the effects of the partial
screening, we have tried to be consistent with our physical (ks ,k;)
picture of this reaction. The target electron is considered to

go_through s_uccessive excitations of the_ polarized orbital_s, :f efikf~RX0(p)Vop[(rp,ki)eikrrp(ﬁo(re)drpdre’
which for this class of atoms are considerably spread in
space, and not simply ejected via the interaction with the (23

impinging positron. We may conclude that the static short-

range part of the potential should not affect strongly the colwherer, andr, are the electron and positron coordinates,
lision dynamics in the energy range considered here angy(p) and ¢y(r.) are the positronium and atomic ground
therefore we do not need to calculate it explicitly. states, respectively, arRizé(errre), p=|rp—re|.

Figure 1 displays the real and imaginary parts of the op- Imposing the conservation of the total energy of the sys-
tical potential for the Li target at different energies, obtainedtem, and remembering that the scattering problem from a
with the present modeling. The complicated structure of theentral potential has a cylindrical symmetry, it is possible to
potential at small distances is due to the nodes in the eleaeduce the number of variables in thematrix element. We
tronic density, which in turn define the damping functions. have thus
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Tri(ks k) —Tr(6,E), 40.0

whereE and 6 are the initial projectile energy and the scat-
tering angle. Finally, we can write the differential cross sec-
tion (with the reduced masses put ags=1 andups~2, in
atomic unit$

VY Lithium

. . . 2
Cross Sections  (units of ma, )

T (0.E)= s | A 6,E)2, (24 20.0
dQ ( l )_ \/E’T['Z E | ( ) ) ] ( ) .
whereEp is the binding energy of positroniui=6.8 eV)
andE, is the ionization energy of the target atom. -
V. COMPUTATIONAL DETAILS
. ) . . . ) 0.0
The calculation of the Ps-formation differential cross sec b0 50 10.0 15.0 20.0

tions has now been reduced to the evaluation of six-
dimensional integrals, one for each value Bfand 6, as

given in Eq.(23), plus a supplementary integration @rin FIG. 2. Ps-formation channel cross sections as function of col-

or_der to obtain the integral cross sections. We adopted fosion energy for the lithium target. The state considered is the Ps
this purpose the standard Gauss-Legendre quadratug

- : ound state. Solid line: present calculations. Dashed line: from
method. It is useful to remember here the input parameters Get [6]. Dotted line, from Ref[10].

Energy (eV)

the code:
(1) the atomic polarizability coefficients; not considered within this application and the calculated
(2) the ionization and the first atomic excitation levels; curves are expected to be smooth.
(3) the ground-state orbitals of the target. (2) The imaginary part o°™ is not defined below the

The polarizability series has been truncated at the octuexcitation energy#;, so the calculations start above this
pole term and the adopted Hartree-Fock atomic orbitals uselimit at about 2 eV.
are tabulated in Ref25]. It is interesting to observe that, (3) In the high-energy region the present method repro-
although the dynamics is dominated by the excited states afuces the mathematical form as described in the first Born
the targetand for this reason the close-coupling calculationsapproximation. This can be seen by just observing the high-
need a large number of atomic and positronic states to corenergy behavior, in Eq$11) and(13), of the real and imagi-
verge, the present approach does not require an explicihary parts ofV°* and remembering that the cross sections
knowledge of such states. The direct integration has the adare related tdT|?.
vantage of producing the differential cross sections automati- (4) Experimental data are available for sodium and potas-
cally, but it is indeed more demanding than an expansion isium targets, but they do not discriminate between the Ps
partial waves, owing to the high degree of nesting ofttlle  ground-state formation and the electron capture in other ex-
loops. The computational time, in fact, grows %, where cited states, so that a homogeneous comparison with our
N is the number of integration points adds the dimension theoretical Ps(4) cross sections cannot be done.
of the integral. The number of steps to reach convergence Figure 2 shows the present computed R3(integral
depends mainly on the oscillatory part of the integrand funccross sectiongsolid lines together with two earlier calcula-
tion that is on the energy of the plane waves in ). We  tions, namely, the Hewitt-Noble-Bransden CC dd&]
report a useful empirical law to estimate this numbir: (dashed lines and the McAlinden-Kernoghan-Walters re-
=R\{2mFE/#%, whereR is the maximum radius of the inte- sults[10] (dotted line$. It is interesting to note that the CC
gration domaing16—-20 atomic units in the present work curves are comparable in shape and size with the outcomes
referred to thee™ ande™ coordinates. of the present calculations, thereby showing a good conver-

All calculations have been performed on a RISC 6000gence of the present model for impact energies larger than 5
workstation, with about 30 h of CPU time consumed for eacreV.
atomic system. In concluding this section we wish to point This general trend of the present calculation is indeed
out that the CC methods, the results of which are reported fozonfirmed by the results which we have obtained for more
comparison against our calculations, éo®ing to the large complicated systems like sodium and potassium. Figure 3,
number of coupled integro-differential equations to splve for instance, presents our calculations for the Ps-formation
about two orders of magnitude more demanding in compueross sections in the ground state of the compound during

tational time than the present approach. e*-Na collisions. They are given by a solid line while the
earlier coupled-channel results are given by a dashed line
V1. DISCUSSION OF RESULTS (from Ref.[16]) and by a dotted linéfrom Ref.[10]).
One clearly sees that, from about 5 up to 20 eV, our
Some preliminary remarks are the following. model reproduces remarkably well the CC calculations,

