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We have examined the temporal evolution of a two-level atom in response to stochastic phase-fluctuating
fields by applying perturbation theory to the optical Bloch equations written in the instantaneous frame. Our
results show that the general nature of the atomic population variations is relatively simple, being composed of
adiabatic and nonadiabatic components. The adiabatic response results from Fourier components of the phase
variation below the system’s Rabi frequency and is proportional to the product of the relatively slow phase
variation and its first derivative. The nonadiabatic response has its maximum amplitude at the system’s Rabi
frequency, for which the atom behaves like a simple harmonic oscillator whose resonance frequency is the
Rabi frequency. In this sense the atom acts as a tunable narrow-band filter.@S1050-2947~96!01710-6#

PACS number~s!: 42.50.Md, 42.50.Ar, 32.80.2t

I. INTRODUCTION

One of the principle differences between optical and ra-
diofrequency spectroscopy concerns the role of field fluctua-
tions. Generally, the radiofrequency fields produced by
quartz crystal oscillators have relative linewidths~i.e.,Dn/n0!
of 10211–10212 @1#, while the optical fields produced by la-
sers have relative linewidths ranging from about 1029 to
1025. As a consequence of the laser’s greater~relative! sto-
chasticity, optical analogs of radio-frequency experiments
have led to different phenomena in the regime of strong-
field–atom interactions. For example, Hamiltonet al. @2#
have shown that the asymmetry of the Autler-Townes dou-
blet can be reversed, depending on the details of the laser
line shape, and Lecompteet al. @3# and Lompreet al. @4#
have demonstrated that multiphoton transitions excited by
nonmonochromatic laser fields can exhibit enhanced excita-
tion rates and ac Stark shifts, respectively, compared to
monochromatic fields.

To date, most experimental and theoretical investigations
of a stochastic field interacting with an atom have confined
their attention to theaveragebehavior of resonant phenom-
ena. In contrast, our current investigations focus upon the
temporal evolutionof an atomic system in response to a
stochastic field. In a previous work@5# we found that for a
certain class of fluctuating field the temporal evolution of
atomic density matrix elements was always quite easily in-
terpreted when viewed in the instantaneous frame~i.e., a
reference frame whosexy orientation in Bloch-vector space
is determined by the field’s phase!. Specifically, for~phase!
fluctuating fields with constant amplitude that are resonant
and adiabatic~i.e., the atomic Rabi frequency is higher than
any Fourier frequency comprising the phase modulation pro-
cess!, the Bloch-vectorZ component is nearly proportional
to the product of the field’s fluctuating phase and the phase’s
first derivative, while theY component in the instantaneous
frame is approximately proportional to the fluctuating phase
itself. Consequently, the temporal evolution of theZ andY
Bloch-vector components in the instantaneous frame trace
out a ‘‘figure-eight-like’’ pattern. Essentially, for this class

of field much of the problem’s stochastic nature may be
couched in terms of a sequence of stochastic orthogonal
transformations in Bloch space, simplifying to a large extent
the underlying atomic dynamics. In this paper we will refer
to a field with constant amplitude and stochastic phase varia-
tions ~characterized by a power-law dependence as the Fou-
rier frequency of the phase variations increases! as a ‘‘phase
diffusionlike’’ field and for ease of notation use the acronym
PDF when referring to these fields. Our previous work dealt
with ‘‘adiabatic’’ PDFs in which the great majority of the
Fourier components of the stochastic phase variation are less
than the system Rabi frequency.

A somewhat broader class of PDFs may be defined~i.e.,
‘‘nonadiabatic’’ PDFs!, where Fourier components associ-
ated with the phase modulation process are larger than the
Rabi frequencyV. For this broader class of field, the Bloch-
vector evolution in the instantaneous frame displays oscilla-
tions, the frequency of which may be well above the major
Fourier components associated with the phase modulation
process. Here we continue our previous studies by examining
the response of a two-level atom to this broader class of
PDF. We will show that the oscillations in the density matrix
elements are manifestations of the atom’s nonadiabatic re-
sponse to the PDF and are defined by the Rabi frequency.
Moreover, depending upon how rapidly the fluctuating
phase’s Fourier components fall off with increasing Fourier
frequency, we will show that the atomic temporal evolution
may be dominated by either the adiabatic~i.e., figure-eight!
or nonadiabatic~oscillation! atomic response to the field in
the instantaneous frame.

