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Statistical analysis of pulses in systems with random modulation through an instability point
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A method for the analysis of pulse statistics in one-dimensional dynamical systems with random modulation
of the control parameter is developed. The stationary properties of pulses are obtained via the solution of an
integral equation for the probability density of the passage time by a reference level. The method is applied to
a complex Landau-type model with random on-off modulation. In some cases analytical expressions are
derived for the passage time distribution. This distribution is shown to be multimodal due to memory effects.
An excellent agreement is obtained in all situations between theoretical results and numerical simulations.
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I. INTRODUCTION terministic theory[2]. This theory has been applied to gas

Switching processes in many physical systems can be déqsers[6,14] and semiconductor lasef$5].
gp y Py y In this paper we develop a method to study the statistical

scribed in the framework of externglly driven dynamical SyS'properties of pulses in stochastic systems that are randomly
tems. The system is forced to switch from one state 0 ang,qq|ated through an instability point. A random sequence
other b_y cha!nglng a parameter. Of special interest are tho%.} “1” (pulses and “0” (associated with theff state is
cases in which the system has two steady states, one stabjg,qyced by using two different evolutions for the control
and the other unstable, for which the change of the pafamet?farametera during one period. Iron periodsa is changed
only modifies the stability of these solutions. Pulses in thesghrough the instability point to generate a pulse, while during
systems can be obtained by varying the control parametef periodsa is kept below the instability point. In our analy-
between two values that correspond to two stable stffes sis we consider systems described by a one-dimensional
andon, usually associated to small and large values, respeg-angevin equation, in which fluctuations are modeled by a
tively, for the variable of interest. When the control param-white noise. The statistical properties of pulses for the “in-
eter is changed in such a way that th# state becomes tensity” (modulus of the variable of intergsare studied.
unstable, the evolution is in a first stage governed by flucThe probability density of the pulse characteristics, such as
tuations. Then the analysis of this decay process is usualyidth and height, can be obtained from the passage time
based on stochastic models of the Langevin type, in whicldistribution by using the deterministic evolution. The pas-
fluctuations are modeled by a white noise. The decay of unsage timer is defined as the delay between the beginning of
stable states is one of the fundamental problems of nonequihe on period and the emission of the pulse, given by the
librium statistical mechanics, in which nonlinearities andtime in which a reference value is reached by the intensity.
fluctuations are crucial to have a correct descripfibh In ~ After an initial transient the passage time distributi®(r)

most theoretical analysis the system is in tiffesteady state becomes independent of the initial conditions. In this steady-
when the control parameter is either instantaneously changeddate case the statistical propertiesraire the same for two
driving the system to an unstable stfte?], or swept across consecutive pulses. An integral equation Rirr) is derived

the unstable state with a finite veloc{ty—5]. Another inter-  from this consistency condition in a way similar to the peri-
esting situation corresponds to the case of periodic modulasdic modulation cas¢6]. The passage time distribution is
tion through the instability poinf6]. This problem is rel- obtained by solving this equation and analytical expressions
evant for several physical systems: modulated convectioare given in some cases. Due to the random modulation of
[7], stochastic resonande], Q-switched laserd9], and the control parameter, produced by the random sequence of
gain-switched modulated semiconductor ladd@]. In this  off and on periods, new features appear with respect to the
case the system is not in tléf steady state when the control periodic modulation cas@nly on periodg. One of the most
parameter is changed because the initial condition, at thmteresting results is the multimodal character due to memory
beginning of a pulse, is determined by the final evolution ofeffects of the probability density of some of the pulse char-
the previous pulse. Hence, some kind of consistency condacteristics. The different peaks of the probability distribution
tion for the statistical properties associated with two con-are associated with different periodic sequences. The method
secutive periods must be used to solve this problem. Thigs applied to a complex Landau dynamical system that can
consistency condition has been indirectly used in differendescribe one-dimensional systems such as a randomly modu-
methods: generalizatidd 1] of Suzuki’s matching procedure lated class-A laser. In this system a random sequence of
[12] and the path-integral approafh3]. In [6] we have de- pulses and “zeros” can be generated by loss or gain switch-
veloped a method in which the consistency condition is exing. Analytical expressions are obtained in some cases for
plicitly worked out following the main idea of the quaside- the switch-on(passagetime distribution that shows a bimo-
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dal character due to memory effects. This behavior has also
been found in numerical simulations of semiconductor lasers
modulated at high bit ratdd6]. Memory effects have been
experimentally corroborated in fiber las¢is]. These lasers
are two-dimensional dynamical systems and the population g
dynamics must also be considered. However, our results Qg -
show that multimodal distributions due to memory effects
are also obtained for one-dimensional dynamical systems.
Moreover, analytical expressions are derived for the statisti-
cal distributions associated with the pulses described by
these systems. These expressions are shown to be in good
agreement with numerical simulations.

