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High-order multireference perturbation theory is applied to the1S states of the beryllium atom using a
reference~model! space composed of theu1s22s2& and theu1s22p2& configuration-state functions~CSF’s!, a
system that is known to yield divergent expansions using Mo” ller-Plesset and Epstein-Nesbet partitioning
methods. Computations of the eigenvalues are made through 40th order using forced degeneracy~FD! parti-
tioning and the recently introduced optimization~OPT! partitioning. The former forces the 2s and 2p orbitals
to be degenerate in zeroth order, while the latter chooses optimal zeroth-order energies of the~few! most
important states. Our methodology employs simple models for understanding and suggesting remedies for
unsuitable choices of reference spaces and partitioning methods. By examining a two-state model composed of
only theu1s22p2& andu1s22s3s& states of the beryllium atom, it is demonstrated that the full computation with
1323 CSF’s can converge only if the zeroth-order energy of theu1s22s3s& Rydberg state from the orthogonal
space lies below the zeroth-order energy of theu1s22p2& CSF from the reference space. Thus convergence in
this case requires a zeroth-order spectral overlap between the orthogonal and reference spaces. The FD parti-
tioning is not capable of generating this type of spectral overlap and thus yields a divergent expansion.
However, the expansion is actually asymptotically convergent, with divergent behavior not displayed until the
11th order because theu1s22s3s& Rydberg state is only weakly coupled with theu1s22p2& CSF and because
these states are energetically well separated in zeroth order. The OPT partitioning chooses the correct zeroth-
order energy ordering and thus yields a convergent expansion that is also very accurate in low orders compared
to the exact solution within the basis.@S1050-2947~96!02607-8#

PACS number~s!: 31.15.2p

I. INTRODUCTION

The application of many-body perturbation theory for the
computation of ground-state energies provides a very popu-
lar and powerful method when the zeroth-order state yields a
reasonable representation for the state of interest~e.g., a
closed-shell ground state!. Systems possessing degeneracies
or quasidegeneracies in zeroth order~e.g., open-shell systems
and excited states! can be described by multireference per-
turbation theory with a degenerate reference space, where the
quasidegenerate case is treated by introducing an additional
perturbation that lifts the imposed degeneracy. This method
computes an effective HamiltonianHeff that is employed to
obtain the perturbed matrix elements between the degenerate
states that comprise the multireference space. A final matrix
diagonalization yields the eigenvalues of interest. The widely
used nondegenerate perturbation theory emerges as the spe-
cial limit with a single reference configuration-state function
~CSF! and thus is often called single-reference perturbation
theory.

Situations arise where a single, closed-shell, zeroth-order
reference state is strongly coupled with one or more excited
CSF’s from the orthogonal space, rendering the single-
reference perturbation series either divergent or slowly con-
vergent. When one or more of these strongly coupled excited
states is not quasidegenerate with the reference space state, it
is natural to employ multireference perturbation theory with
a nondegenerate reference space@1,2#. This treatment in-
cludes in the reference space the states that would otherwise
disrupt the perturbative convergence if left in the orthogonal

space. Unfortunately, applications of multireference pertur-
bation theory to systems with nondegenerate reference space
states usually yield divergent expansions from so-called in-
truder states. It is widely believed that these problems exist
regardless of the choice of the zeroth-order HamiltonianH0
~the partitioning of the full HamiltonianH into H0 and the
perturbationV!. This belief can be traced to the theoretical
work of Schucan and Weidenmu¨ller @3,4#. Our recent appli-
cation @5# of double-reference perturbation theory to the hy-
drogen rectangular system~four hydrogen atoms arranged in
a rectangular geometry! contradicts this pessimistic conclu-
sion. Otherwise divergent perturbative expansions can be
rendered convergent by carefully choosing the eigenvalues
of H0 ~the zeroth-order energies!. This partitioning approach
utilizes a completely general form ofH0 in which the zeroth-
order energies are, in principle, arbitrary, and can, therefore,
be chosen in a systematic fashion to enhance convergence.

Our recent work@5# on the hydrogen rectangular system
~HRS! also demonstrates the underlying reasons why vari-
ants of Epstein-Nesbet~EN! and Mo” ller-Plesset~MP! parti-
tionings produce perturbative expansions that are prone to
intruder-state divergence when employed for multireference
spaces. These traditional partitioning methods are inadequate
because they often place the zeroth-order energies for impor-
tant pairs of interspace states too close together, where a pair
of interspace states is defined as consisting of one state from
the reference (P) space and one from the orthogonal (Q)
space. Furthermore, two-state systems, constructed from the
pair of interspace states responsible for the intruder-state be-
havior, accurately model the divergent behavior of the full
computations. Also, in contrast to the traditional partitioning
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methods, the method of forcing the reference space to be
degenerate@denoted as forced degeneracy~FD! partitioning#
does not place interspace states too close for the HRS and
thus yields a convergent expansion. These conclusions are
drawn from a minimum-basis-set treatment of the HRS, rais-
ing some questions as to their applicability to more ‘‘realis-
tic’’ systems with much higher CSF dimensionalities than
the eight CSF’s for the1Ag states of the HRS. It is also of
interest to determine whether simple two-~or few-! level
treatments can accurately describe the convergence behavior
for large-dimensionality problems.

The present work examines another four-electron system,
the beryllium atom, with a basis set of moderate size that
generates 1323 CSF’s of1S symmetry. The basis set includes
diffuse functions and thus also describes Rydberg states. The
lowest-lying orthogonal space state with au1s22s3s& occu-
pation ‘‘naturally’’ lies below the zeroth-orderu1s22p2& ref-
erence space state.~The u1s22s2& CSF is also in the refer-
ence space.! Thus, unlike the minimum-basis-set HRS, the
Be system has an inherent overlap in the zeroth-order energy
spectra of theP andQ spaces. The spectra of the exact states
also, in a sense, overlap, since the exact state dominated by
the u1s22p2& CSF lies above the Rydberg state dominated by
the u1s22s3s& CSF. Many previous workers, including
Schucan and Weidenmu¨ller, believe that these conditions of
zeroth-order or ‘‘exact’’ spectral overlap, of necessity pro-
duce intruder-state-induced divergence for multireference
perturbation expansions. Hence, not surprisingly, Solomon-
son, Lindgren, and Martensson@6# and Heully and Daudey
@7# obtain divergent multireference perturbation expansions
from the traditional partitioning methods for the beryllium
atom when both theu1s22s2& and u1s22p2& CSF’s are cho-
sen as the reference space states. The FD partitioning method
forces all the reference space states to be degenerate in ze-
roth order and thus removes theP-Q space spectral overlap
that otherwise naturally occurs for other partitioning choices.
The present work provides an examination of the conver-
gence behavior of the forced degeneracy partitioning method
@5# for systems in which there exists, prior to forcing degen-
eracy, a spectral overlap in the zeroth-order energies of theP
andQ spaces.

We obtain converged perturbative expansions that are free
of intruder states for the beryllium atom by employing the
optimization~OPT! partitioning @5#. This method systemati-
cally optimizes the zeroth-order energies ofonly the ~few!
most important zeroth-order states by a simple and efficient
iterative method. The OPT approach yields a rapidly conver-
gent perturbation series for the two eigenvalues of the effec-
tive HamiltonianHeff . In addition to providing the ground-
state energy, the diagonalizedHeff also yields thesecond
excited state of1S symmetry, and not the first. This behavior
is explained by the one-to-one mapping between zeroth-
order and exact states@3,4#. The shortcomings of the other
partitioning methods are predicted and/or modeled by simple
two-state systems constructed from pairs of interspace states.
The overall success of these simple models in explaining the
behavior of the full computations suggests that interspace
two-state models, or other models using a small number of
states, can be employed to evaluate partitioning methods and
diagnose their potential problems.

The present paper is one in a series that analyzes the

high-order perturbative behavior of multireference methods
for small systems where full configuration-interaction~FCI!
computations are possible. These analyses are designed to
further our understanding of the multireference perturbative
methods in order to develop new, systematic methods that
are usefully convergent when truncated at low~second or
third! orders, since these low orders represent the practical
limits for large systems that are not amenable to FCI. The
analyses are also pursued to devise simple diagnostics that
are useful for evaluating the various degrees of freedom
available in multireference perturbation computations, in-
cluding reference spaces and partitioning methods. For ex-
ample, previous high-order computations for the HRS@5#
suggest that a minimum requirement, with few exceptions,
for perturbative convergence is thatall two-state models
constructed from interspace states of the full computation
have radii of convergence greater than unity. These two-state
analyses can be performed rather rapidly and suggest the
presence of, source of, and remedies for convergence prob-
lems.

