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We report experimental observations of modulational instability of copropagating waves in a highly bire-
fringent fiber for the normal dispersion regime. We first investigate carefully the system behavior by means of
nonlinear Schro¨dinger equations and phase-matching conditions, and then, experimentally, we use two distinct
techniques for observing MI~modulational instability! in the fiber; namely, the single-frequency copropaga-
tion, where two pump waves of identical frequency copropagate with orthogonal polarizations parallel to the
two birefringence axes of the fiber, and the two-frequency copropagation, where the two polarized waves
copropagate with different frequencies. In both cases the GVM~group-velocity mismatch! of the two copropa-
gating waves appears as the particularly important parameter which governs the system behavior. For the
single-frequency copropagation, the GVM is simply proportional to the intrinsic birefringence of the fiber and
therefore varies only very slightly versus the wavelength, and there exists a nonzero critical power for the input
wave above which MI vanishes@Phys. Rev. A42, 682 ~1990!#. In the two-frequency-copropagation regime,
however, the GVM becomes a variable parameter, that is, a realcontrol parameterfor MI, whose value can be
easily tuned over a wide range by just changing the wavelength separation between the two pump waves. For
several values of the GVM we show that the two-frequency-copropagation regime provides a richer spectrum
of behavior than the single-frequency copropagation. Most of the richness comes from the existence of par-
ticular values of pump wavelengths for which MI disappears for all input-wave power, that is, the existence of
acritical regimein which the critical power becomes zero. This behavior is drastically different from what was
previously observed in the single-frequency configuration.@S1050-2947~96!02710-2#

PACS number~s!: 42.65.Re, 42.81.Dp

I. INTRODUCTION

Several remarkable nonlinear phenomena have already
been observed in optical fibers. A typical example is the MI
~modulational instability! phenomenon, which is an effect
induced by the interaction between nonlinear and dispersive
effects@1#. More specifically, MI is a phenomenon in which
a continuous wave propagating in a nonlinear medium un-
dergoes, in the presence of weak noise or any other small
perturbation, a modulation of its amplitude or phase, which
can ultimately end up in breaking up the wave into small
pulses~solitons!.

Although the instability of electromagnetic waves propa-
gating in nonlinear media was already predicted many de-
cades ago@2–4#, the first experimental observation of MI in
an optical fiber was obtained only in the last decade@5#. The
experimental evidence was then given that MI can be ob-
served in a nonbirefringent fiber with anomalous group-
velocity dispersion@5#. This result has been confirmed sub-
sequently by other observations of MI in the anomalous
dispersion regime@6–10#.

There has also been a considerable effort to gain insight
into MI processes in birefringent fibers@11–19#. One of the
main results of these studies was obtained by Wabnitz@15#,
who carried out a theoretical analysis of the single-
frequency-copropagation regime and demonstrated that MI

can occur for the normal dispersion regime in a weakly bi-
refringent fiber. The experimental evidence was given sub-
sequently by Rothenberg@20# and Drummond and co-
workers @21#, who observed MI of optical waves
copropagating in the normal dispersion regime in strongly
birefringent fibers, and recently by Murdoch and co-workers
@22#, who observed MI in weakly birefringent fibers. The
technique used in those experiments@20–22# for obtaining
MI is the single-frequency copropagation. An interesting re-
sult in Ref.@20# is the demonstration that there exists a non-
zero critical wave power above which MI vanishes; this im-
plies that MI will always occur in the single-frequency-
copropagation regime if the input-wave power is sufficiently
small.

On the other hand, Drummond and co-workers@21# have
pointed out the important feature that the appearance of MI
in a highly birefringent fiber is due to the group-velocity
mismatch ~GVM! between the two copropagating waves.
Then, using the classical coupled set of incoherently coupled
NLSE ~nonlinear Schro¨dinger equations!, they showed that
the importance of the MI phenomenon progressively de-
creases as the GVM decreases, and vanishes when the GVM
becomes zero. But Drummond and co-workers@21# left un-
explained how one can practically obtain a zero GVM for a
single frequency-copropagation regime in a highly birefrin-
gent fiber. In fact, in this regime, the GVM is simply propor-
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tional to the value of the intrinsic birefringence@20#, and
therefore a zero GVM corresponds to the limit case where
the intrinsic birefringence becomes exactly zero. Conse-
quently, the zero-GVM case considered in Ref.@21#, where
MI disappears, corresponds in fact to the limit case where the
fiber becomes nonbirefringent, which invalidates the coupled
NLSE model used to obtain this result.

Parallel to these studies for the single-frequency-
copropagation regime for birefringent fibers, there have also
been numerous investigations of MI for the two-frequency-
copropagation regime, carried out via various theoretical ap-
proaches and sometimes supported by numerical simulations
@13,23#. One of the main results that emerges from these
investigations is the prediction that MI can occur in a highly
birefringent fiber for two copropagating frequencies in the
normal dispersion regime. Nevertheless, to our knowledge,
so far no experimental observation of MI for two copropa-
gating frequencies has been reported to support this predic-
tion.

In the present work, we carefully examine the behavior of
a highly birefringent fiber in the normal dispersion regime
and provide a general picture describing the outstanding
manifestations of the MI process and some related phenom-
ena for single-frequency copropagation as well as for the
two-frequency copropagation. In particular we provide ex-
perimental observations of MI for two copropagating fre-
quencies in a highly birefringent fiber. We consider several
wavelength separations between the copropagating waves,
and obtain a richer spectrum of behavior than the behavior
found for the typical single-frequency-copropagation regime.
We show in particular that there exist critical wavelength
separations between the pump waves for which MI never
appears, whatever the input-wave power and the fiber length.
We refer to this behavior as the ‘‘critical regime.’’ Further-
more, as another phenomenon related to MI, we obtain ex-
perimental spectra showing Raman effects induced by the
sidebands of the pump waves for the single-frequency co-
propagation as well as for the two-frequency copropagation.

The paper is organized as follows. In Sec. II we briefly
review the theoretical description of our system in terms of
coupled NLSE and obtain formulas that give the functional
dependence of the frequency spectrum upon the GVM, the
intrinsic birefringence, and the frequency separation between
the pump waves. In Sec. III we present our experimental
observations of MI and related phenomena. Finally in Sec.
IV we give some concluding remarks.

II. THEORETICAL STUDY

A. Coupled nonlinear Schrödinger equations

The NLSE have been shown to provide an approximate
but fairly accurate description of two copropagating waves in
birefringent fibers@13,20–23#. In the present work we con-
sider a lossless fiber with a strong intrinsic birefringence, in
which two waves, polarized, respectively, along the two bi-
refringence axes, copropagate along thez axis, in the normal
dispersion regime. In this subsection we focus on the de-
scription of the two-frequency copropagation, where the two
waves vibrate at different angular frequenciesvp andvq .
Whenever it will be convenient, the single-frequency co-
propagation can be obtained by just makingvp5vq .

Throughout the paper, thex axis designates the birefringence
axis with the lowest refractive index, whereas they axis
designates the birefringence axis with the highest refractive
index. Later on, thex andy axes will be simply referred to as
the ‘‘fast axis’’ and ‘‘slow axis,’’ respectively. We will also
assume, unless specified, that the wavevp is polarized along
the fast axis, andvq along the slow axis. In this context,
each of the frequenciesv r (r5p,q) is related to a group
velocity

vgx,vp
[S dv

dkx
D

v5vp

and vgy,vq
[S dv

dky
D

v5vq

, ~1!

wherekl ( l5x,y) designates the wave number components.
The corresponding group-velocity-dispersion coefficients are
defined by

b2p[S d2vdkx
2 D

v5vp

21

and b2q[S d2vdky
2 D

v5vq

21

. ~2!

The field amplitudeAr (r5p,q) is related to the input-wave
powers@5#

P[uApu2, Q[uAqu2. ~3!

Then, expandingkl ( l5x,y) in a Taylor series around the
two input-wave frequencies, the amplitudesAp andAq of the
electric fields are found to satisfy the following set of
coupled NLSE:

]Ap

]z
1

1

vgx,vp

]Ap

]t
1
1

2
ib2p

]2Ap

]t2

5 igpF S uApu21
2

3
uAqu2DAp

1
1

3
Ap*Aq

2exp@2i ~zDk2tDv!#G , ~4!

