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High-order multireference perturbation theory is applied to Y8estates of the beryllium atom using a
referencelmode) space composed of tH&s?2s?) and the|1s22p?) configuration-state functionsCSF's, a
system that is known to yield divergent expansions usinglévi®lesset and Epstein-Nesbet partitioning
methods. Computations of the eigenvalues are made through 40th order using forced dedE&myrpayti-
tioning and the recently introduced optimizati@@PT) partitioning. The former forces thes2zand 2o orbitals
to be degenerate in zeroth order, while the latter chooses optimal zeroth-order energiegfeithaost
important states. Our methodology employs simple models for understanding and suggesting remedies for
unsuitable choices of reference spaces and partitioning methods. By examining a two-state model composed of
only the\1322p2> and|1322335) states of the beryllium atom, it is demonstrated that the full computation with
1323 CSF'’s can converge only if the zeroth-order energy oflla%\Zsss) Rydberg state from the orthogonal
space lies below the zeroth-order energy of|11ue’-2p2> CSF from the reference space. Thus convergence in
this case requires a zeroth-order spectral overlap between the orthogonal and reference spaces. The FD parti-
tioning is not capable of generating this type of spectral overlap and thus yields a divergent expansion.
However, the expansion is actually asymptotically convergent, with divergent behavior not displayed until the
11th order because th&s?2s3s) Rydberg state is only weakly coupled with tHes?2p?) CSF and because
these states are energetically well separated in zeroth order. The OPT partitioning chooses the correct zeroth-
order energy ordering and thus yields a convergent expansion that is also very accurate in low orders compared
to the exact solution within the basi$§1050-29476)02607-§

PACS numbgs): 31.15-p

[. INTRODUCTION space. Unfortunately, applications of multireference pertur-
bation theory to systems with nondegenerate reference space
The application of many-body perturbation theory for thestates usually yield divergent expansions from so-called in-
computation of ground-state energies provides a very popuruder states. It is widely believed that these problems exist
lar and powerful method when the zeroth-order state yields &gardless of the choice of the zeroth-order Hamiltorkign
reasonable representation for the state of intefess., a  (the partitioning of the full HamiltoniaH into H, and the
closed-shell ground stateSystems possessing degeneraciegerturbationV). This belie!c can be traced to the theoret_ical
or quasidegeneracies in zeroth or¢eg., open-shell systems Work of Schucan and Weidenttter [3,4]. Our recent appli-

and excited statescan be described by multireference per- cation[5] of double-reference perturbation theory to the hy-

turbation theory with a degenerate reference space, where tﬁéogen rectangular systeffour hydrogen atoms arranged in

quasidegenerate case is treated by introducing an additiongl rectangular geometrcontradicts this pessimistic conclu-

perturbation that lifts the imposed degeneracy. This method " Otherwise divergent perturbative expansions can be
computes an effective Hamiltoniat,, that is employed to rendered convergent by carefully choosing the eigenvalues
eff

i . f H, (the zeroth-order energiesThis partitioning approach
obtain the perturb.ed matrix ellements between the .degener. %Iiz?es a completely general form bf, in which the zeroth-
states that comprise the multireference space. A final matrix . qar energies are, in principle, arbitrary, and can, therefore,

diagonalization yields the eigeqvalues of interest. The widely)o -hosen in a systematic fashion to enhance convergence.
used nondegenerate perturbation theory emerges as the speqr recent work5] on the hydrogen rectangular system
cial limit with a single reference configuration-state function(HRS) also demonstrates the underlying reasons why vari-
(CSH and thus is often called single-reference perturbatioynts of Epstein-NesbéEN) and Mdler-PlessetMP) parti-
theory. tionings produce perturbative expansions that are prone to
Situations arise where a single, closed-shell, zeroth-ordentruder-state divergence when employed for multireference
reference state is strongly coupled with one or more excitedpaces. These traditional partitioning methods are inadequate
CSF's from the orthogonal space, rendering the singlebecause they often place the zeroth-order energies for impor-
reference perturbation series either divergent or slowly contant pairs of interspace states too close together, where a pair
vergent. When one or more of these strongly coupled excitedf interspace states is defined as consisting of one state from
states is not quasidegenerate with the reference space statehieé reference ) space and one from the orthogon#))(
is natural to employ multireference perturbation theory withspace. Furthermore, two-state systems, constructed from the
a nondegenerate reference spte?]. This treatment in- pair of interspace states responsible for the intruder-state be-
cludes in the reference space the states that would otherwisavior, accurately model the divergent behavior of the full
disrupt the perturbative convergence if left in the orthogonaktomputations. Also, in contrast to the traditional partitioning
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methods, the method of forcing the reference space to bkigh-order perturbative behavior of multireference methods
degenerat¢denoted as forced degenerd€D) partitioning)  for small systems where full configuration-interactigtCl)

does not place interspace states too close for the HRS ar@mputations are possible. These analyses are designed to
thus yields a convergent expansion. These conclusions aférther our understanding of the multireference perturbative
drawn from a minimum-basis-set treatment of the HRS, raismethods in order to develop new, systematic methods that
ing some questions as to their applicability to more “realis-are usefully convergent when truncated at Igsecond or

tic” systems with much higher CSF dimensionalities thanthird) orders, since these low orders represent the practical
the eight CSF’s for théA, states of the HRS. It is also of limits for large systems that are not amenable to FCI. The
interest to determine whether simple twr few-) level analyses are also pur;ued to dev!se simple diagnostics that
treatments can accurately describe the convergence behavﬁ’)rre,userI, for eyaluatmg the various degrees of.freed'om
for large-dimensionality problems. available in multireference perturbation computations, in-

The present work examines another four-electron systen?IUd'lng refer_enceh_spr?cez and partlilot_nmg ;net:]r?dsHFlggr ex-
the beryllium atom, with a basis set of moderate size thaiimp €, prévious high-order computations for the .
generates 1323 CSF’s i symmetry. The basis set includes suggest that a minimum requirement, with few exceptions,

diffuse functions and thus also describes Rydberg states. T gr perturbative convergence IS thatl two-state models'
lowest-lying orthogonal space state with 522s3s) occu- constructed from interspace states of the full computation

pation “naturally” lies below the zeroth—ord¢1322p2> ref- havle radii of cok;wergefnce g(;eat?rz than u_gllty. Tt:jese two-?tz;\rt]e
erence space statéThe |1s?2s?) CSF is also in the refer- analyses c?n € per ?rmed ra %r. ra? y and sugges be
ence spacg.Thus, unlike the minimum-basis-set HRS, the presence of, source of, and remedies for convergence prob-

Be system has an inherent overlap in the zeroth-order enerd?]mss' tion Il revi back dth d defi
spectra of thd®> andQ spaces. The spectra of the exact states .. ec lfon rev;SW? necessaryt %C t_grOLtIE eo_Pr/] artlh etl-
also, in a sense, overlap, since the exact state dominated ylons from muttireierence perturbation theory. The theory

the|1s?2p?) CSF lies above the Rydberg state dominated by’ ploys completely general definitions of the diagonal
the |1s?2s3s) CSF. Many previous workers, including zeroth-order Hamiltoniakly, definitions which are essential

Schucan and Weidenther, believe that these conditions of for producing multireference perturbat.io.n ”?e‘h"ds that are
zeroth-order or “exact” spectral overlap, of necessity pro-free fro.m many O.f .the' convergence d|ff]cult|es expgnenced
duce intruder-state-induced divergence for multireferencé’y traditional partitioning methods. Sec_tlon lll describes the
perturbation expansions. Hence, not surprisingly, Solomon!terspace two-state systems that provm_le a transparent mod-
son, Lindgren, and Martenss¢f] and Heully and Daudey eling of the full computations, as descrlbgd In Sep. V. The
[7] obtain divergent multireference perturbation expansion D and OPT partitioning meth_ods are dellneated_m Sec. IV.
from the traditional partitioning methods for the beryllium he perturbatJon expansions in Sec. V are carried to ATOth
atom when both thé1s22s?) and|1s?2p?) CSF's are cho- order, and Padapproximants are tested as a means for im-

sen as the reference space states. The FD partitioning methBYNY the perturbat|v_e convergence. T_wo-state models are
forces all the reference space states to be degenerate in sed in Sec. V to explain or predict the divergent character of

e EN, MP, and FD perturbation expansions and the con-
roth order and thus removes tReQ space spectral overlap vergent nature of the pOPT expansior? A discussion is pro-

that otherwise naturally occurs for other partitioning choices. . . ) . .
The present work provides an examination of the convery'd(.ad in Secs. VIl and VIl of various problems with appli-
gence behavior of the forced degeneracy partitioning metho§atons of the FD and OPT partitioning methods.
[5] for systems in which there exists, prior to forcing degen-

eracy, a spectral overlap in the zeroth-order energies d?the Il. THEORY

andQ spaces.