Section II reviews necessary background theory and defi-
nitions from multireference perturbation theory. The theory
employs completely general definitions of the diagonal
zeroth-order HamiltonianH0, definitions which are essential
for producing multireference perturbation methods that are
free from many of the convergence difficulties experienced
by traditional partitioning methods. Section III describes the
interspace two-state systems that provide a transparent mod-
eling of the full computations, as described in Sec. V. The
FD and OPT partitioning methods are delineated in Sec. IV.
The perturbation expansions in Sec. V are carried to 40th
order, and Pade´ approximants are tested as a means for im-
proving the perturbative convergence. Two-state models are
used in Sec. V to explain or predict the divergent character of
the EN, MP, and FD perturbation expansions and the con-
vergent nature of the OPT expansion. A discussion is pro-
vided in Secs. VII and VIII of various problems with appli-
cations of the FD and OPT partitioning methods.

II. THEORY

A. Basic formalism

Perturbative methods introduce a partitioning of the
HamiltonianH into a zeroth-order partH0 and the perturba-
tion V,

H5H01V. ~2.1!

The eigenfunctions ofH0 provide a complete set of determi-
nantal states which are partitioned into a model, orP, space
with projector

P5(
i

upi&^pi u, ~2.2!

and the orthogonal, orQ, space with projector

Q5(
j

uqj&^qj u, ~2.3!

where
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P1Q51. ~2.4!

The model functionsuC i
0& are defined as the projections of

the exact eigenfunctionsuCi& onto theP space,

uC i
0&5PuC i& ~ i51,2,...,d!, ~2.5!

whered is the dimension of the model space. Conversely,
the wave operatorV transforms the model functions into
their corresponding exact states,

uC i&5VuC i
0& ~ i51,2,...,d!. ~2.6!

There is a one-to-one correspondence between the model
functions andd exact states@3,4#.

Various derivations exist for the Rayleigh-Schro¨dinger
perturbation expansion appropriate to a complete model
space@1,2,8,9#. Most derivations are based on obtaining the
effective HamiltonianHeff . The simplest form is non-
Hermitian and is given by

Heff5PHVP. ~2.7!

An order-by-order perturbation expansion ofV is obtained
by solving the generalized Bloch equation@1,2,10#

@V,H0#P5@VV2VVV#P, ~2.8!

which is applicable if the model space is either degenerate or
nondegenerate. A perturbative expansion for the wave opera-
tor

V511V~1!1V~2!••• ~2.9!

generatesV(n) asnth order in the perturbationV. Substitut-
ing Eq. ~2.9! into Eq. ~2.8! the nth-order expression forV
can be written as

@V~n!,H0#P5FVV~n21!2 (
m51

n21

V~m!VV~n2m21!GP,
~2.10!

and thenth-order correction for theHeff matrix elements
involving the upi& and upj& kets is given by

^pi uHeff
~n!upj&5^pi uPVV~n21!Pupj&. ~2.11!

The explicit forms ofV andHeff depend on the ket upon
whichHeff operates unless the reference space is degenerate
and is a complete model space~a complete active space!. A
matrix-based iterative method has been developed by Zarra-
bian, Laidig, and Bartlett@11# to obtain the matrix elements
of Heff to arbitrarily high orders. This method is employed
below and is convenient when the dimension of theQ space
is not very large.

B. Zeroth-order Hamiltonian „H 0…

We consider all partitioning methods in whichH0 is writ-
ten as the most general diagonal ‘‘sum over orbitals’’ form,
given by

H05(
i

e iai
†ai , ~2.12!

as variants of Mo” ller-Plesset partitioning, where the sum oni
in Eq. ~2.12! is over all orbitals,ei are the orbital energies,
andai

†(ai) are the creation~annihilation! operators. The or-
bitals for Eq.~2.12! are usually defined as eigenfunctions of
Fock operators. The most natural choice for the orbital ener-
gies ei is the eigenvalue of the Fock operator defining the
orbitals. However, since both the orbitalsi and the energies
ei in Eq. ~2.12! are, in principle, arbitrary and independent,
other choices may be employed to enhance convergence. The
forced valence orbital degeneracy method~denoted FD! of
Freed and co-workers, also called theHv method, uses mul-
tiple Fock operators to obtain the spatial orbitals and then
forces the valence orbital to be degenerate in zeroth order.
Sawatzki and Cederbaum@12# and also Finley and Freed
@13# employ fractional-occupancy Fock operators to enhance
convergence.

The most general diagonal form ofH0 can be written as

H05(
i

u i &Ei
0^ i u, ~2.13!

where the sum overi runs over all states, andE i
0 is the

i th-state zeroth-order energy, which is at our disposal. Usu-
ally, Epstein-Nesbet partitioning chooses the zeroth-order
state energy as

Ei
05^ i uHu i &, ~2.14!

which makes the diagonal elements ofV vanish with either a
determinantal or CSF basis. Since theH0 differs for the latter
two cases, the determinantal-based Epstein-Nesbet and CSF-
based Epstein-Nesbet partitioning methods generate different
perturbation expansions.~Note that a unitary transformation
of theH0 from a determinantal-based Epstein-Nesbet basis to
a CSF basis leads to a nondiagonalH0.! The computation
below, denoted by EN, employs a hybrid of the
determinantal- and CSF-based Epstein-Nesbet partitionings.
This variant of Epstein-Nesbet partitioning defines the
zeroth-order energies of each CSF by the barycentric expres-
sion @14#

Ei
05(

d
@Cd

i #2^duHud&, ~2.15!

where the CSF functionu i & is given by a linear combination
of determinantal statesud&,

u i &5(
d

Cd
i ud&. ~2.16!

Our previous investigation of the HRS@5# also employs this
partitioning method. Except for single determinantal states
u i &, the diagonal matrix elements of the perturbationV no
longer vanish for theH0 of Eq. ~2.15!.

The OPT partitioning method presented below selects a
small number of the zeroth-order energiesE i

0 in an optimal
fashion using a CSF basis. The other states employ the
above-defined barycentric EN definition for their zeroth-
order energies. Note that any partitioning method that is rep-
resented in the form of Eq.~2.12! can also be expressed in
the form of Eq.~2.13!, but not vice versa.

54 345CONVERGENCE BEHAVIOR OF MULTIREFERENCE . . .



III. TWO-STATE THEORY

The convergence properties for the beryllium atom com-
putations in subsequent sections are transparently understood
by the use of simple two-dimensional models that are con-
structed from a pair of interspace states taken from the full
problem consisting of 1323 CSF’s. The convergence behav-
ior is investigated by considering the parametrized Hamil-
tonianH,

H~z!5H01zV, ~3.1!

where z is the complex perturbation parameter. Thez51
limit recovers the exactH, while z50 produces the unper-
turbed system. Denoteup& and uq& as theP andQ space
states of the two-dimensional system, andep andeq are their
zeroth-order energies, respectively. The exact eigenvalues of
the two-dimensional HamiltonianH can be expressed as

E6~z!5 1
2 TrH6 1

2 $@De2~De2DH !z#214Vpq
2 z2%1/2,

~3.2!

where

Vpq5^puVuq&,

De5eq2ep ,

DH5^qu~H01V!uq&2^pu~H01V!up&,

and thez-dependent trace of the Hamiltonian matrixH is
given by

TrH5^puH~z!up&1^quH~z!uq&.

Both eigenvalues become degenerate in the complexz
plane at the pair of branch pointszd andzd* , where use of
Eq. ~3.2! gives

zd5
De

4Vpq
2 1~De2DH !2

@~De2DH !12Vpqi #. ~3.3!

The radius of convergenceRc for the single-reference
Rayleigh-Schro¨dinger perturbation expansion isRc5uzdu
5uzd* u and follows from Eq.~3.3! as

Rc5
De

A~De2DH !214Vpq
2
. ~3.4!

To achieve a convergent perturbation series, it is neces-
sary to haveRc>1, which occurs only if the numerator in
Eq. ~3.4! exceeds the denominator. This condition for con-
vergence implies thatDe ~the zeroth-order energy difference!
must satisfy the requirements

DeH >
1

2 FDH1
4Vpq

2

DH G if DH.0,

<
1

2 FDH1
4Vpq

2

DH G if DH,0.

~3.5!