]Aq

]z
1

1

vgy,vq

]Aq

]t
1
1

2
ib2q

]2Aq

]t2

5 igqF S uAqu21
2

3
uApu2DAq

1
1

3
Aq*Ap

2exp@2i ~ tDv2zDk!#G , ~5!

where t is the time,Dv[vq2vp , and Dk[ky2kx . In
these equations, the nonlinear coefficients are written

gp[
n2vp

c~Aeff!p
, gq[

n2vq

c~Aeff!q
, ~6!

where c designates the light velocity,n253.2310216

cm2/W is the nonlinear index coefficient, and~Aeff!r
(r5p,q) designates the effective core area for the wavev r .
The group-velocity mismatch of the two waves is then de-
fined as

3520 54E. SEVEet al.



d[
1

vgy,vq

2
1

vgx,vp

. ~7!

Furthermore, as the variation of the intrinsic birefringence
as a function of the frequency is known to be negligible in
the parameter regions that are usually considered in practice,
the GVM, Eq. ~7!, can be approximated, for the single-
frequency copropagation, by

d0[
B

c
, ~8!

where B[ny2nx designates the intrinsic birefringence of
the fiber. For the two-frequency copropagation, however, the
GVM depends not only on the birefringenceB, but also on
the frequencies of the two pump waves. So, when the fre-
quency interval between the two pump waves is not too
large, the GVM is found to be approximately

d5d01~vq2vp!S b2p1b2q

2 D . ~9!

We would now like to emphasize the fact that
the importance of the contribution of the coherent
coupling terms 1

3Ap*Aq
2exp(2izDk)exp(22itDv) and

1
3Aq*Ap

2exp(22izDk)exp(2itDv), in the right-hand sides of the
NLSE ~4! and ~5!, respectively, depends crucially on the
value of the GVM@13,23#. For large GVM, these terms are
usually considered as being negligible because they are rap-
idly varying. For small GVM, however, the wave vector mis-
match decreases and their contribution must be investigated.
As we shall see below, these terms only play a role in a very
small parameter range which is outside the operating condi-
tions of interest in the present paper. Consequently, through-
out this section, we disregard the coherent coupling terms in
the right-hand sides of the NLSE~4! and ~5! and use the
following equations:

]Ap

]z
1

1

vgx,vp

]Ap

]t
1
1

2
ib2p

]2Ap

]t2

5 igpS uApu21
2

3
uAqu2DAp , ~10!

]Aq

]z
1

1

vgy,vq

]Aq

]t
1
1

2
ib2q

]2Aq

]t2

5 igqS uAqu21
2

3
uApu2DAq , ~11!

that will be referred to as the ‘‘ICE’s’’~incoherently coupled
equations!. We will see later on that these ICE’s give results
which agree extremely well with the experimental data for
large GVM. For small GVM the agreement is only qualita-
tive but the prediction of the critical regime is effective. The
benefit of using the ICE’s is that the calculations required for
obtaining the frequency spectra represent only a very small
fraction of the amount of calculations required when using

the NLSE~4! and ~5!. On the other hand, we would like to
call the reader’s attention to the fact that we do not investi-
gate theoretically Raman effects in the present paper, al-
though those effects are present in some experiments that
will be presented in Sec. III.

B. Modulational instability conditions

Equations~10! and ~11! admit the following steady state
solution:

Ap5APexp@ igp~P12Q/3!z#,

Aq5AQexp@ igq~Q12P/3!z#.
~12!

The linear stability of the steady state solution is exam-
ined by looking into the system in the presence of small
amplitude and phase perturbationsu andv; that is, we con-
sider

Ap5~AP1u! exp@ igp~P12Q/3!z#,

Aq5~AQ1v ! exp@ igq~Q12P/3!z#.
~13!

Then, the linearization aboutAp,q yields

]u

]z
2

d

2

]u

]t
1
ib2p

2

]2u

]t2
5 igpFP~u1u* !1

2

3
APQ~v1v* !G ,

~14!
]v
]z

1
d

2

]v
]t

1
ib2q

2

]2v
]t2

5 igqFQ~v1v* !1
2

3
APQ~u1u* !G ,

~15!

t[t2zF12 S 1

vgx,vp

1
1

vgy,vq
D G .

Then we assume for the perturbation a modulational an-
satz with wave numberK and frequencyV, of the form

u5usexp@ i ~Vt2Kz!#1uaexp@ i ~2Vt1Kz!#, ~16!

v5vsexp@ i ~Vt2Kz!#1vaexp@ i ~2Vt1Kz!#, ~17!

whereus andua can be regarded, respectively, as the mea-
sures of the amplitudes of the Stokes and anti-Stokes side-
bands for the fast axis, whereasvs and va represent the
Stokes and anti-Stokes sidebands for the slow axis.

Substitution of Eqs.~16! and~17! into Eqs.~14! and~15!
leads to the following eigenvalue equation:

@M #@Y#5K@Y#, ~18!

where the eigenvector is defined as

@Y#T[@ua ,us* ,va ,vs* #, ~19!

[M ] is the stability matrix of the system,
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@M #[S 2
Vd

2
1b2p

V2

2
1gpP gpP

2
3gpAPQ 2

3gpAPQ

2gpP 2
Vd

2
2b2p

V2

2
2gpP 2 2

3gpAPQ 2 2
3gpAPQ

2
3gqAPQ 2

3gqAPQ
Vd

2
1b2q

V2

2
1gqQ gqQ

2 2
3gqAPQ 2 2

3gqAPQ 2gqQ
Vd

2
2b2q

V2

2
2gqQ

D , ~20!

from which we obtain the following dispersion relation:

det~@M #2K@ I # !50. ~21!

The MI phenomenon occurs when the wave numberK of
the perturbation possesses a nonzero imaginary part, by an
exponential growth of the amplitude of the perturbation. The
importance of the phenomenon is measured by a power gain
G defined by

G~v![2uIm~K !u. ~22!

We have found out that the phenomenon manifests itself in
qualitatively different ways depending on whether the two
copropagating waves vibrate at the same frequency or not.
For the sake of clarity, we discuss the two cases separately.

C. Single-frequency-copropagation regime

In this subsection we briefly review a particularly inter-
esting case that occurs when the input-wave power is equally
distributed along the two birefringence axes, for a single-
frequency-copropagation regime, that is,P5Q. Indeed, in
this case,g[gp5gq , b2[b2p5b2q; which leads to the fol-
lowing expression for the dispersion relation~21!:

K25r1j26@~r1j2!21C22~r2j2!2#1/2, ~23!

r[ 1
2b2V

2~ 1
2b2V

212gP!, ~24!

C[ 2
3V2~Pgb2!, ~25!

j[ 1
2Vd. ~26!

We recall that in this copropagation regime, the GVM
reduces tod05B/c. So, Eq.~23! yields the condition for the
MI phenomenon to occur, that is,

C22~r2j2!2.0. ~27!

Figures 1~a!, 1~b!, and 1~c! show, respectively, the gain spec-
tra for different powers, the peak gain vs powerP, and the
optimum modulation frequency—defined as the frequency at
which the gain attains its maximum value and denoted
Fmod-ICE in Fig. 1~c!. These figures have been obtained for a
pump wave at 532-nm wavelength, propagating in an optical
fiber with a birefringenceB55.731024, which corresponds
to the following parameter values:d051.9 ps/m,g544.9
W21 km21, andb2565.69 ps2 km21.

As a general result, one finds out that the MI phenomenon
manifests itself inV-frequency regions which depend on the
input-wave power level. The following table summarizes the
different cases:

Power domain Instability domain

P,P0 V0,V,Vc

P0,P,Pc V,Vc

P.Pc no MI

where

FIG. 1. Single-frequency-copropagation regime atl5532-nm
wavelength~GVM d051.9 ps/m! and the same input-wave powerP
for each birefringence axis.~a! MI gain vs frequency forP5500,
250, 125, and 60 W.~b! MI peak gain vs powerP ~solid curve!. ~c!
Optimum modulation frequencyFmod-ICEvs powerP ~solid curve!.
In ~b! and ~c!, the dotted curves represent the results for the two-
frequency-copropagation regime of GVMd52d0, which is dis-
cussed in Sec. II D.
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P05
3d0

2

20gb2
, Pc~vp5vq![

3d0
2

4gb2
, ~28!