II. COMPUTATION

The system under investigation is that of a two-level atom
subjected to a resonant field that has a stochastically varying
phase. The Bloch equations used to describe the system are
the same as in Ref.@5#, whereXrot, Yrot, andZ are the coor-
dinates of the Bloch vector in the~standard! rotating coordi-
nate frame@6#
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dXrot

dt
52gXrot2V cos@u~ t !#Z, ~1a!

dYrot

dt
52gYrot2V sin@u~ t !#Z, ~1b!

dZ

dt
52g~Z2ZNF!1V cos@u~ t !#Xrot1V sin@u~ t !#Yrot.

~1c!

Here we have equated the transverse and longitudinal relax-
ation rates~g15g25g!; ZNF is theZ value in the absence of
the resonant field, and the field’s instantaneous phase fluc-
tuation isu(t). The stochastic phase fluctuations are broad-
band about a ‘‘central’’ phase modulation frequencyf c and
are generated by writing the phase fluctuation in terms of
two uncorrelated stochastic phase componentsw1,2,

u~ t !5w1~ t !cos@2p f ct#1w2~ t !sin@2p f ct#. ~2!

The stochastic phase components are characterized by
^w i(t)w j (t2t)&5d i j R(t) and are produced by passing unit
variance, Gaussian white noise through a digital filter.

The filter transfer function is

H̃n~ f !5
knsan20.5

~2p i f1a!n
, ~3!

where f is the Fourier frequency of the phase variations,kn
is a numerical factor,s is the standard deviation of phase
fluctuations, anda is a bandwidth parameter. It is to be noted
that f c anda may be used to adjust the relative contributions
of low- and high-frequency Fourier components to the over-
all phase modulation processu(t). The rate of decrease in
the Fourier amplitudes asf increases is determined by the
value ofn, and in this work we confine our attention ton51,
2, and 3~k15&, k252, andk354/)!. The digital filter is
implemented using the procedure of Camparo and Lam-
bropoulos@7#, and as an example we show in Fig. 1 the
Fourier transform ofu(t) for the casen51, f c51 Hz, and
a510 s21. ~In all cases to be reported heres;61 rad.! We
note that forn51 ~and f c50! the stochastic process yields

Su̇~ f !54p2f 2Su~ f !54p2f 2uH̃1~ f !u25
8p2f 2s2a

~a214p2f 2!
,

~4!

for which the field’s frequency fluctuations are white in the
limit f@a, and in this limit it is similar to the traditional
PDF.

The Bloch equations were solved using a fourth-order
Runge-Kutta algorithm with adaptive step size and in all
cases the step size was controlled by requiring the relative
error in the computation of any Bloch-vector component to
be less than 10212. The initial conditions for the Bloch-
vector components were alwaysXrot~0!5Yrot~0!50 and
Z(0)515ZNF with g50.5 s21. As our primary interest is in
relatively strong fields, the Rabi frequency was always
greater thanf c . Thus the atom was exposed to~stochastic!
Fourier frequency components of the phase modulation pro-
cess to which it could respond both adiabatically and nona-
diabatically. As noted above, the Bloch vector’s temporal
evolution is most simply viewed in the instantaneous frame,
where theXinst axis is taken along the direction of the effec-
tive field in the standard rotating frame„i.e.,
x̂inst•x̂rot5cos[u(t)], where x̂inst and x̂rot are unit vectors in
the direction of the instantaneous and rotating frameX axes,
respectively…. For the case of a resonant field the rotating and
instantaneous frames are related by a simple time-dependent
rotation in the Bloch-spacexy plane. Of particular note is the
fact that theZ component of the Bloch vector is unaffected
by this rotation and is the same in the instantaneous, rotating,
and laboratory frames.