The paper is organized as follows. In Sec. Il we describe
the method in a one-dimensional general system, deriving : : :
the basic integral equation for the passage time distribution. 0+ 10 T o7 274 a7
The method is applied in Sec. Il to a complex Landau-type ¢
dynamical system with random on-off modulation of the ] _ o
control parameter. Analytical results are obtained for this FIG. 1. Time evolution for the control parameg(t) (in linear
system in some cases. In Sec. IV theoretical results are cor¢@lé and the variable of interegk(t)| (in logarithmic scalg dur-
pared with numerical simulations. ing an “on-off-on” sequence.

on ¢

o £ ]
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random sequence of pulses and zeros is generated. A pos-
sible evolution for|x(t)| anda(t) is shown in Fig. 1, where

We consider systems that can be modeled by one2 sequence “1 0 1" has been plotted.

II. THEORY FOR RANDOMLY MODULATED SYSTEMS

dimensional equations of the form We assume that in then periods all the pulses decay
from their maximum values to reach the reference value
x(t)=F(a(t),x)+ n(t), (2.1 X, . This corresponds to a control parameter that takes large

negative values during a large enough fraction of the period.
wherea(t) is a randomly modulated control parameter andThe different evolution regions are shown in Fig. 1. The first
7(t) is a Gaussian white noise with zero mean value andegion is defined from the beginning of tloe period with

intensity D, a(0)=a,, until a time 7' such thatix(7')|=x,. It is a re-
gion such thatx(t)|<x, dominated by fluctuations where
(n(t)n(s))=Dd(t—s). (2.2 the linear equation
We assume for the nonlinear functiénthe conditions X(t)y=a(t)x(t)+ n(t) (2.9
F(a(t),00=0; F(a(t),x)~a(t)x when |x|<x,, holds [see (2.3]. In the second region froms’ to

(2.3 '+ 6(7') such that|x(t)|>x, the noise is not relevant.

Then the time spent in this deterministic regiéfr’) can be
wherex; is a reference value such that the noise can bealculated from the deterministic equation
neglected whenx|>x,. Then the quasideterministic ap-
proach[2] can be applied by considering two kinds of evo- x(t)=F(a(t),x(t)) (2.5
lution. When the variable of interefst| is small (x| <x,) the
evolution is linear and noise effects are important. In theas a function of7’. In this region the control parameter
deterministic regime |&|>x,) noise can be neglected but crosses the instability point from above. The last region until
nonlinear effects are important. It is also assumed that theréne end of the period is similar to the first one, but now the
are two attractorg,;=0 and|x,,|>x, for |x| corresponding control parameter is below the instability point. In the fol-
to values—a <0 anda,,>0 of the control parameter, re- lowing off period a is always below the instability point.
spectively. Two different situations can be considered: ondhen it can be considered as a prolongation of the last region
positive attractoi,, or two attractors with the same modu- of the on period. This region lasts until the reference value
lus. This situation appears, for instance, when the evolutiox; is crossed at time P+ 7 in the last pulse shown in Fig. 1.
is symmetric,F(a(t),x)=—F(a(t), —x). Having defined the model and the different evolution re-