Vc
2[~2p f c!

25S d0
b2

D 22 4gP

3b2
, ~29!

V0
2[~2p f 0!

25S d0
b2

D 22 20gP

3b2
, ~30!

Vc andV0 are, respectively, the high and low cutoff frequen-
cies,P0 is the power at which the low cutoff frequency be-
comes zero, andPc is the critical power beyond which the
MI phenomenon disappears.

The results in Fig. 1 are similar to those obtained by Roth-
enberg@20#, except very slight differences in the instability
regions as well as in the amplitude of peak gain, which are
simply due to the difference in the fiber parameters. We see
in Fig. 1~a! that the unstable frequency regions get narrower
as the power decreases, and in the limit of low power, reduce
to an OMF ~optimum modulation frequency!
Fmod-ICE5Vc/2p'V0/2p'(1/2p)(d0/b2)54.6 THz. Fig-
ure 1~b! shows that the peak-gain power dependence exhibits
a maximum atP5318 W, and then decreases and vanishes
as soon asP exceeds the critical powerPc5918 W. Figure
1~c! shows that the OMF decreases monotonically to zero as
P increases.

The case just considered,P5Q, is particularly interesting
because the MI gain attains its maximum when the input-
wave power is equally distributed between the two birefrin-
gence axes. This appears clearly in Fig. 2, obtained by solv-

ing numerically the dispersion relation~21!, and where the
sideband is represented for different values of the ratioP/Q
but with constant total powerP1Q. Figures 2~a! and 2~b!
correspond, respectively, toP1Q5100 and 800 W. We see,
as expected for an optical fiber in the normal dispersion re-
gime, that MI progressively vanishes when an increasingly
large part of the total input power is introduced on one bire-
fringence axis and only a small fraction on the other axis.
Moreover we note in Fig. 2~a! that the OMF does not depend
significantly on the power ratioP/Q ~Fmod-ICE'4.22 THz!.
As we shall see in Sec. III, this peculiar feature has been
verified experimentally. This result shows that the analytical
solution obtained in Eq.~23! for P5Q can also be used for
quickly obtaining a good estimation of the OMF forPÞQ,
provided that the total input powerP1Q is not too large. On
the other hand, we see in Fig. 2~b! that at higher power, the
OMF varies significantly with respect to the polarization of
the input waves, which implies that one can no longer use
Eq. ~23! for approximating the OMF forPÞQ.

We conclude this subsection by pointing out the particu-
larly important feature that the critical powerPc @see Eq.
~28!# beyond which MI disappears never becomes zero in the
single-frequency-copropagation regime. This implies that in
a highly birefringent fiber, if two waves, orthogonally polar-
ized, copropagate with the same frequency, there will always
exist a range for the input-wave power in which MI will
appear. The question then arises as to whether the system
exhibits the same type of behavior when the two waves co-
propagate at different frequencies.

D. Two-frequency-copropagation regime

In this subsection we consider the system in the presence
of two waves copropagating at different wavelengths,lp
~along the fast axis! andlq ~along the slow axis!. This co-
propagation regime is particularly interesting because of the
possibility to vary the GVM. Equation~9! shows that this
variation can be achieved by just varying the wavelength
separation between the two pump waves. We have obtained
a description of the system by solving the general dispersion
relation~21!. The system exhibits qualitatively different fea-
tures depending on the value of the GVM. For clarity we
present the different cases separately.

1. ICE study for large positive GVM:d @d0

A typical example of the system behavior for large posi-
tive GVM is shown in Fig. 3, obtained forlq5532 nm and
different values forlp , by using the same input powerP5Q
for each birefringence axis. The wavelengthlp is chosen
larger thanlq in such a way that, due to the normal disper-
sion, the GVM is larger thand0 @see Eq.~9!#. The chosen
wavelength pairs (lp ,lq) correspond in fact to those which
have been used in some experiments that will be presented in
Sec. III. We see in Fig. 3~a! that the peak gain is, for the
same input power, much larger than for the single-frequency
copropagation@Figs. 1~a! and 1~b!#. But the greatest qualita-
tive difference in Fig. 3 comes from the critical-power levels,
which are two orders of magnitude larger than in the single-
frequency case illustrated in Fig. 1. These high-power levels,
in Fig. 3, are of course unpractical with an optical fiber as
nonlinear medium. In fact only the low-power region~less

FIG. 2. MI gain vs frequency for the single-frequency-
copropagation regime at 532-nm wave-length, for different values
of the ratio of the input power on the fast axisP related to the input
power on the slow axisQ but with a constant total powerP1Q.
The curves correspond to different values of the ratioP/Q of 1, 1/4,
1/16, and 1/99.~a! P1Q5100 W. ~b! P1Q5800 W.
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than 1 kW! corresponds to power levels that can be reached
in a fiber. Nevertheless, the important point in Fig. 3 is the
indication that at high GVM the MI gain is large and the
critical power is well above any practical power level; which
implies that practical situations in whichd @d0 might be
extremely favorable for monitoring MI in a highly birefrin-
gent fiber.

Furthermore we see in Fig. 3~b! that at low power the MI
frequencies are much larger than in the case of Fig. 1~c!. For
example, we see in Fig. 3~b!, for the wavelength pair
~lq5532 nm,lp5581 nm!, that the OMF forP59 W ap-
pears atFmod-ICE552.41 THz. It is interesting to note that the
eigenvector corresponding to the unstable eigenvalue in this
situation is given by @ua ,us* ,va ,vs* #5@0.4610.75i ,0,0,
20.5710.82i #. This expression reveals that the whole sys-
tem with two pump waves~lq5532 nm,lp5581 nm! gen-
erates in fact only two sidebands: an anti-Stokes sidebandua
on the fast axis, and a Stokes sidebandvs on the slow axis.
Moreover, knowing that the wavelength pair~lq5532 nm,
lp5581 nm! corresponds to a frequency difference
(1/2p)(vq2vp)547.56 THz, it becomes clear that the
Stokes sideband developed on the slow axis appears at 52.41
247.5654.85 THz belowvp , whereas the anti-Stokes side-
band developed on the fast axis appears at 4.85 THz above
vq . This shows that at low power, for large positive GVM,
MI generates two sidebands, which takes place outside the
frequency interval between the two pump waves. All these
general features are verified for all practical power levels in
the fiber~less than 1 kW!. Indeed we see in Fig. 3~b! that the
OMF varies only very slightly in this power region.

2. ICE study ford52d0

We consider the particular situation in which the wave-
length pair (lp ,lq) is such that the GVM is equal to that of
the single-frequency-copropagation regime but with opposite
signd52d0. In this case then, the wavelengthlp is smaller
thanlq so that the group velocity on the fast axis becomes
larger than that on the slow axis. We have verified that the
wavelength pair~lp5532 nm, lq5540.9310 nm! yields
d52d0521.9 ps/m. This situation is illustrated by the dot-
ted curves in Figs. 1~b! and 1~c! @note that the dotted curve in
Fig. 1~c! corresponds in fact to the magnitude of the OMF#.
As can be easily shown from the symmetries of the stability
matrix [M ], Eq. ~20!, the sign ofd does not affect the mag-
nitude of the MI frequency. The slight differences observed
in Figs. 1~b! and 1~c! are due to the differences in nonlinear
coefficients and dispersions, which for the wavelq are now
gq543.03 W21 km21 and bq564.24 ps2 km21, which are
slightly different from g544.9 W21 km21 and b2565.69
ps2 km21.