Thus bothDe andDH must have the same sign; otherwise
the perturbation series diverges. Also, whenDHÞ0, Eq.
~3.5! indicates thatDe can always be selected so thatRc.1.

This last conclusion is also reached by examining the maxi-
mum radius of convergenceRc as a function ofDe @15#. If
eitherVpq is modestly large orDH is modestly small, tradi-
tional partitioning methods, such as EN and MP, frequently
yield divergent expansions, sinceDe is then often too small
and leads toRc,1. If eitherVpq is very large orDH is very
small whileDe is large enough so thatRc.1, then the con-
vergence is very slow. Qualitatively, the presence of large
values of the parameterVpq/DH seems to be most important
in adversely influencing convergence. However, the quanti-
tative dependence of the convergence rate onVpq andDH
has not been investigated.

Intruder states are defined as the orthogonal space states
responsible for destroying the convergence of a perturbation
expansion. The presence of intruder states is usually detected
by observing the variation of the eigenvalues as a function of
the perturbation parameterz for real z. An avoided crossing
point zac occurs where the two eigenvalues are closest. The
zac is computed in the two-state model by minimizing
@E2~Rez!2E1~Rez!# with respect toz,

zac5
De~De2DH !

4Vpq
2 1~De2DH !2

. ~3.6!

Comparing this equation with Eq.~3.3! shows thatzac is
simply Rezd . @Note that the eigenvaluesE2(z) andE1(z)
cannot be degenerate for realz when VpqÞ0.# When the
avoided crossing appears with 0,zac,1 and hence the per-
turbation expansion diverges~Rc,1!, then the convergence
is disrupted by what is termed a front-door intruder state.
Similarly, an avoided crossing withzac,0 is called a back-
door intruder state@16,17# whenRc,1. Equation~3.6! im-
plies that a back-door intruder statezac,0 occurs whenever
DH andDe have the same signs and satisfyuDHu.uDeu. On
the other hand, ifDe and DH are of opposite signs or if
uDHu,uDeu, then the avoided crossing appears withzac.0.

We define correct energy ordering as the relative ordering
of the zeroth-order energies that is a necessary, but not a
sufficient, condition for convergence~Rc.1!. SinceDe and
DH must have the same sign for a convergent two-state sys-
tem, when̂ puH(1)up&.^quH(1)uq&, the correct energy or-
dering is ep.eq . Similarly, if ^puH(1)up&,^quH(1)uq&
then the correct ordering isep,eq .

For incorrect energy ordering, the limit ofVpq→0 haszd
real and positive~Im zd→0! with

zd→
De

~De2DH !
. ~3.7!

Equation~3.7! also emerges when thez-dependent diagonal
elements ofH are degenerate. In actual calculations involv-
ing a large number of states, if the incorrectly ordered inter-
space states are weakly coupled, both among themselves and
to other states, then bothzd andzac are approximately equal
to the value ofz for which the diagonal elements ofH(z) are
degenerate. Furthermore, such cases yield a very pronounced
avoided crossing with the energies, and wave functions
change abruptly in the vicinity ofzd . This situation is found
in Sec. V for the computation involving the FD partitioning,
where theu1s22s3s& state~the intruder state! is incorrectly
placed above theu1s22p2& reference state in zeroth order. By
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contrast, when a two-state system has the zeroth-order states
correctly ordered, the limit ofVpq→0 then produces a con-
vergent expansion withRc→`. In addition, the special case
of DH5De ~i.e., for Epstein-Nesbet partitioning! yields the
avoided crossing point atzac50, sincezd is purely imaginary
@see Eq.~3.3!#. A two-state system with barycentric EN par-
titioning does not produce a purely imaginary degeneracy
point zd , unless both states are determinantal states.

It should be emphasized that many formally divergent se-
ries are asymptotically convergent and are quite useful if
they provide good approximations when truncated at low
orders~e.g., Stirling’s formula for the expansion of lnn!!.
Thus, when divergent series are obtained from the full-scale
calculations, these series are analyzed below to assess their
useful asymptotic character and their behavior when re-
summed by Pade´ approximants.

IV. METHODS

We employ a 6s5p1d basis set for Be constructed from
the 6-311 G set of Krishnanet al. @18# with two added dif-
fuses andp Gaussian functions~exponents 0.207 and 0.069!
to describe the excited Rydberg states. The1S ground-state
energy from a full configuration-interaction calculation is
214.636 853 45 a.u. The self-consistent-field~SCF! energy
from theu1s22s2& CSF is214.571 903 77 a.u. Theu1s22s2&
and u1s22p2& CSF’s are taken as the reference functions~P
space!, a double reference space, and there are a total of
1323 CSF’s of1S symmetry.

We have applied the configuration-based multireference
perturbation theory algorithm@11,19,20# to evaluate the en-
ergy through 40th order using Epstein-Nesbet~EN!, Mo” ller-
Plesset~MP!, forced valence orbital degeneracy~denoted as
FD!, and optimized zeroth-order energy partitioning~de-
noted as OPT!. Table I displays the zeroth-order energies for
these partitioning schemes as well as the expectation values
of H for the eight lowest CSF’s. All the partitioning methods
listed in Table I, except the FD partitioning, place the zeroth-
order energy of theu1s22s3s& Q space state below that of
the u1s22p2& P space state. Hence aP-Q space overlap
exists for the zeroth-order energy spectra. Diagonalization of
the full 1323-dimensional CI matrix shows that the ground
and the second excited states for beryllium are primarily de-
scribed by theu1s22s2& and u1s22p2& CSF’s from the refer-
ence space, whereas the first excited state is a Rydberg state
dominated by theu1s22s3s& CSF from the orthogonal space
(Q). Thus, in a sense, the exact spectrum also has aP-Q

space spectral overlap. Theu1s22s2&, u1s22s3s&, and
u1s22p2& CSF’s cumulatively contribute 91%, 89%, and
66% to the ground, first, and second excited states, respec-
tively.

A. Forced valence orbital degeneracy„FD… partitioning

The molecular orbitals and zeroth-order energies for the
MP partitioning are taken as the eigenfunctions and eigen-
values of the closed-shell ground-state Fock operator. The
FD partitioning defines all orbitals and their energies the
same way as in MP partitioning, except that the 2p valence
orbital energye2p before averagingis defined as the expec-
tation value of an~N21!-electron Fock operatorf̂ (N21) with
respect to one of the 2pa spin orbitals.~The orbitals for both
a andb spins are degenerate.! This f̂ (N21) operator has an
occupation of 1sa1sb2sa , and its spin-independent form
when operating on ana-spin orbital is given by@13#

f̂ ~N21!5h~1!12J1s2K1s1J2s2K2s , ~4.1!

whereJ andK are the spin-independent Coulomb and ex-
change operators, respectively. Equation~4.1! is the same as
the ground-state, closed-shellN-electron Fock operatorf̂ N,
except for the absence of a single 2s Coulomb operatorJ2s.
For FD partitioning, the orbital energies for the 2s and 2p
valence orbital are then replaced by their average valuee v̄
5 1

4(e2s13e2p). Virtually all multireference perturbative
computations performed by Freed and co-workers employ
the Hv method@13,21–25#. These computations use refer-
ence spaces that are defined by a complete active space
~CAS! and forced degenerate valence orbitals that are eigen-
functions ofVN21 potentials.

B. Zeroth-order energy optimization „OPT… partitioning

We now consider the recently introduced optimization
partitioning method@5# in which some of the zeroth-order
state energiesE i

0 in Eq. ~2.13! are determined in an optimal
manner from calculations using a small subset of zeroth-
order states. Any criterion for defining the optimized zeroth-
order energies depends on the type of convergence required.
For example, a criterion producing the most favorable con-
vergence in high orders may be unsatisfactory in low orders
where practical computations are often truncated. Our goal is
to optimize the performance of the OPT method in third
order, which represents the practical limit of large-scale mul-
tireference perturbation calculations. Therefore we begin by

TABLE I. Zeroth-order energies of the eight lowest-lying CSF’s~in a.u.!.