III. RESULTS

Figure 2 shows the atomic response to two typical sto-
chastic phase modulation patterns as a function of Rabi fre-
quency. In both cases 2p f c510 s21 and the Bloch-vector
trajectories for Rabi frequencies of 50, 200, and 500 s21 are
presented. In Figs. 2~a!–2~c! n51 and a5231024 s21,
while in Figs. 2~d!–2~f! n53 anda510 s21. ~These param-
eters were selected to clearly display the differing changes in
atomic dynamics as the Rabi frequency is varied.! For both
processes the characteristic figure-eight adiabatic response is
observed along with high-frequency oscillations. The relative
strength of the two contributions to the total response clearly
depends upon the Rabi frequency. However, the dependence
of the atomic response on Rabi frequency is completely dif-
ferent for the two stochastic processes. Withn51, the adia-
batic response is observed at low Rabi frequencies, but is
overwhelmed by the high-frequency oscillation at high Rabi
frequencies~i.e., the adiabatic dominant response changes to
the nonadiabatic dominant response asV increases!. In con-
trast, whenn53 the adiabatic response is not apparent at
low Rabi frequencies, yet as the Rabi frequency is raised the
adiabatic pattern eventually becomes dominant~i.e., the
nonadiabatic dominant response changes to the adiabatic
dominant response asV increases!. The general asymptotic
behaviors at largeV are valid for the indicated exponent
valuesn regardless of the values off c and a ~so long as
f c,V!. For the case ofn52, there is no clear demarcation
between adiabatic and nonadiabatic evolution with Rabi fre-
quency, though the relative contributions of the adiabatic and

FIG. 1. Fourier transform of the phase fluctuations generated by
a stochastic process in which the exponentn of Eq. ~3! is set equal
to unity.
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nonadiabatic response can be changed by varying the values
of f c anda.

From an intuitive perspective the reported behavior is
somewhat surprising. As the Rabi frequency is increased the
atomic system becomes adiabatic with respect to more and
more of the Fourier frequency components of the phase
variation. Consequently, one might expect that in all cases
the adiabatic contribution would dominate at high Rabi fre-
quencies as shown in Figs. 2~d!–2~f!. Of course, from Figs.
2~a!–2~c! we know that this is not the case. The key obser-
vation to be made from these examples, then, is that the
dynamic response of the two-level atom to PDFs depends, to
a large extent, on the shape of the phase fluctuations’ spectral
profile @i.e., the high Fourier frequency dependence of
Su( f )#.

In proceeding to understand the observed behavior, we
deal with the Bloch equations in the instantaneous frame@5#.
As all Bloch-vector components are taken as being in that
frame, specific indications of the frame~e.g.,Xinst! will be
deleted. The relevant equations are

dX

dt
52gX1

du

dt
Y2VZ, ~5a!

dY

dt
52gY2

du

dt
X, ~5b!

dZ

dt
52g~Z2ZNF!1VX. ~5c!

To mimic the stochastic nature of the phase fluctuations in a
simple manner we write the phase as a sum of uncorrelated
Fourier components@8#

u~ t !5uadia~ t !1«( aisin@2p f i t1c i #. ~6!

Hereuadia(t) corresponds to all Fourier components with fre-
quencies less than the Rabi frequency, i.e., those expected to
induce an adiabatic atomic response. The summation on the
right-hand side of Eq.~6! is over Fourier frequenciesf i in
the vicinity of the Rabi frequency and higher. Thec i are
random and uniformly distributed between 0 and 2p, while
the ai are chosen in a manner consistent with the spectral
profile of the noise process to be modeled. The parameter«
is the mean amplitude of the Fourier components near the
Rabi frequency and as such«;A^uadia

2 &/Vn. As «ai will
typically be much less than the root-mean-square value of
uadia, application of a perturbative approach to the solution to
Eqs. ~5! with the phase variations supplied by Eq.~6! is
justified.