Therefore it becomes clear that for a given input power
the GVM is really thecontrol parameterthat governs the MI
phenomenon in the system, in the sense that the variation of
this parameter can be used for obtaining the operating con-
ditions of the system including, in particular, the phenomena
observed in the single-frequency-copropagation regime.
Note on the other hand that as shown in Figs. 1~b! and 1~c!,
the single- and two-frequency-copropagation regimes for
GVM of magnitude 1.9 ps/m exhibit general features similar
to those mentioned above for large GVM, except two major
points: first, the critical power is significantly reduced com-
pared to the critical-power levels in Fig. 3. Second, the
eigenvectors of the system, which are shown in Fig. 4, reveal
that MI generates four sidebands at power levels which are
accessible in an optical fiber, contrary to the larged case

FIG. 3. Two-frequency-copropagation regime for large GVM
and the same input power for each birefringence axis. The curves
correspond~from the largest to the smallest! to the wavelength pairs
~lp5588 nm, lq5532 nm!, ~lp5581 nm, lq5532 nm!, and
~lp5575 nm,lq5532 nm!. The corresponding GVM’s are, re-
spectively,d522.6640, 20.4300, and 18.4420 ps/m.~a! MI gain vs
powerP. ~b! OMF vs powerP.

FIG. 4. Eigenvectors of the system for the two-frequency-
copropagation regime withd52d0. The curves correspond to the
intensities of the sidebands, normalized to the highest intensity of
the four sidebands:uūa,su

2[uua,su
2/Max(uuau

2,uusu
2,uvau

2,uvsu
2),

uv̄a,su
2[uva,su

2/Max(uuau
2,uusu

2,uvau
2,uvsu

2).
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considered previously where only two sidebands were gen-
erated. More specifically, the two following points emerge
from the analysis of the cased52d0 shown in Fig. 4: first,
we see that for sufficiently low-power levels~compared to
the critical power!, ua'vs'0, thus indicating that MI gen-
erates a Stokes sidebandus on the fast axis on which the
pump wave has the highest frequencyvp , and an anti-Stokes
sidebandva on the slow axis. The second point is that as the
input power increases the importance of the sidebandsua
andvs becomes less and less negligible. As a matter of fact
when the power approaches the critical power, the magni-
tudes of these sidebands increase abruptly until becoming
exactly equal to the intensities of the sidebandsus and va
that were initially prominent. In conclusion, our analysis of
the eigenvectors of the stability matrix reveals that the indi-
vidual contributions of the four sidebands to the frequency
spectrum of the system depends crucially on the input power
level. Note that although it has not yet been previously rec-
ognized, this fundamental feature also characterizes MI in
the single-frequency-copropagation regime considered in
Refs.@20–22#.

3. ICE study forlp5576 nm andzd z<d0

Figure 5 shows the results that we have obtained by tak-
ing the same wavelength pairs~lp5576 nm,lq! as those
used in some experiments that are presented in Sec. III. At
first glance this figure exhibits the same general features as
those mentioned previously. In particular, we observe that
the critical-power level decreases significantly asudu de-
creases. However, a careful examination of the eigenvectors

of the system reveals some fundamental differences that be-
come clearly apparent in Fig. 6. We see in Figs. 6~a!–6~d!,
which correspond to negatived values, that the system ex-
hibits the same type of distribution of sidebands in the fre-
quency spectrum as for the cased52d0 considered in Fig. 4.
Indeed, for low-power levels one verifiesua'vs'0. The
subsequent frames reveal that whend changes sign the
Stokes and anti-Stokes sidebands interchange their role.
Thus whend is negative the sideband frequencies are located
between the two pump frequencies, contrary to the case of
positive GVM where the sidebands lie outside this interval.

Furthermore, there exist some other fundamental differ-
ences in the small-d region, as illustrated in Fig. 7. Each
point of the curves in Figs. 7~a! and 7~b! represents the criti-
cal power corresponding to a wavelength pair (lp ,lq),
where two fixed values oflp are considered:lp5532 and
576 nm, respectively. The critical-power curvePc(lq),
which has the shape of a parabola, exhibits a minimum of
zero power at a wavelength, sayl q

0. This critical-power
curve then divides the parameter plane into three regions.
The region above the curve represents modulationally stable
operating conditions, while the two regions below the curve
on each side ofl q

0 represent the conditions of occurrence of
MI. This feature can be easily explained from Eq.~9! which
shows that there exist pairs of pump frequencies~or wave-
lengths! for which the GVM is equal to zero. As in the
single-frequency configuration, whend50 the critical power
vanishes@see Eq.~28! which shows the parabolic depen-
dence ofPc as a function ofd0 for the single-frequency
case#. Figures 7~c! and 7~d! show that whenlp5532 nm, the

FIG. 5. Two-frequency-copropagation regime forlp5576 nm,
small positive and negative GVM, with the same input power on
each birefringence axis. The curves correspond~from the largest to
the smallest! to the wavelength pairs~lp5576 nm,lq5587.6 nm!,
~lp5576 nm,lq5577.6 nm!, ~lp5576 nm,lq5585.1 nm!, and
~lp5576 nm,lq5580.1 nm!. The corresponding GVM’s are, re-
spectively,d521.8630, 1.3658,21.0730, and 0.5411 ps/m.~a! MI
peak gain vs powerP. ~b! OMF vs powerP.

FIG. 6. Eigenvectors of the system for the two-frequency-
copropagation regime considered in Fig. 5. The solid curves corre-
spond to anti-Stokes waves, and the dotted curves to Stokes waves.
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value of lq which satisfyd50 is l q
05536.41 nm, and for

lp5576 nm we havel q
05581.75 nm. Thesel q

0 values cor-
respond to the minima of the critical-power curves of Figs.
7~a! and 7~b!. This analysis shows that the critical regime
can be reached at arbitrarily small powers in the two-
frequency-copropagation regime, contrary to the single-
frequency regime which requires unpractical powers sinced0
is large and cannot be varied. This extra flexibility explains
how the use of two frequencies in the highly birefringent
fiber allowed us to observe experimentally the critical regime
of MI, that will be presented in Sec. III.

The behavior shown in Figs. 7~a! and 7~b! can also be
understood in the following way: when varyinglq at a given
power levelP5Q in the fiber, the features described above
will appear in the form of a sort of ‘‘critical gap,’’ in which
MI will disappear. This is illustrated in Figs. 7~e! and 7~f!,
which give the peak gains for two power levels~P520 and
9 W! for the case of Figs. 7~a! and 7~b!, respectively. These
curves show that the peak gain undergoes an abrupt drop to
zero as one approaches the critical gap. Another interesting
feature to be emphasized is that the size of the critical gap,
which is the distance that separates~for a given powerP! the
two branches of each critical-power curve in Figs. 7~a! and

7~b!, continuously decreases as the input power decreases,
until going asymptotically to zero when the wave power
tends to zero. In general, some care must be taken in the
experimental study of the general features described above,
i.e., in monitoring thecritical gap or critical regime in real
systems. Indeed, because of the fiber losses, the waves which
are launched in the fiber in the critical gap, that is, with a
power above the critical power, will see their power decreas-
ing. This power decrease corresponds, in Figs. 7~a! and 7~b!,
to a vertical displacement towards the low-power region, that
may intersect the critical-power curve, thus leading to a tran-
sition to the MI regime. Consequently, a system which is
initially in the critical gap might become modulationally un-
stable because of fiber loss. This shows that the fiber length
is a crucial parameter in the experimental observation of the
critical regime. A system of two waves will remain in the
critical gap only if the fiber length is sufficiently small; oth-
erwise~if the fiber length is very large! the system will al-
ways end up by making transition to the MI regime. How-
ever, if the pump wavelengths are chosen in such a way that
the system has a zero critical power, that is,lq5l q

0, then the
two waves will propagate throughout the fiber without ever
undergoing transition to the MI regime, whatever the fiber
length and the input-wave power. Thus the wavelength sepa-
rationDl[lp2lq , which determines the GVM, appears as
a crucial parameter for the two-frequency copropagation in
highly birefringent fibers. The physical situation correspond-
ing to the particular wavelength pairs (lp ,l q

0) appears to be
potentially interesting for copropagating two waves without
MI, that is, in highly stable conditions for any input-wave
power and fiber length, in the normal dispersion regime.