CSF EN MP FD OPT preFDa ^H&b

u1s22s2& 214.571 90 210.081 75 210.019 26 214.571 90 210.081 75 214.571 90
u1s22s3s& 214.317 82 29.663 00 29.631 76 214.317 82 29.663 00 214.300 93
u1s22p2& 214.197 05 29.374 64 210.019 26 214.197 05 29.956 78 214.168 71
u1s22s4s& 214.041 55 29.332 00 29.300 76 213.841 55 29.332 00 214.015 07
u1s22p3p& 214.079 66 29.249 93 29.572 24 213.779 66 29.541 00 214.005 18
u1s23s2& 213.934 86 29.244 25 29.244 25 213.934 86 29.244 25 213.934 86
u1s23p2& 213.954 95 29.125 22 29.125 22 213.554 95 29.125 22 213.931 05

aZeroth-order energies from FD partitioning prior to forcing the 2s and 2p orbitals to be degenerate.
bExpectation values of the Hamiltonian.
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considering a sumS consisting of the absolute deviations for
the third- and fourth-order energies from the FCI. Explicitly,
this sum is written as

S5uEFCI2E3u1uEFCI2E4u, ~4.2!

whereE3 andE4 are the third- and fourth-order approxima-
tions to the FCI energyEFCI . Our goal of obtaining the most
accurate possible third-order energies explains why the first
term in expression~4.2! is present. Inclusion of the second
term involving E4 appears to be useful for generating a
unique solution for the optimized zeroth-order energies. We
have tried other combinations containing the second- and
third-order deviations that are less satisfactory for third-order
computations, probably because the second-order deviation
is normally much larger than that from third order.

Since large-scale calculations of interest cannot, of
course, obtainEFCI , some approximations are necessary in
order to minimizeS. Fortunately, only a small number of
states are responsible either for ‘‘driving’’ the convergence
or for producing a divergent series. Therefore, to obtain ac-
curate results, we only need to minimizeS with respect to
the zeroth-order energies of the important states for describ-
ing the state of interest. For the OPT computation presented
below,EFCI in expression~4.2! is taken as the ground-state

eigenvalue from a small CI computation containing only the
eight lowest-lying states. These eight zeroth-order states in-
clude the dominant states for representing both the ground
and second excited states. Also,E3 andE4 in Eq. ~4.2! are
the perturbative energies from a perturbative expansion com-
puted with just these eight states—twoP space and sixQ
space states. The optimization method is achieved iteratively
and, except for a constant shift, defines these eight zeroth-
order energies. Therefore we uniquely specify the zeroth-
order energies of these eight states by selecting the zeroth-
order energy of the~single determinantal! u1s22s2& state as
its Epstein-Nesbet partitioning value~its expectation value of
H!. Similarly, the zeroth-order energiesE i

0 for the ~unopti-
mized! remaining higher-lying states are chosen to be their
values from the Epstein-Nesbet variant defined by Eq.~2.15!.
Computations for other systems may require the consider-
ation of more or less than eight states, but the present ex-
ample serves to illustrate the excellent convergence produced
by optimizing the zeroth-order energies for a very small sub-
set of all states.

V. RESULTS

The computed order-by-order perturbative energies for
the ground and thesecondexcited states of the beryllium

TABLE II. The ground-state energy~in a.u.! as computed by multireference perturbation theory through
40th order (N) using a double-reference space. Various partitioning methods are employed, and [N,M ] Padé
approximants are constructed from the asymptotic FD expansion. All entries are the differences from the FCI
energy.~Negative entries imply energies higher than FCI.! The FCI energy is214.636 853 45 a.u., and the
first-order deviation from the FCI is 0.054 174 62 a.u. for all partitioning methods considered, since all
methods use the same ket basis.

N EN MP FD [N,M ] Padé OPT

2 20.020 845 86 20.005 531 58 0.000 927 70 0.005 310 94
3 0.005 324 80 0.002 967 53 0.002 326 80@1,0# 0.000 732 56 20.000 019 79
4 0.013 243 79 0.008 915 70 0.000 767 89@1,1# 0.002 290 98 20.000 703 27
5 20.020 401 36 20.017 034 53 0.000 128 27 @2,1# 0.001 541 14 20.000 724 95
6 20.011 011 47 0.006 034 78 0.000 167 22@2,2# 0.000 606 69 20.000 037 54
7 0.029 905 70 0.011 687 56 0.000 088 08@3,2# 0.000 271 07 0.000 456 22
8 20.007 976 40 20.293 065 66 0.000 055 00 @3,3# 0.000 086 87 0.000 340 11
9 20.305 410 59 0.020 472 84 0.000 044 31@4,3# 0.000 048 91 0.000 175 36
10 0.071 595 60 20.002 617 96 0.000 034 73 @4,4# 0.000 028 86 0.000 017 05
11 0.067 518 48 23.557 520 86 0.000 036 64 @5,4# 0.000 022 87 20.000 067 42
12 22.127 698 40 20.008 348 56 0.000 047 29 @5,5# 0.000 027 95 20.000 039 47
13 20.081 428 72 20.583 217 34 0.000 064 34 @6,5# 0.000 048 70 0.000 013 75
14 0.171 957 23 225.771 912 6 0.000 086 70 @6,6# 0.000 008 49 0.000 048 01
15 25.080 526 01 61.523 473 0 0.000 113 39@7,6# 0.000 610 51 0.000 052 07
16 216.306 531 55 246.377 925 7 0.000 144 96 @7,7# 20.000 036 79 0.000 026 76
17 34.051 798 78 2158.470 675 0.000 183 31 @8,7# 0.000 088 95 20.000 003 13
18 5.312 036 56 613.359 055 0 0.000 231 39@8,8# 0.000 021 37 20.000 019 64
19 2122.943 336 16 2887.322 692 0.000 293 10 @9,8# 0.000 010 09 20.000 020 08
20 53.247 251 15 2669.434 155 0.000 373 22 @9,9# 0.000 010 66 20.000 009 27
21 0.000 477 88 @10,9# 0.000 010 04 0.000 002 68
22 0.000 615 46 @10,10# 0.000 001 70 0.000 008 37
26 0.001 867 44 @12,12# 20.000 004 46 20.000 004 55
30 0.010 627 49 @14,14# 20.000 005 12 0.000 002 16
35 20.357 729 24 @17,16# 20.000 005 80 20.000 000 40
40 21.890 965 11 @19,19# 20.000 001 78 0.000 000 20
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atom are displayed through 40th order in Tables II and III,
respectively, for both the FD and OPT partitioning schemes.
The divergent MP and EN partitioning series are also pre-
sented. The first excited state is not obtained by the pertur-
bation expansions, since this is a Rydberg state that is domi-
nated by theu1s22s3s& CSF from theQ space and it is,
therefore, not described by the reference space. The pertur-
bative expansions for the ground- and second-excited-state
eigenvalues are either both divergent or both convergent, be-
cause both eigenvalues depend on the same effective Hamil-
tonian Heff . Furthermore, the radii of convergence are
equivalent for both the ground- and the second-excited-state
energies. Tables II and III indicate that the FD partitioning
perturbation expansions diverge for both eigenvalues, but
they are well behaved in low orders. The series are asymp-
totically convergent. The low orders are of particular interest,
since a low-order truncation is almost always required for
actual computations involving more than a very small num-
ber of electrons. The OPT partitioning expansions, on the
other hand, are convergent and extremely accurate in low
orders, especially for the ground state. The third- and fourth-
order ground-state eigenvalues from the OPT partitioning de-
viate only by 0.012 and 0.44 kcal/mol from the FCI, respec-
tively, compared to 1.46 and 0.48 kcal/mol for the FD
partitioning. The second-excited-state eigenvalues are some-
what less accurate. The OPT-partitioning, third- and fourth-
order second-excited-state eigenvalues are 1.41 and 5.0
kcal/mol from the FCI, respectively, compared to 13.7 and
2.2 kcal/mol for the FD partitioning.

Tables II and III also display the@N,N21# and the [N,N]

Padéresummations@26# of the order-by-order FD partition-
ing eigenvalues through 40th order. The resummed Pade´ ap-
proximants for each eigenvalue series yield slightly worse
agreement with the FCI in low orders, but the high orders are
better behaved. Note that it is most appropriate to compare a
given @N,N21# or [N,N] Padéapproximant with the highest
perturbative order needed to obtain that approximant. For
example, perturbative orders throughN53 are needed to
generate the@1,0# approximant. Therefore the eigenvalue
computed perturbatively through third order is on the same
line in Tables II and III with the@1,0# approximant.

