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A method for the analysis of pulse statistics in one-dimensional dynamical systems with random modulation
of the control parameter is developed. The stationary properties of pulses are obtained via the solution of an
integral equation for the probability density of the passage time by a reference level. The method is applied to
a complex Landau-type model with random on-off modulation. In some cases analytical expressions are
derived for the passage time distribution. This distribution is shown to be multimodal due to memory effects.
An excellent agreement is obtained in all situations between theoretical results and numerical simulations.
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I. INTRODUCTION

Switching processes in many physical systems can be de-
scribed in the framework of externally driven dynamical sys-
tems. The system is forced to switch from one state to an-
other by changing a parameter. Of special interest are those
cases in which the system has two steady states, one stable
and the other unstable, for which the change of the parameter
only modifies the stability of these solutions. Pulses in these
systems can be obtained by varying the control parameter
between two values that correspond to two stable statesoff
andon, usually associated to small and large values, respec-
tively, for the variable of interest. When the control param-
eter is changed in such a way that theoff state becomes
unstable, the evolution is in a first stage governed by fluc-
tuations. Then the analysis of this decay process is usually
based on stochastic models of the Langevin type, in which
fluctuations are modeled by a white noise. The decay of un-
stable states is one of the fundamental problems of nonequi-
librium statistical mechanics, in which nonlinearities and
fluctuations are crucial to have a correct description@1#. In
most theoretical analysis the system is in theoff steady state
when the control parameter is either instantaneously changed
driving the system to an unstable state@1,2#, or swept across
the unstable state with a finite velocity@3–5#. Another inter-
esting situation corresponds to the case of periodic modula-
tion through the instability point@6#. This problem is rel-
evant for several physical systems: modulated convection
@7#, stochastic resonance@8#, Q-switched lasers@9#, and
gain-switched modulated semiconductor lasers@10#. In this
case the system is not in theoff steady state when the control
parameter is changed because the initial condition, at the
beginning of a pulse, is determined by the final evolution of
the previous pulse. Hence, some kind of consistency condi-
tion for the statistical properties associated with two con-
secutive periods must be used to solve this problem. This
consistency condition has been indirectly used in different
methods: generalization@11# of Suzuki’s matching procedure
@12# and the path-integral approach@13#. In @6# we have de-
veloped a method in which the consistency condition is ex-
plicitly worked out following the main idea of the quaside-

terministic theory@2#. This theory has been applied to gas
lasers@6,14# and semiconductor lasers@15#.

In this paper we develop a method to study the statistical
properties of pulses in stochastic systems that are randomly
modulated through an instability point. A random sequence
of ‘‘1’’ ~pulses! and ‘‘0’’ ~associated with theoff state! is
produced by using two different evolutions for the control
parametera during one period. Inon periodsa is changed
through the instability point to generate a pulse, while during
off periodsa is kept below the instability point. In our analy-
sis we consider systems described by a one-dimensional
Langevin equation, in which fluctuations are modeled by a
white noise. The statistical properties of pulses for the ‘‘in-
tensity’’ ~modulus of the variable of interest! are studied.
The probability density of the pulse characteristics, such as
width and height, can be obtained from the passage time
distribution by using the deterministic evolution. The pas-
sage timet is defined as the delay between the beginning of
the on period and the emission of the pulse, given by the
time in which a reference value is reached by the intensity.
After an initial transient the passage time distributionP(t)
becomes independent of the initial conditions. In this steady-
state case the statistical properties oft are the same for two
consecutive pulses. An integral equation forP(t) is derived
from this consistency condition in a way similar to the peri-
odic modulation case@6#. The passage time distribution is
obtained by solving this equation and analytical expressions
are given in some cases. Due to the random modulation of
the control parameter, produced by the random sequence of
off andon periods, new features appear with respect to the
periodic modulation case~only on periods!. One of the most
interesting results is the multimodal character due to memory
effects of the probability density of some of the pulse char-
acteristics. The different peaks of the probability distribution
are associated with different periodic sequences. The method
is applied to a complex Landau dynamical system that can
describe one-dimensional systems such as a randomly modu-
lated class-A laser. In this system a random sequence of
pulses and ‘‘zeros’’ can be generated by loss or gain switch-
ing. Analytical expressions are obtained in some cases for
the switch-on~passage! time distribution that shows a bimo-
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dal character due to memory effects. This behavior has also
been found in numerical simulations of semiconductor lasers
modulated at high bit rates@16#. Memory effects have been
experimentally corroborated in fiber lasers@17#. These lasers
are two-dimensional dynamical systems and the population
dynamics must also be considered. However, our results
show that multimodal distributions due to memory effects
are also obtained for one-dimensional dynamical systems.
Moreover, analytical expressions are derived for the statisti-
cal distributions associated with the pulses described by
these systems. These expressions are shown to be in good
agreement with numerical simulations.