We would now like to reemphasize that all results pre-
sented so far have been obtained via ICE’s that neglect co-
herent coupling terms by invoking the fact that the wave
vector mismatchDk is sufficiently large. This assumption is
valid for the single-frequency copropagation, as we will see
below, but for the two-frequency copropagation the wave
vector mismatch may become small, at least in some param-
eter ranges; their role must therefore be investigated. This
can be easily done by evaluating the value of the wave vector
mismatchDk as a function of the wavelength difference
Dl[lq2lp which constitutes the control parameter in our
experiments. WhenDk is sufficiently large the coherent cou-
pling terms rapidly vary and can therefore be neglected.
More precisely, if the beat lengthLB[2p/Dk is short com-
pared to the fiber length over which MI takes place the co-
herent coupling terms can be neglected in a good approxi-
mation. We evaluateDk by means of the following
procedure: we assume that the intrinsic birefringence is in-
dependent of the wavelength, so that the wave vectorskx and
ky can be written askx(v)5(v/c)[n(v)2B/2] and
ky(v)5(v/c)[n(v)1B/2], wheren(v) is the effective re-
fractive index of the fiber. This index can be evaluated in a
first approximation from the material’s Sellmeier coefficients
~i.e., we neglect the waveguide dispersion!. The results are
represented in Fig. 8 where we plottedLB as a function of
the wavelengthlq , for lp5532 and 576 nm, respectively.
Quite remarkably we see thatLB takes large values only in a
small wavelength rangeDlq,0.5 nm, located very close to
the fixed lp wavelength. In the two examples above,LB
attains its maximum value, which is well above 0.2 m, when

FIG. 7. Plot showing the critical regime for the two-frequency-
copropagation regime, where the same input power is applied in
each birefringence axis.~a!, ~b! Each point~lp , lq , P5Q! of the
parameter region considered corresponds to a parameter set re-
quired for performing a two-frequency copropagation, and the solid
curve represents the critical powerPc vs lq wave-length, for
lp5532 and 576 nm, respectively. The crosses in~b! correspond to
operating conditions used for obtaining the experimental results in
Fig. 13, which are discussed in Sec. III C.~c!, ~d! GVM vs lq . ~e!,
~f! Peak gain vslq .
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lq2lp'0.2 nm. This result shows that the coherent cou-
pling terms enter into play only for small wavelength sepa-
rations between the two pump waves, and in a small wave-
length region whose size is in fact closely related to the fiber
length. As we shall see in Sec. III, this peculiar feature can
be easily verified experimentally. On the other hand, the par-
ticular caselp5lq ~single-frequency regime! corresponds to
a beat length whose value is less than 1023 m in the two
examples in Fig. 8, which indicates clearly that the effects of
the coherent coupling terms are then negligible for a fiber
length of 19 m. Note also that the wavelength pair (lp ,l q

0),
which corresponds tod50, is well far away from the param-
eter regions considered in Figs. 8~a! and 8~b!, and therefore
Figs. 8~a! and 8~b! give evidence that the coupling terms are
well negligible for small GVM between the two pump
waves.

In conclusion, from this simple analysis, we can state that
the ICE model is valid in a very wide parameter range, and
in particular, in the parameter regions considered in our ex-
periments in Sec. III.

We conclude this subsection by pointing out that although
the ICE’s have provided deep insight into the problem of MI
in the highly birefringent fiber, the analysis of these equa-
tions does not provide a complete picture of all aspects of the
problem. In the following subsection we develop a comple-
mentary approach to the problem, that is, we describe and
interpret MI in the base of a discussion of the phase-
matching conditions of the four-wave-mixing processes un-
derlying MI.

E. Phase-matching conditions

It is interesting to interpret the features described above
by means of the phase-matching conditions of the four-

wave-mixing ~FWM! processes responsible for MI. As we
shall see below, the FWM picture provides a better under-
standing of the physics underlying MI in the highly birefrin-
gent fiber. It also provides analytical expressions for the
functional dependence of the OMF in terms of the frequency
difference (vq2vp) which was not available from the ICE
approach. Let us first consider the phase-matching conditions
in the linear limit case, that is, we neglect the role of the
nonlinear index modulation with respect to the large linear
index difference due to the linear birefringence. In this ap-
proximation, considering the FWM process
vp1vq2(vp1V)2(vq2V) ~which involves the two
prominent sidebands! leads to the following expression of
the phase mismatch@24#: DkL[2dV1V2(b2p1b2q)/2.
The first term of the right-hand side represents the role of the
GVM between the two waves, Eq.~9!, while the second term
represents the role of the dispersion. In this approximation,
the phase-matching conditionDkL50 provides the following
expression of the OMF:

Vopt-l[
2d

b2p1b2q
. ~31!

In the particular casevp5vq this value becomes the cutoff
frequency given in Eq.~29! in the low-power limit. In gen-
eral, the above situation can be easily interpreted as follows:
the FWM occurs when the effect of GVM on the sideband
waves is exactly compensated by dispersion~the larger the
dispersion the smaller the OMF!. Using the expression~9! of
d one can write the OMF in terms of the frequency differ-
ence between the two pump waves:

Vopt-l5
2d0

b2p1b2q
1vq2vp . ~32!

The functional dependence ofVopt-l /2p upon the wavelength
pairs~lp5576 nm,lq! is represented by the dotted curve in
Fig. 9.

Let us now consider the role of the nonlinearity in the
phase-matching condition. From a simple analysis of the
ICE’s one finds that the nonlinear contribution to the phase
mismatch is given by@24#

Dknl5Pgp1Qgq .

The phase-matching condition is now written
2dV1[(b2p1b2q)/2]V

21Pgp1Qgq50, which leads to
the following expression for the OMF:

Vopt-nl[
d6Ad222~b2p1b2q!~gpP1gqQ!

b2p1b2q
. ~33!

Using Eq.~9! this expression provides the OMF as a func-
tion of the frequency differenceDv, or equivalently, as a
function of lq for a given value oflp . The result is repre-
sented by the solid curve in Fig. 9. As can be seen from Eq.
~33!, the OMF becomes complex whenudu,[2(b2p
1b2q)(Pgp1Qgq)]

1/2. In other words, the nonlinearity is

FIG. 8. Plot showing the beat length vslq for ~a! lp5532 nm
and ~b! lp5576 nm.
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responsible for the presence of a frequency gap in the MI
spectrum. Thus this nonlinearity induced gap is at the origin
of the critical regime described in the preceding subsection.
Note that the analytical expression of Eq.~33! provides a
rather good approximation of the OMF. Comparison with the
exact OMF derived from the ICE’s is given in Fig. 9 where
the 1 symbols represent the results obtained via the linear
stability analysis of the ICE’s. The meaning of the diamond
symbols, Fig. 9, will be given in the following section.

III. EXPERIMENTAL STUDY

A. Experimental setup

In our experiments, MI is induced by a nonlinear coupling
between the two orthogonally polarized waves propagating
in a strongly birefringent fiber without introducing any initial
perturbation. In the single-frequency case both waves come
from a Nd:YAG ~YAG denotes yttrium aluminum garnet!
laser, and in the two-frequency case the two waves are pro-
duced, respectively, by a Nd:YAG and a dye laser. We will
describe the experimental setup in its more general configu-
ration, that is, with two lasers. The simplified schematic of
the experimental setup is shown in Fig. 10. The MI is gen-
erated by the interaction of a Nd:YAG beam and a dye am-
plified beam. On one hand, the Nd:YAG is the Quanta Ray
model GCR-3 made up of a master oscillator which can be
injection seeded by a Quanta Ray model 6300 diode laser.
After doubling its frequency in a nonlinear potassium dihy-
drogen phosphate~KDP! crystal, transform-limited pulses of
approximately 7-ns duration are obtained at 532-nm wave-
length, which provide peak powers of several MW. When
the laser is injection seeded it has a spectral resolution of
3.731023 cm21. The spectral resolution reduces to about 1

cm21 when it is multimode. On the other hand, the tunable
dye laser is the Spectra Physics model 380 frequency stabi-
lized ring dye laser pumped by a 4-W argon laser. This dye
laser passes through a home built three stage dye cell ampli-
fier, transversally pumped by a second part of the Nd:YAG
laser. The linewidth of the resulting tunable laser is nearly
limited by the Fourier transform of its pulse width and is
equal to 3.731023 cm21 @25,26#. Its wavelength was tuned
between 575 and 588 nm and measured by a cw wavemeter
@27#. The peak powers used in this experiment range be-
tween 10 and 100 W for both lasers.