A. Analysis of why FD partitioning yields a divergent
expansion: Incorrect energy ordering

The following examines the FD partitioning eigenvalues
and eigenfunctions, obtained from thez-dependent FCI, as a
function of the perturbation parameterz for the complex
H(z) given by Eq.~3.1!. This analysis yields the radius of
convergenceRc as defined byuzdu, wherezd is the closest
degeneracy point to the origin involving two states that be-
come an interspace pair of states asz→0. One of the two
degenerate states atz5zd evolves into aP space state as
z→0 ~called aP-corresponding state! and the other to aQ
space state~called aQ-corresponding state!. All partitioning
methods considered below have one of the degenerate states
at zd evolve into theu1s22p2& ~P space! CSF whenz→0.
The intruder state is defined as thezeroth-order statefrom
the Q space state that contributes most to the
P-corresponding state in the vicinity ofzd . Other slightly
different definitions of intruder states have also been used.
Schucan and Weidenmu¨ller @3,4# identify problematic ‘‘col-
lective states,’’ composed predominantly ofQ space states,
that nearz51 describe low-lying exact states.

FIG. 1. The five lowest1S state FCI energies for the beryllium
atom using FD energy partitioning and presented as a function of
the real perturbation parameterz with H given by Eq.~3.1!. The
states are labeled by their unperturbed limit forz→0. States which
become~correspond to! P space state forz→0 are presented by a
solid line, and dashed lines are used for states that becomeQ space
states.

FIG. 2. The squared probability amplitudes of the two dominant
CSF’s for the beryllium atom first excited1S state using FD parti-
tioning as a function of realz.
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Figure 1 presents the variation of the FCI energies as a
function of realz for the ground state~m50! and the four
lowest excited states~m51, 2, 3, and 4! from FD partitioning
computations, whereH(z) is given by Eq.~3.1!. ~Only the
lower-lying states in Fig. 1 are discussed!. The eigenvalues
in Fig. 1 are presented as (Em2Ē), instead of simply asEm ,
since the former yields a much smaller ordinate range, where
Ē is the z-dependent average energy of the eight lowest-
lying states.~Note that the FCI eigenvalues are independent
of the perturbative partitioning only forz51.! For clarity, an
avoided crossing point involving the first- and second-
excited-state energies is denoted aszac

~1,2! , while the degen-
eracy point definingRc is written aszd

(1,2). Figure 1 exhibits
an avoided crossing between the first- and second-excited-
state energies forzac

~1,2!50.79. Since the first and second ex-
cited states are nearly degenerate atzac

~1,2! , we anticipate that
zd
(1,2)'zac

~1,2! and that the imaginary component ofzd
(1,2) is

small.
Figures 2 and 3 depict the composition of the first and

second excited1S state wave functions for the FD partition-
ing by presenting the squared CSF~probability! amplitudes
~the squared expansion coefficients! as a function of realz.
The first- and second-excited-state wave functions undergo a
‘‘transition’’ at zac

~1,2! . The first excited state is dominated by
the u1s22p2& state forz,zac

~1,2! , while the u1s22s3s& Ryd-
berg state dominates forz.zac

~1,2! , and vice versa for the
second excited state. Thus the intruder state is clearly the
zeroth-order u1s22s3s& state. The zeroth-orderu1s22p2&
state is what we have termed the ‘‘departing’’ state, since, in

a sense, it exits the reference space. Theu1s22s3s& and
u2s22p2& states are the dominant CSF’s for describing the
first- and second-excited-state wave functions in the vicinity
of zd

(1,2) ~and to some extent in the region beyondzd
(1,2)!.

Thus a two-state system composed exclusively of the
u2s22p2&([up&) and u1s22s3s&([uq&) states provides a
model for interpreting the divergence of the full computation
involving all 1323 states. This model uses the same zeroth-
order energies as defined by FD partitioning for the full com-
putation involving all 1323 states. Also, the two states are
weakly coupled withVpq50.022 09 a.u.~See Sec. III for the
two-state theory and notation.! The degeneracy points for
this model occur atzd

m50.741 i0.06 and also, of course, at
(zd

m)* . The avoided crossing pointzac
m is just Rezd

m. Thus we
have zac

m50.74, which agrees reasonably well with
zac

~1,2!50.79 for the full computations. The modest difference
of 0.05 betweenzac

~1,2! and zac
m probably occurs because the

u1s22s2& and u1s22p3p& states provide non-negligible con-
tributions to the second excited state~see Fig. 3! and thus
apparently influence the precise location ofzac

~1,2! .
The perturbative divergence~Rc,1! for this two-state

model occurs for FD partitioning because of incorrect energy
ordering. Since^puHup&.^quHuq& ~z51!, we must then
have^puH0up&.^quH0uq& (ep.eq) or the two-state model
series diverges~Rc,1!. Unfortunately, the FD partitioning
forces ep,eq , which results from defining the 2p orbital
energy from a potential generated by only~N21! electrons
~also called aVN21 potential@13,27#!, while using aVN po-

TABLE III. Same as Table II except that the entries are for the second excited state. The FCI energy is
214.277 595 96 a.u., and the first-order deviation from the FCI is 0.119 661 97 a.u.

N EN MP FD [N,M ] Padé OPT

2 20.046 035 90 20.044 418 06 0.056 037 70 0.003 960 69
3 20.009 743 71 0.013 174 40 0.021 938 98 @1,0# 0.055 750 49 0.002 253 27
4 0.068 799 98 0.050 226 37 0.003 495 35 @1,1# 20.017 441 23 20.008 445 26
5 20.051 747 88 20.099 861 68 20.004 649 63 @2,1# 20.018 233 55 20.007 054 38
6 20.075 018 65 0.046 676 37 20.006 442 30 @2,2# 20.017 507 46 20.002 940 43
7 0.198 170 29 0.215 579 56 20.005 098 67 @3,2# 0.019 314 24 0.000 671 22
8 0.006 031 94 20.304 006 56 20.003 023 61 @3,3# 0.000 406 27 0.001 712 13
9 20.262 290 93 0.483 252 91 20.001 558 99 @4,3# 20.004 301 33 0.001 055 42
10 0.467 985 72 0.930 086 23 20.001 179 62 @4,4# 20.002 554 80 0.000 112 02
11 0.945 779 37 20.333 050 49 20.001 794 65 @5,4# 20.003 262 04 20.000 539 23
12 20.327 364 42 5.720 397 67 20.003 059 83 @5,5# 0.002 788 72 20.000 641 42
13 20.440 686 21 1.777 240 51 20.004 629 46 @6,5# 20.018 564 24 20.000 362 22
14 7.438 533 54 20.185 009 03 20.006 298 40 @6,6# 0.018 548 97 20.000 027 68
15 20.760 565 59 20.718 034 69 20.008 040 60 @7,6# 20.002 021 94 0.000 189 05
16 20.772 534 15 2.153 977 77 20.009 977 06 @7,7# 20.001 419 26 0.000 225 41
17 0.394 733 44 2.788 430 93 20.012 313 93 @8,7# 20.006 026 45 0.000 126 10
18 13.187 880 99 24.452 653 48 20.015 285 68 @8,8# 0.000 770 51 20.000 002 94
19 22.095 364 49 13.629 471 09 20.019 123 68 @9,8# 0.000 072 67 20.000 084 67
20 12.797 282 81 84.976 719 4120.024 054 46 @9,9# 0.000 131 8 20.000 091 45
21 20.030 321 49 @10,9# 0.000 089 87 20.000 042 62
22 20.038 219 27 @10,10# 20.000 098 62 0.000 015 7
26 20.095 796 12 @12,12# 20.000 003 85 20.000 013 39
30 20.244 261 21 @14,14# 20.000 006 14 20.000 009 44
35 20.369 848 35 @17,16# 20.000 005 66 20.000 006 04
40 20.365 415 34 @19,19# 20.000 038 46 0.000 000 77
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tential for the singlet 3s orbital. ~See Table I, column labeled
preFD, for the zeroth-order state energies prior to forcing
degeneracy.! The forcing of the 2s and 2p orbitals to be
degenerate moves theu1s22s3s& andu2s22p2& states slightly
farther apart in zeroth order than they would otherwise be if
no forced degeneracy were imposed.~Other states are, of
course, also affected by forcing degeneracy.! Since this two-
state system adequately models the convergence properties
of the full computation, it is clear that the full FD computa-
tion also diverges from incorrect energy ordering. In addi-
tion, as is observed for other two-state systems@28#, the
weak coupling between theu1s22s3s& and u2s22p2& states
leads to the expectation that the wave functions and energies
for these states exhibit an abrupt change in the region of their
avoided crossing. This ‘‘transition’’ behavior is precisely
what is observed in Figs. 2 and 3 forz'zac

~1,2! . In contrast,
when the pair of interstate space states is strongly coupled,
the wave functions and energies change gradually in the vi-
cinity of the degeneracy point~see Ref.@5# for examples!.

