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In the literature two different simplified expressions exist for the spontaneous emission factorb, being the
fraction of spontaneous emission radiated into a specific optical mode. These expressions are valid in two
mutually exclusive regimes. By treating the coupling between one discrete cavity mode and the outside optical
continuum quasi one dimensionally in the spirit of Fano@Phys. Rev.124, 1866~1961!#, we extend the validity
range of both expressions and show that they lead to essentially the same result. The relevance and limitation
of this result are discussed.@S1050-2947~96!04210-2#

PACS number~s!: 42.50.2p

I. INTRODUCTION

We consider an inverted gain medium inside an optical
cavity of some kind. The spontaneous emission factorb is
then defined as the fraction of spontaneous emission radiated
into a specific optical mode, here denoted as the cavity or
lasing mode. Lasers with a largeb are interesting because
for these lasers much of the spontaneous emission is radiated
into the lasing mode and there is thus limited emission
‘‘wasted’’ in other modes. Such lasers will automatically
have a low lasing threshold. The holy grail is a laser with
b51, where no radiation is lost, making it a ‘‘thresholdless
laser’’ @1–3#.

An accurate calculation ofb is often lengthy and tedious.
It involves a summation or integration of the atom-field cou-
pling over all optical modes and thereby touches the heart of
quantum electrodynamics. However, with a few simple as-
sumptions the calculation can be greatly simplified. In this
introduction we start by reminding the reader of the two
simplified expressions forb that exist in the literature@1,4–
8# and point out that these are valid in two mutually exclu-
sive regimes.

Figure 1 sketches a typical system for which we will cal-
culateb. The emitters in the active medium, which for con-
venience will be denoted by ‘‘atoms,’’ although they might
equally well be molecules, electrons, excitons, or any other
entities interacting with light, will radiate spontaneously in a
multitude of directions and frequencies. It is now our task to
determine the fractionb emitted into a single discrete mode,
which occupies inside the cavity an optical volumeVcav and
subtends a space angleDVcav. This mode has a finite spec-
tral width due to outcoupling at the mirrors. The remaining
optical modes are treated as a continuum.

A calculation ofb is largely a geometric problem, which
can be very complicated due to the three-dimensional struc-
ture of the cavity. The calculation simplifies considerably
when a quasi-one-dimensional approach is taken, in which
the optical continuum is subdivided into modes that interact
with the discrete cavity mode, through the mirrors, and
modes that do not. The former part of the continuum is as-
sociated with the ‘‘longitudinal’’ modes, as they have their
wave vectors oriented more or less along the cavity axis,
whereas the latter part may then be associated with the
‘‘transverse’’ modes. This separation is depicted in Fig. 2.

The various arrows show the pump as energy supplier, addi-
tional loss of atomic coherence due to collisional dephasing
~rate gcoll), spontaneous emission to the transverse-optical
continuum, coherent coupling to the discrete cavity mode
~coupling constantg) and optical loss out of this mode~loss
rate gcav). We restrict our attention to the weak-coupling
regime, i.e.,g!gcav. In that case the coherent coupling and
cavity loss combine to an effective exponential decay from
the excited atomic state to the longitudinal-optical continuum
outside the cavity@9,10#. The spontaneous emission factor
b is then equal to the relative contribution of the latter decay
to the total spontaneous emission rateg rad, which also in-
cludes ~and for b!1 is dominated by! decay to the
transverse-optical continuum. For the atomic system the ra-
diative decay~as T1 process! and collision dephasing~as
pure T2 process! combine to what we will call the atomic
decay rategatom5g rad12gcoll .

In the literature one finds basically two different ap-
proaches to calculateb. These approaches are valid in two
mutually excluding regimes, being determined by the ratio
between the cavity decay rategcav, i.e., the spectral width of
the cavity mode, and the atomic decay rategatom, i.e., the
width of the atomic spontaneous emission spectrum~see Fig.
3!. When gcav!gatom one often speaks about the ‘‘good-
cavity’’ regime, whereasgcav@gatom is then called the ‘‘bad-
cavity’’ regime @11–13#. This nomenclature is somewhat
misleading, as it does not refer to the quality of the cavity, as
determined, e.g., by the mirror reflectivities, in an absolute
sense, but only to the comparison between the field and
atomic decay rates. In this paper the two regimes will there-
fore be denoted by characterizing the nature of the dominant
decay: atom-dominated decay (gcav!gatom) and field-
dominated decay (gcav@gatom).

