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Two simple expressions for the spontaneous emission factg
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In the literature two different simplified expressions exist for the spontaneous emissiongatiteing the
fraction of spontaneous emission radiated into a specific optical mode. These expressions are valid in two
mutually exclusive regimes. By treating the coupling between one discrete cavity mode and the outside optical
continuum quasi one dimensionally in the spirit of F4Rbys. Rev124, 1866(1961)], we extend the validity
range of both expressions and show that they lead to essentially the same result. The relevance and limitation
of this result are discussefd51050-2947©6)04210-3

PACS numbes): 42.50—p

[. INTRODUCTION The various arrows show the pump as energy supplier, addi-
tional loss of atomic coherence due to collisional dephasing
We consider an inverted gain medium inside an opticalrate y.y), Spontaneous emission to the transverse-optical
cavity of some kind. The spontaneous emission fagtas  continuum, coherent coupling to the discrete cavity mode
then defined as the fraction of spontaneous emission radiatédoupling constang) and optical loss out of this modéss
into a specific optical mode, here denoted as the cavity orate y.,,). We restrict our attention to the weak-coupling
lasing mode. Lasers with a large are interesting because regime, i.e.g<<y.. In that case the coherent coupling and
for these lasers much of the spontaneous emission is radiatedvity loss combine to an effective exponential decay from
into the lasing mode and there is thus limited emissiorthe excited atomic state to the longitudinal-optical continuum
“wasted” in other modes. Such lasers will automatically outside the cavityf9,10]. The spontaneous emission factor
have a low lasing threshold. The holy grail is a laser withg is then equal to the relative contribution of the latter decay
B=1, where no radiation is lost, making it a “thresholdlessto the total spontaneous emission ratgy, which also in-
laser” [1-3]. cludes (and for B<1 is dominated by decay to the
An accurate calculation @8 is often lengthy and tedious. transverse-optical continuum. For the atomic system the ra-
It involves a summation or integration of the atom-field cou-diative decay(as T, process and collision dephasingas
pling over all optical modes and thereby touches the heart gbure T, process combine to what we will call the atomic
quantum electrodynamics. However, with a few simple asdecay rateyom= Yrad+ 2¥coll -
sumptions the calculation can be greatly simplified. In this In the literature one finds basically two different ap-
introduction we start by reminding the reader of the twoproaches to calculat8. These approaches are valid in two

simplified expressions foB that exist in the literatur€l,4—  mutually excluding regimes, being determined by the ratio
8] and point out that these are valid in two mutually exclu-between the cavity decay rate,,, i.e., the spectral width of
sive regimes. the cavity mode, and the atomic decay ratg,,, i.e., the

Figure 1 sketches a typical system for which we will cal- width of the atomic spontaneous emission spect(see Fig.
culates. The emitters in the active medium, which for con- 3). When y.,,< va.0om ONe often speaks about the “good-
venience will be denoted by “atoms,” although they might cavity” regime, wherea®.,> v.iomiS then called the “bad-
equally well be molecules, electrons, excitons, or any othetavity” regime [11-13. This nomenclature is somewhat
entities interacting with light, will radiate spontaneously in amisleading, as it does not refer to the quality of the cavity, as
multitude of directions and frequencies. It is now our task todetermined, e.g., by the mirror reflectivities, in an absolute
determine the fractio@ emitted into a single discrete mode, sense, but only to the comparison between the field and
which occupies inside the cavity an optical voluiig, and  atomic decay rates. In this paper the two regimes will there-
subtends a space angld),,. This mode has a finite spec- fore be denoted by characterizing the nature of the dominant
tral width due to outcoupling at the mirrors. The remainingdecay: atom-dominated decayy{y< Yaom and field-
optical modes are treated as a continuum. dominated decay .o Yatom -

A calculation of 8 is largely a geometric problem, which
can be very complicated due to the three-dimensional struc-
ture of the cavity. The calculation simplifies considerably
when a quasi-one-dimensional approach is taken, in which

s
R

the optical continuum is subdivided into modes that interact ¢~ ] [T B =TT

with the discrete cavity mode, through the mirrors, and ,, s AN A ~AD AR, /2
modes that do not. The former part of the continuum is as- ™ \.. I(;/ \1—\\" LT
sociated with the “longitudinal” modes, as they have their L '

wave vectors oriented more or less along the cavity axis,
whereas the latter part may then be associated with the . o
“transverse” modes. This separation is depicted in Fig. 2. FIG. 1. Typical geometry for whiclg is calculated.
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FIG. 3. Spectra of the spontaneous emission and the cavity reso-
FIG. 2. Schematic diagram of the couplings between the atomifance.
excitation, the discrete cavity mode, and the optical continuum.