A l/2 plate and two Glan-Foucault polarizers~extinction
of the opposite wave 105:1! followed by a set of filters allow
one to obtain a pair of orthogonally polarized pulses with
adjustable intensities. The two beams are then combined by a
dichroic mirror. The YAG and dye beams are focused with a
steering lens~focal length 50 cm! and with a microscopic
objective ~focal length 4.3 mm!. The steering lens of the
coupler is positioned near the back focus, so a transverse
translation of this lens causes a much smaller translation of
the focused spot~in the ratio of the focal lengths of the two
lenses!. As a consequence, the steering lens greatly facilitates
the alignment of the fiber to the incoming beams. The
strongly birefringent fiber is the HB600 fiber from Fibercore
Ltd. It has a quoted beat length of 1.11 mm at 633 nm, a
cutoff wavelength of 507 nm, an attenuation of 13 dB/km at
633 nm, and a length of 19 m. The optimum launch spot size
is 3mm. In our experiments the expected modulation period
is less than 220 fs, the pulse duration is about four orders of
magnitude larger than the modulation period, and therefore
the pulses provide a quasi-cw condition. The advantage of
nanosecond pulses with respect to picosecond pulses is to
increase significantly the overlap time, and the interaction
length is primarily limited by optical losses in the visible
domain. At the fiber output, the beam is collimated and sent
into a 50-cm spectrometer~SPEX 1301!, which allows us to
record the modulation frequency with high resolution~1
cm21!. A third Glan-Foucault polarizer selects the output
light propagating along the fast and the slow axis, and so
selects the YAG or dye beam. The YAG and dye beam pow-

FIG. 9. Plot showing the role of the nonlinearity in the phase-
matching condition of the FWM process forlp5576 nm,P5Q59
W, andlq in the range 576 nm<lq<589 nm. The dotted curve
representsVopt-l /2p, Eq. ~32!. The solid curve represents
Vopt-nl/2p, Eq. ~33!. The1 symbols represent the OMF obtained
via the dispersion relation, Eq.~21!. The centers of the diamonds
represent some experimental results that will be presented in Sec.
III.

FIG. 10. Schematic diagram of the experimental apparatus.P:
Glan-Foucault polarizer,F: neutral filter, DM: dichroı¨c mirror, L:
steering lens, MO: microscopic objective,A: Glan-Foucault ana-
lyzer, PM: photomultiplier, HiBi Fiber: high birefringent fiber.

3528 54E. SEVEet al.



ers exiting the fiber are monitored using a high speed photo-
diode FND 100 from EGG and a digital oscilloscope. The
photodiode has been calibrated thanks to a power meter Sci-
entech 372 and to a set of calibrated filters.

The signal is amplified in a photomultiplier Hamamatsu R
585, then sampled and averaged by a Boxcar SRS 250. The
Boxcar is externally triggered by a signal coming from a
photodiode which receives a reflection from the Nd:YAG
pulse. The scanning of the spectrometer as well as the re-
cording of the data are monitored by a PC.

B. Experimental study:
Single-frequency-copropagation regime

In our first experimental study, the fiber is pumped by a
Nd:YAG laser, operating around 532-nm wavelength. Figure
11 shows a typical example of the experimental observation
of the effects of changing the polarization of the input wave
on the MI phenomenon. The powers indicated in these fig-

ures, as also in all forthcoming figures, represent the input-
wave peak powers. Furthermore, hereafter, the peaks that are
present in all spectra are systematically normalized in such a
way that the highest peak is always equal to 1~in arbitrary
units!. Figures 11~a! and 11~b! show, respectively, the spec-
tra obtained when the input wave is entirely polarized along
a single birefringence axis. We observe, as expected, that no
MI appears in both cases. The pump wave only generates
several Raman peaks. Notice that in the experimental results
that will be presented later on, the Raman effects will no
longer be systematically shown in the figures whenever they
will appear. The subsequent frames, Figs. 11~c! and 11~d!,
show that MI appears as soon as the input-wave power,'20
W, is distributed on the two birefringence axes. Figures 11~c!
and 11~d!, which correspond to the input wave polarized at
15° with respect to the slow axis, show two sidebands with
relatively low amplitude. Figures 11~e! and 11~f!, and 11~g!
and 11~h!, obtained, respectively, for a polarization of 30°
and 45° with respect to the slow axis, show that the impor-
tance of the MI phenomenon increases as the polarization
moves to 45°, that is, as the input powers on the two bire-
fringence axes tend to become identical. This corresponds
precisely to the behavior predicted by the ICE’s~Fig. 2!.
Moreover we see in all spectra in Figs. 11~c!–11~h! that the
OMF varies only very slightly as the polarization changes, as
expected in the low-power region. On the other hand, Figs.
11~c!–11~h! clearly show a spectral broadening of the pump
and the two sidebands due to self-phase modulation. We also
see that the slow sideband grows much more quickly as the
power increases than does the fast sideband. This well-
known asymmetric behavior results from the effects of Ra-
man gain and depletion for the Stokes and anti-Stokes bands,
respectively@20,21#.

In our second experimental study for the single-
frequency-copropagation regime, the fiber is pumped by the
Nd:YAG laser operating at 532-nm wavelength, with in-
creasing input powers on the slow and fast axes. The spectra
obtained are shown in Fig. 12. In Figs. 12~a! and 12~b! no
MI is observed because the input powers are below the
threshold powers required to compensate the fiber losses. In
Figs. 12~c! and 12~d! the power levels increase and the MI
gain becomes higher than the fiber losses and MI is thus
observable. The subsequent frames show that as input pow-
ers increase, the sideband powers become increasingly large,
and undergo Raman scattering, which explains the additional
Raman peaks in the spectra. Those Raman peaks become
slightly visible in Figs. 12~e! and 12~f!, and are clearly vis-
ible in Figs. 12~g! and 12~h!. Not all spectra obtained in this
experimental study are shown in Fig. 12, but the main results
are summarized in Table I. The two last data lines in this
table ~P517 W! correspond to the case where the polariza-
tion moves towards the slow axis. We then observed, as pre-
dicted~see Fig. 2!, that the OMF varies only slightly as one
changes the polarization. In general, in Table I, the predicted
values Fmod-ICE and the observed values~Fmod-expt! agree
within 9%, which corresponds to a quite satisfactory quanti-
tative agreement.

C. Experimental study:
Two-frequency-copropagation regime for small GVM

Observation of the critical gap

Figure 13 shows a sequence of experimental observations
that exhibit the critical regime. For obtaining those spectra

FIG. 11. Spectra of light emerging from the slow axis@~a!, ~c!,
~e!, ~g!# and the fast axis@~b!, ~d!, ~f!, ~h!# of the fiber for the
single-frequency-copropagation regime, for increasing polarization
~with respect to the slow axis!. The pump wave operates at
532.25-nm wavelength. The notationI N designates the normalized
intensity, in arbitrary units.~a! The pump wave is polarized on the
slow axis.~b! The pump wave is polarized on the fast axis.~c!, ~d!
The fiber is pumped at 15° of polarization with a total input power
of 21 W. ~e!, ~f! The fiber is pumped at 30° of polarization with a
total input power of 19 W.~g!, ~h! The fiber is pumped at 45° of
polarization with a total input power of 22 W.
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we modified slightly the experimental apparatus shown in
Fig. 10, in the following way: first, the Glan-Foucault ana-
lyzer was taken out of the apparatus in order to include in
each spectrum the light emerging from the two birefringence
axes. Second, the Nd:YAG laser operating at 532-nm wave-
length was used to pump a second dye beam with a variable
wavelength. So we used two waves produced, respectively,
by a dye laser with a fixed wavelengthldye15576 nm, and
another dye laser with a variable wavelengthldye2 in the
range 577.6 nm<ldye2<587.6 nm. The waveldye1 was po-
larized along the fast axis, and therefore this wave corre-
sponds to the wave that we calledlp in the theoretical study.

