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Underlying simplicity of atomic population variations induced
by a stochastic phase-fluctuating field
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We have examined the temporal evolution of a two-level atom in response to stochastic phase-fluctuating
fields by applying perturbation theory to the optical Bloch equations written in the instantaneous frame. Our
results show that the general nature of the atomic population variations is relatively simple, being composed of
adiabatic and nonadiabatic components. The adiabatic response results from Fourier components of the phase
variation below the system’s Rabi frequency and is proportional to the product of the relatively slow phase
variation and its first derivative. The nonadiabatic response has its maximum amplitude at the system'’s Rabi
frequency, for which the atom behaves like a simple harmonic oscillator whose resonance frequency is the
Rabi frequency. In this sense the atom acts as a tunable narrow-band $itt@60-29476)01710-9

PACS numbe(s): 42.50.Md, 42.50.Ar, 32.86:t

[. INTRODUCTION of field much of the problem’s stochastic nature may be
couched in terms of a sequence of stochastic orthogonal
One of the principle differences between optical and ratransformations in Bloch space, simplifying to a large extent
diofrequency spectroscopy concerns the role of field fluctuathe underlying atomic dynamics. In this paper we will refer
tions. Generally, the radiofrequency fields produced byto a field with constant amplitude and stochastic phase varia-
quartz crystal oscillators have relative linewidthe.,Av/yy)  tions (characterized by a power-law dependence as the Fou-
of 10 11-10*?[1], while the optical fields produced by la- rier frequency of the phase variations increasesa “phase
sers have relative linewidths ranging from about @ diffusionlike” field and for ease of notation use the acronym
1075, As a consequence of the laser's gredtetative sto-  PDF when referring to these fields. Our previous work dealt
chasticity, optical analogs of radio-frequency experimentswith “adiabatic” PDFs in which the great majority of the
have led to different phenomena in the regime of strong+ourier components of the stochastic phase variation are less
field—atom interactions. For example, Hamiltenal. [2]  than the system Rabi frequency.
have shown that the asymmetry of the Autler-Townes dou- A somewhat broader class of PDFs may be defified,
blet can be reversed, depending on the details of the lasénonadiabatic” PDF3, where Fourier components associ-
line shape, and Lecomptet al. [3] and Lompreet al. [4]  ated with the phase modulation process are larger than the
have demonstrated that multiphoton transitions excited byrabi frequency). For this broader class of field, the Bloch-
nonmonochromatic laser fields can exhibit enhanced excitatector evolution in the instantaneous frame displays oscilla-
tion rates and ac Stark shifts, respectively, compared ttions, the frequency of which may be well above the major
monochromatic fields. Fourier components associated with the phase modulation
To date, most experimental and theoretical investigationprocess. Here we continue our previous studies by examining
of a stochastic field interacting with an atom have confinedhe response of a two-level atom to this broader class of
their attention to theveragebehavior of resonant phenom- PDF. We will show that the oscillations in the density matrix
ena. In contrast, our current investigations focus upon thelements are manifestations of the atom’s nonadiabatic re-
temporal evolutionof an atomic system in response to asponse to the PDF and are defined by the Rabi frequency.
stochastic field. In a previous wofl] we found that for a Moreover, depending upon how rapidly the fluctuating
certain class of fluctuating field the temporal evolution ofphase’s Fourier components fall off with increasing Fourier
atomic density matrix elements was always quite easily infrequency, we will show that the atomic temporal evolution
terpreted when viewed in the instantaneous fraiim®, a  may be dominated by either the adiabdfie., figure-eight

reference frame whosey orientation in Bloch-vector space or nonadiabati¢oscillation atomic response to the field in
is determined by the field’s phaseSpecifically, for(phas¢  the instantaneous frame.

fluctuating fields with constant amplitude that are resonant

and adiabatidci.e., the atomic Rabi frequency is higher than

any Fourier frequency comprising the phase modulation pro- Il. COMPUTATION

ces$, the Bloch-vectoiZ component is nearly proportional

to the product of the field's fluctuating phase and the phase’s The system under investigation is that of a two-level atom
first derivative, while the¥ component in the instantaneous subjected to a resonant field that has a stochastically varying
frame is approximately proportional to the fluctuating phasephase. The Bloch equations used to describe the system are
itself. Consequently, the temporal evolution of theandY  the same as in Ref5], whereX™, Y™ andZ are the coor-
Bloch-vector components in the instantaneous frame tracdinates of the Bloch vector in thistandard rotating coordi-

out a “figure-eight-like” pattern. Essentially, for this class nate framg6]
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for which the field’s frequency fluctuations are white in the
limit f>a, and in this limit it is similar to the traditional
PDF.