We obtain converged perturbative expansions that are free ) . o
of intruder states for the beryllium atom by employing the Perturbative methods introduce a partitioning of the
optimization(OPT) partitioning[5]. This method systemati- HamiltonianH into a zeroth-order pat, and the perturba-
cally optimizes the zeroth-order energiesafly the (few)  tionV,
most important zeroth-order states by a simple and efficient
iterative method. The OPT approach yields a rapidly conver-
gent perturbation series for the two eigenvalues of the effe
tive HamiltonianH . In addition to providing the ground-
state energy, the diagonalizedl.; also yields thesecond
excited state ofS symmetry, and not the first. This behavior
is explained by the one-to-one mapping between zeroth-
order and exact stat¢8,4]. The shortcomings of the other P=>, |piXpil, (2.2
partitioning methods are predicted and/or modeled by simple !
two-state systems constructed from pairs of interspace states. . .

The overall success of these simple models in explaining th@nd the orthogonal, d@, space with projector
behavior of the full computations suggests that interspace
two-state models, or other models using a small number of Q=2 ERYCH 2.3
states, can be employed to evaluate partitioning methods and T
diagnose their potential problems.
The present paper is one in a series that analyzes thghere

A. Basic formalism

H=Ho+V. 2.1

“the eigenfunctions ofl ; provide a complete set of determi-
nantal states which are partitioned into a modelPpspace
with projector
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P+Q=1. (2.4 as variants of Mber-Plesset partitioning, where the sumion
in Eq. (2.12 is over all orbitals,¢; are the orbital energies,
The model functionsﬂf?) are defined as the projections of gnd aiT(ai) are the creatiorfannihilation operators. The or-
the exact eigenfunctiond;) onto theP space, bitals for Eq.(2.12) are usually defined as eigenfunctions of
. Fock operators. The most natural choice for the orbital ener-
|\P?>:P|\Pi> (i=12,...4), (2.5 gies ¢ is the eigenvalue of the Fock operator defining the
orbitals. However, since both the orbitaleind the energies
' in EQ. (2.12 are, in principle, arbitrary and independent,
other choices may be employed to enhance convergence. The
forced valence orbital degeneracy methoénoted FD of
[P =0Q|¥d (i=12,...d). (2.6y  Freed and co-workers, also called tHé method, uses mul-
tiple Fock operators to obtain the spatial orbitals and then
There is a one-to-one correspondence between the modisirces the valence orbital to be degenerate in zeroth order.
functions andd exact state$3,4]. Sawatzki and Cederbaufii2] and also Finley and Freed
Various derivations exist for the Rayleigh-Sctimger [13] employ fractional-occupancy Fock operators to enhance
perturbation expansion appropriate to a complete modetonvergence.
spacg[1,2,8,9. Most derivations are based on obtaining the The most general diagonal form bffy can be written as
effective HamiltonianH.;. The simplest form is non-
Hermitian and is given by

whered is the dimension of the model space. Conversely
the wave operatof) transforms the model functions into
their corresponding exact states,

Ho=>, [YEXil, (2.13
He= PHQP. 2.7 '

where the sum over runs over all states, anf? is the
ith-state zeroth-order energy, which is at our disposal. Usu-
ally, Epstein-Nesbet partitioning chooses the zeroth-order

An order-by-order perturbation expansion @fis obtained
by solving the generalized Bloch equatigh2,10

[Q,Ho]P=[VQ-QVQ]P, (2.9  State energy as
which is applicable if the model space is either degenerate or EP=(i[H]i), (2.14
nondegenerate. A perturbative expansion for the wave opera- i ) o
tor which makes the diagonal elements\bf/anish with either a
determinantal or CSF basis. Since thgdiffers for the latter
Q=1+0W+0Q®... (2.9  two cases, the determinantal-based Epstein-Nesbet and CSF-

based Epstein-Nesbet partitioning methods generate different
generate€)™ asnth order in the perturbatiol. Substitut-  perturbation expansiongNote that a unitary transformation
ing Eq. (2.9 into Eq. (2.8) the nth-order expression fof)  of theH, from a determinantal-based Epstein-Nesbet basis to
can be written as a CSF basis leads to a nondiagokk).) The computation
below, denoted by EN, employs a hybrid of the

n—-1
_ e determinantal- and CSF-based Epstein-Nesbet partitionings.
(n) = (n=1) _ (m) (n—m-1)
[T, HolP=| VO mZ’lQ va }P’ This variant of Epstein-Nesbet partitioning defines the
(2.10 zeroth-order energies of each CSF by the barycentric expres-
sion[14]

and thenth-order correction for théH s matrix elements
involving the|p;) and|p;) kets is given by

E?=§ [Cyl¥(d|H]d), (2.19
(PiHR P =(pi|PVQLP|p)). (2.11)

where the CSF functiofi) is given by a linear combination

The explicit forms of() and H.; depend on the ket upon determinantal statelsl),

which Hgi operates unless the reference space is degenera?(fe
and is a complete model spa@ecomplete active spaceA _
matrix-based iterative method has been developed by Zarra- liy=2>, Cild). (2.16
bian, Laidig, and Bartletf11] to obtain the matrix elements d

of Hgi to arbitrarily high orders. This method is employed

below and is convenient when the dimension of @nepace  OUr Previous investigation of the HRS] also employs this
is not very large. partitioning method. Except for single determinantal states

li), the diagonal matrix elements of the perturbatddmo
longer vanish for thed, of Eq. (2.15.
The OPT partitioning method presented below selects a
We consider all partitioning methods in whigh, is writ-  small number of the zeroth-order energie8 in an optimal
ten as the most general diagonal “sum over orbitals” form,fashion using a CSF basis. The other states employ the
given by above-defined barycentric EN definition for their zeroth-
order energies. Note that any partitioning method that is rep-
_ ata. resented in the form of Eq2.12 can also be expressed in
Ho Z “aidi 212 the form of Eq.(2.13, but not vice versa.

B. Zeroth-order Hamiltonian (H)
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Ill. TWO-STATE THEORY

The convergence properties for the beryllium atom com
putations in subsequent sections are transparently understo&
by the use of simple two-dimensional models that are con
structed from a pair of interspace states taken from the ful
problem consisting of 1323 CSF’s. The convergence behav:

ior is investigated by considering the parametrized Hamil
tonianH,
H(z)=Hy+zV, (3.2

where z is the complex perturbation parameter. Thel
limit recovers the exadH, while z=0 produces the unper-
turbed system. Denotgp) and|q) as theP and Q space
states of the two-dimensional system, agdind e, are their
zeroth-order energies, respectively. The exact eigenvalues
the two-dimensional HamiltoniaH can be expressed as

E.(2)=3TrH=3{[Ae—(Ae—AH)Z]?+4V5 2%}
(3.2

where

qu:<p|V|Q>,
Ae= €4~ €p,

AH=(q|(Ho+V)|a)—(p|(Ho+V)|p),

and thez-dependent trace of the Hamiltonian matiik is
given by

TrH=(p|H(2)|p)+(a|H(2)|q).

Both eigenvalues become degenerate in the complex
plane at the pair of branch poingg andzjj , where use of
Eq. (3.2 gives

Ae
T N2
4Vi,+(Ae—AH

24 2 [(Ae=AH)+2V,d]. (33

The radius of convergenc®. for the single-reference
Rayleigh-Schrdinger perturbation expansion iB.=|z4|
=|z%| and follows from Eq.(3.3) as
Ae
2 2"
V(Ae—AH)2+4V3,

C

(3.9

To achieve a convergent perturbation series, it is neces-

sary to haveR.=1, which occurs only if the numerator in

Eq. (3.4) exceeds the denominator. This condition for con-

vergence implies thake (the zeroth-order energy difference
must satisfy the requirements

1 avi,|
25 AH+ AH if AH>O0,
Ae 1 V2 (3.5
sz[Am Mf"q if AH<O.