h , , h for this was not given. Other papers report numerical calcu-
Iq the 3torrr11—dom|naltiq dlecay”rzglfmexag\,f Yaton) eTh lations of B as a function ofygom/ veay @Nd presented the
cavity mode has a relatively wetl-aefined frequency. Th€eqq 1is in the form of figures, but analytic expressions have
standard approach is then to assume full lateral conflnemenrtIbt been giveri4,g]. In this paper we will give the analytic

by setting the optical quantization volurvg,,.equal to the . o - .
volumeV,, taken up by the cavity mode, and simply count- expression and demonstrate the intimate relation between the

ing the number of modep with eigenfrequencies falling tv‘;? ;’:\bovteh equat|0ns|. Furtdh?rmorteﬁ we wil (tj_|scuss und?(rj
underneath the atomic spectral profile. At resonance th§/NIcN. rather generaj, conditions these equations are vall

“mode count” gives[1,4] and when they break down. In order to focus on the essential
' point we use some simplifying assumptions and skip much
1 1 A% w detail. As a consequence, in practical cases the simplified

, (1)  expressions are correct only to within factors of order unity.
We apologize beforehand for this inconvenience.
In Sec. Il we will calculateB by considering the cavity

:—:—X_
p 4 Veav  Yatom

where\ and w are the optical wavelength and optical fre- mod indle discrete but | mode. The derivation i
guency. In Sec. Il we will show that the introduction of rig- ode as a singie discrete but 10Ssy mode. The derivation IS

orous lateral confinement is not really neccesary and that thr@eij‘th.e".r mforma_l and more directed towaro!s |n5|ght_and_ appli-
above result has a much wider validity. By writing the resultCablllty than rigor. Reasonable assumptions to simplify the

as a product of three factog is shown to be basically the gmbrlc?an;hair: ch))(ﬁI(;]\}viddci)rl:t\./vlf?icietcﬁelIl:gvz?ornigggr?slirllzt:?or-ggg
inverse of the modal valume, in units of , multiplied by agpa resonance in the longitudinal mO()d/e continuum [I)n Sec
the Q factor of the atomic transition. 9 ' '

In the field-dominated decay regimeyd,® vaer) the IV the resulting expressions are compared, and their applica-

. N bility is discussed. Finally, conclusions are drawn and a sum-
cavity modes are spectrally broad and it is common to con- Y y

sider the problem from the atomic point of view. When the Mary 1S given.

emitted light is followed on its path through the cavity, the

interference from the various reflecting surfaces are found to

lead to radiation enhancement for some emission angles and !l THE "ONE PHOTON PER MODE” PICTURE

suppression for othef6—8|. AS yca> Yaiom this modifica- The pedestrian view of spontaneous emission is based on
tion will be more or less constant over the full spontaneousne notion that “spontaneous emission is equivalent to

emission spectrum and for a very thire}) active medium  stimylated emission produced by vacuum fluctuations, the
positioned in an antinode of the optical field one finds atjgtier corresponding to one photon per optical modi&4].

resonances, ] We consider an oscillating dipole at positionhaving an
AQ.,[ 4 eigenfrequency. Combining}h% v!ell-known dipolar atom-
B= g (ﬁ) (2)  field interaction Hamiltonianu-E(r) with Fermi's golden
rule for decay to a continuum of final states one finds that the
whereAQ) ., is the solid angle subtended by the cavity modespontaheogs emissior.1 rate of thisﬁdiﬁpolﬁe into each specific
andR is the intensity reflectivity of the cavity mirrors. mode i is proportional to (Ju-E(r,)|?), where
It is not at all obvious that the above equatidhsand(2) (|Ei(r,)|?) denotes the mean-square vacuum field per unit
are limiting cases of a single more general form. In R&f.  frequency. The generic equation for the ngasition and
a substitution of typical experimental parameters into similafrequency-dependergpontaneous emission factor follows
equations showed their practical equivalence, but a reasdmmediately:
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R <|ﬁ. E T 0)|2) (subwavelength-size cavities with dye solutiof%16], and
BT w)= ———a———, (3)  semiconductor microcavitigd6].
(| p-Ei(r,o)|%) We return now to the calculation g8. In quantitative