The Bloch equations were solved using a fourth-order
Runge-Kutta algorithm with adaptive step size and in all
cases the step size was controlled by requiring the relative
error in the computation of any Bloch-vector component to
be less than 102, The initial conditions for the Bloch-
vector components were alwayX¥™{(0)=Y"™(0)=0 and
)Z(O)z 1=2Z\r with y=0.5 s'%. As our primary interest is in
relatively strong fields, the Rabi frequency was always
greater tharf,. Thus the atom was exposed (&tochastit
Fourier frequency components of the phase modulation pro-
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FIG. 1. Fourier transform of the phase fluctuations generated b
a stochastic process in which the exponemtf Eq. (3) is set equal
to unity.

rot
dXx =— yX™— () cod 6(1)]Z, (18 cess to which it could respond both adiabatically and nona-
dt diabatically. As noted above, the Bloch vector's temporal
evolution is most simply viewed in the instantaneous frame,
dyrot where theX"™" axis is taken along the direction of the effec-
T yY™©'—Q sin6(t)]Z, (1b)  tive field in the standard rotating frame(i.e.,

Xinst Xrot=COS[A(1)], where X, and X,,; are unit vectors in

4z the direction of the instantaneous and rotating fratnaxes,

gz . rot . rot respectively. For the case of a resonant field the rotating and

dt V(2= Zye) + Q2 cog OO IXTHQ sinfH()]YT instantaneous frames are related by a simple time-dependent
(1o  rotation in the Bloch-spacey plane. Of particular note is the

fact that theZ component of the Bloch vector is unaffected

Here we have equated the transverse and longitudinal relaky this rotation and is the same in the instantaneous, rotating,

ation rateqy;=y,=17); Zxe is theZ value in the absence of and laboratory frames.

the resonant field, and the field’s instantaneous phase fluc-

tuation is 6(t). The stochastic phase fluctuations are broad-

band about a “central” phase modulation frequerf¢gyand

are generated by writing the phase fluctuation in terms of Figure 2 shows the atomic response to two typical sto-

Ill. RESULTS

two uncorrelated stochastic phase components chastic phase modulation patterns as a function of Rabi fre-
quency. In both cases7&.=10 s and the Bloch-vector
0(t) = @1 (t)cog 2mrf ]+ @y(t)sin 27 f t]. (2) trajectories for Rabi frequencies of 50, 200, and 50bare

presented. In Figs. (8—-2(c) n=1 and a=2x10"* s %,

. . . _ _ _1
The stochastic phase components are characterized B{Nil€ in Figs. 2d)—2(f) n=3 anda=10 s . (These param-

(@i(t)@;(t— )= 5;R(r) and are produced by passing unit eters were sel_ected to clearly_display the _differi_ng changes in
variance, Gaussian white noise through a digital filter. atomic dynamics as the Rabi frequency is vayiéthr both
The filter transfer function is processes the characteristic figure-eight adiabatic response is

observed along with high-frequency oscillations. The relative

n—05 strength of the two contributions to the total response clearly
ﬁn(f): &n, 3 depends upon the Rabi frequency. However, the dependence
(2mif+a) of the atomic response on Rabi frequency is completely dif-