FIG. 1. Typical geometry for whichb is calculated.
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In the atom-dominated decay regime (gcav!gatom) the
cavity mode has a relatively well-defined frequency. The
standard approach is then to assume full lateral confinement,
by setting the optical quantization volumeVquantequal to the
volumeVcav taken up by the cavity mode, and simply count-
ing the number of modesp with eigenfrequencies falling
underneath the atomic spectral profile. At resonance this
‘‘mode count’’ gives@1,4#

b5
1

p
5

1

4p2 3
l3

Vcav
3

v

gatom
, ~1!

wherel andv are the optical wavelength and optical fre-
quency. In Sec. II we will show that the introduction of rig-
orous lateral confinement is not really neccesary and that the
above result has a much wider validity. By writing the result
as a product of three factorsb is shown to be basically the
inverse of the modal volume, in units ofl3, multiplied by
theQ factor of the atomic transition.

In the field-dominated decay regime (gcav@gatom) the
cavity modes are spectrally broad and it is common to con-
sider the problem from the atomic point of view. When the
emitted light is followed on its path through the cavity, the
interference from the various reflecting surfaces are found to
lead to radiation enhancement for some emission angles and
suppression for others@6–8#. As gcav@gatom this modifica-
tion will be more or less constant over the full spontaneous
emission spectrum and for a very thin (!l) active medium
positioned in an antinode of the optical field one finds at
resonance@5,6#

b5
DVcav

8p S 4

12RD , ~2!

whereDVcav is the solid angle subtended by the cavity mode
andR is the intensity reflectivity of the cavity mirrors.

It is not at all obvious that the above equations~1! and~2!
are limiting cases of a single more general form. In Ref.@1#
a substitution of typical experimental parameters into similar
equations showed their practical equivalence, but a reason

for this was not given. Other papers report numerical calcu-
lations of b as a function ofgatom/gcav and presented the
results in the form of figures, but analytic expressions have
not been given@4,8#. In this paper we will give the analytic
expression and demonstrate the intimate relation between the
two above equations. Furthermore, we will discuss under
which, rather general, conditions these equations are valid
and when they break down. In order to focus on the essential
point we use some simplifying assumptions and skip much
detail. As a consequence, in practical cases the simplified
expressions are correct only to within factors of order unity.
We apologize beforehand for this inconvenience.

In Sec. II we will calculateb by considering the cavity
mode as a single discrete but lossy mode. The derivation is
rather informal and more directed towards insight and appli-
cability than rigor. Reasonable assumptions to simplify the
problem are pointed out. In Sec. III a more formal Fano-type
approach is followed in which the cavity mode is interpreted
as a resonance in the longitudinal mode continuum. In Sec.
IV the resulting expressions are compared, and their applica-
bility is discussed. Finally, conclusions are drawn and a sum-
mary is given.

II. THE ‘‘ONE PHOTON PER MODE’’ PICTURE

The pedestrian view of spontaneous emission is based on
the notion that ‘‘spontaneous emission is equivalent to
stimulated emission produced by vacuum fluctuations, the
latter corresponding to one photon per optical mode’’@14#.
We consider an oscillating dipole at positionrW having an
eigenfrequencyv. Combining the well-known dipolar atom-
field interaction HamiltonianmW •EW (rW) with Fermi’s golden
rule for decay to a continuum of final states one finds that the
spontaneous emission rate of this dipole into each specific
mode i is proportional to ^umW •EW i(rW,v)u2&, where

^uEW i(rW,v)u2& denotes the mean-square vacuum field per unit
frequency. The generic equation for the nowposition and
frequency-dependentspontaneous emission factor follows
immediately:

FIG. 2. Schematic diagram of the couplings between the atomic
excitation, the discrete cavity mode, and the optical continuum.

FIG. 3. Spectra of the spontaneous emission and the cavity reso-
nance.
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b~rW,v!5
^umW •EW cav~rW,v!u2&

( i^umW •EW i~rW,v!u2&
, ~3!

where in the numeratoruEW cav(rW,v)u2 represents the vacuum
field density in the cavity mode at the atomic positionrW and
frequencyv and where the sum in the denominator runs over
all modes.

The position and frequency dependence ofb(rW,v) re-
flects the obvious notion that the amount of spontaneous
emission coupled into the cavity mode depends both on the
position and frequency of the emitting dipoles. The overall
spontaneous emission factorb that appears for instance in
the laser rate equations@1,8# is simply the average value of
b(rW,v) integrated over the positions and spectra of all emit-
ters.