Consider the two-state model discussed in the previous
paragraph, withVpq made arbitrarily small, but not with
Vpq50. Then we get

lim
Vpq→0

zd
m5zd

0, ~5.1!

where zd
050.741 i0. Hence this degeneracy point occurs

where the diagonal matrix elementsH(z) of the two states
cross~see Sec. III!. In contrast, a partitioning method with
the correct energy ordering does not have its diagonal matrix
elements ofH(z) cross as a function ofz for pairs of inter-
space states. Sincezd

0 is close tozd
m for the two-state model

with Vpq50.022 09 a.u., the coupling between these states
plays a rather minor role in understanding the divergence for
the full computation involving all 1323 states.

B. Analysis of why EN and MP partitioning yield divergent
expansions

The divergent behavior of EN and MP expansions is an-
ticipated because both series possess interspace states that
produceRc,1 from two-state models. For EN partitioning,
the two-state model, composed of theu1s22p2&([up&) and
u1s22p3p&([uq&) states, has zd

m520.0860.46i with
Rc50.46. The same model yieldsRc50.49 and
zd
m520.0760.48i for MP partitioning. In addition, MP par-

titioning provides the two-state model of theu1s22p2& and
u1s22s4s&([uq&) states that yieldszd

m520.3760.08i with
Rc50.38. The divergence of these EN and MP partitioning
models arises from the zeroth-order energy differences being
too small, but correctly ordered. However, the zeroth-order
P space energies are not quasidegenerate.~A detailed ac-
count of the inadequacies of the MP and EN partitionings is
given elsewhere@5#.! Since there aretwo different two-state
models that produceRc,1 for MP partitioning, we anticipate
that quantitative agreement betweenzd

(1,2) and zd requires
using the three-state model composed of the
u1s22p2&([up&), u1s22p3p&([uq&), and
u1s22s4s&([uq8&) states.~A preliminary investigation sup-
ports this hypothesis.!

C. Analysis of the convergent OPT partitioning method

Figure 4 displays thez-dependent energies from the FCI
for the five lowest states as computed with OPT partitioning.
No avoided crossings are present for Rez between21 and
11, indicating that probablyRc.1, in agreement with the
order-by-order computations. Unlike the case with FD parti-
tioning, the zeroth-order energy of theu1s22p2& P space
state exceeds that of theu1s22s3s& Rydberg state. This en-
ergy ordering generates the correct one-to-one mapping be-
tween these zeroth-order states and their corresponding exact

FIG. 3. Same as in Fig. 2, but for the second excited state. FIG. 4. Same as in Fig. 1, but for OPT partitioning.
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states forz51. Theu1s22s3s& state evolves into the~exact!
first excited state when Rez adiabatically changes from zero
to unity, while theu1s22p2& CSF evolves into the second
excited state. Thus, besides converging to the ground-state
energy, the perturbation expansion yields thesecondexcited
state, and not the first.

VI. DISCUSSION

Schucan and Weidenmu¨ller hypothesize that multirefer-
ence perturbation expansions must diverge whenever an ex-
act state, which is predominantly composed of configurations
outside the reference space, appears within the energy spec-
trum of the exact states that are predominantly represented
by reference space states@3,4#. This conjecture emerges from
using a zeroth-order Hamiltonian in which the zeroth-order
P andQ space states are not permitted to overlap in energy.
We have demonstrated that this pessimistic conclusion isnot
valid if the restriction is lifted to allow energy overlap be-
tween the zeroth-orderP andQ spaces. Perturbative compu-
tations with overlappingP-Q space energy spectra can have
the zeroth-order energies of their interspace states correctly
ordered and, therefore, produce convergent expansions. For
example, the OPT computation for the beryllium atom places
the P spaceu1s22s2& CSF above theQ spaceu1s22s3s&
~Rydberg! CSF. Besides converging to the ground-state en-
ergy, the perturbative computation of two reference states
converges to thesecondexcited state, and not the first.

We have examined the radii of convergence for the mul-
tireference perturbation expansion of the beryllium atom en-
ergies using MP, EN, FD, and OPT partitioning with a
double-reference space composed of theu1s22p2& and
u1s22s2& CSF’s. Consider now the single-reference compu-
tation with aP space consisting of only theu1s22p2& CSF
and with theu1s22s2& CSF now placed into theQ space. The
radius of convergence for the single-reference space compu-
tation must be identical to that for the double-reference space
if the u1s22p2& and u1s22s2& states are well separated in
zeroth order so that theu1s22s2& state does not act as an
intruder state. Furthermore, since these two states are only
weakly coupled~Vpq50.02 a.u.!, we anticipate that a single-
reference treatment to high orders with theu1s22p2& CSF
should give similar order-by-order excited-state energies as
those from the double-reference space. Further improvement
in the perturbative convergence is expected if the 2p orbitals
are defined from au1s22p2& SCF computation, as opposed to
the present computations which use SCF orbitals based on a
u1s22s2& configuration, used here only to conform with pre-
vious multireference perturbation theory treatments of the Be
atom. The present choice introduces strong coupling
~Vpq50.13 a.u.! between theu1s22p2& and u1s22p3p&
CSF’s and yieldsVpq/DH51.29, whereDH is the difference
in the expectation values of the Hamiltonian for the
u1s22p2& andu1s22p3p& CSF’s. Such a largeVpq/DH ratio
slows the convergence@5#.

Traditional perturbative partitionings, such as variants of
Mo” ller-Plesset and Epstein-Nesbet partitionings, selectH0
without regard to the the couplings between the zeroth-order
states. These approaches often produce convergence difficul-
ties in situations where the ratioVpq/DH is large for one or
more pairs of interspace states, where a pair of interspace
states is defined as consisting of one state from the reference

(P) space and one from the orthogonal (Q) space. When
two interspace states have a largeVpq/DH ratio, intruder
states often plague the convergence of the perturbation ex-
pansion for traditional partitionings because certain energy
denominator factors are frequently too small. This small-
denominator situation typically leads to backdoor intruder
states~see Ref.@5#!, with the avoided crossings occurring for
zac,0 when the interspace states are correctly ordered.@On
the other hand, ‘‘true’’ Epstein-Nesbet partitioning~with
vanishing diagonal elements ofV! is predicted to have a
purely imaginaryzd , at least for two-state systems. Our in-
vestigations for Be and the HRS@5# employ the variant of
Epstein-Nesbet given by Eq.~2.15!, where the diagonal ele-
ments ofV are nonzero and two-state systems do not yield a
purely imaginaryzd .#

In contrast, when important zeroth-order states are incor-
rectly energy ordered, the avoided crossing can appear for
zac.0, a ‘‘front-door’’ intruder state. This type of divergence
is characterized by the presence of a high-lying reference
(P) space state, which, in a sense, ‘‘departs’’ from the ‘‘ref-
erence’’ space~the departing state!, and of aQ space state
which simultaneously ‘‘intrudes’’ into the ‘‘reference’’
space. In other words, the departing state is a zeroth-order
state that describes aP-corresponding state for Rez,zac and
aQ-corresponding state for Rez.zac, and vice versa for the
intruder state, where aP- (Q)-corresponding state is defined
as one that evolves into a zeroth-orderP (Q) space state for
Rez→0. Furthermore, the intruder and departing states have
their zeroth-order energies in the opposite ordering from that
given by their expectation values ofH. In contrast to back-
door intruder states, perturbative divergences induced by
front-door intruder states~or departer states! may have rather
small ratiosVpq/DH for the incorrectly ordered states. In
such cases, whenVpq/DH is small or when both incorrectly
ordered states produce insignificant contributions to the
state~s! of interest, the perturbative convergence can be use-
fully asymptotic. An exception arises when the unimportant
incorrectly ordered states are quasidegenerate in zeroth order
because a largeVpq/De ratio can generate divergent behavior
in low orders, whereDe is the zeroth-order energy difference
between the two interspace space states. The double-
reference treatment of the beryllium atom using FD parti-
tioning encounters perturbative divergence because of incor-
rect energy ordering. The interspace states inducing this
divergence are theu1s22p2& ~departer! state and the
u1s22s23s2& ~intruder! state. Since these states are only
weakly coupled~Vpq is small! and have well-separated ex-
pectation values ofH, a usefully asymptotically convergent
expansion is produced.