The control parametea(t) can have two different evolu- gions we now generalize the method used in the periodic

tions during one period. During anon perioda crosses the modulation cas¢6] to the case of random modulation. Our
instability point and a pulse is generated. In this case théask is to obtain the passage time distributi®(r). Since
control parameter first increases reaching a maximum value is associated to pulse emission, it is defined only indhe
ay,. A decreasing evolution follows towards a minimum periods. The passage time is defined as the delay between the
value —ays. In the off periodsa is below the instability —beginning of theon period and the time in which the refer-
point and the system stays below the reference valuegnce value, is reached. In order to connect two consecutive
Ix|<x, (this corresponds to a “OJ: A sequence obnand on periods we consider the functiow(7/7'), defined as
off periods with a probabilityp for an on period and the conditional probability to have a passage tirma anon
(1—p) for the off period is considered. Whem=1/2 a fully =~ period when the passage time of the previongperiod was
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7' and when there arm off periods between both periods.  Now we consider a modulation that involves only two

The m off periods between two consecutive pulses can b&@lues ofa(t). In anon perioda(t) takes the valu@,,>0
considered as a prolongation of the last noise-dominated réPove threshold during the fir8},,=aT fraction of period

gion of anon period. Then we have T and the value-aq<0 below threshold during the second
part Tor=(1—a)T (see Fig. 1L Obviously, during anoff
W17y =W DT (7 77y, (2.6)  period the parametex(t) has the value-a. during all the
period time. We assume in the following that a pulse is al-
where W™ VT(7/7') is the conditional probability corre- ways emitted duringl,,. The passage time is then smaller

sponding to a periodic case with a periogh{ 1)T that is  than T,,. It is also assumed that the reference leheis

formed by theon period followed bym off periods. This crossed in the pulse decay durifigi. In a way similar to

conditional probability can be obtained from the expressiorthe periodic modulation cagsee[6] for a detailed calcula-

derived for the periodic modulation cafgg). tion) one obtains for the conditional probability2(7/7")
In the stationary regim®(7) is independent of the initial the expression

condition and the following chain equation holds:

I
W (i 7') = 2205t e2aenl T 0(3')~ 7'l 220r7

~ T
P(7)= 2, p(l—p)’“f WS VT (7 ) P(7')d 7 0z
m=0 0
2. | (1+ €22l 7= 00~ 1=2207)
@7 xex;{ — - 52
This is the main equation that allows the calculation of the 7z
statistical properties of the passage time. Moreover, the sta- |
tistics of the pulse characteristics can be obtaif@dfrom X Jo| —5 €2l T~ 0(7,)7’130n7:|, (3.3
P(7). 0z

wherer and 7’ are smaller thaf,,, J, is the Bessel func-

lll. RANDOM ON-OFF MODULATION. tion of the first ordef20], and o is given by

MODEL AND ANALYTICAL RESULTS

i(l_ e—Zaoﬁ['T— 0(7')—7'])

Qoff

In this section we apply our method to the following dy- ,_D
namical system:

E=a(t)E—A|E|?E+ (1), (3.0 +i(1_e,2aon7) 2l T 0] (3.4
aon

wherea(t) is the randomly modulated control parameter and

¢ is a Gaussian white noise. Whé&his a real magnitude The time spent in the nonlinear deterministic region,
(3.2) corresponds to the Landau equation and it has bee#(7'), can be calculatefb] from the deterministic equation
used to study the Rayleigh-Bard convection with a control for the intensity with the initial I(7')=1, and final
parameter modulated around the threshgltl. When (7’ + 6)=1, conditions.

E=E;+iE; is a complex magnitudé3.1) can describe, for The stationary passage time probabilRyr) can be cal-
instance, the electric field of a single-mode claskeser[18]  culated from(3.3), (3.4), and the integral equatioi2.7). The
near threshold. In this cas#(t) corresponds to the pump validity conditions of this method can be explicitly obtained
parameter andp=¢,+i¢, is the spontaneous emission in the following way[6]. The reference valug must be in a

noise with intensityD and correlations deterministic region|,>D/min{a,,,a.}!, such that satura-
. , tion effects are negligiblédl, <min{a,,,aqs}. Then the fol-
(di()j(t'))=D 5 8(t—t"). (32 |owing condition is obtained:
In the following we apply the theory developed in the previ- (Min{agn, of})?

ous section to this dynamical system. The random modula- D<
tion of a(t) can be obtained in the case of a cldskser by
varying the quality factor of the cavityQ@-switching, for

A (3.5

. . . dui b . To understand the behavior of the system under random
Instance with an acousto-optic modu a[dr4], or by gamn modulation conditions it is useful to introduce two dimen-
switching. In this one-dimensional dynamical system bothg,ess parameters:

Yy

processes lead to the same result. However, when the dy-

namics of the population inversion must be also considered Fon=aorTon: T off=aof Toff - (3.6)
(classB lasers, the statistical properties of pulses for gain

and loss switching are differefit9]. The model with a com-  The first parameter,, is associated with the pulse rising and
plex variable can be treated with the method shown in thét corresponds to the ratio between the time spent by the
previous section by introducing the intensity system above threshold and the time needed to reachrthe

| (t)=E3(t) + E5(t) and taking into account that in the linear state. The second oney, gives the ratio between the time
noise-dominated region both field components are decowspent by the system below threshold and the pulse decay
pled. For small enougP a reference value for the intensity time. These parameters can be used to characterize all pos-
I, can be introduced to separate this regibs),, from the  sible situations. The casg,<1 is not considered because it
deterministic region|>1, . corresponds to a situation such that the probability of occur-
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FIG. 2. Probability density functioR () for different values of FIG. 3. Mean switch-on timgr) as a function of . for peri-
the parameterga) T=2, a,z=10, «=0.6; (b) T=2, a,=3, odic, p=1 (upper plo} and randomp=0.5 (lower plo§ modula-
a=0.6;(c) T=1.2,a,4=3, =0.45. Other parameters aae= 10, tion. Asterisks and crossédiamonds and trianglgsobtained from
A=1,D=103, 1,=0.1, andp=0.5. Histograms correspond to Simulations, and soliddashed lines, obtained from theoryEq.
numerical simulations of E43.1), solid lines correspond to theory (2.7] correspond tar=0.4 (¢=0.6). Three-dot—dashed lines cor-
[Eq. (2.7)], and dashed lines to the analytical approximations givenfespond to Eq.3.10 and long-dashed lines correspond to Eqg.
by Eq.(3.9 (a) and Eq.(3.16 (b). (8.17. Parameter values are the same as in Fig. 2, Wi#2 and

a.i variable.

rence of a pulse in aon period is low. Note that in our
analysis we have assumed that in @m period a pulse is this caser s cannot be very small, since we have assumed
always emitted. In the opposite situatiog,> 1, the system that the reference levé} is always crossed during the pulse
spends enough time above threshold to reachotinstate, decay.
given by I ,,=a,/A. Then, all the pulses saturate to this
value. In this case a complete analytical treatment is possible A. Repetitive switching (r o;>1)
(see below: In the intermediate casg,~1 different pulse
heights are obtained for different valuessofThe probability
density of the pulse maximum intensity,(1,), can be eas-
ily obtained[6] from P(7) by solving the deterministic equa-
tion for | with the initial conditionl(7)=I,. The pulse
height is given byl ,=1(«T) as a function ofr. By using
the inverse functiof6]

For large values of ,; the system is below threshold at
the end of aron period during a large enough timig;; to
reach theoff state. In this steady state associated with a con-
trol parameter— aq the intensity is mainly due to the noise.
In this case the system is in tlodf state at the end of all the
periods. Then the initial condition at the beginning of a pulse
always corresponds to this stationary st@aépetitive switch-

1 1 (Al,—ay) ing), and the conditional probabilit{"* )7 is independent
(Im)=aT- a In; Al —ay’ (3.7 of the numbem of “zeros” between two pulses. Therefore
on rtEm Ton the passage time distribution is independent of the kind of

we get the pulse height distribution modulation, periodic or random. As shown [ifi] in these
conditions the argument of the Bessel function(&3) is
Pu(lm) =P 7(I ) 121 (Al m—ag0 1. (3.8  small. Then, usind20] J,~1, the conditional probability

(3.3 becomes separable and one recovers (@) and

With regard to pulse decay, two casegs>1 and (3.3) the well-known expression d?(7):
ro~1 are considered. In the first case tifestate is reached

at the end of aron period. Then the initial condition for a

pulse always corresponds to this state. However, in the sec-
ond case the behavior of the system during a pulse depends
on the previous sequence of “zeros” and pulses. Note that ifhe mean passage time and variance are readily obtained as

aof‘faonI r

—2a,nT
——e “%n”|, (3.9
D(aon+ aoff) ( )