ferent for the two stochastic processes. With 1, the adia-
wheref is the Fourier frequency of the phase variations, batic response is observed at low Rabi frequencies, but is
is a numerical factorg is the standard deviation of phase overwhelmed by the high-frequency oscillation at high Rabi
fluctuations, andv is a bandwidth parameter. It is to be noted frequenciedi.e., the adiabatic dominant response changes to
thatf, anda may be used to adjust the relative contributionsthe nonadiabatic dominant response(hgcreases In con-
of low- and high-frequency Fourier components to the overtrast, whenn=3 the adiabatic response is not apparent at
all phase modulation procegXt). The rate of decrease in low Rabi frequencies, yet as the Rabi frequency is raised the
the Fourier amplitudes af increases is determined by the adiabatic pattern eventually becomes dominérg., the
value ofn, and in this work we confine our attentionie=1,  nonadiabatic dominant response changes to the adiabatic
2, and 3(x;=v2, k,=2, and k3=4W3). The digital filter is dominant response &3 increases The general asymptotic
implemented using the procedure of Camparo and Lambehaviors at larg&) are valid for the indicated exponent
bropoulos[7], and as an example we show in Fig. 1 thevaluesn regardless of the values ¢f and « (so long as
Fourier transform ofy(t) for the casen=1, f.=1 Hz, and f.<Q). For the case ofi=2, there is no clear demarcation
=10 s, (In all cases to be reported hese-+1 rad) We  between adiabatic and nonadiabatic evolution with Rabi fre-
note that fom=1 (andf.=0) the stochastic process yields quency, though the relative contributions of the adiabatic and
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To mimic the stochastic nature of the phase fluctuations in a
simple manner we write the phase as a sum of uncorrelated
Fourier componentg3]

1032
1032

O(t) = Oaqidt) + &>, asin2afit+ ] (6)

O 08 02 e 0810 Here 6,4{t) corresponds to all Fourier components with fre-

e quencies less than the Rabi frequency, i.e., those expected to
induce an adiabatic atomic response. The summation on the
right-hand side of Eq(6) is over Fourier frequencief in
the vicinity of the Rabi frequency and higher. Tlge are
random and uniformly distributed between 0 and, 2vhile
the a; are chosen in a manner consistent with the spectral
profile of the noise process to be modeled. The parameter
is the mean amplitude of the Fourier components near the
Rabi frequency and as suah~(62,3/Q". As ea; will
typically be much less than the root-mean-square value of
O.4ia» @pplication of a perturbative approach to the solution to
Egs. (5) with the phase variations supplied by E®) is
justified.

Each Bloch-vector component is written in the form

1042
1062

1082
1072

103 yinst 104 yinst
C(t)=CO(t)+eC(1), @)
FIG. 2. Instantaneous frame Bloch-vector trajectories resulting
from noise processes of E@) with (8)—(c) n=1 and(d)—(f) n=3.  with the superscripts on the Bloch-vector components indi-
Rabi frequencies equé®) and(d) 50 s, (b) and(e) 200 s %, and  cating the order of the perturbation expansion to which they
(c) and(f) 500 s™. Note the different appearances of the adiabatic,are related. The specific expressions for each component are
figure-eight pattern as the Rabi frequency is varied for the two noisgubstituted into Eqs(5) along with the phase modulation
processes. given by Eq.(6). Collection of zeroth-order terms in pro-
duces a set of equations ¢, Y(®, andz® identical in
nonadiabatic response can be changed by varying the valuésrm to Eqgs.(5) with 6(t) replaced byd(t) 4qin- These are the
of f. anda. same equations as analyzed in R&}.and the results of that
From an intuitive perspective the reported behavior isanalysis for the adiabatic component of the atomic response
somewhat surprising. As the Rabi frequency is increased thare applicable in our current study. The first-order equations
atomic system becomes adiabatic with respect to more andescribe primarily the nonadiabatic aspects of the atomic re-
more of the Fourier frequency components of the phaseponse
variation. Consequently, one might expect that in all cases
the adiabatic contribution would dominate at high Rabi fre-  dX e dagia
guencies as shown in Figs(@-2(f). Of course, from Figs. da 7 * dt
2(a)—2(c) we know that this is not the case. The key obser-
vation to be made from these examples, then, is that the £ , Ay o7
dynamic response of the two-level atom to PDFs depends, to %E 2maficog 2mfit+ l/f.)}Y Oz,
a large extent, on the shape of the phase fluctuations’ spectral (8a)
profile [i.e., the high Fourier frequency dependence of
Sﬂ(f)] dY(l) 1 dﬁadia
In proceeding to understand the observed behavior, we dat =—yY! )_T
deal with the Bloch equations in the instantaneous friie
As all Bloch-vector components are taken as being in that
frame, specific indications of the frame.g., X™) will be _{2 ZWaifiCOS(ZWfit"'lﬂi)}x(o)- (8b)
deleted. The relevant equations are