The paper is organized as follows. In Sec. II we describe
the method in a one-dimensional general system, deriving
the basic integral equation for the passage time distribution.
The method is applied in Sec. III to a complex Landau-type
dynamical system with random on-off modulation of the
control parameter. Analytical results are obtained for this
system in some cases. In Sec. IV theoretical results are com-
pared with numerical simulations.

II. THEORY FOR RANDOMLY MODULATED SYSTEMS

We consider systems that can be modeled by one-
dimensional equations of the form

ẋ~ t !5F„a~ t !,x…1h~ t !, ~2.1!

wherea(t) is a randomly modulated control parameter and
h(t) is a Gaussian white noise with zero mean value and
intensityD,

^h~ t !h~s!&5Dd~ t2s!. ~2.2!

We assume for the nonlinear functionF the conditions

F„a~ t !,0…50; F„a~ t !,x…;a~ t !x when uxu,xr ,
~2.3!

where xr is a reference value such that the noise can be
neglected whenuxu.xr . Then the quasideterministic ap-
proach@2# can be applied by considering two kinds of evo-
lution. When the variable of interestuxu is small (uxu,xr) the
evolution is linear and noise effects are important. In the
deterministic regime (uxu.xr) noise can be neglected but
nonlinear effects are important. It is also assumed that there
are two attractorsxoff50 anduxonu@xr for uxu corresponding
to values2aoff,0 andaon.0 of the control parameter, re-
spectively. Two different situations can be considered: one
positive attractorxon or two attractors with the same modu-
lus. This situation appears, for instance, when the evolution
is symmetric,F„a(t),x…52F„a(t),2x….

The control parametera(t) can have two different evolu-
tions during one periodT. During anon perioda crosses the
instability point and a pulse is generated. In this case the
control parameter first increases reaching a maximum value
aon. A decreasing evolution follows towards a minimum
value 2aoff . In the off periodsa is below the instability
point and the system stays below the reference value,
uxu,xr ~this corresponds to a ‘‘0’’!. A sequence ofon and
off periods with a probabilityp for an on period and
(12p) for theoff period is considered. Whenp51/2 a fully

random sequence of pulses and zeros is generated. A pos-
sible evolution forux(t)u anda(t) is shown in Fig. 1, where
a sequence ‘‘1 0 1’’ has been plotted.

We assume that in theon periods all the pulses decay
from their maximum values to reach the reference value
xr . This corresponds to a control parameter that takes large
negative values during a large enough fraction of the period.
The different evolution regions are shown in Fig. 1. The first
region is defined from the beginning of theon period with
a(0)5aon until a time t8 such thatux(t8)u5xr . It is a re-
gion such thatux(t)u,xr dominated by fluctuations where
the linear equation

ẋ~ t !5a~ t !x~ t !1h~ t ! ~2.4!

holds @see ~2.3!#. In the second region fromt8 to
t81u(t8) such thatux(t)u.xr the noise is not relevant.
Then the time spent in this deterministic regionu(t8) can be
calculated from the deterministic equation

ẋ~ t !5F„a~ t !,x~ t !… ~2.5!

as a function oft8. In this region the control parameter
crosses the instability point from above. The last region until
the end of the period is similar to the first one, but now the
control parameter is below the instability point. In the fol-
lowing off period a is always below the instability point.
Then it can be considered as a prolongation of the last region
of the on period. This region lasts until the reference value
xr is crossed at time 2T1t in the last pulse shown in Fig. 1.