Each Bloch-vector component is written in the form

C~ t !5C~0!~ t !1«C~1!~ t !, ~7!

with the superscripts on the Bloch-vector components indi-
cating the order of the perturbation expansion to which they
are related. The specific expressions for each component are
substituted into Eqs.~5! along with the phase modulation
given by Eq.~6!. Collection of zeroth-order terms in« pro-
duces a set of equations forX(0), Y(0), andZ(0) identical in
form to Eqs.~5! with u(t) replaced byu(t)adia. These are the
same equations as analyzed in Ref.@5# and the results of that
analysis for the adiabatic component of the atomic response
are applicable in our current study. The first-order equations
describe primarily the nonadiabatic aspects of the atomic re-
sponse

dX~1!

dt
52gX~1!1

duadia
dt

Y~1!

1F( 2pai f icos~2p f i t1c i !GY~0!2VZ~1!,

~8a!

dY~1!

dt
52gY~1!2

duadia
dt

X~1!

2F( 2pai f icos~2p f i t1c i !GX~0!, ~8b!

dZ~1!

dt
52gZ~1!1VX~1!. ~8c!

To proceed with the analysis we make two
simplifications. u̇adia is in essence a fluctuating field fre-
quency associated with the phase modulation’s adiabatic
components and terms containing it will have magnitudes
that are generally much smaller than those of the terms con-
taining the f i . As a result, a reasonable simplification is to
drop the terms containingu̇adia from Eqs.~8a! and ~8b!. In
the same vein, the

FIG. 2. Instantaneous frame Bloch-vector trajectories resulting
from noise processes of Eq.~3! with ~a!–~c! n51 and~d!–~f! n53.
Rabi frequencies equal~a! and~d! 50 s21, ~b! and~e! 200 s21, and
~c! and~f! 500 s21. Note the different appearances of the adiabatic,
figure-eight pattern as the Rabi frequency is varied for the two noise
processes.
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terms containingg in these equations are also small and are
removed. With these simplifications we obtain the following
equation to approximately describe the first-order population
variations:

d2Z~1!

dt2
1g

dZ~1!

dt
1V2Z~1!

5FV( 2pai f icos~2p f i t1c i !GY~0!.

~9!

Clearly the nonadiabatic contribution to the population im-
balance’s temporal evolution resembles that of a driven,
damped harmonic oscillator, hence the nonadiabatic oscilla-
tions. The degree of damping is specified by the atomic re-
laxation rate, in particular the longitudinal relaxation rate,
while the driving function is given by the right-hand side of
Eq. ~9!. From Ref.@5# we know thatY(0)(t) is proportional
to u(t)adia. As the Fourier frequencies comprising the adia-
batic phase variations are small compared to the Rabi fre-
quency and hence thef i , the right-hand side of Eq.~9! re-
mains well described by a sum of sinusoidal terms with
frequencies on the order of or larger than the Rabi frequency.

The resonance denominator associated with the solution
of Eq. ~9! in the case of a single sinusoidal driving term
provides interesting insights into the behavior of the nona-
diabatic component of the atomic evolution@9#. The reso-
nance condition is satisfied when the driving frequency
equals the Rabi frequency. Consequently, the nonadiabatic
atomic evolution, as it appears in the dynamics of the popu-
lation imbalance, should show a strong oscillatory compo-
nent at the Rabi frequency. Concomitantly, variation in the
Rabi frequency should result in a variation of the principal
oscillatory frequency of the nonadiabatic response. Defining
Z(1)( f ) as the nonadiabatic atomic population imbalance
evolution at Fourier frequencyf , the form of the resonance
denominator associated with a damped, driven harmonic os-
cillator suggests that

Z~1!~ f.V!