VES

X1

dz®
dx 40 n =—yzZW+ax®. (80)
az—yXJraY—QZ, (58
To proceed with the analysis we make two
simplifications. 6,4, IS in essence a fluctuating field fre-
dy de quency associated with the phase modulation’s adiabatic
EZ_VY_ dt X, (Sb) components and terms containing it will have magnitudes
that are generally much smaller than those of the terms con-
taining thef;. As a result, a reasonable simplification is to
d_Z: — W Z—Zyp) + OX (50) drop the terms containing,q, from Egs.(8a) and(8b). In

dt the same vein, the
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terms containingy in these equations are also small and are
removed. With these simplifications we obtain the following

equation to approximately describe the first-order population
variations:

d’z®»  dz®

2-(1)
a7 +y T +0°Z

= QE 27TaifiC0127Tfit+ Ilfl) Y(O).
€)

Clearly the nonadiabatic contribution to the population im-
balance’s temporal evolution resembles that of a driven,
damped harmonic oscillator, hence the nonadiabatic oscilla-
tions. The degree of damping is specified by the atomic re-
laxation rate, in particular the longitudinal relaxation rate,
while the driving function is given by the right-hand side of
Eq. (9). From Ref.[5] we know thatY(©)(t) is proportional
to O(t) 4gia- AS the Fourier frequencies comprising the adia-
batic phase variations are small compared to the Rabi fre-
guency and hence thie, the right-hand side of Eq9) re-
mains well described by a sum of sinusoidal terms with
frequencies on the order of or larger than the Rabi frequency.
The resonance denominator associated with the solution
of Eqg. (9) in the case of a single sinusoidal driving term
provides interesting insights into the behavior of the nona-
diabatic component of the atomic evoluti¢d]. The reso-
nance condition is satisfied when the driving frequency
equals the Rabi frequency. Consequently, the nonadiabatic
atomic evolution, as it appears in the dynamics of the popu-
lation imbalance, should show a strong oscillatory compo-
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FIG. 3. (a) Fourier transform of the phase variations. Fourier

nent at the Rabi frequency. Concomitantly, variation in thetransforms of atomic responsés component of the Bloch vector
Rabi frequency should result in a variation of the principalwith the Rabi frequency set 1) (27x20) s~ and(c) 27 x50 s°*
oscillatory frequency of the nonadiabatic response. Definindor the noise process of E¢3) with n=3, f;=27x5 s, and

ZW(f) as the nonadiabatic atomic population imbalancex=2x10"*s

evolution at Fourier frequencf, the form of the resonance
denominator associated with a damped, driven harmonic os;,
cillator suggests that

Z(l)(f>Q)~ fya;
ZVQ)  ag|Q?—4x%f?)

(10

—1

trength at twice the phase modulation frequency. In Figs.
(b) and 3c¢) the adiabatic response is, as expected, observed
at 2f (i.e., 10 H2. More importantly for the present work,
however, both Figs.(®) and 3c) show strong Fourier com-
ponents at the Rabi frequency consistent with the resonance
condition suggested by E@9). As expected from Eq(9),

the nonadiabatic portion of the atomic evolution may be
wherea; anda,, are the amplitudes of the Fourier compo- “tuned” by merely by changing the Rabi frequency. More-
nents at the resonant frequen@y) and a nonresonant fre- over, the amplitude of the atomic response decreases more

quency f), respectively(with our definition ofe, ag~1).

rapidly at frequencies above the Rabi frequency than at fre-

These expectations are clearly shown by the exact nuguencies below it. This is consistent with the resonance con-
merical results of Fig. 3. The two-level system is subjectedlition for a driven, damped harmonic oscillator and the rela-

to a phase modulation pattern described by Bj. with
f.=5.0 Hz, a=2x10"* s}, andn=3. Figure 3a) shows

tive magnitudes of the; . The simple description of atomic
temporal evolution in response to stochastic phase fluctua-

the Fourier spectrum of the stochastic phase variations. Faions is observed for a variety of nonadiabatic PDFs, con-

illustrative purposes, the parameters of E).were selected

firming the expectation that the atomic evolution is generally

to produce a clearly defined set of frequency components ahe sum of an adiabatic compondiracing figure eights in