Having defined the model and the different evolution re-
gions we now generalize the method used in the periodic
modulation case@6# to the case of random modulation. Our
task is to obtain the passage time distributionP(t). Since
t is associated to pulse emission, it is defined only in theon
periods. The passage time is defined as the delay between the
beginning of theon period and the time in which the refer-
ence valuexr is reached. In order to connect two consecutive
on periods we consider the functionWm

T (t/t8), defined as
the conditional probability to have a passage timet in anon
period when the passage time of the previouson period was

FIG. 1. Time evolution for the control parametera(t) ~in linear
scale! and the variable of interestux(t)u ~in logarithmic scale! dur-
ing an ‘‘on-o f f-on’’ sequence.
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t8 and when there arem off periods between both periods.
The m off periods between two consecutive pulses can be
considered as a prolongation of the last noise-dominated re-
gion of anon period. Then we have

Wm
T ~t/t8!5W0

~m11!T~t/t8!, ~2.6!

whereW0
(m11)T(t/t8) is the conditional probability corre-

sponding to a periodic case with a period (m11)T that is
formed by theon period followed bym off periods. This
conditional probability can be obtained from the expression
derived for the periodic modulation case@6#.

In the stationary regimeP(t) is independent of the initial
condition and the following chain equation holds:

P~t!5 (
m50

`

p~12p!mE
0

T

W0
~m11!T~t/t8!P~t8!dt8.

~2.7!

This is the main equation that allows the calculation of the
statistical properties of the passage time. Moreover, the sta-
tistics of the pulse characteristics can be obtained@6# from
P(t).

III. RANDOM ON-OFF MODULATION.
MODEL AND ANALYTICAL RESULTS

In this section we apply our method to the following dy-
namical system:

Ė5a~ t !E2AuEu2E1f~ t !, ~3.1!

wherea(t) is the randomly modulated control parameter and
f is a Gaussian white noise. WhenE is a real magnitude
~3.1! corresponds to the Landau equation and it has been
used to study the Rayleigh-Be´nard convection with a control
parameter modulated around the threshold@7#. When
E5E11 iE2 is a complex magnitude~3.1! can describe, for
instance, the electric field of a single-mode class-A laser@18#
near threshold. In this casea(t) corresponds to the pump
parameter andf5f11 if2 is the spontaneous emission
noise with intensityD and correlations

^f i~ t !f j~ t8!&5Dd i , jd~ t2t8!. ~3.2!

In the following we apply the theory developed in the previ-
ous section to this dynamical system. The random modula-
tion of a(t) can be obtained in the case of a class-A laser by
varying the quality factor of the cavity (Q-switching!, for
instance with an acousto-optic modulator@14#, or by gain
switching. In this one-dimensional dynamical system both
processes lead to the same result. However, when the dy-
namics of the population inversion must be also considered
~class-B lasers!, the statistical properties of pulses for gain
and loss switching are different@19#. The model with a com-
plex variable can be treated with the method shown in the
previous section by introducing the intensity
I (t)5E1

2(t)1E2
2(t) and taking into account that in the linear

noise-dominated region both field components are decou-
pled. For small enoughD a reference value for the intensity
I r can be introduced to separate this region,I,I r , from the
deterministic region,I.I r .

Now we consider a modulation that involves only two
values ofa(t). In anon perioda(t) takes the valueaon.0
above threshold during the firstTon5aT fraction of period
T and the value2aoff,0 below threshold during the second
part Toff5(12a)T ~see Fig. 1!. Obviously, during anoff
period the parametera(t) has the value2aoff during all the
period time. We assume in the following that a pulse is al-
ways emitted duringTon. The passage time is then smaller
than Ton. It is also assumed that the reference levelI r is
crossed in the pulse decay duringToff . In a way similar to
the periodic modulation case~see@6# for a detailed calcula-
tion! one obtains for the conditional probabilityW0

T(t/t8)
the expression

W0
T~t/t8!5

aonI r
sZ
2 e2aoff@T2u~t8!2t8#e22aont

3expF2
I r~11e2aoff@T2u~t8!2t8#22aont!

2sZ
2 G

3J0F I rsZ
2 e

aoff@T2u~t8!2t8#2aontG , ~3.3!

wheret andt8 are smaller thanTon, J0 is the Bessel func-
tion of the first order@20#, andsZ is given by

sZ
25

D

2 F 1

aoff
~12e22aoff@T2u~t8!2t8#!

1
1

aon
~12e22aont!Ge2aoff@T2u~t8!2t8#. ~3.4!

