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Biconical emission of spatially mode-locked patterns with wave-number ratia’2
in a ring cavity device
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Biconical emission with wave-number rati@ is observed in the numerical simulations of the ring cavity
with diffraction effects, on the defocusing side of the resonance. As the intensity of the plane-wave input beam
increases, a sequence of stationary patterns is observed, and understood via a nonlinear analysis. The first
pattern with(4-4) peaks is a bisquare resulting from a strong coupling between two quasiresonant sets of
modes with wave numbet§ andv2K. This pattern destabilizes at the onset of the drift bifurcation, into a new
(4-4) pattern with a smaller wavelength, that splits into two twisted bisquares, with a 53° rotation angle
ensuring the wave-vector locking, or the spatial periodicity of (Bi§) structure[S1050-294{©6)09609-9

PACS numbds): 42.65-k, 42.55~f

[. INTRODUCTION Our numerical simulations of the ring cavity display, near
the onset of instability, a stable bisquare pattern with two
The presence of several critical wave numberssets of active orthogonal wave vectd#§,v2K}, that drasti-
{K,K’,K"...} near the onset of an instability was predicted tocally changes the hexagonal order corresponding to the
occur[1-5] in several optical devices, due to diffraction ef- monoconical emission. Recall that hexagons are observed in
fects in the feedback loop. It should bias in favor of a mul-the ring cavity when a single set of active modes is involved,
ticonical emission of light with maxima of intensity in the i.e., either with the uniform field model which has a single
far-field (spatial Fourier spectrum distributed on several critical wave numbef8,9], or with our delay model when
concentric rings with radii proportional t§,K’,K”.... This  the second minimum is far away from the secofah the
effect was indeed observéf], but not yet studied. focusing side of the resonance becafse>K, and on the
Here we analyze the patterns observed in the simulationdefocusing side with a circular input beam removing the de-
of a passive ring cavity with a dispersive quasi-Kerr me-generacy between the conical emissip2B. Thus the cou-
dium, illuminated by acw red-shifted pump beam. On the pling mechanism between the set of vecidtsv2K}, differs
defocusing side of the atomic resonance the values of thffom the one considered by Mer.
critical wave numbers are nearly equal to In this paper we mainly describe the bisquare patterns
{K,v2K,v3K,2K...}. With a low-pass filter transparent to the obtained on a large domain above the threshold when the
first three cones, the biconical pattern spontaneously emergwo sets of critical wave numbé¢ andv2K become simul-
ing from noise display patterns built up with theandv2K  taneously active, i.e., with a plane-wave input beam and a
modes. tuned cavity. The patterns that spontaneously emerge from
In another context, bicriticalityvith “magic value” was  noise, or from a strong initial hexagonal modulation, defi-
recently invoked by Mlier [7] to be responsible for the for- nitely departs from the hexagonal order. It consists in two
mation of a new class of patterns with quasiperiodic ordesets of (4-4) spots in quincunx in the far-field, called
(the design is not periodic in any directjooalled quasipat- bisquargwith the definition of a fi-m) pattern as having
terns. He modelized such pattern formation by a pair ofandm bright spots on two concentric rings in the spectfum
equations for two weakly coupled order parametarsi’} The linear analysis of the ring cavity equations with a
having critical wave number$K,K'}, respectively, with plane-wave input is recalled in Sec. Il. Section Il displays
K’'=pK. For a suitable value of, the structures obtained the numerical and analytical study of tfe-4) patterns gen-
with coupling are simply the addition of two riveting patterns erated in a large domain of the critical parameiefrom the
obtained without coupling. He illustrates the stabilizationthreshold,.=0, up to ©=.75, in the case of a plane-wave
mechanism with two examples. He considers firstly the casaput beam. Above this valug-8) and(8-12 patterns with
of a model equation fou andu’ leading to a square struc- periodic order are forme@Sec. IV). The case of a circular
ture in the absence of coupling. With a quadratic interactiorinput beam is discussed in Sec. V.
he obtained an eightfold quasipattern eitherudpor for u’,
whenp=+2=*v2, with a spectrum composed by eight spots
regularly distributed on a circle. Such a structure may be Il. MODEL EQUATIONS: LINEAR ANALYSIS
seen as two square patterns twisted by the an{feelative
to each other. Secondly, with another set of model equations
leading to a hexagonal pattern in the absence of coupling, he The ring cavity equations under study are basically the
obtained a twelvefold quasipattern with a weak coupling andkeda equation$10] for the electric fieldE at the cell en-
p=+2=V3 or p=v2. The twelvefold orientational order re- trance and the atomic energy including diffraction in the
sults from two hexagonal patterns twisted by an ang2 free space of the cavityl,2,11]