Thus bothAe and AH must have the same sign; otherwise
the perturbation series diverges. Also, whai #0, Eq.
(3.9 indicates that\e can always be selected so tht>1.
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This last conclusion is also reached by examining the maxi-
mum radius of convergend®, as a function ofAe [15]. If

eitherV,, is modestly large oAH is modestly small, tradi-
nal partitioning methods, such as EN and MP, frequently
Yield divergent expansions, since is then often too small
and leads tR <1. If eitherV is very large orAH is very

small while Ae is large enough so th&.>1, then the con-

vergence is very slow. Qualitatively, the presence of large
values of the parametéf,, /AH seems to be most important
in adversely influencing convergence. However, the quanti-
tative dependence of the convergence rate/gpand AH

has not been investigated.

Intruder states are defined as the orthogonal space states
responsible for destroying the convergence of a perturbation
expansion. The presence of intruder states is usually detected
bf/ observing the variation of the eigenvalues as a function of
the perturbation parameterfor realz. An avoided crossing
point z,. occurs where the two eigenvalues are closest. The
Z.. i1s computed in the two-state model by minimizing
[E_(Rez)—E_(Rez)] with respect taz,

B Ae(Ae—AH)
2 A2 T (Ae—AH)Z

(3.6

Comparing this equation with Eq3.3) shows thatz, is
simply Rezy. [Note that the eigenvaluds_(z) andE_(2)
cannot be degenerate for realwhen V,,#0.] When the
avoided crossing appears with<@,.<1 and hence the per-
turbation expansion divergéR.<1), then the convergence
is disrupted by what is termed a front-door intruder state.
Similarly, an avoided crossing with,<O0 is called a back-
door intruder stat¢16,17 whenR.<1. Equation(3.6) im-
plies that a back-door intruder state<0 occurs whenever
AH andAe have the same signs and satityH|>|A¢]. On
the other hand, ifAe and AH are of opposite signs or if
|AH|<|A€], then the avoided crossing appears wag>0.

We define correct energy ordering as the relative ordering
of the zeroth-order energies that is a necessary, but not a
sufficient, condition for convergend®.>1). SinceAe and
AH must have the same sign for a convergent two-state sys-
tem, when(p|H(1)|p)>(q|H(1)|q), the correct energy or-
dering is €,>¢,. Similarly, if (p|H(1)|p)<(q|H(1)|q)
then the correct ordering is,<e.

For incorrect energy ordering, the limit &,,—0 hasz,
real and positivélm zy—0) with

Ae
Zdﬂ (AE—AH) . (37)
Equation(3.7) also emerges when tredependent diagonal
elements oH are degenerate. In actual calculations involv-
ing a large number of states, if the incorrectly ordered inter-
space states are weakly coupled, both among themselves and
to other states, then botty andz,. are approximately equal
to the value of for which the diagonal elements bif(z) are
degenerate. Furthermore, such cases yield a very pronounced
avoided crossing with the energies, and wave functions
change abruptly in the vicinity af;. This situation is found
in Sec. V for the computation involving the FD partitioning,
where the|1s?2s3s) state(the intruder stateis incorrectly
placed above thELs?2p?) reference state in zeroth order. By
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TABLE |. Zeroth-order energies of the eight lowest-lying CShisa.u).

CSF EN MP FD OPT preFD (H)P
|1s%2s?) —1457190 -10.08175 —10.01926 —14.57190 -10.08175 —14.57190
|1s?2s3s)  —14.31782 —9.66300 —9.63176 —14.31782 —9.66300 —14.30093
|1s%2p?) —14.19705 —9.37464 —10.01926 —14.19705 —9.95678 —14.16871
|1s?2s4s)  —14.04155 —9.33200 -9.30076 —13.84155 —9.33200 —14.01507
|1s?2p3p)  —14.07966  —9.24993  -957224 —13.77966 —9.54100 —14.00518
|15%3s?) —13.93486 —9.24425 —924425 —13.93486 —9.24425 —13.93486
|1s23p?) —13.95495 —-9.12522 —9.12522 —1355495 —9.12522 —13.93105

azeroth-order energies from FD partitioning prior to forcing treahd 2p orbitals to be degenerate.
bExpectation values of the Hamiltonian.

contrast, when a two-state system has the zeroth-order stategace spectral overlap. Thils?2s?), |1s?2s3s), and

correctly ordered, the limit ot/,,—0 then produces a con- |1s?2p?) CSF’s cumulatively contribute 91%, 89%, and

vergent expansion witR,—. In addition, the special case 66% to the ground, first, and second excited states, respec-

of AH=Ae (i.e., for Epstein-Nesbet partitioningields the tively.

avoided crossing point a,.=0, sincez, is purely imaginary

[see Eq(3.3)]. A two-state system with barycentric EN par- A Forced valence orbital degeneracy(FD) partitioning

Dot 24, unless bofh tates are determinantal siatos. . The molecular orbitals and zeroth-order energies for the

It should be emphasized that many formally divergent seMP partitioning are taken as the eigenfunctions and eigen-

alues of the closed-shell ground-state Fock operator. The

ries are asymptotically convergent and are quite useful i D tioning defi Il orbital d thei . h
they provide good approximations when truncated at lo partitioning defines all orbitals and their energies the
same way as in MP partitioning, except that the \Zalence

orders(e.g., Stirling’s formula for the expansion of in). bital bef inds defined h
Thus, when divergent series are obtained from the full-scal@'Plt8l enerayey, before averagings defined as the expec-
fgfion value of ar(N—1)-electron Fock operatdr( with

calculations, these series are analyzed below to assess thres ect to one of ther?. spin orbitals.(The orbitals for both
useful 3st3)/mpt9(§ic character and their behavior when re-a a?]d,espins are de%en%raleThis f('N,l) operator has an
summe Padapproximants. . . .
y PP occupation of %,1s,2s,, and its spin-independent form

when operating on ar-spin orbital is given byf13]
IV. METHODS .
. (N"D=R(1)+ 23— Kyt Jps— .
We employ a 85pld basis set for Be constructed from f (1) +2J16~ Kast Jos— Ko, “.D
the 6-311 G set of Krishnaet al. [18] with two added dif-  \yhereJ andK are the spin-independent Coulomb and ex-
fuses andp Gaussian functiongxponents 0.207 and 0.069  change operators, respectively. Equaiiér) is the same as
to describe the excited Rydberg states. T8eground-state the ground-state, closed-shélielectron Fock operatof",
energy from a full configuration-interaction calculation is except for the absence of a single oulomb operatod,..
—14.636 8523 425 a.u. The self-consistent-fi¢RCH ENErgy  For FD partitioning, the orbital energies for the and 2
from th§|1§ 2s°) CSFis—14.571 903 77 a.u. THes™2s)  yalence orbital are then replaced by their average vajtie
and|1s"2p®) CSF's are taken as the reference functiohs = 7(€x5+3€zp). Virtually all multireference perturbative
spacg, a q(’“?lle reference space, and there are a total Qfompytations performed by Freed and co-workers employ
1323 CSF's of'S symmetry. _ _ the H” method[13,21-25. These computations use refer-

We have applied the configuration-based multireference,.e spaces that are defined by a complete active space

perturbation theory algorithfil1,19,2q to evaluate the en- (cag) and forced degenerate valence orbitals that are eigen-
ergy through 40th order using Epstein-Nes@gl), Mdller- ¢ ,nctions of N1 potentials.

PlessetMP), forced valence orbital degenera@enoted as
FD), and optimized zeroth-order energy partitionifgde-
noted as OPJ Table | displays the zeroth-order energies for
these partitioning schemes as well as the expectation values We now consider the recently introduced optimization
of H for the eight lowest CSF's. All the partitioning methods partitioning method5] in which some of the zeroth-order
listed in Table I, except the FD partitioning, place the zeroth-state energiek? in Eq. (2.13 are determined in an optimal
order energy of thé1s?2s3s) Q space state below that of manner from calculations using a small subset of zeroth-
the |1s°2p®) P space state. Hence R-Q space overlap order states. Any criterion for defining the optimized zeroth-
exists for the zeroth-order energy spectra. Diagonalization obrder energies depends on the type of convergence required.
the full 1323-dimensional Cl matrix shows that the groundFor example, a criterion producing the most favorable con-
and the second excited states for beryllium are primarily devergence in high orders may be unsatisfactory in low orders
scribed by thg1s?2s?) and|1s?2p?) CSF’s from the refer- where practical computations are often truncated. Our goal is
ence space, whereas the first excited state is a Rydberg state optimize the performance of the OPT method in third
dominated by th¢1s?2s3s) CSF from the orthogonal space order, which represents the practical limit of large-scale mul-
(Q). Thus, in a sense, the exact spectrum also hRs@  tireference perturbation calculations. Therefore we begin by

B. Zeroth-order energy optimization (OPT) partitioning
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TABLE Il. The ground-state energyn a.u) as computed by multireference perturbation theory through
40th order () using a double-reference space. Various partitioning methods are employed,ahiPade
approximants are constructed from the asymptotic FD expansion. All entries are the differences from the FCI
energy.(Negative entries imply energies higher than FQhe FCI energy is-14.636 853 45 a.u., and the
first-order deviation from the FCI is 0.054 174 62 a.u. for all partitioning methods considered, since all
methods use the same ket basis.