The generic equation~3! immediately suggests some
natural assumptions. For simplicity we assume that:~i! the
radiating dipolesmW are randomly oriented in space,~ii ! the
active medium is spread out over the nodes and antinodes of
the field profileEW cav(rW), ~iii ! the volumeVatom of the active
medium is relatively small (Vatom!Vcav) so that the coarse-
grained field, i.e., the field averaged over regions of a few
cubic wavelengths, is more or less constant over the active
medium, and~iv! the total spontaneous emission rate, i.e.,
the denominator in Eq.~3! which sums over all available
modes, is equal to its value in free space.

Assumption~i! implies that the vector nature drops out of
the problem and assumptions~ii !–~iii ! imply that the active
dipoles interact on average with the same electric-field
strength. Together they allow us to eliminatemW out of Eq.
~3!, thus clearly showing the geometric nature of the prob-
lem. If desired, some of the restrictions can be easily re-
moved. For instanceb can be increased by preferential
alignment of the dipolesmW alongEW cav(rW); this increase is at
most a factor 3. Preferential positioning of the dipoles in the
antinodes of the field yields another factor 2. Also, if the
volume of the active medium is not small compared to the
modal volume, some atoms may couple more efficiently with
the cavity mode than others and the~spatially averaged! b
will decrease as compared tob for a cavity in which a com-
pact active medium is located at the maximum of the modal
field.

Assumption~iv!, which takes the total spontaneous emis-
sion rateg rad to be more or less equal to its free space value,
is of course a crude assumption, as we know that the cavity
leads to enhanced spontaneous emission in some modes and
we are in fact trying to calculate this enhancement and its
effect onb. However, the spontaneous emission will gener-
ally be enhanced only for relatively few modes whereas it
remains unaffected or will even be suppressed for other
modes. Therefore, the cavity mainly leads to a redistribution
over phase space or a directionality of the emitted photons,
but its effect on total emission rateg rad is generally small
and assumption~iv! is approximately valid for cavities with
relatively smallb values~e.g.,b,0.1). Experimentally, it
has been found extremely difficult to change the total spon-
taneous emission rate in optical experiments. Record experi-
ments, leading typically to variations of up to 30%, have
been performed on large-angle concentric cavities@15#,

~sub!wavelength-size cavities with dye solutions@2,16#, and
semiconductor microcavities@16#.

We return now to the calculation ofb. In quantitative
form the notion that ‘‘spontaneous emission is similar to
stimulated emission produced by vacuum fluctuations, the
latter corresponding to one photon per optical mode,’’ means
that the mean-square fluctuating field of the cavity mode

^uEW cav(rW)u2& satisfies the following requirement:

E dVe0^uEW cav~rW !u2&5\v. ~4!

The integral in Eq.~4! can be rewritten as a product by
introducing the effective, i.e., intensity-averaged, modal vol-
ume as

Vcav
eff 5E dV^uEW cav~rW !u2&/^uEW cav,maxu2&, ~5!

where ^uEW cav,maxu2& corresponds to the one-mode vacuum
fluctuations in the spatial region of maximum coarse-grained
intensity. Note that with the above definitionVcav

eff is equal to
the product of the cavity length times thesmallestmode
cross section, assuming that the compact gain medium is
located at that position. When the mode cross section in the
cavity is more or less constant we haveVcav

eff 'Vcav, indepen-
dent of the location of the compact gain medium~in this case
the gain medium may also fill the complete mode volume!.
In a lossy cavity the fluctuating field is distributed over a
Lorentzian spectrum of widthgcav, resulting in

^uEW cav,max~v!u2&5
\v

e0Vcav
eff S 2

pgcav
D ~gcav/2!2

~v2vcav!
21~gcav/2!2

.

~6!

When we apply the same ‘‘one photon per mode’’ argu-
ment to spontaneous emission in free space, we find that
the fluctuating field of each free-space mode is

^uEW (rW)u2&5\v/(e0Vquant), whereVquant is the quantization
volume. Multiplied by the mode density per unit volume per
unit angular frequency ofv2/(p2c3)Vquantwe find the stan-
dard result

^uEW ~rW,v!u2&5
\v

e0

v2

p2c3
. ~7!