Z~1!~V!
'

fgaf
aVuV224p2f 2u

, ~10!

whereaf andaV are the amplitudes of the Fourier compo-
nents at the resonant frequency~V! and a nonresonant fre-
quency (f ), respectively~with our definition of«, aV;1!.

These expectations are clearly shown by the exact nu-
merical results of Fig. 3. The two-level system is subjected
to a phase modulation pattern described by Eq.~3! with
f c55.0 Hz, a5231024 s21, and n53. Figure 3~a! shows
the Fourier spectrum of the stochastic phase variations. For
illustrative purposes, the parameters of Eq.~3! were selected
to produce a clearly defined set of frequency components at
5 Hz allowing an obvious adiabatic response to the stochastic
field. If a were larger the peak at 5 Hz would be broader and
less obvious, reducing the clarity of the atomic response’s
adiabatic component. The Fourier transforms of the popula-
tion fluctuations@Fourier transform ofZ(t)# for the Rabi
frequency equal to 20 and 50 Hz are shown in Figs. 3~b! and
3~c!, respectively. In Ref.@5# it was shown that theZ re-
sponse, under adiabatic conditions, displays significant

strength at twice the phase modulation frequency. In Figs.
3~b! and 3~c! the adiabatic response is, as expected, observed
at 2f c ~i.e., 10 Hz!. More importantly for the present work,
however, both Figs. 3~b! and 3~c! show strong Fourier com-
ponents at the Rabi frequency consistent with the resonance
condition suggested by Eq.~9!. As expected from Eq.~9!,
the nonadiabatic portion of the atomic evolution may be
‘‘tuned’’ by merely by changing the Rabi frequency. More-
over, the amplitude of the atomic response decreases more
rapidly at frequencies above the Rabi frequency than at fre-
quencies below it. This is consistent with the resonance con-
dition for a driven, damped harmonic oscillator and the rela-
tive magnitudes of theai . The simple description of atomic
temporal evolution in response to stochastic phase fluctua-
tions is observed for a variety of nonadiabatic PDFs, con-
firming the expectation that the atomic evolution is generally
the sum of an adiabatic component~tracing figure eights in
the instantaneous frame! and a nonadiabatic component
~Rabi frequency oscillation!.

The resonance condition suggested by Eq.~9! should be
distinguished from the Rabi resonance response observed by
Cappeller and Mueller@10# and others@11#. In Cappeller and
Mueller’s investigation a two-level atom was subjected to a
field with a sinusoidally varying phase, and enhanced atomic
response was observed when the Rabi frequency was equal

FIG. 3. ~a! Fourier transform of the phase variations. Fourier
transforms of atomic responses~Z component of the Bloch vector!
with the Rabi frequency set to~b! ~2p320! s21 and~c! 2p350 s21

for the noise process of Eq.~3! with n53, f c52p35 s21, and
a5231024 s21.
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to the frequency of phase modulation. However, the resonant
response was sinusoidal attwice the modulation frequency,
similar to the current adiabatic response rather than the reso-
nancelike, nonadiabatic response. The behavior of the two-
level system in the presence of broadband excitation is
clearly more complex than in the narrow-band case.

With the results of the preceding analysis it is possible to
understand the apparently incongruent behavior displayed in
Fig. 2. In both cases we now expect the observed patterns to
be the sum of adiabatic and nonadiabatic contributions.
Moreover, the relative magnitudes of the two contributions
are known to be functions of the Rabi frequency and the
specific noise process initiating the atomic evolution. Focus-
ing upon the relative amplitudes of the Bloch-vectorZ com-
ponent, we consider first the adiabatic component. From Ref.
@5# we have

Z~0!~ t !>F gV2ZNF
~g21V2!2

Guadia duadia
dt

. ~11!