P(7)= Nex;{ — 28,7~
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FIG. 4. Variance of the passage tirme as a function of o for FIG. 5. Mean valud 7y and variancer, of the passage time as
the same parameter values as in Fig. 3. Long-dashed lines corrg-function ofp for two values ofa as obtained from simulation
spond to Eq(3.18. (symbol3 and from theory(lines). Asterisks correspond ta=0.4
and diamonds tax=0.6. Solid lines correspond to E¢R.7) and
1 I+ 800t ) , ¥'(1) dashed lines to Eq$3.17) and(3.18
T~ —9(1)|, or~—F=,
' 2aon D(aon+ aoff) w ' 4aon

(3.10  duences. Each of these sequences, composed dfbits, is
fixed and is obtained by taking one of th& @ossible distri-
¢ and ¢’ being the digamma function and its derivative, butions ofn bits “zero” and “one” and a “one” as the last
respectively[20]. bit. The passage time distributioR(7) for the random
modulation case witlp=1/2 can be obtained in the follow-
ing way [16]: When a sequence is periodically repeated the
passage time distribution associated with the last “one” of
Whenr o is not large enough theff state is not reached the sequence is obtaine(7) is given by the superposition
during the pulse decay. Then the initial value for the inten-of these 2 passage time distributions associated with the
sity at the beginning of a pulse depends on whether the preifferent periodic sequences. The maximum number of peaks
vious bit was a “zero” or a “one”(a pulsg. In this case we  of P(7) is 2" in the n-memory case. However, it should be
say that the system has memory or that pattern effects aigoted that one is not likely to observé peaks since many
important. The system has a memory of length(or  of the different sequences could give close peaks which are
n-period memory if the behavior of the system during a not distinguishable. This will happen when the separation
pulse depends on the previous periods. This memory between the peaks is smaller than the width of the passage
length can be estimated as the numbeofoperiods required time distribution associated to the sequences. Multimodal
after one pulse to reach thudf state. In this case the system distributions due to memory effects have also been observed
stays below threshold witha=—a.; during a time in numerical simulations of semiconductor lasers modulated
Tmem= Torrt NT such thatayTmen>1. Therefore, aften  at high speed16]. Two sequences are especially relevant:
“zeros” the initial condition for a pulse will correspond to the periodic sequence without “zeros” between pulses and
the off state. As a consequence there are oyl different  the one associated with the repetitive switching. This last
terms in the integral equatiof2.7), since the conditional sequence corresponds in thememory case tm ‘“zeros”
probability ng”)T corresponds to that of the repetitive between two consecutive pulses. The intensity at the begin-
switching case fom=n. ning of a pulse decreases when the number of previous “ze-
Due to the memory, a multimodal distribution for the pas-ros” increases. As a consequence, the largest and smallest
sage time can be obtained. The statistical properties can halues for the passage time will correspond to the repetitive
understood as a superposition of the statistical properties aand periodic sequences, respectively. Therefore, a multimo-
sociated with the last “one” of 2 different periodic se- dal distribution will be observed when the overlapping be-

B. Memory and pattern effects (r 44~ 1)
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tween the probability distributions associated with these two

sequences is smdll6]. 10%f ‘
It is interesting to consider the limiting situation such that i ]
at the end of a pulse the intensity is below the reference level 10! 3 E

[,, but large enough for the fluctuations to be negligible.
This case corresponds to small valuesrgf. Then in the
periodic modulation case the intensity at the beginning of a
pulse is also large, and the switch on is mainly deterministic
(that is, due to the stimulated emitted photons in the case of
a lase). As shown in[6] in this deterministic limit when the
system is above threshold on the average, i&<ron, a
deterministic steady state is reached for the periodic modu-

e
m e 1 T

lation casePpn(7)=8(7— 7p), where 10_3; : : : :
1 [ (Al (ag,+ay) el
o= Coon T ) 1 280, T(1—a) 10%¢ 2
2ao, Aonoff . b
10" ¢ ]
—In(1—e” 2anaT+ 2aoﬁ(1fa)T) ) (3.1 S Look
D~‘ k
Sincer ,<r,, the last term inrp can usually be neglected. 1071
Then, the switch-on time in the periodic modulation case is _25
approximately a linear function af; with a slope given by 107
(a0~ [6]. In this deterministic limit an analytical condition 10-°[ X
for the multimodal character of the distributi®{(7) can be 0 5 1 6 8
given. Using the criterion based on the overlapping between 7

the distributions associated with the periodic and repetitive
sequences the conditionr,(—p) >0, [see Eqs.(3.9 and