Division of Eq. ~6! by Eq. ~7! yields the spontaneous emis-
sion factorb(v) for the case of monochromatic emitters

b~v!5
1

4p2

~l!3

Vcav
eff S v

gcav
D ~gcav/2!2

~v2vcav!
21~gcav/2!2

. ~8!

Integration ofb(v) over the normalized free-space emission
spectrum

L~v!5
gatom/~2p!

~v2vatom!21~gatom/2!2
, ~9!

yields
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b5E dv b~v!L~v!5
1

4p2

l3

Vcav
eff S v

gcav1gatom
D

3
@~gcav1gatom!/2#2

~vcav2vatom!21@~gcav1gatom!/2#2
, ~10!

where we have used that the convolution of two normalized
Lorentzians with widthsgcav andgatomgive a single normal-
ized Lorentzian with a width equal to the sumgcav1gatom.
Note that to obtain this result there was no need for ‘‘hard’’
confinement of the optical field in the transverse direction.
The derivation was based only on ‘‘soft’’ confinement of the
cavity or lasing mode@as given by Eq.~5!# and on the as-
sumptions~i!–~iv!.

At resonance (vcav5vatom) the final result becomes

b5
1

4p2

l3

Vcav
eff

v

gcav1gatom
, ~11!

which is equal to Eq.~1! in the atom-dominated decay
regime, but which contains a correction factor
gatom/(gcav1gatom) otherwise.

III. THE FANO-TYPE APPROACH

In the preceding sectionb was calculated more or lessad
hocby considering the cavity mode as a single discrete mode
with a finite bandwidth due to damping. A more rigorous
route of calculation starts with the combined continuum of
the modes of free space with the cavity embedded in it, i.e.,
the left-hand side of Fig. 2. In this continuum the cavity
mode shows up as a resonant enhancement of the field
strength inside the cavity around the mode frequency. These
continuum mode functions may be viewed upon as stationary
scattering states of the Maxwell field, which automatically
account for the coupling between the discrete cavity mode
and the optical continuum outside the cavity. In the limit
R'1, whereR is the intensity reflectivity of the mirrors, the
resonant enhancement factor of the optical intensity inside
the cavity as compared to that outside, is given by@17,18#

A~v!5S 2v fsr

pgcav
D ~gcav/2!2

~v2vcav!
21~gcav/2!2

, ~12!

where vcav is the cavity resonance frequency and
v fsr5pc/L is the free spectral range. The interfering reflec-
tions are found to structure the originally ‘‘white’’ con-
tinuum into a Lorentzian-shaped spectrum. The enhancement
and suppression is such that the integral ofA(v) over a full
free spectral range remains unaffected; the cavity resonance
only leads to a redistribution of the spectral intensity. For the
symmetric cavity sketched in Fig. 1, the decay rate of the
intracavity intensity is easily found to be

gcav5
12R

p
v fsr5

v fsr

F
, ~13!

whereF is called the cavity finesse.
Our aim is to obtain the distribution of the spontaneously

emitted photons over the modes of the structured continuum,
which also yields the factorb. For this purpose Fano’s di-

agonalization procedure@19# is well suited, where we now
have to account for the resonance structure of the atom-field
coupling. This procedure gives the eigenstates for a system
consisting of a single discrete stateu0& coupled to a con-
tinuum. Since Fano’s approach requires a pure-state descrip-
tion of the atom-field system, it cannot account for external
perturbations such as collisions. Therefore we first restrict
ourselves to the case of a free atom coupled to the radiation
field, i.e.,gcoll50. We denote the excited state of the atom
without photons byu0&, and the ground-state atom combined
with a photon of frequencyv propagating in the direction
V by uv,V&. The continuum states are normalized according
to

^v,Vuv8,V8&5d~v2v8!d~V2V8!. ~14!

The system is described by a Hamiltonian with a coupling
between the excited stateu0& and the continuum equal to

E E dv dVu0& f ~v,V!^v,Vu1$Hermitian2conjugate%.

~15!

Here f (v,V) contains the transition dipole moment multi-
plied by the normalized-mode function inside the cavity at
the position of the atom. Fano diagonalization gives formal
but exact expressions for normalized eigenstates of the
Hamiltonian including the atom-field interaction@19#. If we
expand the initial stateu0& in these eigenstates, the long-time
evolution immediately gives the probability distribution over
the frequencyv and directionV of the emitted photons in
the form

p~v,V!5
u f ~v,V!u2

~v2vatom2Dv!21~gatom/2!2
, ~16!

whereDv is a small Lamb-type frequency shift, which will
be neglected. The radiative transition rategatom is related to
the coupling strength by the relation:

gatom52pE dVu f ~v,V!u2. ~17!