The time spent in the nonlinear deterministic region,
u(t8), can be calculated@6# from the deterministic equation
for the intensity with the initial I (t8)5I r and final
I (t81u)5I r conditions.

The stationary passage time probabilityP(t) can be cal-
culated from~3.3!, ~3.4!, and the integral equation~2.7!. The
validity conditions of this method can be explicitly obtained
in the following way@6#. The reference valueI r must be in a
deterministic region,I r@D/min$aon,aoff%, such that satura-
tion effects are negligible,AIr!min$aon,aoff%. Then the fol-
lowing condition is obtained:

D!F ~min$aon,aoff%!2

A G . ~3.5!

To understand the behavior of the system under random
modulation conditions it is useful to introduce two dimen-
sionless parameters:

r on5aonTon, r off5aoffToff . ~3.6!

The first parameterr on is associated with the pulse rising and
it corresponds to the ratio between the time spent by the
system above threshold and the time needed to reach theon
state. The second one,r off , gives the ratio between the time
spent by the system below threshold and the pulse decay
time. These parameters can be used to characterize all pos-
sible situations. The caser on!1 is not considered because it
corresponds to a situation such that the probability of occur-
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rence of a pulse in anon period is low. Note that in our
analysis we have assumed that in anon period a pulse is
always emitted. In the opposite situation,r on@1, the system
spends enough time above threshold to reach theon state,
given by I on5aon/A. Then, all the pulses saturate to this
value. In this case a complete analytical treatment is possible
~see below!. In the intermediate caser on;1 different pulse
heights are obtained for different values oft. The probability
density of the pulse maximum intensity,PH(I m), can be eas-
ily obtained@6# from P(t) by solving the deterministic equa-
tion for I with the initial condition I (t)5I r . The pulse
height is given byI m5I (aT) as a function oft. By using
the inverse function@6#

t~ I m!5aT2
1

2aon
ln
I m~AIr2aon!

I r~AIm2aon!
, ~3.7!

we get the pulse height distribution

PH~ I m!5P@t~ I m!#/@2I m~AIm2aon!#. ~3.8!

With regard to pulse decay, two casesr off@1 and
r off;1 are considered. In the first case theoff state is reached
at the end of anon period. Then the initial condition for a
pulse always corresponds to this state. However, in the sec-
ond case the behavior of the system during a pulse depends
on the previous sequence of ‘‘zeros’’ and pulses. Note that in

this caser off cannot be very small, since we have assumed
that the reference levelI r is always crossed during the pulse
decay.

A. Repetitive switching „r off@1…

For large values ofr off the system is below threshold at
the end of anon period during a large enough timeToff to
reach theoff state. In this steady state associated with a con-
trol parameter2aoff the intensity is mainly due to the noise.
In this case the system is in theoff state at the end of all the
periods. Then the initial condition at the beginning of a pulse
always corresponds to this stationary state~repetitive switch-
ing!, and the conditional probabilityW0

(m11)T is independent
of the numberm of ‘‘zeros’’ between two pulses. Therefore
the passage time distribution is independent of the kind of
modulation, periodic or random. As shown in@6# in these
conditions the argument of the Bessel function in~3.3! is
small. Then, using@20# J0;1, the conditional probability
~3.3! becomes separable and one recovers from~2.7! and
~3.3! the well-known expression ofP(t):

Pr~t!5NexpF22aont2
aoffaonI r

D~aon1aoff!
e22aontG . ~3.9!

The mean passage time and variance are readily obtained as

FIG. 2. Probability density functionP(t) for different values of
the parameters~a! T52, aoff510, a50.6; ~b! T52, aoff53,
a50.6; ~c! T51.2, aoff53, a50.45. Other parameters area510,
A51, D51023, I r50.1, andp50.5. Histograms correspond to
numerical simulations of Eq.~3.1!, solid lines correspond to theory
@Eq. ~2.7!#, and dashed lines to the analytical approximations given
by Eq. ~3.9! ~a! and Eq.~3.16! ~b!.

FIG. 3. Mean switch-on timêt& as a function ofr off for peri-
odic, p51 ~upper plot! and random,p50.5 ~lower plot! modula-
tion. Asterisks and crosses~diamonds and triangles!, obtained from
simulations, and solid~dashed! lines, obtained from theory@Eq.
~2.7!# correspond toa50.4 (a50.6). Three-dot–dashed lines cor-
respond to Eq.~3.10! and long-dashed lines correspond to Eq.
~3.17!. Parameter values are the same as in Fig. 2, withT52 and
aoff variable.
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t r;
1

2aon
S lnF I raonaoff

D~aon1aoff!
G2c~1! D , s r

2;
c8~1!