N EN MP FD [N,M] Pade OPT
2 —0.02084586  —0.005 531 58 0.000927 70 0.005 310 94
3 0.005 324 80 0.002 967 53 0.002 326 80[1,0] 0.000 732 56 —0.000 019 79
4 0.013 24379 0.008 915 70 0.000 767 89[1,1] 0.002 290 98 —0.000 703 27
5 —0.02040136  —0.017 034 53 0.000 128 27 [2,1] 0.001 541 14 —0.000 724 95
6 —0.011011 47 0.006 034 78 0.000 167 22[2,2] 0.000 606 69 —0.000 037 54
7 0.029 905 70 0.011 687 56 0.000 088 08[3,2] 0.000 271 07 0.000 456 22
8 —0.00797640 —0.293 065 66 0.000 055 00 [3,3] 0.000 086 87 0.000 340 11
9 —0.305 41059 0.020 472 84 0.000 044 31[4,3] 0.000 048 91 0.000 175 36
10 0.07159560 —0.002 617 96 0.000 034 73 [4,4] 0.000 028 86 0.000 017 05
11 0.067 51848 —3.557 520 86 0.000 036 64 [5,4] 0.000 022 87 —0.000 067 42
12 —2.12769840 —0.008 348 56 0.000 047 29 [5,5] 0.000 027 95 —0.000 039 47
13 —0.08142872 —0.583217 34 0.000 064 34 [6,5] 0.000 048 70 0.000 01375
14 0.17195723 —25.7719126 0.000 086 70 [6,6] 0.000 008 49 0.000 048 01
15 —5.080 526 01 61.5234730 0.000 113 39[7,6] 0.000 610 51 0.000 052 07
16 —16.30653155 —46.3779257 0.000 144 96 [7,7] —0.000 036 79 0.000 026 76
17 34.051 798 78 —158.470 675 0.000 183 31 [8,7] 0.000 088 95 —0.000 003 13
18 5.312 036 56 613.3590550 0.000 231 398,8] 0.000 021 37 —0.000 019 64
19 —122.943 336 16 —887.322 692 0.000 293 10 [9,8] 0.000 01009 —0.000 020 08
20 53.247 251 15 —669.434 155 0.000 37322 [9,9] 0.000 010 66 —0.000 009 27
21 0.000 477 88 [10,9 0.000 010 04 0.000 002 68
22 0.000 615 46 [10,10 0.000 001 70 0.000 008 37
26 0.001 867 44 [12,12 —0.000 004 46 —0.000 004 55
30 0.010 627 49 [14,14 —0.000 005 12 0.000 002 16
35 —0.357 729 24 [17,1 —0.000 00580 —0.000 000 40
40 —1.89096511 [19,19 -—0.000001 78 0.000 000 20

considering a surd consisting of the absolute deviations for eigenvalue from a small CI computation containing only the
the third- and fourth-order energies from the FCI. Explicitly, eight lowest-lying states. These eight zeroth-order states in-
this sum is written as clude the dominant states for representing both the ground
and second excited states. Ald®, andE, in Eq. (4.2) are
the perturbative energies from a perturbative expansion com-
puted with just these eight states—t#wbospace and siXQ
whereE; andE, are the third- and fourth-order approxima- space states. The optimization method is achieved iteratively
tions to the FCI energigc,. Our goal of obtaining the most and, except for a constant shift, defines these eight zeroth-
accurate possible third-order energies explains why the firgstrder energies. Therefore we uniquely specify the zeroth-
term in expressiort4.2) is present. Inclusion of the second order energies of these eight states by selecting the zeroth-
term involving E, appears to be useful for generating aorder energy of thésingle determinantal1s?2s?) state as
unique solution for the optimized zeroth-order energies. Wdts Epstein-Nesbet partitioning val(iés expectation value of
have tried other combinations containing the second- and). Similarly, the zeroth-order energi&’ for the (unopti-
third-order deviations that are less satisfactory for third-ordemized remaining higher-lying states are chosen to be their
computations, probably because the second-order deviatiofalues from the Epstein-Nesbet variant defined by(Ed.5.
is normally much larger than that from third order. Computations for other systems may require the consider-
Since large-scale calculations of interest cannot, oftion of more or less than eight states, but the present ex-
course, obtairEr;,, some approximations are necessary inample serves to illustrate the excellent convergence produced
order to minimizeS. Fortunately, only a small number of by optimizing the zeroth-order energies for a very small sub-
states are responsible either for “driving” the convergenceset of all states.
or for producing a divergent series. Therefore, to obtain ac-
curate results, we only need to minimiZewith respect to
the zeroth-order energies of the important states for describ-
ing the state of interest. For the OPT computation presented The computed order-by-order perturbative energies for
below, Er¢, in expression4.2) is taken as the ground-state the ground and theecondexcited states of the beryllium

S=|Erci— E3| +|Erci— E4l, 4.2

V. RESULTS
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FIG. 1. The five lowestS state FCI energies for the beryllium FIG. 2. The squared probability amplitudes of the two dominant
atom using FD energy partitioning and presented as a function o€SF'’s for the beryllium atom first excitet$ state using FD parti-
the real perturbation parameterwith H given by Eq.(3.1). The  tioning as a function of reat.
states are labeled by their unperturbed limit Zex0. States which
become(correspond tpP space state for—0 are presented by a Paderesummation$26] of the order-by-order FD partition-
solid line, and dashed lines are used for states that be@space  ing eigenvalues through 40th order. The resummed Rade
states. proximants for each eigenvalue series yield slightly worse

. . agreement with the FCI in low orders, but the high orders are

atom are displayed through 40th order in Tables Il and III'bgtter behaved. Note that it is most appropriategto compare a
respectively, for both the FD and OPT partitioning schemesg;en N N—1] or [N,N] Padeapproximant with the highest
The d"’erge“? MP and EN partitioning series are also prelperturbative order needed to obtain that approximant. For
sen_ted. The fl_rst exc'lted stgtg is not obtained by the_ pertu sxample, perturbative orders through=3 are needed to
bation expan5|or215, since this is a Rydberg state that_'s_domﬂjenerate the[1,0] approximant. Therefore the eigenvalue
nated by thef1s 2535> CSF from theQ space and it is, computed perturbatively through third order is on the same
the_refore, not .descnbed by the reference space. The PertUfie in Tables Il and 11l with thel1,0] approximant.
bative expansions for the ground- and second-excited-state
eigenvalues are either both divergent or both convergent, be-
cause both eigenvalues depend on the same effective Hamil-
tonian Hy;. Furthermore, the radii of convergence are
equivalent for both the ground- and the second-excited-state The following examines the FD partitioning eigenvalues
energies. Tables Il and Il indicate that the FD partitioningand eigenfunctions, obtained from thelependent FCI, as a
perturbation expansions diverge for both eigenvalues, buunction of the perturbation parameterfor the complex
they are well behaved in low orders. The series are asymgH(z) given by Eq.(3.1). This analysis yields the radius of
totically convergent. The low orders are of particular interestconvergenceR, as defined byz,|, wherez, is the closest
since a low-order truncation is almost always required fordegeneracy point to the origin involving two states that be-
actual computations involving more than a very small num-come an interspace pair of stateszas0. One of the two
ber of electrons. The OPT partitioning expansions, on thalegenerate states atz, evolves into aP space state as
other hand, are convergent and extremely accurate in low—O0 (called aP-corresponding stateand the other to &
orders, especially for the ground state. The third- and fourthspace statécalled aQ-corresponding stateAll partitioning
order ground-state eigenvalues from the OPT partitioning demethods considered below have one of the degenerate states
viate only by 0.012 and 0.44 kcal/mol from the FCI, respec-at z4 evolve into the|1s?°2p?) (P spacg¢ CSF whenz—0.
tively, compared to 1.46 and 0.48 kcal/mol for the FD The intruder state is defined as theroth-order statdrom
partitioning. The second-excited-state eigenvalues are soméie Q space state that contributes most to the
what less accurate. The OPT-partitioning, third- and fourth-P-corresponding state in the vicinity a;. Other slightly
order second-excited-state eigenvalues are 1.41 and b5different definitions of intruder states have also been used.
kcal/mol from the FCI, respectively, compared to 13.7 andSchucan and Weideniher [3,4] identify problematic “col-
2.2 kcal/mol for the FD partitioning. lective states,” composed predominantly @fspace states,

Tables Il and Il also display theN,N—1] and the N,N] that nearz=1 describe low-lying exact states.