These results~16! and~17! are justified when the right-hand
side of Eq. ~17! varies negligible with the frequencyv
within a width of the ordergatom. Then we may equate the
frequencyv to vatom in ~17! and one easily checks that the
distribution ~16! is normalized, as it should.

It is now an easy matter to extract an expression forb, if
we once more use a quasi-one-dimensional approach and as-
sume that only a well-defined fraction of modesuv,V& is
affected by the cavity, i.e., only the longitudinal modes for
which V lies within the space angleDVcav. For V outside
this space angleu f (v,V)u2 is not affected by the cavity and
must have the valueg0 /(8p2), with g0 the free-space decay
rate@see Eq.~17!#. Within DVcav, u f (v,V)u2 is enhanced by
the factorA(v) given in Eq.~12!. Hence the atomic decay
rate ~17! is equal to

gatom5S 12
DVcav

4p Dg01
DVcav

4p
g0A~v!. ~18!

3556 54M. P. van EXTER, G. NIENHUIS, AND J. P. WOERDMAN



The spontaneous emission factor is found by integrating Eq.
~16! over frequency and the solid angleDVcav with as result

b5DVcav

g0

8p2E dv
A~v!

~v2vatom!21~gatom/2!2
. ~19!

In principle Eq. ~18! allows for a large deviation of the
atomic decay rategatom from the free-space value, in which
casegatom can even become frequency dependent. Likewise,
b as given by Eq.~19! can have an appreciable value so that
the restrictionb!1 does not necessarily apply. For conve-
nience, however, we assume that the total decay rate is
hardly affected, so thatgatom'g0. In this case the integral in
Eq. ~19! can be directly performed, and we obtain

b5
DVcav

4p

v fsr

2

~gcav1gatom!/~2p!

~vcav2vatom!21~gcav1gatom!2/4
,

~20!

where an extra factor 1/2 has been applied to single out one
polarization of the cavity mode.

If we now once more specialize to the resonant case
(vatom'vcav) we find

b5
DVcav

8p

2v fsr /p

gcav1gatom
5

DVcav

8p S 2

12RD gcav

gcav1gatom
,

~21!

which in the cavity-dominated decay regime (gcav@gatom) is
a factor 2 smaller than Eq.~2!, because here we assumed the
atoms to be evenly distributed over the nodes and antinodes
of the field instead of concentrated in the antinodes, but
which contains an extra correction factorgcav/(gcav1gatom)
otherwise.

The effect of collisions, or any other type of dephasing,
on the distribution of emitted photons over the modes can be
easily incorporated when the duration of collisiontc may be
ignored. This is the case in a spectral region of the order of
1/tc around resonance, where the impact theory of line
broadening holds. Then the effect of collisions is a simple
additional damping of the transition dipole at a rategcoll and
the autocorrelation function of the dipole is simply multi-
plied by the exponential exp(2gcollt). This implies that the
distribution Eq.~16! must be convoluted by the normalized
Lorentzian with width 2gcoll , which again gives Eqs.~20!
and ~21!, with gatom5g rad12gcoll , but now for the general
casegcollÞ0.

IV. DISCUSSION AND CONCLUSION

After having extended the two simplified expression of
b found in the literature into the more general Eqs.~11! and
~21! it is easy to show that these are in fact equivalent: it is
sufficient to rewrite the effective modal volumeVcav

eff as the
product of cavity lengthL times minimum mode areaA and
to use the diffraction result

DVcav'
2l2

A
. ~22!

Uncertainties to within a factor of order unity not only stem
from the exact nature of the transverse-optical boundary con-

ditions, but also from the specific definition ofDVcav and
A, which can be, e.g., either in terms of full widths at half
maximum or in terms of integrals over the mode profile.
Whether Eq.~11! or Eq. ~21! is more convenient depends in
practice on the geometry of the cavity.

It follows directly from our analysis that for a given cav-
ity b is largest when the spontaneous emission spectrum is
narrow, while for a given emission spectrumb is largest in a
narrow-band cavity. Separately, these statements may also be
found in the literature@6,4,8#. However, stressing only one of
the two statements, in a phrase like@8# ‘‘the atomic-gain
linewidth must be narrower than the cold-cavity linewidth to
realize the optimumb ’’ is somewhat misleading, since it is
now obvious that to obtain a largeb both the cavity decay
rategcav and the atomic decay rategatom have to be small.