The waveldye2, polarized along the slow axis, corresponds
to lq . Figures 13~a!–13~e! were obtained, respectively, for
different values ofldye2 and by introducing the same input-
wave power,P59 W, in each birefringence axis. So each
parameter set~ldye15576 nm,ldye2, P59 W! corresponds to
an operating condition for the two-frequency copropagation
described theoretically in Sec. II. The operating conditions
were chosen by making use of the results in Fig. 7~b!, where
the small crosses labeled [a], [b], and so on, up to [e]
represent, respectively, the operating conditions used in Fig.
13; for example, the cross labeled [a] represents the operat-
ing condition that we have used for obtaining the spectrum in
Fig. 13~a!, and so on.

Figure 13~a! shows that the wavelengthldye25587.6 nm
gives us, as expected, a MI phemenon, but where the two
sidebands appear essentially at the same place in the spec-
trum, that is, almost midway between the two pump waves.
As ldye2decreases, the OMF decreases and the sidebands go
closer to the pump waves while their power decreases con-
tinuously @Fig. 13~b!#. The sideband powers decrease as the
system approaches the critical regime. We observe indeed
that when the wavelength difference is reduced to
ldye22ldye15581.75257655.75 nm the power of the side-
bands becomes zero@Fig. 13~c!#. We reemphasize that the
corresponding parameter set~ldye15576 nm,ldye25581.75
nm, P59 W! represents an operating condition within the

FIG. 12. Spectra of light emerging from the fiber for the single-
frequency-copropagation regime, for increasing input powersP ~on
the fast axis! andQ ~on the slow axis!. The pump wave, operating
at 532 nm, is polarized between the two birefringence axes.~a!, ~b!
Q53 W andP52 W. ~c!, ~d! Q58 W andP55 W. ~e!, ~f! Q518
W andP59 W. ~g!, ~h! Q545 W andP517 W.

TABLE I. Optimum modulation frequencies for the single-
frequency-copropagation regime considered in Fig. 12. The ob-
served values ~Fmod-expt! and the predicted values
~Fmod-ICE,Vopt-nl/2p! are given for comparison.

OMF ~THz!

lp5lq5532 nm Fmod-expt Fmod-ICE
Vopt-nl

2p

Q58 W P55 W 4.777 4.553 4.554
Q518 W P59 W 4.715 4.498 4.499
Q522 W P511 W 4.702 4.484 4.475
Q545 W P517 W 4.722 4.374 4.357
Q566 W P517 W 4.734 4.292 4.266

FIG. 13. Spectra of light emerging from the fiber for a two-
frequency-copropagation regime for small positive and negative
GVM, for decreasing wavelength separation between the pump
waves. The fiber is pumped by two dye lasers, denoted ‘‘DYE1’’
and ‘‘DYE2’’ in the figures, polarized, respectively, along the fast
and the slow axis. The spectra include the light coming from the
two birefringence axes.~a! lq5587.6 nm.~b! lq5585.1 nm.~c!
lq5581.75 nm.~d! lq5580.1 nm.~e! lq5577.6 nm.
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critical gap predicted from the ICE’s in Fig. 7~b!, where MI
disappears. Figure 13~c! therefore provides clear experimen-
tal evidence of the critical regime predicted in our theoretical
investigations. Moreover we see in the subsequent frames,
Figs. 13~d! and 13~e!, that on decreasing further the wave-
length separation, the MI regime reappears. Figures 13~d!
and 13~e! show that the power of the sidebands begins again
to increase as one moves away from the critical regime. The
reappearance of MI therefore gives us the experimental evi-
dence that for a given powerP there exists a critical gap
corresponding to a finite range of the wavelength separations
between the pump waves.

Another important point to note is that the experimental
observations in Figs. 13~a!–13~e!, which correspond, respec-
tively, to d521.8630,21.0730, 0, 0.5411, and 1.3658 ps/m,
show ~as predicted! that the sidebands take place inside the
frequency interval between the pump waves whend,0, and
outside of this interval ford.0. Furthermore, the ICE pre-
diction and the phase-matching formulas are satisfactorily
verified, as shown in Fig. 9, where the diamonds represent
the OMF for the experimental situations considered in Fig.
13.

D. Experimental study:
Two-frequency-copropagation regime for large GVM

Figure 14 shows several experimental observations that

we have made in the two-frequency-propagation regime by
choosing the pump wavelengths in such a way as to obtain
large GVM. The pump waves were produced, respectively,
by a Nd:YAG laser at a fixed wavelengthlq5532 nm, po-
larized along the slow axis, and a dye amplified beam with a
variable wavelengthlp , according to the experimental setup
in Fig. 10. Figures 14~a! and 14~b!, 14~c! and 14~d!, and
14~e! and 14~f! were obtained, respectively, for~lp5575
nm, P5Q524 W!, ~lp5581 nm, P5Q520 W! and
~lp5588 nm, P5Q530 W!, which correspond, respec-
tively, to d518.4420, 20.4300, and 22.6640 ps/m. The same
power P5Q was introduced on each birefringence axis in
order that the importance of the MI phenomenon is maxi-
mum. In our experiments the two orthogonal linear polariza-
tions at the fiber input were not perfectly controlled and a
small amount of the power launched along the fast~slow!
axis was always present along the slow~fast! axis. At large
pump powers these residual powers can become sufficiently
large to have visible effects on the observed spectra which
are thus more complex. However, the corresponding addi-
tional peaks can be easily interpreted since they simply cor-
respond to a situation which is symmetric with respect to the
main pump waves. That is, when the residue of the pumpvp
is launched on the slow axis, and the residue of the pumpvq
along the fast axis, this situation leads to two additional side-
bands whose frequencies can be obtained by just invertingd
in the theoretical description for large pump waves. In Fig.
14 the residues are indicated by small up arrows. We see in
Fig. 14 that once created, the residues become new pump
waves, and they contribute to developing two additional
sidebands whose OMF differs clearly from the OMF for the
pump-wave beams. The additional sidebands are indicated in
Figs. 14~a!–14~f! by small crosses@note that the additional
sideband is not clearly visible in Fig. 14~b!#.

Table II summarizes all results of Fig. 14, and gives in
addition the OMF obtained via the theoretical approaches
considered previously. In that table,Fmod-expt represents the
experimental determination of the OMF for the two large
pump-wave beams, averaged over the individual values for
each birefringence axis. We observe an excellent agreement
~within 0.8%! between the theoretical predictions and the
experiments. On the other hand, we note in Fig. 14 the pres-
ence of several Raman peaks that are generated not only by
the main pump beams, but also by the largest sidebands of
those pump waves.

E. Experimental study showing some effects
of the coherent coupling terms

To conclude this section on experimental results, we ana-
lyze in this subsection the condition of validity of the ICE

FIG. 14. Spectra of light emerging from the fiber for a two-
frequency-copropagation regime with large GVM, for increasing
wavelength separation between the pump waves. The fiber is
pumped by a Nd:YAG laser operating atlq5532-nm wavelength,
polarized along the slow axis, and a dye laser of variable wave-
lengthlp , polarized along the fast axis. In these experiments, the
same input powerP is introduced in the two birefringence axes.~a!,
~b! lp5575 nm,P524 W. ~c!, ~d! lp5581 nm,P520 W. ~e!, ~f!
lp5588 nm,P530 W.

TABLE II. Optimum modulation frequencies for the two-
frequency-copropagation regime considered in Fig. 14. The ob-
served values ~Fmod-expt! and the predicted values
~Fmod-ICE,Vopt-nl/2p! are given for comparison.

OMF ~THz!

lq5532 nm Fmod-expt Fmod-ICE
Vopt-nl

2p

lp5575 nmP524 W 46.6500 46.9896 46.9901
lp5581 nmP520 W 52.5600 52.4112 52.4119
lp5588 nmP530 W 58.7550 58.5902 58.5938
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model used to predict the MI features in highly birefringent
fibers, and in particular, the existence of a critical gap in the
frequency dependence of MI. We have discussed in Sec. II
the role of the coherent coupling terms neglected in the
ICE’s. We have shown that these terms play a role only in a
very narrow parameter range close to the condition of equal
pump wavelengths. More precisely, we have found out, in a
first approximation, that the beat length between the birefrin-
gence axes becomes appreciable only when the wavelength
separation between the pump waves is of the order of 0.26«
nm, where«,0.25 nm is closely related to the fiber length.
We have checked this prediction by observing the behavior
of the system aslq approacheslp . Figure 15 shows several
spectra measured at the fiber output for small wavelength
separations between the pump waves:Dl5lq2lp50.25
nm @Figs. 15~a! and 15~b!#, Dl50.13 nm@Fig. 15~c!#, and
Dl50 @Fig. 15~d!#.