(3.10] is obtained FIG. 6. Probability density functiodPy(l,,) as a function of

height for T=1.2 (upper plo} and T=2 (lower ploy. Histograms
_ correspond to simulation and dashed lines to thg@y. (3.8)].
C. Pulse saturationr ,,>1 Other parameters are the same as in Fig).2

In this limiting case the pulses always saturate to reach
the on state:1,,=a,,/A. The intensity in anon period at way. As shown irff6] the deterministic limit corresponds to a
time T,, is then given byl,,. Therefore, the passage time large value of the argument of the Bessel functioq3r8).
7 is independent of the passage time of the previous puls€hen, using [20] Jy(x)~expk)/y27x and replacing
7'. After changing the pump parameter from above to belowr’ + 4(7') by T+ 7, in (3.3) we get
threshold the system spends a decay time

1 aon(aoﬁ+A|r)

= ) exp[ ao(7— )]
"1 Zagr Al (2 o) (312 WL, (7)~Po(r L
\27od
to cross the reference levkl. Then 7+ 6(7) is a constant (1—e o™ )2
given byT,,+ 71 (see Fig. 1 Substitutings’ + 6(7') by this Xexr{ — } (3.19
constant in(3.4) and(3.3), we obtain a conditional probabil- 2a5,0p

ity W DT (7) that only depends on. The integral equation

(2.7) can be trivially solved in this case obtaining fB(7) where

P r>=mZ=O p(1—p)™WLL T (7). (3.13

D ( aon + aoff)
21 aonaoﬁ

Al (ot af)
QAonQoff

5=

e off — 1}. (3.19
According to the previous discussion, when the memory
length isn all the terms in(3.13 with m=n correspond to

the repetitive switching case given K§.9). Therefore, only  The mean and variance of the passage time associated with

(n+1) different terms must be considered(B113. the deterministic periodic modulation are given By and
An interesting situation occurs whery is small (deter- o2, respectively.

ministic periodic modulationand the memory length is 1, By using(3.9) and(3.14) in (3.13 the following distribu-

. . T
that is, Tag>1. In this case we havVs(7)~6(7—7p),  tjon is obtained for the random modulation case:

whereasW{"* 17 (7) for m>0 corresponds to the repetitive

switching cas€3.9). A better approximation fow, tmclud—
ing the effect of fluctuations can be obtained in the following P(r)~pPp(7)+(1—p)P,(7). (3.16
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This distribution is bimodal when the separation between thehanged. Two different values afare considered that fulfill
peaks atrp and 7, is greater than the width d?,(7) [see the conditionr,>1. In this way the value of ;4 can be
(3.10 and(3.11)]. The mean value of, prp+(1—p)7,, is  changed by varyinga,; or Tos=(1—a)T. Two different
given by types of modulation, periodic p=1) and random
(p=1/2), are compared in these plots. Very good agreement
1 b between theory and simulations is obtained. For large values
_ of ros the repetitive switching regime is reached and the
(r)= 2a [2pr0ﬁ+plnAlr (1 p)( (,//(1)+In|r) resu(if[fs[see(SF.)lo)] are indepegden% of the type of modula-
tion. Whenr y; decreaseér) ando . are given by(3.17) and
(3.17 (3.18), respectively. This situation corresponds to a deter-
ministic periodic modulation and 1 period memory. A linear
) ] behavior is observed for the mean passage time vergus
When p=1/2 the last term in(3.17) is zero and the ity a relation of one half between the slopes of the random
switch—on time is a linear function ot with a slope given  ang periodic modulation cases, as predicted by the theory. In
by (2a,,) *. This slope is one-half of the one faf, in  the random modulation cage) is only a function off o and
(3.11. The variance ofr is given from(3.16) by the same result is obtained for the two valuesroHowever,
a slight difference is observed in the periodic modulation
o2=(1-p)o?+pod+p(l—p)(r—m)2 (3.18  casedue tothe last logarithmic term(B117). With regard to
the variance, wheny; decreases a very different behavior is
This variance has a maximum value when the probabjlity observed in Fig. 4 for the periodic and random modulation
of pulses is cases. In the first cas@€ 1, only pulsey intensity at the
beginning of a pulse increases whep decreases. Then the
fluctuations decrease. However, in the random modulation
(3.19 case a bimodal distribution appears, andis mainly due to
the separation between the peaksRgfr). Then the linear
behavior ofo . with r is due to the linear increase af,
ith this parameter.
The variation of the statistical parametérs ando , with
the probabilityp of occurrence of pulses is shown in Fig. 5.
We have considered the pulse saturation case for two differ-
IV. COMPARISON BETWEEN THEORY ent values ofa. Both values correspond to the situation de-
AND NUMERICAL SIMULATIONS scribed in Sec. Il C by(3.16. Then the analytical results
can be obtained fron(3.17) and (3.18. Very good agree-
ment is found between theory and simulations. The first
alue «=0.6 corresponds fop=1/2 to the bimodal distri-
ution shown in Fig. &). In this case, according #3.19),
the maximum value of the variance is obtained when
~1/2. In the second casexE& 0.4) the peaks of the distri-