A. Analysis of why FD partitioning yields a divergent
expansion: Incorrect energy ordering
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TABLE lll. Same as Table Il except that the entries are for the second excited state. The FCI energy is
—14.277 595 96 a.u., and the first-order deviation from the FCI is 0.119 661 97 a.u.

N EN MP FD [N,M] Pade OPT
2 —0.04603590 -—0.04441806 0.056 037 70 0.003 960 69
3 —0.00974371 0.013174 40 0.021 93898 [1,0] 0.055 750 49 0.002 253 27
4 0.068 799 98 0.050 226 37 0.003 495 35 [1,1] —0.017 44123 —0.008 445 26
5 —-0.05174788 —0.09986168 —0.00464963 [2,1] —0.018 23355 —0.007 054 38
6 —0.07501865 0.046 676 37 —0.006 44230 [2,2] —0.017 507 46 —0.002 940 43
7 0.198 170 29 0.215579 56 —0.005098 67 [3,2] 0.019 314 24 0.000 671 22
8 0.006 03194 —0.30400656 —0.00302361 [3,3] 0.000 406 27 0.001 71213
9 —0.262 29093 0.483 25291 —0.001 55899 [4,3] —0.004 301 33 0.001 055 42
10 0.467 985 72 0.930 086 23 —0.001 17962 [4,4] —0.002 554 80 0.000 112 02
11 0.94577937 —0.33305049 -0.00179465 [5,4] —0.003 26204 —0.000539 23
12 —-0.327 364 42 5.720 397 67 —0.003 05983 [5,5] 0.002 788 72 —0.000 641 42
13  —0.440686 21 1.777 24051 —0.004 62946 [6,5] —0.018 564 24 —0.000 362 22
14 7.43853354 —0.18500903 —0.00629840 [6,6] 0.018 548 97 —0.000 027 68
15 -0.76056559 —0.71803469 —0.00804060 [7,6] —0.002 021 94 0.000 189 05
16 —0.772534 15 2.15397777 —0.00997706 [7,7] —0.001 419 26 0.000 225 41
17 0.394 733 44 2.78843093 —0.01231393 [8,7] —0.006 026 45 0.000 126 10
18 13.187 88099 -—4.45265348 -0.01528568 [8,8] 0.000 77051 —0.000 002 94
19 —2.09536449 13.62947109 —0.01912368 [9,8] 0.000072 67 —0.000 084 67
20 12.797 28281  84.976 71941 —-0.024 054 46  [9,9] 0.0001318 —0.000 091 45
21 —0.03032149 [10,9 0.000 089 87 —0.000 042 62
22 —0.038219 27 [10,10 —0.000 098 62 0.000 0157
26 —0.095796 12 [12,12 —0.00000385 —0.000013 39
30 —0.24426121 [14,14 —0.000006 14 —0.000 009 44
35 —0.36984835 [17,1§ —0.00000566 —0.000 006 04
40 —0.36541534 [19,19 —0.000 038 46 0.000 000 77

Figure 1 presents the variation of the FCI energies as a sense, it exits the reference space. Th&2s3s) and
function of realz for the ground statém=0) and the four |2522p2> states are the dominant CSF's for describing the
lowest excited statggn=1, 2, 3, and #from FD partitioning  first- and second-excited-state wave functions in the vicinity
computations, wherél(z) is given by Eq.(3.1). (Only the  of z{*'? (and to some extent in the region beyon§t?).
lower-lying states in Fig. 1 are discus$e@he eigenvalues Thus a two-state system composed exclusively of the
ir) Fig. 1 are prese.nted ag(—E), instead of simply a&p,,  |2s?2p?)(=|p)) and |1s?2s3s)(=|q)) states provides a
since the former yields a much smaller ordinate range, whergogel for interpreting the divergence of the full computation
E is the z-dependent average energy of the eight lowestinvolving all 1323 states. This model uses the same zeroth-
lying states(Note that the FCI eigenvalues are independenbrder energies as defined by FD partitioning for the full com-
of the perturbative partitioning only far=1.) For clarity, an  putation involving all 1323 states. Also, the two states are
avoided crossing point involving the first- and second-weakly coupled withv,,,=0.022 09 a.u(See Sec. Il for the
excited-state energies is denoted ; while the degen-  tyo-state theory and notationThe degeneracy points for
eracy p_((;lné defining. kIJS ;erttentzri]sz?_' i F'ggre 1 ex(kjublts_t this model occur axT'=0.74+i0.06 and also, of course, at
an avoided crossing between the first- and second-exciteg- my« - - e m
state energies far'k?=0.79. Since the first and second ex- 2d)” -Ir—nhf avoided crossing poiafis just Rezg. Thus we
cited states are nearly degenerate'a? , we anticipate that hg\;)e Zac=0.74, which agrees reasonably WFT‘" with
21(11,2)%2210,3 and that the imaginary component Dga,z) is Zac =0.79 for the full computations. The modest difference
small. of 0.05 betweerz':? and z™. probably occurs because the

Figures 2 and 3 depict the composition of the first and15°2s°) and|1s°2p3p) states provide non-negligible con-
second excitedS state wave functions for the FD partition- tributions to the second excited stdee Fig. 3 and thus
ing by presenting the squared C®obability amplitudes  apparently influence the precise locationzg§? .

(the squared expansion coefficien&s a function of reat. The perturbative divergencéR <1) for this two-state
The first- and second-excited-state wave functions undergo model occurs for FD partitioning because of incorrect energy
“transition” at z%? . The first excited state is dominated by ordering. Since(p|H|p)>(q|H|q) (z=1), we must then
the |1s%2p?) state forz<zi?, while the|1s?2s3s) Ryd-  have(p|Ho|p)>(a|Ho|a) (e,>¢,) or the two-state model
berg state dominates far>zL?, and vice versa for the series diverge$R,<1). Unfortunately, the FD partitioning
second excited state. Thus the intruder state is clearly thierces e,<e,, which results from defining the 2 orbital
zeroth-order|1s°2s3s) state. The zeroth-ordefls?2p®)  energy from a potential generated by orily—1) electrons
state is what we have termed the “departing” state, since, iralso called a/™~* potential[13,27), while using av" po-
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FIG. 3. Same as in Fig. 2, but for the second excited state. FIG. 4. Same as in Fig. 1, but for OPT partitioning.

tential for the singlet 8 orbital. (See Table I, column labeled  B. Analysis of why EN and MP partitioning yield divergent
preFD, for the zeroth-order state energies prior to forcing expansions

degeneracy.The forcing of the 2 and 2 orbitals to be
degenerate moves thes?2s3s) and|2s°2p?) states slightly
farther apart in zeroth order than they would otherwise be i
no forced degeneracy were imposé@ther states are, of
course, also affected by forcing degenera8ince this two-
state system adequately models the convergence properti —046. The same model yieldsR,=0.49 and
of the full computation, it is clear that the full FD computa- ,f_ 4 970 49 for MP partitioning. In addition. MP par-
tion also diverges from incorrect energy ordering. In addi'titdioning provides the two-state model of tlhlaszz,pz) and
tion, as is observed for other two-state systdi@8], the

2 — H m :
. A A |1s“2s4s)(=|q)) states that yieldgg'= —0.37+0.08 with
weak coupling between ths°2s3s) and|2s°2p®) states R.=0.38. The divergence of these EN and MP partitioning

leads to the expectation that the wave functions and energierﬁodels arises from the zeroth-order energy differences being

for t_hese states exhibi'; an abrup; change in _the _region (_)f the{%o small, but correctly ordered. However, the zeroth-order
avoided crossing. This “transition” behavior is precisely P space energies are not quasidegeneratedetailed ac-

what is obse_rved.m Figs. 2 and 3 fmszaq - In contrast, ount of the inadequacies of the MP and EN partitionings is
when the pair of interstate space states is strongly coupleéwen elsewheré5].) Since there aréwo different two-state

the_ wave functions and energies change gradually in the Viodels that producB, <1 for MP partitioning, we anticipate
cinity of the degeneracy poirisee Ref[S] for examples that quantitative agreement betweeff'?) and z4 requires
Consider the two-state model discussed in the previouasing the three-state model composed of the

paragraph, withV,, made arbitrarily small, but not with

The divergent behavior of EN and MP expansions is an-
icipated because both series possess interspace states that
Ti)roduceRc<1 from two-state models. For EN partitioning,
the two-state model, composed of tHes*2p?)(=|p)) and
gsszZpSp)(Elq» states, hasz]'=-0.08+0.46 with