R form the notion that “spontaneous emission is similar to
where in the numeratdE,(r,»)|* represents the vacuum  stimulated emission produced by vacuum fluctuations, the
field density in the cavity mode at the atomic positoand latter corresponding to one photon per optical mode,” means
frequencyw and where the sum in the denominator runs ovetthat the mean-square fluctuating field of the cavity mode

all modes. R (|Ecadr)|?) satisfies the following requirement:

The position and frequency dependenceff,w) re-
flects the obvious notion that the amount of spontaneous = =
emission coupled into the cavity mode depends both on the f dVeo(|Ecalr)|*) =fiw. (4)
position and frequency of the emitting dipoles. The overall
spontaneous emission fact@r that appears for instance in The integral in Eq.(4) can be rewritten as a product by
the laser rate equatiori4,8] is simply the average value of introducing the effective, i.e., intensity-averaged, modal vol-
,B(F,w) integrated over the positions and spectra of all emitume as
ters.

The generic equatior(3) immediately suggests some off L NP N 2
natural assumptions. For simplicity we assume tliatthe Vca"_J V(| Ecad 1))/ (| Ecavimat ). ®)
radiating dipolesl are randomly oriented in spaci,) the R
active medium is spread out over the nodes and antinodes afhere <|Ecav,ma>lz> corresponds to the one-mode vacuum
the field profileE ,(r), (iii) the volumeV 4, of the active fluctuations in the spatial region of maximum coarse-grained
medium is relatively small\{,on<V.a) SO that the coarse- intensity. Note that with the above definitiM‘fg\, is equal to
grained field, i.e., the field averaged over regions of a fewthe product of the cavity length times thenallestmode
cubic wavelengths, is more or less constant over the activeross section, assuming that the compact gain medium is
medium, and(iv) the total spontaneous emission rate, i.e.located at that position. When the mode cross section in the
the denominator in Eq(3) which sums over all available cavity is more or less constant we havil ~V_,,., indepen-
modes, is equal to its value in free space. dent of the location of the compact gain medi@imthis case

Assumption(i) implies that the vector nature drops out of the gain medium may also fill the complete mode volume
the problem and assumptiofis)—(iii) imply that the active In a lossy cavity the fluctuating field is distributed over a
dipoles interact on average with the same electric-field-orentzian spectrum of widthy,,, resulting in

strength. Together they allow us to eliminafeout of Eq.

(3), thus clearly showing the geometric nature of the prob- (Empmmaf )| 2) = ho [ 2 (Yea/2)?
lem. If desired, some of the restrictions can be easily re- cav,ma eV \ Tycar (0— wea)*+ (Yead2)?
moved. For instanced can be increased by preferential (6)

alignment of the dipoleg alongE ,(r); this increase is at

most a factor 3. Preferential positioning of the dipoles in the When we apply the same “one photon per mode” argu-
antinodes of the field yields another factor 2. Also, if thement to spontaneous emission in free space, we find that
volume of the active medium is not small compared to thethe fluctuating field of each free-space mode is
modal volume, some atoms may couple more efficiently with(|E(r)|2>:hw/(eovquan), where Vg ant is the quantization

the cavity mode than others and ttepatially averaged3  volume. Multiplied by the mode density per unit volume per
will decrease as compared gfor a cavity in which a com-  unit angular frequency 06)2/(77203)qumwe find the stan-
pact active medium is located at the maximum of the modatlard result

field.
Assumption(iv), which takes the total spontaneous emis- 2o, To 2
sion ratey,,qto be more or less equal to its free space value, ([E(r,0)] >:€_0 -y @)

is of course a crude assumption, as we know that the cavity

leads to enhanced spontaneous emission in some modes gyglision of Eq. (6) by Eq. (7) yields the spontaneous emis-

we are in fact trying to calculate this enhancement and itgjon, factorg(w) for the case of monochromatic emitters
effect onB. However, the spontaneous emission will gener-

ally be enhanced only for relatively few modes whereas it 1 ()\)3/ o (Yeas2)?
remains unaffected or will even be suppressed for other ,B(w)zﬁ | S — | (o c§+ 52" (8
modes. Therefore, the cavity mainly leads to a redistribution 7 Veav! Yeavl (@~ 0ca) "+ (Yca/2)

over phase space or a directionality of the emitted photons, ) ) o
but its effect on total emission ratg.q is generally small Integration of3(w) over the normalized free-space emission
and assumptioiiv) is approximately valid for cavities with SPECtrum

relatively small 8 values(e.g., 8<0.1). Experimentally, it

has been found extremely difficult to change the total spon- L(w)= Yatom! (277) 9)
taneous emission rate in optical experiments. Record experi- (0= aom) >+ (Yatond2)?’