(1) The required analyticity of the polarization potential while the latter also agree with each other within the same
on the complexXE plane cancels the information on the opti- range of energies. As the collision energy decreases, how-
cal potential poles. It follows that Feshbach'’s resonances arever, we see that the three sets of calculations begin to differ
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FIG. 3. Same as in Fig. 2 but for the case of the sodium target. G, 5. Computed angular distributions for the Ps(L
Solid line: present calculations. Dashed line: from Re€]. Dotted  formation channel in the case of Li atoms. The calculations refer to
line, from Ref.[10]. three different collision energieéCS denotes cross sectipn.

from each other: the two CC results are markedly different irof the same cross sections produced in the CC calculations
magnitude and the present model appears to follow the prediven by the dashefil6] and the dotted17] lines. Below
dictions of the results from Ref10]. It should be kept in that energy the CC results agree with each other only in part
mind, however, that the present use of a model optical po@nd differ markedly below 4 eV. As in the previous Na case,

tential and the physical assumptions outlined in the previou§Y" calchulationsdappelar to favor th%re_sultshfrom I\/(chAIinden,
sections appear to handle very well the size and energy d&ermnoghan, and Walterl7]. Considering the good agree-

pendence of the reactive process we are describing here agbgnt of its outcomes with those from the more complicated

afford a tremendous reduction of the required computationa computations, it seems possible to say that the present
times. especially when compared with t(?]e earlier C[:)C Calcupptical potential is including all the relevant physical ingre-
Iation,s P y P dients and that both the dispersion relation and the global

. damping functions do a very good job in describing the cor-
If we now move to an even more complicated system, theq final states of the scattering process.
potassium target, we see in Fig. 4 that the general behavior aq 5 further application of our calculatédl matrix ele-

indicated by the previous results is indeed confirmed. Fromnents we see that E4) allows us to produce easily the
about 5 eV of collision energy and up to 20 eV our modelcorresponding angular distributions at any of the required
calculations follow remarkably closely the energy behaviorcollision energies. Although such quantities are still not
available from experiments, one could envisage a time when
even the angular distributions for partial channels of positron

30 n ' ' ' ' L scattering will become accessible. This is especially true
[\ when the rapid, recent increase of the availability of intense
I Potassium i positron sources is considerg2b—28. Within this context it

therefore will become useful to have available the general
behavior of angular distributions for several systems and at
several collision energies.

Figures 5, 6, and 7 therefore report our calculations for Li,
Na, and K targets and for three of the collision energies in
the range where our model was the most successful in repro-
ducing the CC results. The three systems behave, as ex-
pected, rather differently from each other although all of
them show rather marked forward scattering, especially at
the higher collision energies. Furthermore, the Li and K tar-
gets indicate the presence of very marked oscillations and
large dips in the cross sections as the scattering angle in-

0.0 5.0 10.0 15.0 20.0 creases, while the Na target exhibits smoother differential
Energy (eV) cross sectioneDCS’s) and much less marked oscillations. In
sum, however, one sees from our DCS calculations that the

FIG. 4. Same as in Fig. 2 but for the case of the K atom agntensity of the scattered Ps is strongest within a rather nar-
target. Solid line: present calculations. Dashed line: from Ri]. row cone in the forward direction and that cone gets nar-
Dotted line, from Ref[17]. rower with increasing energy of the projectile.

20.0

10.0

Cross Sections  (units of naoz)
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Potassium

= 10 Sodium - 10
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E a0 < 10°
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10" 10°

0 60 120 180 0 60 120 180
Scattering angle (deg) Scattering angle (deg)
FIG. 6. Same as in Fig. 5 but for the case of the Na ato:8 FIG. 7. Same as in Fig. 5 but for the case of the potassium atom
denotes cross sectipn (CS denotes cross sectjon

Vil CONCLUSIONS and simple starting point for extending the predictive value

We have discussed in the previous sections the formulaef calculations in the search for the most efficient targets for
tion of a model treatment of the Ps-formation channel inPs formation at low collision energies. Furthermore, since
positron-atom scattering and found that the use of an opticalle have also shown that angular distributions could also be
potential based on this model allows us to obtain the relevargbtained rather directly with the present method, we can ex-
scattering attributes of the process rather directly and by peipect that such calculations for a broad variety of atomic tar-
forming fairly straightforward numerical quadratures. In gets would provide indications and suggestions for the new
comparison with the more conventional, and computationallygeneration of experiments which are currently in preparation.
more demanding, close-coupled expansion over a large num-
ber of states, the present method turns out to produce rather
good result_s and to follpw closely the CC outcomes even for ACKNOWLEDGMENTS
very complicated atomic targets.
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targets[18], that the present model can constitute an easynd ResearckMURST).
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