J 11522p2)(=|p)), |15°2p3p)(=|)), and
Vpq=0. Then we get |1s22s4s)(=|q’)) states.(A preliminary investigation sup-
im 231228 (5.1) ports this hypothesis.
qu*»O

C. Analysis of the convergent OPT partitioning method

where z3=0.74+i0. Hence this degeneracy point occurs Figure 4 displays the-dependent energies from the FCI
where the diagonal matrix elemeritz) of the two states for the five lowest states as computed with OPT partitioning.
cross(see Sec. I). In contrast, a partitioning method with No avoided crossings are present for Reetween—1 and

the correct energy ordering does not have its diagonal matrix-1, indicating that probabirR.>1, in agreement with the
elements oH(z) cross as a function of for pairs of inter-  order-by-order computations. Unlike the case with FD parti-
space states. Sinad is close toz] for the two-state model tioning, the zeroth-order energy of tHés?2p?) P space

with V,,=0.022 09 a.u., the coupling between these statestate exceeds that of ths?2s3s) Rydberg state. This en-
plays a rather minor role in understanding the divergence foergy ordering generates the correct one-to-one mapping be-
the full computation involving all 1323 states. tween these zeroth-order states and their corresponding exact
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states foz=1. The|1s?2s3s) state evolves into théexac) (P) space and one from the orthogon®)( space. When
first excited state wheg Iazaadiabatically changes from zero two interspace states have a largg,/AH ratio, intruder
to unity, while the[1s°2p<) CSF evolves into the second states often plague the convergence of the perturbation ex-

excited state. Thus, besides converging to the ground-stajgnsjon for traditional partitionings because certain energy
energy, the perturbation expansion yields seeondexcited  yenominator factors are frequently too small. This small-

state, and not the first. denominator situation typically leads to backdoor intruder
stateqsee Ref[5]), with the avoided crossings occurring for
2,:<0 when the interspace states are correctly ordd@d.
Schucan and Weidenitier hypothesize that multirefer- the other hand, “true” Epstein-Nesbet partitionir(gith
ence perturbation expansions must diverge whenever an exanishing diagonal elements &f) is predicted to have a
act state, which is predominantly composed of configurationpurely imaginaryz,, at least for two-state systems. Our in-
outside the reference space, appears within the energy spastigations for Be and the HRS] employ the variant of
trum of the exact states that are predominantly representdepstein-Nesbet given by ER.15, where the diagonal ele-
by reference space staf{&s4]. This conjecture emerges from ments ofV are nonzero and two-state systems do not yield a
using a zeroth-order Hamiltonian in which the zeroth-orderpurely imaginaryz, .]
P andQ space states are not permitted to overlap in energy. In contrast, when important zeroth-order states are incor-
We have demonstrated that this pessimistic conclusiolots rectly energy ordered, the avoided crossing can appear for
valid if the restriction is lifted to allow energy overlap be- z,>0, a “front-door” intruder state. This type of divergence
tween the zeroth-ordd? andQ spaces. Perturbative compu- is characterized by the presence of a high-lying reference
tations with overlappind®-Q space energy spectra can have(P) space state, which, in a sense, “departs” from the “ref-
the zeroth-order energies of their interspace states correctBrence” spacdthe departing stajeand of aQ space state
ordered and, therefore, produce convergent expansions. Fathich simultaneously “intrudes” into the *“reference”
example, the OPT computation for the beryllium atom placespace. In other words, the departing state is a zeroth-order
the P space|1s?2s?) CSF above theQ space|1s°2s3s) state that describesRxcorresponding state for Re<z,.and
(Rydberg CSF. Besides converging to the ground-state ena Q-corresponding state for Re>z,., and vice versa for the
ergy, the perturbative computation of two reference statesitruder state, where B- (Q)-corresponding state is defined
converges to theecondexcited state, and not the first. as one that evolves into a zeroth-orée(Q) space state for
We have examined the radii of convergence for the mul-Rez—0. Furthermore, the intruder and departing states have
tireference perturbation expansion of the beryllium atom entheir zeroth-order energies in the opposite ordering from that
ergies using MP, EN, FD, and OPT partitioning with a given by their expectation values bf. In contrast to back-
double-reference space composed of fi&s?2p?) and door intruder states, perturbative divergences induced by
|1s°2s?) CSF’s. Consider now the single-reference compu-ront-door intruder state@r departer stat@snay have rather
tation with aP space consisting of only th|d522p2) CSF  small ratiosV,,/AH for the incorrectly ordered states. In
and with thel 1s?2s?) CSF now placed into th® space. The such cases, whevi,/AH is small or when both incorrectly
radius of convergence for the single-reference space compwordered states produce insignificant contributions to the
tation must be identical to that for the double-reference spacstatds) of interest, the perturbative convergence can be use-
if the |1522p2> and |1s%2s%) states are well separated in fully asymptotic. An exception arises when the unimportant
zeroth order so that thEls*2s?) state does not act as an incorrectly ordered states are quasidegenerate in zeroth order
intruder state. Furthermore, since these two states are onbecause a largé,,/Ae ratio can generate divergent behavior
weakly coupledV,=0.02 a.u), we anticipate that a single- in low orders, wheré\e is the zeroth-order energy difference
reference treatment to high orders with thf522p2> CSF  between the two interspace space states. The double-
should give similar order-by-order excited-state energies ageference treatment of the beryllium atom using FD parti-
those from the double-reference space. Further improvemetibning encounters perturbative divergence because of incor-
in the perturbative convergence is expected if tpeoBbitals  rect energy ordering. The interspace states inducing this
are defined from a1322p2> SCF computation, as opposed to divergence are the|1322p2) (departer state and the
the present computations which use SCF orbitals based on|&s?2s?3s?) (intrudep state. Since these states are only
|1s?2s?) configuration, used here only to conform with pre- weakly coupled(Vq is smal) and have well-separated ex-
vious multireference perturbation theory treatments of the Bg@ectation values of, a usefully asymptotically convergent
atom. The present choice introduces strong couplinggexpansion is produced.
(Vpq=0.13 a.u) between the|1s?2p?) and |1s*2p3p) The simplest model to explain the influence of incorrect
CSF’s and yield¥/,,/AH=1.29, whereAH is the difference  energy ordering consists of two states that are incorrectly
in the expectation values of the Hamiltonian for theordered and that have their off-diagonal matrix element
|1s%2p?) and|1s?2p3p) CSF’s. Such a larg¥,i/AH ratio  given by V,,. The crudest model takeg,, as arbitrarily
slows the convergendé]. small (V,4,—0) but nonzero. For this model, the near degen-
Traditional perturbative partitionings, such as variants oferacy occurs ar3—Ae/(Ae—AH), where the expectation
Mdller-Plesset and Epstein-Nesbet partitionings, selégt values ofH(z) (the diagonal matrix elementfor the two
without regard to the the couplings between the zeroth-ordestates become equal. Because of the noncrossing rule, the
states. These approaches often produce convergence diffictiivo states cannot cross af for Vpq arbitrarily small, but
ties in situations where the rat\,/AH is large for one or they do cross wheiv,,=0. This model works reasonable
more pairs of interspace states, where a pair of interspacsell to describe the FD series divergence for the beryllium
states is defined as consisting of one state from the referene¢om.