4aon
2 ,

~3.10!

c and c8 being the digamma function and its derivative,
respectively@20#.

B. Memory and pattern effects „r off;1…

When r off is not large enough theoff state is not reached
during the pulse decay. Then the initial value for the inten-
sity at the beginning of a pulse depends on whether the pre-
vious bit was a ‘‘zero’’ or a ‘‘one’’~a pulse!. In this case we
say that the system has memory or that pattern effects are
important. The system has a memory of lengthn ~or
n-period memory! if the behavior of the system during a
pulse depends on the previousn periods. This memory
length can be estimated as the number ofoff periods required
after one pulse to reach theoff state. In this case the system
stays below threshold witha52aoff during a time
Tmem5Toff1nT such thataoffTmem@1. Therefore, aftern
‘‘zeros’’ the initial condition for a pulse will correspond to
theoff state. As a consequence there are onlyn11 different
terms in the integral equation~2.7!, since the conditional
probability W0

(m11)T corresponds to that of the repetitive
switching case form>n.

Due to the memory, a multimodal distribution for the pas-
sage time can be obtained. The statistical properties can be
understood as a superposition of the statistical properties as-
sociated with the last ‘‘one’’ of 2n different periodic se-

quences. Each of these sequences, composed ofn11 bits, is
fixed and is obtained by taking one of the 2n possible distri-
butions ofn bits ‘‘zero’’ and ‘‘one’’ and a ‘‘one’’ as the last
bit. The passage time distributionP(t) for the random
modulation case withp51/2 can be obtained in the follow-
ing way @16#: When a sequence is periodically repeated the
passage time distribution associated with the last ‘‘one’’ of
the sequence is obtained.P(t) is given by the superposition
of these 2n passage time distributions associated with the
different periodic sequences. The maximum number of peaks
of P(t) is 2n in the n-memory case. However, it should be
noted that one is not likely to observe 2n peaks since many
of the different sequences could give close peaks which are
not distinguishable. This will happen when the separation
between the peaks is smaller than the width of the passage
time distribution associated to the sequences. Multimodal
distributions due to memory effects have also been observed
in numerical simulations of semiconductor lasers modulated
at high speed@16#. Two sequences are especially relevant:
the periodic sequence without ‘‘zeros’’ between pulses and
the one associated with the repetitive switching. This last
sequence corresponds in then-memory case ton ‘‘zeros’’
between two consecutive pulses. The intensity at the begin-
ning of a pulse decreases when the number of previous ‘‘ze-
ros’’ increases. As a consequence, the largest and smallest
values for the passage time will correspond to the repetitive
and periodic sequences, respectively. Therefore, a multimo-
dal distribution will be observed when the overlapping be-

FIG. 4. Variance of the passage timest as a function ofr off for
the same parameter values as in Fig. 3. Long-dashed lines corre-
spond to Eq.~3.18!.

FIG. 5. Mean valuêt& and variancest of the passage time as
a function ofp for two values ofa as obtained from simulation
~symbols! and from theory~lines!. Asterisks correspond toa50.4
and diamonds toa50.6. Solid lines correspond to Eq.~2.7! and
dashed lines to Eqs.~3.17! and ~3.18!
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tween the probability distributions associated with these two
sequences is small@16#.

It is interesting to consider the limiting situation such that
at the end of a pulse the intensity is below the reference level
I r , but large enough for the fluctuations to be negligible.
This case corresponds to small values ofr off . Then in the
periodic modulation case the intensity at the beginning of a
pulse is also large, and the switch on is mainly deterministic
~that is, due to the stimulated emitted photons in the case of
a laser!. As shown in@6# in this deterministic limit when the
system is above threshold on the average, i.e.,r off,r on, a
deterministic steady state is reached for the periodic modu-
lation case,Ppm(t)5d(t2tD), where

tD5
1

2aon
F lnSAIr~aon1aoff!

aonaoff
D12aoffT~12a!

2 ln~12e22aonaT12aoff~12a!T!G . ~3.11!