ments, leading typically to variations of up to 30%, have

been performed on large-angle concentric caviti@§], yields
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1 a3 ® agonalization procedurgl9] is well suited, where we now
ﬂIJ do B(w)L(w)= 12 V—efr(Jr—W) have to account for the resonance structure of the atom-field
cav| Yeav™ Yato coupling. This procedure gives the eigenstates for a system

[(Yeavt Yatom/2]? consisting of a single discrete sta®@) coupled to a con-
X (@em— Datom) >+ [(Yeart Yarom) 1212 (10 tinuum. Since Fano’s approach requires a pure-state descrip-

tion of the atom-field system, it cannot account for external

where we have used that the convolution of two normalizedP€rturbations such as collisions. Therefore we first restrict
Lorentzians with widthsy e, and yaom give a single normal- c_)urse_lves to the case of a free atom (_:oupled to the radiation
ized Lorentzian with a width equal to the SUpa+ Yatom- f|§Id, i.e., vcot=0. We denote the excited state of the e_ltom
Note that to obtain this result there was no need for “hard”Without photons by0), and the ground-state atom combined
confinement of the optical field in the transverse directionWith @& photon of frequency» propagating in the direction
The derivation was based only on “soft” confinement of the { by |@,Q). The continuum states are normalized according
cavity or lasing moddas given by Eq(5)] and on the as- 10

sumptions(i)—(iv).

At resonance ®q,= waon) the final result becomes (0,9]0",Q")=80-0")5(Q-Q). (14)
1 A3 ® The system is described by a Hamiltonian with a coupling
B=r2geF - (1)) between the excited staf@) and the continuum equal to
41 Vay Yeavt Yatom

which is equal to Eg.(1) in the atom-dominated decay f jd“’ dQ|0)f(w,Q){w,Q|+{Hermitian—conjugaté.
regime, but which contains a correction factor (15

Yatom! ( YeavT Yatom) Otherwise.

Here f(w,(}) contains the transition dipole moment multi-
IIl. THE FANO-TYPE APPROACH plied by the normalized-mode function inside the cavity at
the position of the atom. Fano diagonalization gives formal
hut exact expressions for normalized eigenstates of the
Hamiltonian including the atom-field interacti¢m9]. If we

In the preceding sectiof was calculated more or lessl
hocby considering the cavity mode as a single discrete mod

with a finite bandwidth due to damping. A more rigorous . ; . i
route of calculation starts with the combined continuum oféXPand the initial stati) in these eigenstates, the long-time

the modes of free space with the cavity embedded in it, i_e_(?volution immediately_give_s the probability distribution over
the left-hand side of Fig. 2. In this continuum the cavity € frequencyw and direction() of the emitted photons in
mode shows up as a resonant enhancement of the field€ form
strength inside the cavity around the mode frequency. These 2
continuum mode functions may be viewed upon as stationary p(w,Q)= [f(w,0)]

scattering states of the Maxwell field, which automatically ’ (0~ warom L)+ (Varon{2)*’
account for the coupling between the discrete cavity mode

and the optical continuum outside the cavity. In the limitWhereAw is a small Lamb-type frequency shift, which will
R~1, whereR is the intensity reflectivity of the mirrors, the be neglected. The radiative transition ratg,, is related to
resonant enhancement factor of the optical intensity insidéhe coupling strength by the relation:

the cavity as compared to that outside, is giveri by,1§

wasr) (')’ca\/z)2 ’)/atom:27Tf dQ|f(waQ)|2- (17)

12
— 2+ 2 2 (
(@~ @ca) ™+ (Yeal2) These result$16) and (17) are justified when the right-hand

Where ®cay is the Cavity resonance frequency and Si'de' Of Eq(l?) VarieS negl|g|b|e W|th the frequency)

wi= /L is the free spectral range. The interfering reflec-Within a width of the ordery,,m,. Then we may equate the
tions are found to structure the originally “white” con- frequencyw to wqmin (17) and one easily checks that the
tinuum into a Lorentzian-shaped spectrum. The enhancemefltstribution (16) is normalized, as it should.