5 Hz allowing an obvious adiabatic response to the stochastithe instantaneous frarheand a nonadiabatic component
field. If « were larger the peak at 5 Hz would be broader andRabi frequency oscillation

less obvious, reducing the clarity of the atomic response’s The resonance condition suggested by &j.should be
adiabatic component. The Fourier transforms of the populadistinguished from the Rabi resonance response observed by

tion fluctuations[Fourier transform ofZ(t)] for the Rabi
frequency equal to 20 and 50 Hz are shown in Figbk) &nd
3(c), respectively. In Ref[5] it was shown that th&Z re-

Cappeller and Muell€rl0] and otherg11]. In Cappeller and
Mueller's investigation a two-level atom was subjected to a
field with a sinusoidally varying phase, and enhanced atomic

sponse, under adiabatic conditions, displays significantesponse was observed when the Rabi frequency was equal
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to the frequency of phase modulation. However, the resonamgected to be essentially independent of the Rabi frequency,
response was sinusoidal @tice the modulation frequency, consistent with our calculations.

similar to the current adiabatic response rather than the reso-
nancelike, nonadiabatic response. The behavior of the two-
level system in the presence of broadband excitation is

clearly more complex than in the narrow-band case. In this paper we have investigated the temporal response

With the results of the preceding analysis it is possible toof the two-level atom to a resonant, constant amplitude elec-
understand the apparently incongruent behavior displayed igomagnetic field that displays broadband phase noise. While
Fig. 2. In both cases we now expect the observed patterns tfe results of this study were developed by addressing three
be the sum of adiabatic and nonadiabatic contributionsgifferent PDFs, the conclusions are not limited to noise pro-
Moreover, the relative magnitudes of the two contributionscesses displaying their specific spectral characteristics. The
are known to be functions of the Rabi frequency and th&inding that the atomic response may be separated into two
specific noise process initiating the atomic evolution. FOCUSsimp|e adiabatic and nonadiabatic components is quite gen-
ing upon the relative amplitudes of the Bloch-vecfocom-  eral, so long as the spectral density of phase fluctuations is
ponent, we consider first the adiabatic component. From Refeasonably “normal.” That is, the phase fluctuation Fourier
[5] we have amplitudes at high Fourier frequencies should be smaller

than those at low frequencies. Additionally, in order for the

nonadiabatic atomic evolution to be dominated by oscilla-

tions at the Rabi frequency, variations in the phase fluctua-
'YQZZNF} d0adia tion Fourier amplitudes near the Rabi frequency should not
(Y+0?)?2]72da gt (1) overwhelm the effect of the resonance denominator associ-
ated with the damped driven harmonic oscillaterg., for
Fourier frequencies larger that the Rabi frequency the phase
variation Fourier amplitudes should not increase more rap-
idly than 1/Q%—42f2)). In light of the noise processes
typically observed experimentally, neither of these caveats is
particularly restrictive.

Experimentally, it should be possible to observe the con-
sequences of the phenomena discussed here in the population
(12) oscillations of an atomic medium. For example, since the