The simplest model to explain the influence of incorrect
energy ordering consists of two states that are incorrectly
ordered and that have their off-diagonal matrix element
given by Vpq . The crudest model takesVpq as arbitrarily
small ~Vpq→0! but nonzero. For this model, the near degen-
eracy occurs atzd

0→De/(De2DH), where the expectation
values ofH(z) ~the diagonal matrix elements! for the two
states become equal. Because of the noncrossing rule, the
two states cannot cross atzd

0 for Vpq arbitrarily small, but
they do cross whenVpq50. This model works reasonable
well to describe the FD series divergence for the beryllium
atom.
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We define correct energy ordering as the energy ordering
of the zeroth-order states that makes a convergent expansion
possible. Therefore, if a perturbation expansion correctly or-
ders the zeroth-order energies of interspace states and has
them sufficiently separated, thenRc.1. For two-state sys-
tems, correct energy ordering requiresDe andDH to have
the same sign for the interspace states. Perturbative compu-
tations with more than two states may sometimes require a
different type of energy ordering to produceRc.1, espe-
cially when interspace states have quasidegeneracies in their
expectation values ofH. In such circumstances, a convergent
series is only obtained when two interspace states haveDe
andDH with differing signs. For example, consider a three-
state system with an interspace pair of states that are weakly
coupled withVpq520.02 a.u. TheP space state from the
pair is placed below theQ space state in zeroth order
ep,eq , whereep5210.0 a.u. andeq529.6 a.u. This order-
ing is opposite to the ordering of expectation values ofH,
^quHuq&,^puHup&, where ^quHuq&5214.3 a.u. and
^puHup&5214.2 a.u. Therefore the perturbation expansion
for these two statesalonehasRc,1. A third state, denoted as
uq8&, is now added to theQ space with^q8uHuq8&5213.0
a.u. andeq8528.1 a.u. Also,uq8& is coupled strongly to the
P space state byVp,q850.5 a.u. but is only coupled weakly
to the otherQ space state byVq,q8520.03 a.u. The com-
puted radius of convergence (Rc) for this three-state system
~with opposite signs ofDe andDH for up& anduq&! is '1.3.
Whereas the two-state model~up& and uq&! has incorrect en-
ergy ordering, the addition of the strongly coupled stateuq8&
state yields a three-state system with the correct energy or-
dering of the exact states, permitting the perturbative series
to converge. In addition, if the two-state model~up& anduq&!
is constructed such thatDe and DH have the same signs,
then the addition of the third stateuq8& produces a divergent
series withRc,1. In order to determine the correct ordering
of interspace states, for generalN-state systems, it may
sometimes be necessary to consider az-dependent model for
the interspace states in question along with the other states
that are strongly coupled to one or both of the interspace
states. Alternatively, an examination of the~approximate!
wave functions atz51 may be used to predict the ‘‘appro-
priate’’ one-to-one mapping between the zeroth-order and
exact states and thereby establish the correct energy order-
ing. For example, consider the case with an interspace pair of
statesup& and uq&, whereup&(uq&) dominates the FCI state
upd&(uqd&) at z51. If the energy of theupd& state is greater
than theuqd& state energy, then it is reasonable to conclude
that correct energy ordering requires the zeroth-order energy
of the up& state be greater than that of theuq& state. Never-
theless, the interspace two-state models provide the point of
departure for analyzing and effecting perturbative conver-
gence.

Epstein-Nesbet partitioning is not, in general, size exten-
sive. Similarly, since the OPT method, as presently imple-
mented, is also based on a sum-over-states formulation, it is,
in general, not size consistent. However, size extensivity can
be imposed by employing a sum-over-orbitals form ofH0
and by optimizing the orbital energies rather than the state
energies. This type of OPT computation has been performed
for BeH2 @29#.

The OPT method can also be applied for an incomplete

reference space. The use of an incomplete reference space is
an important tool for removing certain intruder states and for
generating rapid perturbative convergence, especially if em-
ployed with the OPT method. The incomplete reference
space method of Hose and Kaldor~HK! @30–32# selects the
most important zeroth-order states to span the reference
space. While the original HK method uses nonaveraged
Hartree-Fock orbital energies, subsequent computations by
Hose@32,33# also found it useful to force the reference space
states to be degenerate in zeroth order. The HK approach
removes intruder states from low orders of perturbation
theory. However, because the choice of reference space in
the Hose-Kaldor method often leads to interspace states with
incorrect energy ordering, these types of computations are
probably divergent, with the onset of divergent behavior usu-
ally occurring at high orders. Therefore, like the FD method,
this method can produce asymptotically convergent series.
Incorrect energy ordering with the HK method is a conse-
quence of forcing degeneracy upon theP space and of leav-
ing some low-lying weakly coupled states~such as Rydberg
states! in the orthogonal space. As applied most recently by
Hose@32,33#, the HK method is actually quite similar to the
FD method, except that the HK technique uses an incomplete
reference space and that the zeroth-order energies of the ref-
erence space are rendered degenerate by setting the zeroth-
order energy of all the reference space states to a single
energy, instead of forcing the valence orbitals to be degen-
erate. The latter approach shifts the zeroth-order energies of
all states that depend on the valence orbital energies, includ-
ing theQ space states. Not surprisingly, poor results emerge
from computations using the HK method and forcing the
reference space to be degenerate with the energy of an ex-
cited reference state@33#. The latter behavior is probably due
to energy denominators that are too small. Similarly, forced
valence orbital degeneracy may lead to convergence prob-
lems of small-energy-denominator type@13#. The following
two sections address some problems that may be encoun-
tered in employing FD and OPT partitioning.

VII. PROBLEMS WITH FD PARTITIONING

The FD partitioning method permits considerable latitude
in choosing the orbitals and the orbital energies, except with
the restriction that the valence orbital energies are forced to
be degenerate. Thus the important degrees of freedom influ-
encing convergence for FD partitioning are the reference
space, the spatial orbitals, and the orbital energies. Because
valence orbitals are forced to be degenerate, these variables
are interwined in a very complicated way for FD partition-
ing, making it very difficult to determinea priori which
combination of these variables yields accurate results, except
for cases with very small reference spaces. Therefore, it is
not surprising that problems may arise in applying FD parti-
tioning methods, especially as the reference space becomes
larger and less quasidegenerate. Because of this complexity,
the present form of this method is not recommended for the
same widespread usage, as is, for example, single-reference
perturbation theory. However, prior experience provides
some rough rules of thumb that enable generating satisfac-
tory results for most systems, perhaps with some trial-and-
error approaches and/or with detailed analysis. We now ex-
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plore the complexities involved in choosing the degrees of
freedom available in multireference perturbation computa-
tions with the constraint that the valence orbitals are forced
to be degenerate.

A trade-off exists when choosing a reference space for the
FD method. A larger reference space yields a better first-
order approximation, but at the expense of introducing a
larger diagonal perturbationV. In order to understand the
origin of this trade-off, first consider the composition of the
reference space for FD partitioning. The FD method uses a
complete active space to specify the reference space. There-
fore the reference spaces are defined through the specifica-
tion of a set of valence~active! and core~inactive! orbitals as
well as the excited orbitals.~Actually, the word ‘‘valence’’ is
a misnomer, since ‘‘nonvalence’’ orbitals can also be active,
e.g., Rydberg orbitals@21,22,34#.! As the reference space is
enlarged by the addition of more active orbitals~with fixed
core!, the variational theorem implies that the enlarged ref-
erence space produces better first-order energies, since its
first-order eigenvalues are lower lying and are closer to the
FCI energies. Thus less ‘‘dynamical’’ correlation energy has
to be recovered perturbatively for the larger reference space.
However, application of the FD method to the larger refer-
ence space requires the forced degeneracy of more valence
orbitals, a procedure which usually produces larger diagonal
elements of the perturbationV. These diagonal elements can
be quite significant for large reference spaces if zeroth-order
states that are very high lying are forced to be degenerate
with much lower bound states. In addition, many diagonal
elements involvingQ ~orthogonal! space states are also af-
fected by forcing degeneracy since they also depend on the
valence orbital energies. All things being equal, an increased
perturbationV induces diminished perturbative performance.
Thus a trade-off exists. A larger reference space yields a
better first-order approximation at the expense of a larger
diagonal perturbation. This trade-off may complicate the
choice of the reference space for FD partitioning computa-
tions.