and suppression is such that the integrah¢é) over a full Itis now an easy matter to extract an expressiondpif

free spectral range remains unaffected; the cavity resonand¥e once more use a quasi-one-dimensional approach and as-
only leads to a redistribution of the spectral intensity. For theSume that only a well-defined fraction of modes,(2) is
symmetric cavity sketched in Fig. 1, the decay rate of theaffected by the cavity, i.e., only the longitudinal modes for

(16)

A(w)Z(

TYcav

intracavity intensity is easily found to be which () lies within the space angla(),,. For () outside
this space angléf (w,))|? is not affected by the cavity and
1-R Wigr must have the valug,/(87?), with vy, the free-space decay
Yea= @t £ (13 rate[see Eq(17)]. Within AQ ., |f(w,0)|? is enhanced by
the factorA(w) given in Eqg.(12). Hence the atomic decay
whereF is called the cavity finesse. rate (17) is equal to

Our aim is to obtain the distribution of the spontaneously
emitted photons over the modes of the structured continuum,

AQcav
which also yields the factoB. For this purpose Fano'’s di- * YoA(®). (18)

41

Yatom—

_ AQcav
4 Yo
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The spontaneous emission factor is found by integrating Edditions, but also from the specific definition &fQ).,, and
(16) over frequency and the solid angle) ., with as result A, which can be, e.g., either in terms of full widths at half
maximum or in terms of integrals over the mode profile.
B=AQ ﬂf do Alw) . (19 Whether Eq(11) or Eqg.(21) is more convenient depends in
cavg (@— @atom *+ (Varon(2)? practice on the geometry of the cavity.
o o It follows directly from our analysis that for a given cav-
In principle Eq.(18) allows for a large deviation of the iy s is |argest when the spontaneous emission spectrum is
atomic decay rate/,om from the free-space value, in which 50w, while for a given emission spectriris largest in a
caseyaom Can even become frequency dependent. Likewisenarrow-band cavity. Separately, these statements may also be
B as given by Eq(19) can have an appreciable value so thatfoynd in the literatur§6,4,§. However, stressing only one of
the restrictionB<<1 does not necessarily apply. For conve-the two statements, in a phrase lik&] “the atomic-gain
nience, however, we assume that the total decay rate imewidth must be narrower than the cold-cavity linewidth to
hardly affected, so thaf,on™ 7. In this case the integral in  regjize the optimunB” is somewhat misleading, since it is

Eqg. (19) can be directly performed, and we obtain now obvious that to obtain a large both the cavity decay
rate y.,, and the atomic decay rate,,,, have to be small.
= Aﬂca"w_fsr (703"+27a‘°”‘)/(277) - In the case of an inhomogeneously broadened atomic
A7 2 (@cav™ @atom T (Yeav™ Yatom 74 spectrum the various homogeneous components will gener-

(200 ally interact differently with the cavity and lead to different

where an extra factor 1/2 has been applied to single out or@o‘%gye;:ghnsg ﬁ/ggc]vigtr:hgn\éaalr?g fg?l;agozzﬁecqlé?;sts gf]e
polarization of the cavity mode. 9 p

If we now once more specialize to the resonant cas@toms‘ €.9., for thg resonant” atoms that couple most
(0aon 0oy) We find Strongly with the cavity mode, whereas a spectrally averaged
atom ~ Feav value is found when the inhomogeneous linewidth is in-
AQqy 20 /T AQgy( 2 y serted.
= e T D Cav< 1—R) +°av , In assumption(iv) of Sec. Il the total spontaneous emis-
Yeav™ Yatom 21) sion rate, summed over all available modes, was set equal to
its free-space value. This is only reasonable o1, and

which in the cavity-dominated decay regime.4> yaom is  ¢an bead hocgeneralized by taking the ratj@/(1+ 8), with

a factor 2 smaller than E@2), because here we assumed the as defined in Eq(11) or Eq. (21), as a better expression
atoms to be evenly distributed over the nodes and antinodd8' the spontaneous emission factor. A simple justification
of the field instead of concentrated in the antinodes, bufor this repair is that the latter expression shows the proper
which contains an extra correction fact@t,/( yeart Yaon)  2SYMPptotic behaviod—1 for small modal volumes and
otherwise. large AQ,, and R, whereas Eq(11) and Eq.(21) do not.