Thus, for large Rabi frequenciesZ(0)(t);V22. Turning to
the nonadiabatic componentZ(1)(t), we have, from Ref.@5#,

Y~0!~ t !>FgVZNF
g21V2Guadia, ~12!

which, when used in conjunction with Eq.~9!, shows that the
driving term of that equation is independent of Rabi fre-
quency in the strong-field regime. AsZ(1)(t) is dominated by
the component of the phase fluctuation process with Fourier
frequency equal to the Rabi frequency,

uZ~1!~ t !u'aVZNFuadia. ~13!

However, the total nonadiabatic contribution~to first order!
is the product of« andZ(1)(t) and « is proportional to the
V2n. Consequently, the ratio of the atomic evolution’s adia-
batic component to its nonadiabatic component is propor-
tional toVn22. Forn51, as the Rabi frequency is increased
the nonadiabatic response will dominate the adiabatic re-
sponse, resulting in the disappearance of the characteristic
figure-eight pattern and its replacement by the unstructured
pattern composed of oscillations near the Rabi frequency.
This is the behavior observed in Figs. 2~a!–2~c!. In contrast,
if n53 the adiabatic response will be dominant as the Rabi
frequency is increased and the figure eight will become ap-
parent at high Rabi frequencies. This explains the behavior
of the atomic response in Figs. 2~d!–2~f!. Finally, for the
intermediate case in whichn52 the atomic response is ex-

pected to be essentially independent of the Rabi frequency,
consistent with our calculations.

IV. CONCLUSIONS

In this paper we have investigated the temporal response
of the two-level atom to a resonant, constant amplitude elec-
tromagnetic field that displays broadband phase noise. While
the results of this study were developed by addressing three
different PDFs, the conclusions are not limited to noise pro-
cesses displaying their specific spectral characteristics. The
finding that the atomic response may be separated into two
simple adiabatic and nonadiabatic components is quite gen-
eral, so long as the spectral density of phase fluctuations is
reasonably ‘‘normal.’’ That is, the phase fluctuation Fourier
amplitudes at high Fourier frequencies should be smaller
than those at low frequencies. Additionally, in order for the
nonadiabatic atomic evolution to be dominated by oscilla-
tions at the Rabi frequency, variations in the phase fluctua-
tion Fourier amplitudes near the Rabi frequency should not
overwhelm the effect of the resonance denominator associ-
ated with the damped driven harmonic oscillator~e.g., for
Fourier frequencies larger that the Rabi frequency the phase
variation Fourier amplitudes should not increase more rap-
idly than 1/uV224p2f 2u!. In light of the noise processes
typically observed experimentally, neither of these caveats is
particularly restrictive.

Experimentally, it should be possible to observe the con-
sequences of the phenomena discussed here in the population
oscillations of an atomic medium. For example, since the
transmitted light intensity of a weak probe through an atomic
vapor is proportional to the atomic density in the absorbing
quantum state, one could perform a double-resonance experi-
ment and examine the Fourier spectrum of the weak probe’s
transmitted intensity variations in order to reproduce our Fig.
3. This could be realized in an optically pumped alkali-metal
vapor, which has application to atomic clock technology
@12#. Specifically, in Rb atomic clocks fractional population
changes of several tenths of a percent are readily detected
@13#. With suitable signal averaging the counter-intuitive re-
sults of Figs. 2~a!–2~c! could be manifested by examining
the relative amplitude of the adiabatic and nonadiabatic com-
ponents in a Fourier spectrum as a function of Rabi fre-
quency. Moreover, the tunability of the nonadiabatic re-
sponse with Rabi frequency could be demonstrated. Finally,
by subjecting the atomic system to broadband noise and ex-
amining the probe’s transmitted intensity variations, the
atomic system’s manifestation as a narrow-band filter could
be demonstrated.

As a final observation, we note the utility, recognized by
many authors@14#, of the instantaneous frame and its value
in addressing quantum-system interactions with non-
monochromatic fields. The transformation into that frame al-
lows one to directly address the temporal variations of the
field phase, a factor critical to simplifying the conceptual
understanding of an atom’s response to a phase varying field.
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