We see in Figs. 15~a!–15~c! that two additional peaks
@which are only slightly visible in Fig. 15~a!# appear besides
the two pump peaks. The resulting four peaks are equally
spaced by aboutDl. Note that the system always generates
MI sidebands but which take place well apart from the group
of four peaks. These MI sidebands are shown only in Fig.
15~a! for the sake of clarity for the other spectra in Figs.
15~b!–15~d!. The observed OMF, Fig. 15~a!, averaged over
the two birefringence axes and represented by the diamond
symbol atlq5576.27 nm in Fig. 9, does not differ signifi-
cantly from the value predicted by the ICE’s.

The appearance of additional peaks besides the two pump
waves in Figs. 15~a!–15~c! can be easily interpreted as being
due to the coherent coupling terms in Eqs.~4! and ~5!. In-

deed, from these equations, we see that the coherent coupling
term in the equation of wavevp acts as a source term at the
frequencyvp22uDvu, Dv5vq2vp , while the coherent
coupling term in the equation of wavevq acts as a source
term at the frequencyvq12uDvu. This means that the addi-
tional peaks due to these coupling terms will give to the
spectrum the shape of four equally spaced peaks with fre-
quency separationuDvu exactly as observed in Figs. 15~a!–
15~c!.

Figures 15~b! and 15~c! show that in decreasing the wave-
length separation between the pump waves the additional
peaks come closer to the pump peaks, and then quickly dis-
appear as shown in Fig. 15~d!, where Dl50 ~single-
frequency regime!. On the other hand, when one increases
Dl from the region of large beat length, the separation be-
tween the four peaks increases while the intensity of the
additional peaks decreases down to zero. These results con-
firm the validity of our theoretical analysis of the role of the
coherent coupling terms. They clearly show that these terms
affect the system’s dynamics only on a very small parameter
range which is very far away from the condition of observa-
tion of the critical gap described above. In other words, the
ICE model and its predictions are valid in the experimental
condition of interest in the present paper.

IV. CONCLUSION

In the present paper we have set up a general picture of
MI for the single-frequency-copropagation regime as well as
for the two-frequency-copropagation regime. We have ob-
tained experimental observations showing a richer spectrum
of behavior for the two-frequency copropagation than for the
single-frequency copropagation. That is, we have shown that
qualitatively different behaviors manifest themselves de-
pending on the wave-length separation between the pump
waves. The greatest qualitative difference revealed by our
theoretical investigations and experimentally verified is the
existence of a nonlinearly induced gap in the frequency de-
pendence of MI, namely, the existence of a range of wave-
length separation for which MI disappears because of the
reduction to zero of the GVM which has been made possible
by the use of two wavelengths. This original result consti-
tutes the main contribution of our report.

We can summarize our results as follows: with respect to
previous work on the subject, we have completed the theo-
retical description of the system by including the analysis of
the eigenvectors associated with the unstable eigenvalues
representing MI. This analysis reveals that MI in the highly
birefringent fiber generates only one sideband on each bire-
fringence axis provided that the power is sufficiently lower
than the critical power. However, as the power approaches
the critical power the relative weights of the two other side-
bands increase and become equal to those of the initially
prominent sidebands. As regards the original part of the
theoretical description we have shown by means of a simple
analysis of the underlying FWM phase-matching conditions
that the appearance of the critical regime can be interpreted
as being due to the formation of a nonlinearly induced gap in
the frequency dependence of MI. This analysis provides a
deeper physical insight into the dynamics of MI in highly
birefringent fibers and shows that the experimentally studied

FIG. 15. Spectra of light showing the effects of the coherent
coupling terms@in the right-hand side of the NLSE~4!, ~5!#, for
P5Q59 W and different wavelength separations between the
pump waves. The fiber is pumped by a Nd:YAG laser operating
aroundlp5576-nm wavelength, polarized along the fast axis, and a
dye laser of variable wavelengthlp , polarized along the slow axis.
The spectra include the light coming from the two birefringence
axes. ~a! lp5576.02 nm,lq5576.27 nm.~b! lp5575.99 nm,
lq5576.24 nm. ~c! lp5576.00 nm, lq5576.13 nm. ~d!
lp5576.03 nm,lq5576.03 nm.
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critical regime results from strongly nonlinear dependence of
the MI process. This nonlinear dependence allows us to use
the terminology of modulational instability instead of simply
four-wave mixing for what we have observed. This comment
is related to the confusion which is common in the literature
about the distinction between MI and FWM@28#. Both phe-
nomena are of course intimately related and the distinction
between them is more relevant to a problem of terminology
than to the basic physical processes which originate them.
Let us briefly discuss this issue: the possibility of obtaining
phase-matched FWM by using different fiber modes is a
well-known process, and using two different polarization
modes of a single-mode fiber is just an example of strategy
for obtaining phase matching. In fact, the experiments of
FWM based on this principle were done already more than
20 years ago using multimode fibers@29# and were referred
to as stimulated FWM. In this case phase matching is ob-
tained by simply matching the propagation constants of the
two fiber modes which enter into play. This phase-matching
process uses the linear features of the multimode fiber and
certainly does not require nonlinear dependence of the wave
vectors. The situation is similar in the highly birefringent
fiber where phase matching is obtained via the difference in
the propagation constants associated with the fast and the
slow axis. So one may object that what is observed in the
highly birefringent fiber should be more rigorously referred
to as FWM and not MI. The simplest example of MI is the
one affecting a simple wave propagating in a fiber in the
anomalous dispersion regime. In that case there is no other
way to get phase matching of the FWM process than using
the Kerr nonlinearity. In other words, the power dependence
of the wave vectors is essential in the phase-matching pro-
cess. This makes a fundamental distinction between MI and
stimulated FWM.

Apart from the analysis of Ref.@30# where a slight non-
linear dependence of the sideband frequencies was observed,
in most previous experimental works on FWM processes in
highly birefringent fibers, power dependent phase-matching
effects were not evidenced@20,21#. The main reason for this
is that the critical power is well beyond any practical power
levels in the single-frequency-copropagation regime. This
means that the operating condition is always in the low-
power limit of the theory for which phase-matched FWM is
obtained with the conditionV5d0/b2 which only implies the

linear characteristics of the fiber. Quite to the contrary, in our
experiments, since we can approach the critical power by
decreasingd, we observe a strong nonlinear dependence of
the phase-matching conditions. The most striking manifesta-
tion of the nonlinear dependence is the appearance of the
nonlinearly induced gap in the frequency dependence of MI.
In view of this experimentally evidenced nonlinear depen-
dence of the phase-matching conditions, we believe that the
use of the term modulational instability instead of simply
stimulated FWM is fully justified.

Our experimental results can be summarized as follows:
In the single-frequency-copropagation regime, FWM spectra
have been observed and were found to be in good agreement
with the theoretical prediction in the low-power limit, in a
way very similar to what was already reported in Refs.
@20,21# . In the two-frequency regime we have shown that, at
large GVM, the general behavior is very similar to that ob-
served in the single-frequency regime, namely, the wave dy-
namics can be easily explained in terms of classical FWM
with no power dependence of phase-matching conditions.
However, at small GVM, we have demonstrated the exist-
ence of a gap in the MI frequency dependence. This gap can
only be explained via the power dependence of the phase-
matching conditions. Its experimental evidence represents
therefore a significant progress in the knowledge and under-
standing of the nonlinear dynamics of wave propagation in
birefringent fibers.

Finally we have checked the validity of the ICE model by
showing that the coherent coupling terms enter into play in a
very restricted range of parameter located far from the pa-
rameter range of interest for the demonstration of the phase-
matching power dependence. This result shows that the ICE
constitutes an excellent model for the description of nonlin-
ear wave propagation in highly birefringent fibers.
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