The effect of collisions, or any other type of dephasing,The repair implies that we separate the sum in the denomi-
on the distribution of emitted photons over the modes can bgator of Eq.(3) into the cavity mode and the other modes
easily incorporated when the duration of collisignmay be ~ @nd assume that the spontaneous emission summed over
ignored. This is the case in a spectral region of the order ofhese other modes, which generally take up most of the phase
1/7, around resonance, where the impact theory of lineSPace, remains unaffected by the cavity.

broadening holds. Then the effect of collisions is a simple UP to now we have avoided a discussion about the exist-
additional damping of the transition dipole at a ratg, and  ence of a refractive index different from 1. Inclusion of such

the autocorrelation function of the dipole is simply multi- @ refractive index is straightforward and we have in fact writ-
plied by the exponential exp(y.t). This implies that the ten a!l equations foB'glven above in such a form that they
distribution Eq.(16) must be convoluted by the normalized rémain valid when\ is taken to be the actual wavelength
Lorentzian with width 3, which again gives Eqg20)  inside the gain medium for a uniformly filled cavity and a

and (21), With Yaon= Yrad+ 2Yeon, but now for the general Suitable weighted average of the wavelength in the medium
caseygq#0. and the vacuum wavelength for a partially filled cavity. In-

clusion of dispersion, in the form of a frequency-dependent
refractive index, is more difficult, for instance, because the
amount of dispersion will generally depend on the degree of
After having extended the two simplified expression ofatomic excitation.

B found in the literature into the more general E@sl) and Three types of cavities play a rather prominent role in the
(21) it is easy to show that these are in fact equivalent: it isliterature: the concentric and confocal cavity, both of which
sufficient to rewrite the effective modal volumégv as the are popular in atomic beam experimeiifis,20, and the

product of cavity lengthL times minimum mode ared and planar Fabry-Perot cavity, which is often used for miniature

87 YeaT '}’atom_ 8m

IV. DISCUSSION AND CONCLUSION

to use the diffraction result dye lasers or for semiconductor vertical-cavity surface-
emitting laserg1,2,7]. For a concentric cavity the finite mir-
2\? ror dimensions limit the opening angleQ) ., of the cavity
AQC&V%T‘ (22) mode andB can be directly evaluated from E1). For

such a cavity Eq(1l) is of course also applicable, but it now
Uncertainties to within a factor of order unity not only stem becomes important to use E() as a proper definition for
from the exact nature of the transverse-optical boundary corthe effective modal volume. For a confocal cavity the situa-
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tion is less favorable as the opening angle of the fundamental In conclusion we have rederived, in two different ways,

TEM o mode is generally much smaller, being basically de-the two simplified expressions fg that exist in the litera-

termined by the cavity or mirror focal length. However, in ture and extended them to be valid for any ragig,/ vcay Of

Ref.[21] Morin, Yu, and Mossberg discuss how in this casethe atomic over the cavity decay rate. The resulting expres-

the frequency degeneracy of transverse and longitudinadions(11) and(21) are valid under rather general conditions

modes allows one to construct linear combinations in thdsee assumption$)—(iv)]. In most cases they provide a rea-

form of “hour-glass modes” that still have a large opening sonable first estimate ¢8. They show that to obtain a large

angle. To obtain a larg@ the gain medium should then be B both the modal volume and the volume of the active me-

well localized in the waist of one specific hour-glass mode aglium should be small, in combination with low field and

the different hour-glass modes are spatially incoherent.  atomic-decay rates. These criteria are linked to a large open-
For a planar cavity the situation is not so clear, becauséng angle for the cavity modgEq(22)], and a large field

ideally there is no optical confinement in the in-plane direc-enhancement or equivalently a high mirror reflectijiBgs.

tion, and it is thus difficult to define a single discrete cavity (12) and (13)].

or lasing mode. The obvious choice is to use the interference

condition for the intracavity light as a means to define a

modal opening angla(},, and related coherence argd.

Substitution of the relevant expressions into either @q) We acknowledge support of the Stichting voor Funda-

or Eq.(21) shows that in a planar cavig is of the order of menteel Onderzoek der MateffEOM) and of the European

M (2L) times[1+ Yeay/ (Yeavt Yawom] * @nd will in practical ~ Union in the ESPRIT Project 2002ACQUIRE) and the

cavities never approach unity, basically because an increadR Network ERB4061 PL95102@Mlicrolasers and Cavity

of the cavity finesse automatically leads to an equal increasQED). The research of M.P. van Exter has been made pos-

of modal volume V&' and decrease of opening angle sible by the Royal Netherlands Academy of Arts and Sci-
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