Forcing degeneracy can make certain classes of energy
denominator factors very small, leading to convergence
problems@13# in low orders. The choice of the reference
space is further complicated by the need to keep these energy
denominator factors from being too small. Consider, for ex-
ample, how the energy denominator factors are affected by
enlarging a particular reference space. Both the smaller and
larger reference spaces have some energy denominators fac-
tors that shrink when orbital energies are forced to be degen-
erate, but the larger reference space generally has valence
orbital energies that, prior to forcing degeneracy, span a
wider energy range. Therefore the larger reference space has
more shrunken energy denominators, and the degree of
shrinkage is also more severe than for the smaller reference
space. Hence, based on the energy denominator factors
alone, the smaller reference space selects better energy de-
nominator factors, but the situation is more complicated. The
smaller reference space hasQ space CSF’s that are more
strongly coupled toimportant Pspace CSF’s, where the im-
portantP space CSF’s are those dominating the description
of the exact states of interest~e.g., the ground and low-lying
states!. Because of this stronger coupling involvingimpor-
tant states, the smaller reference space has a greater depen-

dence on the energy denominator factors and is, therefore,
more sensitive to the presence of small energy denominator
factors. In other words, while the larger reference space has a
greater shrinkage in certain energy denominator factors from
forcing degeneracy, it can afford increased shrinkage. This
problem of energy denominator factors becoming too small
can often be removed by redefiningH0 in a fashion that
corresponds to performing orbital energy shifts@13#, with the
constraint that the valence orbitals remain degenerate. How-
ever, without some trial-and-error experimentation or de-
tailed analysis, it is difficult to determine if shifts are re-
quired, and of what magnitude. Thus the influence of small
energy denominators on the perturbative convergence further
complicates the choice of the reference space.

The kinds of uncertainties that appear in the selection of
the reference space also appear to a lesser extent for the
selection of the orbitals. For example, ground-state CASSCF
orbitals provide the ‘‘optimal’’ first-order description of this
state as determined by the variational theorem. However,
CASSCF orbitals usually introduce a larger energy spread to
the reference space prior to forcing degeneracy, compared to
the spread from a set of valence orbitals obtained fromVN21

potentials@35#. ~VN21 potential orbitals are defined in Ref.
@13#.! Therefore the CASSCF orbitals yield a better first-
order description but produce larger diagonal elements ofV
and also shrink many of their perturbative energy denomina-
tor factors more severely when the valence orbitals are
forced to be degenerate. Thus, as in the selection of the ref-
erence space, this trade-off complicates the choice of orbitals
for FD perturbation computations.~As a rule of thumb,
CASSCF orbitals are poor for large reference spaces.!

Another complication for the FD method arises from the
common occurrence of incorrect energy ordering, especially
for larger valence spaces. The beryllium atom computations
above have a Rydberg state incorrectly ordered, but since
this CSF provides a very small contribution to the states of
interest, the convergence is usefully asymptotic. Unfortu-
nately, if theQ space contains incorrectly ordered valence-
like states that contribute significantly to the, say, valence-
like states of interest, divergent behavior can occur in low
orders, or the low-order estimates may be inaccurate from
errors incurred from perturbation terms involving the incor-
rectly ordered states.~See Fig. 4 of Ref.@5# for order-by-
order results from an incorrectly ordered two-state system.!
Convergence may be improved by enlarging the reference
space to include these important CSF’s. Unfortunately, the
increase in the reference space size has limits and involves
the trade-offs discussed above.

VIII. PROBLEMS WITH OPT PARTITIONING

The OPT method does not suffer from many of the above
difficulties if the reference space is maintained within the
method’s range of applicability. However, the use of a CAS
reference space may introduce problems in some applica-
tions of the OPT method. These problems emerge because
some of the CSF’s from the CAS may have very high-lying
energies, and therefore some of these CSF’s may be strongly
coupled toQ ~orthogonal! space states. Consider just one
pair of coupled interspace states from a computation that has
many otherP andQ space states. Let these two states have a
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large off-diagonal matrix elementVpq , and let the difference
DH between their diagonal matrix elements ofH be small.
This pair of coupled interspace states produces a very large
Vpq/DH ratio. A perturbation expansion involving only these
two states is divergent or very slowly convergent. The slow
convergence occurs only if the two states have their zeroth-
order energies properly ordered and greatly separated@5#.
Therefore it is essential with any partitioning method that
these two strongly coupled interspace states are not impor-
tant in describing the state~s! of interest, since a low-order
perturbative treatment only recovers a small portion of the
correlation energy emerging from perturbation terms with
these largeVpq factors. Let us now contrast how the FD and
OPT methods handle these strongly coupled interspace
states.

The FD method significantly enlarges the zeroth-order ex-
citation energy (ep2eq) which thereby greatly diminishes
the potentially problematic large perturbative ratios
Vpq/(ep2eq) that are otherwise present when forced degen-
eracy is not imposed. Furthermore, if (ep2eq) andDH have
opposite signs, FD partitioning usually yields an error in
each order@5#. Thus the FD partitioning can produce satis-
factory energies only when these errors from incorrect order-
ing are small.

Now let the reference space states be nondegenerate, as is
the case for OPT partitioning. The zeroth-order energies for a
pair of coupled interspace states with a largeVpq/DH ratio
can be chosen to be correctly energy ordered and to be well
separated energetically, a pair of conditions that is often nec-
essary for convergence. Unfortunately, this OPT energy
shifting could induce other problems. Consider, in addition
to the strongly coupled interspace pairup& and uq&, another
pair of interspace statesupd& anduqh& that contribute signifi-
cantly to the state of interest. Assume further that the diag-
onal elements of H satisfy the orderings
^qhuHuqh&.^puHup&.^quHuq&.^pduHupd& and that the
lowest-lying stateupd& is a good zeroth-order description for
the state of interest. In order to obtain a convergent series,
we must have the zeroth-order energies of the two strongly
coupled statesup& and uq& be well separated and correctly
energy ordered. Explicitly, we must~usually! then have
ep@eq . Unfortunately, correct energy ordering also requires
eqh.ep andeq.epd. Therefore the combination of these re-

quirements yieldseqh@epd, a condition that may slow the
convergence since the important perturbation terms with fac-
tors of Vpd ,qh

/(epd2eqh) are now made too small because

(epd2eqh) is very large. Hence, in such circumstances, it
may be preferable simply to neglect the offendingVpqmatrix
elements or any interspace matrix elements that produce
large Vpq/DH factors. A related approach appears in the
early work of Stern and Kaldor@36,37# with the neglect of
certain zeroth-order states in a complete active space multi-
reference treatment for excited states of H2 and BH. This

approach is made successful only if the reference space is
chosen so that these types of matrix elements can be ne-
glected. Usually, the larger the reference space, the better is
this approximation.

An alternative method for dealing with intruder states is
provided by the intermediate Hamiltonian@38# approach
which removes problematic energy denominators. A change
of ket basis can also be employed to reduce large, problem-
atic, interspace couplings@e.g., as in the CAS perturbation
theory ~CASPT! method@39–43##. It may be beneficial to
employ the OPT partitioning with these methods. In addi-
tion, since multireference coupled cluster~MRCC! @44–55#
computations for complete reference spaces~and even for
incomplete reference spaces! frequently encounter poor con-
vergence problems due to the presence of intruder states, the
OPT partitioning might provide an improved initial guess to
overcome some of these convergence difficulties.

IX. CONCLUSIONS

Electronic-structure computations for the beryllium atom
exhibit many of the fundamental difficulties encountered in
attempting to extend single-reference perturbative methods
to treatments based on multiple reference spaces. The present
work demonstrates how a proper selection of the zeroth-
order HamiltonianH0 enables us to achieve intruder-state-
free, optimal, low-order perturbative convergence for multi-
reference spaces with accurate energies in low orders. The
third-order OPT energy for the beryllium atom differs from
the FCI eigenvalue by 0.01 kcal/mol for the ground state and
by 1.4 kcal/mol for the second excited state. The FD parti-
tioning yields an energy ordering in zeroth order between the
u1s22p2& P space and theu1s22s3s& Q space states that
differs from the energy ordering provided by the expectation
value of the Hamiltonian. This incorrect ordering between
these interspace states ultimately destroys the perturbative
convergence for the beryllium atom using FD partitioning.
However, since the coupling between these states is small,
the FD perturbation series is usefully asymptotic in the sense
that low-order truncations provide good approximations. The
present computations again emphasize the utility of simple
models for providing convergence criteria and for assessing
the quality of possible choices for multireference perturba-
tive computations. An analysis of interspace two-state mod-
els yields an indication of probable impediments to the per-
turbative convergence and of possible remedies for these
problems.
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