A. Delay model
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L

E(t+d,X)=Ey(X)+p exp[i ok V2|E(t,X) \ o \
Xexdal(1+inA)pl2—inb.,], (13 A
do ed—1 _ ]
Tigp="(6+ 1)~ ——— [E[% (10 |
The notations are those of Refg, 11], E is the complex St
amplitude of the electric fielde=1/2(Ee '(“*" ¥ +c.c),

scaled to the square root of the off-resonance saturation in- L
tensity, and¢=f'ow(z) dz is the total energy stored by the . ‘
atoms through the cell of length[w(z) is the population 2005 m 0.5 4
inversion in the mediuf Eq(X) is the input amplitude of the KL
cw laser at the cell entrancd, is the round trip time of the
light inside the cavityx is the transverse coordinate. Other

2k
parameters and symbols arep is the mirror reflectivity,L '
the total effective diffraction length in the cavifgell length i
| plus free-space diffraction path in the nonconfocal cayity

=
1
Bm

k the longitudinal wave vecto 2 the transverse Laplacian,
O.ay the cavity mistuningA=T,|w,,— o | wherew,, is the
atomic resonance frequency, and the cw laser beam fre-
quency;al is the off-resonance absorption coefficient of the 2|
medium, andp=+1 for the focusing case; 1 for the defo-
cusing case. st
This delay model was borne out in R¢2] with the cri-
terium that the threshold characteristics of the linear analysis | o L .
agree with those of a full set of Maxwell-Bloch equations. It 205 2n 470-0.5 an or-0.5 b
was shown[11] that they are valid in the dispersive limit %_em
[12], for a good cavity, and when the diffraction path
inside the free space of the cavity is much larger than the cell FIG. 1. (@) Marginal stability curver =141, [Eq. (1D)], vs
!engthl. More precisely, the study was done for the follow- ,_ 2| /5 8., . The linear stability analysics (t)hf Eqél) (in dots)
ing values of the parameters: and (11) (solid line) are compared(b) Marginal curve with a
Gaussian filtefEq. (9)] with a’=5x10"3.

al=0.1, - = 47, (A~250, p=0.95 d=T; corresponds to threshold diffraction parameter values for the
(2) ~ successive cones

that are still chosen in the present work. Oinn=2n7-0.2, 6)
The _ins_tability boundary Which displays static mult_iconi- with the notationsK,,, and K/, for the first two cones, one

cal emission, for a plane-wave input, was reported in Ref,

[11]. It appears that biconical emission dealing with the near-

axis cones is very different for a tuned cavity on both sides th

of the resonance, since the ratio of the first critical wave K_Nﬂ' (7)

numbers is equal to 5.7 for the focusing case, while it is th

close tov2 for the defocusing case. In the subsequent sec- In the following the index “cr” refers to any point on the

tions we analyze the pattern formation with the latter magidinear boundary, while the index “th” is relative to the mini-

ratio v2, i.e., with the additional parameter values mum of the curve. Let us point out that the marginal stability
curves in Figs. 1 correspond to a particular case of parameter
7=—1, 6. =0. () values[Eq. (2)], and requires numerical investigation. In or-