Sincer off,r on the last term intD can usually be neglected.
Then, the switch-on time in the periodic modulation case is
approximately a linear function ofr off with a slope given by
(aon)

21 @6#. In this deterministic limit an analytical condition
for the multimodal character of the distributionP(t) can be
given. Using the criterion based on the overlapping between
the distributions associated with the periodic and repetitive
sequences the condition (t r2tD).s r @see Eqs.~3.9! and
~3.10!# is obtained.

C. Pulse saturationr on@1

In this limiting case the pulses always saturate to reach
the on state: I on5aon/A. The intensity in anon period at
time Ton is then given byI on. Therefore, the passage time
t is independent of the passage time of the previous pulse
t8. After changing the pump parameter from above to below
threshold the system spends a decay time

t15
1

2aoff
ln
aon~aoff1AIr !

AIr~aoff1aon!
~3.12!

to cross the reference levelI r . Thent1u(t) is a constant
given byTon1t1 ~see Fig. 1!. Substitutingt81u(t8) by this
constant in~3.4! and~3.3!, we obtain a conditional probabil-
ity Wsat

(m11)T(t) that only depends ont. The integral equation
~2.7! can be trivially solved in this case obtaining forP(t)

P~t!5 (
m50

`

p~12p!mWsat
~m11!T~t!. ~3.13!

According to the previous discussion, when the memory
length isn all the terms in~3.13! with m>n correspond to
the repetitive switching case given by~3.9!. Therefore, only
(n11) different terms must be considered in~3.13!.

An interesting situation occurs whenr off is small ~deter-
ministic periodic modulation! and the memory length is 1,
that is,Taoff@1. In this case we haveWsat

T (t);d(t2tD),
whereasWsat

(m11)T(t) for m.0 corresponds to the repetitive
switching case~3.9!. A better approximation forWsat

T includ-
ing the effect of fluctuations can be obtained in the following

way. As shown in@6# the deterministic limit corresponds to a
large value of the argument of the Bessel function in~3.3!.
Then, using @20# J0(x);exp(x)/A2px and replacing
t81u(t8) by Ton1t1 in ~3.3! we get

Wsat
T ~t!;PD~t!5

exp@2aon~t2tD!#

A2psD
2

3expF2
~12e2aon~t2tD!!2

2aon
2 sD

2 G , ~3.14!

where

sD
2 5

D~aon1aoff!

2I raon
3 aoff

FAIr~aon1aoff!

aonaoff
e2roff21G . ~3.15!

The mean and variance of the passage time associated with
the deterministic periodic modulation are given bytD and
sD
2 , respectively.
By using~3.9! and~3.14! in ~3.13! the following distribu-

tion is obtained for the random modulation case:

P~t!;pPD~t!1~12p!Pr~t!. ~3.16!

FIG. 6. Probability density functionPH(I m) as a function of
height forT51.2 ~upper plot! andT52 ~lower plot!. Histograms
correspond to simulation and dashed lines to theory@Eq. ~3.8!#.
Other parameters are the same as in Fig. 2~c!.
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This distribution is bimodal when the separation between the
peaks attD and t r is greater than the width ofPr(t) @see
~3.10! and~3.11!#. The mean value oft, ptD1(12p)t r , is
given by

^t&5
1

2aon
F2proff1plnAIr2~12p!S c~1!1 ln

D

I r
D

1~122p!ln
aonaoff
aon1aoff

G . ~3.17!

When p51/2 the last term in~3.17! is zero and the
switch–on time is a linear function ofr off with a slope given
by (2aon)

21. This slope is one-half of the one fortD in
~3.11!. The variance oft is given from~3.16! by

st
25~12p!s r

21psD
2 1p~12p!~t r2tD!2. ~3.18!

This variance has a maximum value when the probabilityp
of pulses is

pmax5
1

2
2

~s r
22sD

2 !

~t r2tD!2
. ~3.19!

In the bimodal case when the peaks are clearly separated
pmax;1/2; that is the result for a random variable that can
take only two values.