QonQoff

+(1-2p)In———|.
( p) aon""aoff

2 2
- 1 B (or—o0p)
In the bimodal case when the peaks are clearly separat
Pmax> 1/2; that is the result for a random variable that can
take only two values.

In this section we compare theoretical and simulation re-
sults for the pulse statistics of the dynamical syst@n).
The stationary passage time probability density is obtaine
by solving the integral equatiof2.7) with a standard nu-
merical algorithm. In some casésee Sec. Il €an analyti-
cal solution can be obtained. In the numerical simulations we" )
have considered a transient of 100 periods to ensure that t tion are not clearly separ:_;tted, since  we have
system has reached the steady-state conditions. Very goddr ~ 7o)~ (0;+0p). Then the maximum oé, is obtained
agreement between theory and simulations is observed #i?" @ smaller value op~0.3. . _
Fig. 2 for different types of distributionB(7). Figures 2a) Finally we have analysed the statistics of pulse heights

and Zb) correspond to the case of pulse saturatigps>1, m- The cqrresppnqmg_ densit?H(! m) IS obtair_led from the
and different values of . In Fig. 2a) this parameter ijs P2ssage time distribution by usin§.8. In Fig. 8a the

large andP(7) is given by the repetitive switching distribu- pu_Ise height_ distribution for the case of Figcpis shown. In

tion (3.9. Whenr . is decreased a bimodal distribution is this case , is not large enough for all the pulses to saturate
obtained in Fig é’)) due to memory effects. This situation and a bimodal distribution for the pulse heights is obtained.
corresponds to the last case discussed in the previous sectléﬂqen there is a “zero” before a pulse the passage time is

with a memory length of 1 period. The two peaks are assol@rge: and then then statel,, is not reached during .
ciated with the periodic modulatioftnearly deterministic These passage times correspond to the broad peak in Fig.

and the repetitive switching. In this case the analytical resullz(c) The narrow peaks in Figs(@ and @a) are associated
(3.16 for P(7) is in good agreement with the numerical with pulses that follow another pulse. When the period is

simulations. In Fig. &) the periodT decreases and then both creased all the pulses have enough time dufiggo satu-
ron @andry; are also reduced. As a consequence differen ate and a distribution peak aroung) is pb'tamed[see Fig. .
pulse heights are obtaingdo pulse saturation However, (b)]. In this case the parameters are similar to those of Fig.
the passage time distribution is also bimodal, because th%(b)'
memory length is similar to that of the case in Figb)2

In Figs. 3 and 4 we show the mean value and variance of
the passage time versug; for the pulse saturation case.  This work was supported by the Comisitnterministerial
Analytical results have been obtained fr¢;113. The val- de Ciencia y Tecnolog (CICYT), Spain, Project No.
ues ofa,, and T are kept fixed and the value @& is  TIC95-0563-C05-01 and No. PB93-0054—-C02-02.
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