VI. DISCUSSION
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We define correct energy ordering as the energy orderingeference space. The use of an incomplete reference space is
of the zeroth-order states that makes a convergent expansian important tool for removing certain intruder states and for
possible. Therefore, if a perturbation expansion correctly orgenerating rapid perturbative convergence, especially if em-
ders the zeroth-order energies of interspace states and heloyed with the OPT method. The incomplete reference
them sufficiently separated, thé®.>1. For two-state sys- sSpace method of Hose and Kald#tK) [30-32 selects the
tems, correct energy Ordering requirAs and AH to have most important zeroth-order states to span the reference
the same sign for the interspace states. Perturbative comp@Pace. While the original HK method uses nonaveraged
tations with more than two states may sometimes require Gartrée-Fock orbital energies, subsequent computations by
different type of energy ordering to produg®>1, espe- Hose[32,33 also found it useful to force the reference space

cially when interspace states have quasidegeneracies in th&tates to be degenerate in zeroth order. The HK approach

expectation values dfi. In such circumstances, a convergent:re];noovez(')c\f:\'gerr bseti‘;eussgr?hrg (L?\Vgicgriirrsefgfreﬁﬁretusrbzggr}n
series is only obtained when two interspace states have ry. ’ P

andAH with differing signs. For example, consider a three- the Hose-Kaldor method often leads to interspace states with

state system with an interspace pair of states that are Weakzyc?;rﬁft ;nergy ct)rdgtr;]nt% theset tyfp((je_s of cotng)erJ]tatl_ons are
coupled withV,,=—0.02 a.u. TheP space state from the robably divergent, wi € onset of divergent behavior usu-

pair is placed below the) space state in zeroth order ally occurring at high orders. Therefore, like the FD method,
e <e. wheree.——10.0 a.u. and.=—9.6 a.u. This order- this method can produce asymptotically convergent series.
p<E€q; o .0 a.u. q .6 a.u.

ing is opposite to the ordering of expectation valuesHof Incorrect energy ordering with the HK method is a conse-

(qlH|q)=<(p|H|p), where (qH|q)=—14.3 au. and 9uence of forcing degeneracy upon Mapace and of leav-

(p|H|p)=—14.2 a.u. Therefore the perturbation expansioning some low-lying weakly coupled statésuch as Rydberg

for these two stateslonehasR_<1. A third state, denoted as state$ in the orthogonal space. AS applied_ most Tece”t'y by

10", 1o ow added to the) sFJace With(q’|H|q,’>=—13 0 Hose[32,33, the HK method is actually quite similar to the

aLl. andeqf=—8.1 a.u. Also/q’) is coupled strongly to the FD method, except that the HKtechr_nque uses an mcomplete_

P space state by, .-=0.5 a.u. but is only coupled weakly reference space and that the zeroth-order energies of the ref

to the otherQ spzfé% stéte by ,——0.03 au. The com- €rence space are rendered degenerate by setting the zeroth-
a.q . .u.

puted radius of convergenc®() for this three-state system order energy of all thg reference space states o a single
(with opposite signs of\e andAH for |p) and|q)) is ~1.3. energy, instead of forcing the valence orbitals to be degen-

Whereas the two-state modgp) and|q)) has incorrect en- elrlat?. tTh(tha:tgr app(;oacrt\hsmft? the zert;)_tth]order e_:ner_g|e|s gf
ergy ordering, the addition of the strongly coupled state a Str? es tha epte? 0& te valence lor ta energlltes, Includ-
state yields a three-state system with the correct energy o ng theQ space states. Not surprisingly, poor results emerge

dering of the exact states, permitting the perturbative serie om computations using the HK m‘?thOd and forcing the
to converge. In addition, if the two-state modfg) and|q)) reference space to be degenerate with _the_ energy of an ex-
is constructed such tha;ke and AH have the same signs cited reference staf@3]. The latter behavior is probably due
then the addition of the third stalg’) produces a divergent’ to energy dgnominators that are too small. Similarly, forced
series withR.<1. In order to determine the correct ordering ;/alenci orblhal degengracy '.””a{ Ietad to c_F)r?v?rglglenge prob-
of interspace states, for generdlstate systems, it may tems 0 ts_ma —ec;\dergy- enomina %1 Y[Jﬁi]h t 1o tc))wmg
sometimes be necessary to considerdependent model for WO sections address some problems that may be enhcoun-

the interspace states in question along with the other statégrEd in employing FD and OPT partitioning.
that are strongly coupled to one or both of the interspace
states. Alte_rnatively, an examination of tlﬁgpproximatée VIl. PROBLEMS WITH ED PARTITIONING
wave functions az=1 may be used to predict the “appro-
priate” one-to-one mapping between the zeroth-order and The FD partitioning method permits considerable latitude
exact states and thereby establish the correct energy orden choosing the orbitals and the orbital energies, except with
ing. For example, consider the case with an interspace pair dhe restriction that the valence orbital energies are forced to
states|p) and|q), where|p)(|q)) dominates the FCI state be degenerate. Thus the important degrees of freedom influ-
Ipa)(Jaq)) atz=1. If the energy of thep,) state is greater encing convergence for FD partitioning are the reference
than the|q) state energy, then it is reasonable to concludespace, the spatial orbitals, and the orbital energies. Because
that correct energy ordering requires the zeroth-order energyalence orbitals are forced to be degenerate, these variables
of the |p) state be greater than that of tjgp state. Never- are interwined in a very complicated way for FD partition-
theless, the interspace two-state models provide the point afig, making it very difficult to determine priori which
departure for analyzing and effecting perturbative convercombination of these variables yields accurate results, except
gence. for cases with very small reference spaces. Therefore, it is
Epstein-Nesbet partitioning is not, in general, size extennot surprising that problems may arise in applying FD parti-
sive. Similarly, since the OPT method, as presently impletioning methods, especially as the reference space becomes
mented, is also based on a sum-over-states formulation, it ikarger and less quasidegenerate. Because of this complexity,
in general, not size consistent. However, size extensivity cathe present form of this method is not recommended for the
be imposed by employing a sum-over-orbitals formHy§  same widespread usage, as is, for example, single-reference
and by optimizing the orbital energies rather than the statperturbation theory. However, prior experience provides
energies. This type of OPT computation has been performesome rough rules of thumb that enable generating satisfac-
for BeH, [29]. tory results for most systems, perhaps with some trial-and-
The OPT method can also be applied for an incompleterror approaches and/or with detailed analysis. We now ex-
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plore the complexities involved in choosing the degrees oflence on the energy denominator factors and is, therefore,
freedom available in multireference perturbation computaimore sensitive to the presence of small energy denominator
tions with the constraint that the valence orbitals are forcedactors. In other words, while the larger reference space has a
to be degenerate. greater shrinkage in certain energy denominator factors from
A trade-off exists when choosing a reference space for théorcing degeneracy, it can afford increased shrinkage. This
FD method. A larger reference space vields a better firstProblem of energy denominator factors becoming too small
order approximation, but at the expense of introducing &an often be removed by redefinirg, in a fashion that

larger diagonal perturbatioN. In order to understand the Corresponds to performing orbital energy shift8], with the
origin of this trade-off, first consider the composition of the constraint that the valence orbitals remain degenerate. How-

reference space for FD partitioning. The FD method uses g\{lera W'thIOUt. sqtme ;r'ﬁl—aﬂdt-er(rjort expenrr':cen;[‘gfttlon or de-
complete active space to specify the reference space. Theri@led analysis, It is difficult to determine It shifts are re-

fore the reference spaces are defined through the specificﬁgired' and of what magnitude. Thus the influence of small

tion of a set of valencéactive and core(inactive orbitals as energy denominators on the perturbative convergence further

well as the excited orbital§¢Actually, the word “valence” is comphca_tes the choice .Of _the reference Space. .
a misnomer, since “nonvalence” orbitals can also be active The kinds of uncertainties that appear in the selection of

: .. the reference space also appear to a lesser extent for the
e.g., Rydberg orbitalg21,22,34.) As the reference space is . .
engiarggd by ?he addition of more active orbitélgth Fixed sele_zcnon of t_he orbitals. _For ex_ample, ground-_ste_lte CAS.SCF
core, the variational theorem implies that the enlarged ref_orbltals provide the “optimal” first-order description of this

erence space produces better first-order energies, since %tSeSaCSF deg_atmluned t:Iy .thte \éanauorI]al theorem. Howe;etr,
first-order eigenvalues are lower lying and are closer to th orbitals usually introduce a larger energy spread 1o

FCI energies. Thus less “dynamical” correlation energy has he reference space prior to forcing degeneracy, compared to

. ; =1
to be recovered perturbatively for the larger reference spacéhe Spfead from aN§e1t of vale_nce OTb'ta'S obtalr!ed MN’n
However, application of the FD method to the larger refer_potent|als[’3,5]. v potential orbitals are defined in Ref.