IV. COMPARISON BETWEEN THEORY
AND NUMERICAL SIMULATIONS

In this section we compare theoretical and simulation re-
sults for the pulse statistics of the dynamical system~3.1!.
The stationary passage time probability density is obtained
by solving the integral equation~2.7! with a standard nu-
merical algorithm. In some cases~see Sec. III C! an analyti-
cal solution can be obtained. In the numerical simulations we
have considered a transient of 100 periods to ensure that the
system has reached the steady-state conditions. Very good
agreement between theory and simulations is observed in
Fig. 2 for different types of distributionsP(t). Figures 2~a!
and 2~b! correspond to the case of pulse saturation,r on@1,
and different values ofr off . In Fig. 2~a! this parameter is
large andP(t) is given by the repetitive switching distribu-
tion ~3.9!. When r off is decreased a bimodal distribution is
obtained in Fig. 2~b! due to memory effects. This situation
corresponds to the last case discussed in the previous section
with a memory length of 1 period. The two peaks are asso-
ciated with the periodic modulation~nearly deterministic!
and the repetitive switching. In this case the analytical result
~3.16! for P(t) is in good agreement with the numerical
simulations. In Fig. 2~c! the periodT decreases and then both
r on and r off are also reduced. As a consequence different
pulse heights are obtained~no pulse saturation!. However,
the passage time distribution is also bimodal, because the
memory length is similar to that of the case in Fig. 2~b!.

In Figs. 3 and 4 we show the mean value and variance of
the passage time versusr off for the pulse saturation case.
Analytical results have been obtained from~3.13!. The val-
ues of aon and T are kept fixed and the value ofaoff is

changed. Two different values ofa are considered that fulfill
the conditionr on@1. In this way the value ofr off can be
changed by varyingaoff or Toff5(12a)T. Two different
types of modulation, periodic (p51) and random
(p51/2), are compared in these plots. Very good agreement
between theory and simulations is obtained. For large values
of r off the repetitive switching regime is reached and the
results@see~3.10!# are independent of the type of modula-
tion. Whenr off decreaseŝt& andst are given by~3.17! and
~3.18!, respectively. This situation corresponds to a deter-
ministic periodic modulation and 1 period memory. A linear
behavior is observed for the mean passage time versusr off
with a relation of one half between the slopes of the random
and periodic modulation cases, as predicted by the theory. In
the random modulation case^t& is only a function ofr off and
the same result is obtained for the two values ofa. However,
a slight difference is observed in the periodic modulation
case due to the last logarithmic term in~3.17!. With regard to
the variance, whenr off decreases a very different behavior is
observed in Fig. 4 for the periodic and random modulation
cases. In the first case (p51, only pulses! intensity at the
beginning of a pulse increases whenr off decreases. Then the
fluctuations decrease. However, in the random modulation
case a bimodal distribution appears, andst is mainly due to
the separation between the peaks ofP(t). Then the linear
behavior ofst with r off is due to the linear increase oftD
with this parameter.

The variation of the statistical parameters^t& andst with
the probabilityp of occurrence of pulses is shown in Fig. 5.
We have considered the pulse saturation case for two differ-
ent values ofa. Both values correspond to the situation de-
scribed in Sec. III C by~3.16!. Then the analytical results
can be obtained from~3.17! and ~3.18!. Very good agree-
ment is found between theory and simulations. The first
valuea50.6 corresponds forp51/2 to the bimodal distri-
bution shown in Fig. 2~b!. In this case, according to~3.19!,
the maximum value of the variance is obtained when
p;1/2. In the second case (a50.4) the peaks of the distri-
bution are not clearly separated, since we have
(t r2tD);(s r1sD). Then the maximum ofst is obtained
for a smaller value ofp;0.3.

Finally we have analysed the statistics of pulse heights
I m . The corresponding densityPH(I m) is obtained from the
passage time distribution by using~3.8!. In Fig. 6~a! the
pulse height distribution for the case of Fig. 2~c! is shown. In
this caser on is not large enough for all the pulses to saturate
and a bimodal distribution for the pulse heights is obtained.
When there is a ‘‘zero’’ before a pulse the passage time is
large, and then theon stateI on is not reached duringTon.
These passage times correspond to the broad peak in Fig.
2~c!. The narrow peaks in Figs. 2~c! and 6~a! are associated
with pulses that follow another pulse. When the period is
increased all the pulses have enough time duringTon to satu-
rate and a distribution peak aroundI on is obtained@see Fig.
6~b!#. In this case the parameters are similar to those of Fig.
2~b!.
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