transmitted light intensity of a weak probe through an atomic
vapor is proportional to the atomic density in the absorbing
quantum state, one could perform a double-resonance experi-
ment and examine the Fourier spectrum of the weak probe’s
which, when used in conjunction with E(), shows that the transmitted intensity variations in order to reproduce our Fig.
driving term of that equation is independent of Rabi fre-3. This could be realized in an optically pumped alkali-metal
quency in the strong-field regime. &8Y)(t) is dominated by  vapor, which has application to atomic clock technology
the component of the phase fluctuation process with Fouridrl2]. Specifically, in Rb atomic clocks fractional population
frequency equal to the Rabi frequency, changes of several tenths of a percent are readily detected
[13]. With suitable signal averaging the counter-intuitive re-
sults of Figs. 2a)—2(c) could be manifested by examining
the relative amplitude of the adiabatic and nonadiabatic com-
|ZV(t) |~ a0 Znrbadia: (13)  ponents in a Fourier spectrum as a function of Rabi fre-
quency. Moreover, the tunability of the nonadiabatic re-
sponse with Rabi frequency could be demonstrated. Finally,
by subjecting the atomic system to broadband noise and ex-
However, the total nonadiabatic contributico first ordey ~ @mining the probe’s transmitted intensity variations, the
is the product ofs and Z()(t) and ¢ is proportional to the —atomic system’s manifestation as a narrow-band filter could
Q~". Consequently, the ratio of the atomic evolution’s adia-P€ demonstrated. 3 _
batic component to its nonadiabatic component is propor- AS a final observation, we note the utility, recognized by
tional to Q" ~2. Forn=1, as the Rabi frequency is increased Many authorg14], of the instantaneous frame and its value
the nonadiabatic response will dominate the adiabatic reln addressing quantum-system interactions with non-
Sponse] resulting in the disappearance Of the Characterisﬁeonochromau.c fleldS. The transformat|0n Into that frame al'
figure-eight pattern and its replacement by the unstructuretpws one to directly address the temporal variations of the
pattern composed of oscillations near the Rabi frequencyiield phase, a factor critical to simplifying the conceptual
This is the behavior observed in FiggaR-2(c). In contrast, understanding of an atom’s response to a phase varying field.
if n=3 the adiabatic response will be dominant as the Rabi
frequency is increased and the figure eight will become ap-
parent at high Rabi frequencies. This explains the behavior
of the atomic response in Figs(d®—2(f). Finally, for the The authors would like to thank B. Jaduszliwer for a criti-
intermediate case in which=2 the atomic response is ex- cal reading of the manuscript. This work was supported un-

IV. CONCLUSIONS

zOt)=

Thus, for large Rabi frequencigg®(t)~Q 2. Turning to
the nonadiabatic component?)(t), we have, from Ref5],

0z
o=

0adia’

ACKNOWLEDGMENTS



3504 R. P. FRUEHOLZ AND J. C. CAMPARO 54
der The Aerospace Corporation’s Aerospace Sponsored Re- O. Rice, in Selected Papers on Noise and Stochastic Pro-
search Program. cessesedited by N. WaxDover, New York, 1954
[9] See, for example, R. Resnick and D. Hallid&@hysics, Part |
[1] F. L. Walls and A. DeMarchi, IEEE Trans. Instrum. Meas. (Wiley, New York, 1966, pp. 372—375; J. B. Vernoit,inear

IM-24, 210(1975. Vibration Theory(Wiley, New York, 1967.

[2] M. W. Hamilton, K. Arnett, S. J. Smith, D. S. Elliot, M. Dzi- [10] U. Cappeller and H. Mueller, Ann. Phyé_eipzig) 42, 250
emballa, and P. Zoller, Phys. Rev.3§, 178(1987. (1985.

[3] C. Lecompte, G. Mainfray, C. Manus, and F. Sanchez, Physf11] See, for example, J. C. Camparo and R. P. Frueholz, Phys.
Rev. All, 1009(1979- o Rev. A 38, 6143(1988; S. Papademetriou, S. Chakmakjian,

[4] L.-A. Lompre, G. Mainfray, C. Manus, and J. P. Matrinier, J. and C. R. Stroud, Jr., J. Opt. Soc. Am981182(1992.

Phys. B14, 4307(1981).

[5] R. P. Frueholz and J. C. Camparo, Phys. Rev52 472
(1995.

[6] ;_6' ;E;b('ig'\ls' 4>F' Ramsey, and J. Schwinger, Rev. Mod. Phys,.) 5 ;") haro and R. P. Frueholz, J. Appl. PH§@. 301

[7]J. C. Camparo and P. Lambropoulos, Phys. Rev7A 480 (1988. .
(1993 [14] L. Allen and J. H. EberlyOptical Resonance and Two-Level

[8] See, for example, S. GoldmaRrequency Analysis, Modula- Atoms (Wiley, N?W York, 1975, Sec. 4.6; P. Avon and C.
tion and Noise(McGraw-Hill, New York, 1948, Chap. 7; S. Cohen-Tannoudji, J. Phys. B0, 155(1977).

[12] J. C. Camparo and R. P. Frueholz,Amoceedings of the 1993
IEEE International Frequency Control SymposigiaEE, Pis-
cataway, NJ, 1993 pp. 114-119.