ence space requires the forced degeneracy of more valen[:je?’]') Therefore the CASSCF orbitals yield a better first-

orbitals, a procedure which usually produces larger diagonacfrder description but produce larger diagonal element of

elements of the perturbation. These diagonal elements can and also shrink many of their perturbative energy denomina-

be quite significant for large reference spaces if zeroth-orde(]EDr factors more severely when the valence orbitals are

states that are very high lying are forced to be degenera é)rced to be deg_enerate. Thus, as in the selectl_on of the_ref-
with much lower bound states. In addition, many diagonalerence space, th|§ trade-off cor_nphcates the choice of orbitals
elements involvingQ (orthogonal space states are also af- foLSFSDC'E)erttL:.rtb?tlon complfjtatllons(As fa rule of thumb,
fected by forcing degeneracy since they also depend on th% Anoth orbi asl'ar? po?r (t); a'r:gDe re tehrecr;ce 'spacfes. th
valence orbital energies. All things being equal, an increased hother complication for the method arises from the

perturbationV induces diminished perturbative performance.Common occurrence of incorrect energy ordering, espec_lally
Thus a trade-off exists. A larger reference space yields jior larger valence spaces. The beryllium atom computations

better first-order approximation at the expense of a large bove have a Rydberg state incorrectly ordered, but since

diagonal perturbation. This trade-off may complicate the.h's CSF provides a very small contribution to the states of

choice of the reference space for FD partitioning computalmereSt’ the convergence is usefully asymptotic. Unfortu-

tions nately, if theQ space contains incorrectly ordered valence-

Forcing degeneracy can make certain classes of eneri ke states that contribute significantly to the, say, valence-

denominator factors very small, leading to convergenc ike states of interest, divergent behavior can occur in low
problems[13] in low orders. The choice of the reference orders,_ or thedl?w-ordert eitlrpatets may be lmacctl:]rat'e from
space is further complicated by the need to keep these ener rrtt)Irs mgurred [otms(pser urF.a |o4n ferlr?nsffg]vcf) vmgd ebmcor-

denominator factors from being too small. Consider, for ex- clly ordered stales.>ee Fig. = ol ke or order-by-

ample, how the energy denominator factors are affected b rder results from at? mcorrectlg grdereld tv_vo-sttr?te s¥s)tem.
enlarging a particular reference space. Both the smaller an onvergence may bé Improved by en, arging the reterence
ace to include these important CSF's. Unfortunately, the

larger reference spaces have some energy denominators s . . - )
tors that shrink when orbital energies are forced to be degeﬁcrease in the.reference space size has limits and involves
erate, but the larger reference space generally has valen ¢ trade-offs discussed above.

orbital energies that, prior to forcing degeneracy, span a

wider energy range. Therefore tr_\e larger reference space has VIIl. PROBLEMS WITH OPT PARTITIONING

more shrunken energy denominators, and the degree of

shrinkage is also more severe than for the smaller reference The OPT method does not suffer from many of the above
space. Hence, based on the energy denominator factodifficulties if the reference space is maintained within the
alone, the smaller reference space selects better energy daethod’s range of applicability. However, the use of a CAS
nominator factors, but the situation is more complicated. Theeference space may introduce problems in some applica-
smaller reference space h@s space CSF's that are more tions of the OPT method. These problems emerge because
strongly coupled tamportant Pspace CSF’s, where the im- some of the CSF’s from the CAS may have very high-lying
portantP space CSF'’s are those dominating the descriptiorenergies, and therefore some of these CSF’s may be strongly
of the exact states of intere@&.g., the ground and low-lying coupled toQ (orthogonal space states. Consider just one
state$. Because of this stronger coupling involviimgpor-  pair of coupled interspace states from a computation that has
tant states, the smaller reference space has a greater depenany othe® andQ space states. Let these two states have a
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large off-diagonal matrix elemeM,, and let the difference approach is made successful only if the reference space is
AH between their diagonal matrix elementstdfbe small. chosen so that these types of matrix elements can be ne-
This pair of coupled interspace states produces a very largglected. Usually, the larger the reference space, the better is
Vo AH ratio. A perturbation expansion involving only these this approximation.
two states is divergent or very slowly convergent. The slow An alternative method for dealing with intruder states is
convergence occurs only if the two states have their zerothprovided by the intermediate Hamiltonidi88] approach
order energies properly ordered and greatly separdigd which removes problematic energy denominators. A change
Therefore it is essential with any partitioning method thatof ket basis can also be employed to reduce large, problem-
these two strongly coupled interspace states are not impoatic, interspace coupling®.g., as in the CAS perturbation
tant in describing the stai® of interest, since a low-order theory (CASPT) method[39-43]. It may be beneficial to
perturbative treatment only recovers a small portion of theemploy the OPT partitioning with these methods. In addi-
correlation energy emerging from perturbation terms withtion, since multireference coupled clustéRCC) [44-55
these largé/, factors. Let us now contrast how the FD and computations for complete reference spatasd even for
OPT methods handle these strongly coupled interspac@complete reference spagdsequently encounter poor con-
states. vergence problems due to the presence of intruder states, the
The FD method significantly enlarges the zeroth-order exOPT partitioning might provide an improved initial guess to
citation energy é,—¢€,) which thereby greatly diminishes overcome some of these convergence difficulties.
the potentially problematic large perturbative ratios
qu/(e.p— eq). that are otherwise pre;ent when forced degen- IX. CONCLUSIONS
eracy is not imposed. Furthermore, &, €,) andAH have
opposite signs, FD partitioning usually yields an error in  Electronic-structure computations for the beryllium atom
each ordef5]. Thus the FD partitioning can produce satis- exhibit many of the fundamental difficulties encountered in
factory energies only when these errors from incorrect orderattempting to extend single-reference perturbative methods
ing are small. to treatments based on multiple reference spaces. The present
Now let the reference space states be nondegenerate, asuerk demonstrates how a proper selection of the zeroth-
the case for OPT partitioning. The zeroth-order energies for arder HamiltonianH, enables us to achieve intruder-state-
pair of coupled interspace states with a lakgg/AH ratio free, optimal, low-order perturbative convergence for multi-
can be chosen to be correctly energy ordered and to be welference spaces with accurate energies in low orders. The
separated energetically, a pair of conditions that is often nedhird-order OPT energy for the beryllium atom differs from
essary for convergence. Unfortunately, this OPT energyhe FCI eigenvalue by 0.01 kcal/mol for the ground state and
shifting could induce other problems. Consider, in additionby 1.4 kcal/mol for the second excited state. The FD parti-
to the strongly coupled interspace pg# and|q), another tioning yields an energy ordering in zeroth order between the
pair of interspace statép,) and|qy,) that contribute signifi- |1s°2p®) P space and th¢ls°2s3s) Q space states that
cantly to the state of interest. Assume further that the diagdiffers from the energy ordering provided by the expectation
onal elements of H satisfy the orderings value of the Hamiltonian. This incorrect ordering between
(anlH|an)>(p|H|p)>(q|H|a)>(p4H|ps) and that the these interspace states ultimately destroys the perturbative
lowest-lying statdpg) is a good zeroth-order description for convergence for the beryllium atom using FD partitioning.
the state of interest. In order to obtain a convergent seriesjowever, since the coupling between these states is small,
we must have the zeroth-order energies of the two stronglyhe FD perturbation series is usefully asymptotic in the sense
coupled statesp) and|q) be well separated and correctly that low-order truncations provide good approximations. The
energy ordered. Explicitly, we musgiusually then have present computations again emphasize the utility of simple
€,> €4 Unfortunately, correct energy ordering also requiresmodels for providin_g convergence criter_ia and for assessing
€4, €p andeq> €py Therefore the combination of these re- the quality of possible choices for multireference perturba-

quirements yieIdeqh> €ny @ condition that may slow the tive computations. An analysis of interspace two-state mod-

convergence since the important perturbation terms with fac(-els yields an indication of probable impediments to the per-

turbative convergence and of possible remedies for these
tors of Vpd'qh/(epd_eqh) are now made too small because

! ) ] " problems.
(epd—eqh) is very large. Hence, in such circumstances, it

may be preferable simply to neglect the offendiryg, matrix
elements or any interspace matrix elements that produce
large V/AH factors. A related approach appears in the This research is supported, in part, by the National Sci-
early work of Stern and Kalddr36,37] with the neglect of ence Foundation, Grant No. CHE9307489. We thank Steve
certain zeroth-order states in a complete active space multBiondi for useful discussions regarding incorrect energy or-
reference treatment for excited states of &hd BH. This  dering.
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