In the case of an inhomogeneously broadened atomic
spectrum the various homogeneous components will gener-
ally interact differently with the cavity and lead to different
b ’s. By settinggatom in the various equations equal to the
homogeneous linewidth one findsb for a specific class of
atoms, e.g., for the ‘‘resonant’’ atoms that couple most
strongly with the cavity mode, whereas a spectrally averaged
value is found when the inhomogeneous linewidth is in-
serted.

In assumption~iv! of Sec. II the total spontaneous emis-
sion rate, summed over all available modes, was set equal to
its free-space value. This is only reasonable forb!1, and
can bead hocgeneralized by taking the ratiob/(11b), with
b as defined in Eq.~11! or Eq. ~21!, as a better expression
for the spontaneous emission factor. A simple justification
for this repair is that the latter expression shows the proper
asymptotic behaviorb→1 for small modal volumes and
largeDVcav andR, whereas Eq.~11! and Eq.~21! do not.
The repair implies that we separate the sum in the denomi-
nator of Eq.~3! into the cavity mode and the other modes
and assume that the spontaneous emission summed over
these other modes, which generally take up most of the phase
space, remains unaffected by the cavity.

Up to now we have avoided a discussion about the exist-
ence of a refractive index different from 1. Inclusion of such
a refractive index is straightforward and we have in fact writ-
ten all equations forb given above in such a form that they
remain valid whenl is taken to be the actual wavelength
inside the gain medium for a uniformly filled cavity and a
suitable weighted average of the wavelength in the medium
and the vacuum wavelength for a partially filled cavity. In-
clusion of dispersion, in the form of a frequency-dependent
refractive index, is more difficult, for instance, because the
amount of dispersion will generally depend on the degree of
atomic excitation.

Three types of cavities play a rather prominent role in the
literature: the concentric and confocal cavity, both of which
are popular in atomic beam experiments@15,20#, and the
planar Fabry-Perot cavity, which is often used for miniature
dye lasers or for semiconductor vertical-cavity surface-
emitting lasers@1,2,7#. For a concentric cavity the finite mir-
ror dimensions limit the opening angleDVcav of the cavity
mode andb can be directly evaluated from Eq.~21!. For
such a cavity Eq.~11! is of course also applicable, but it now
becomes important to use Eq.~5! as a proper definition for
the effective modal volume. For a confocal cavity the situa-

54 3557TWO SIMPLE EXPRESSIONS FOR THE SPONTANEOUS . . .



tion is less favorable as the opening angle of the fundamental
TEM00 mode is generally much smaller, being basically de-
termined by the cavity or mirror focal length. However, in
Ref. @21# Morin, Yu, and Mossberg discuss how in this case
the frequency degeneracy of transverse and longitudinal
modes allows one to construct linear combinations in the
form of ‘‘hour-glass modes’’ that still have a large opening
angle. To obtain a largeb the gain medium should then be
well localized in the waist of one specific hour-glass mode as
the different hour-glass modes are spatially incoherent.

For a planar cavity the situation is not so clear, because
ideally there is no optical confinement in the in-plane direc-
tion, and it is thus difficult to define a single discrete cavity
or lasing mode. The obvious choice is to use the interference
condition for the intracavity light as a means to define a
modal opening angleDVcav and related coherence area@8#.
Substitution of the relevant expressions into either Eq.~11!
or Eq. ~21! shows that in a planar cavityb is of the order of
l/(2L) times@11gcav/(gcav1gatom!#

21 and will in practical
cavities never approach unity, basically because an increase
of the cavity finesse automatically leads to an equal increase
of modal volume Vcav

eff and decrease of opening angle
DVcav @5,8,16#.

In conclusion we have rederived, in two different ways,
the two simplified expressions forb that exist in the litera-
ture and extended them to be valid for any ratiogatom/gcav of
the atomic over the cavity decay rate. The resulting expres-
sions~11! and~21! are valid under rather general conditions
@see assumptions~i!–~iv!#. In most cases they provide a rea-
sonable first estimate ofb. They show that to obtain a large
b both the modal volume and the volume of the active me-
dium should be small, in combination with low field and
atomic-decay rates. These criteria are linked to a large open-
ing angle for the cavity mode@Eq.~22!#, and a large field
enhancement or equivalently a high mirror reflectivity@Eqs.
~12! and ~13!#.
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