der to know how the threshold characteristiggs. (5) and
With the values given in Eq$2) and(3), the linear analy-  (6)] changes with the five parameters of the delay model, a
sis of Egs.(1) is reported in Figs. (8 where the critical  simplified version of Eqs(1) will now be set up. That ver-
intensity | .= |E 2] is drawn versus the diffraction parameter sjon is more tractable for analytical investigations.
5 In the numerics the emission of the wavelengths on the
o= &_ P 4) fourth, fifth... cones are prevented by a filtering procedure.
2k cav - Since our codg11] treats the free-space propagation inside
the cavity via a double Fourier transform, a low-pass filter is
The lowest threshold intensity introduced in theK space at the entrance of the cell, raising
the infinite degeneracy predicted at threshold. Two filters are
l:,=0.008 145 (5)  used, either a flat filter with cutoff,
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Fi(K)=1 for any K=K;, and O elsewhere (8) -20*,0%-3
rO)=———5—— (13
or else a diffusion-type filter
has a minimum for,=1, O,,=—2.
Fa(K)=exg—a'6(K)] C) Let us now compare the instability boundary obtained

. from Egs.(1) and(11). They are reported in Fig.(8), where
which removes the degeneracy between the successiyRe dots are relative to the delay modelith parameters
minima, as shown ifFig. 1(b)] for a’~5 10°°, along the  yajues given by Eq(2)], the solid line corresponds to Eq.
rule I ,— 1 [1—R’exp@’ )] (13) with

B. Comparison with the uniform field model =a sing. (14

Near the threshold, the large characteristic time on one The valuea=10, chosen in Fig. (&) in order to give a
hand, and the very small valueslgf and siné;, on the other  good agreement between the two models, is only 10% higher
hand, allowq11] to approximate the Ikeda model equationsthan the value resulting from relatio(®),(3),(12), that is of
by the order of magnitude of the second-order terms neglected

L in the derivation of the uniform field model. Thus the thresh-
exp (_ V%— necau) “1E old character!stlcs of Eg$l) may be generallzgd for param-
2k eter values different from those of E@), by using the ana-
(10 Iytical expression in Eq(13) and the relatior(12) between
) ] ) the coefficients of the delay model and those of the uniform
or, settinge = E4(1+A) whereE; is the plane-wave station- fie|q model. In terms of the delay model the minima are thus
ary solution of Eq(10), one obtains given by the very simple relationl,=1/8", 6,
=arcsin-2/a).

dyE=E{—E+iB' 7|E|’E+a

duA=—A+igr(2A+A* +A2+2|A|2+A|A]?)

I1l. BICONICAL SQUARE PATTERN
+ia sin

L,
50 Vi 76cq | A, (11

2k

The numerical results presented in this paper were ob-
_ _ o _ tained with the delay mod¢Egs.(1)]. The code uses basi-
where the time is scaled to the photon lifetime in thecally a Crank-Nicholson method for the time integration of

“dressed” cavityt,, and other parameters are Eq. (1b), and a double fast Fourier transforfRFT) calcu-
lates the field at time¢+d from the data at at timeé [Eq.
_d . a2 o Fo (1a)]. A storage of the data on the whole duratiart { d) is
tPh_l—p' N ' E0_1_p' ' necessary in order to derive the solution in the interval (
+d). All the results were checked with a spatial grid of
o’ al A 128x128 and 25&256 points, moreover a 384384 grid
a= = B'=a - r=p"'\Eg? (12  was used for the study of the circular input beam. All the

patterns described hereafter, are those spontaneously emerg-
ing from random noise, moreover, they remain stable in the
presence of small noise. The spatial grid size was choosen to
be equal to nine times the critical wavelength,=2n/K,,

in both directions.

The (4-4) patterns appears with a plane-wave input beam,
either with the cutoff filter transparent for the third cone
B~ 3.1K,p,), or with the Gaussian orf&gs. (8) and(9)].

Both filters may be introduced in the analytical treatment,
Sut for simplicity we have choosen to compare numerical
and analytical results only for the case of the cutoff filter.

Equations(10) and (11) are an extension of the uniform
field model introduced by Lugiato and Lefeverl() [12],
for the dispersive ring cavity. In the origindl L) model, the
diffraction occurs in the thin nonlinear medium only, then
the diffraction term reduces ta[(L/2k)V 53— 76.,,], de-
scribing monoconical transverse effects in the focusing cas
only. Whereas Eq(10) modelizes diffraction effects occur-
ring mainly in the free space of the cavity, and predicts als
transverse instability in the defocusing case.

The operator si{L/2k)V 32— 56.,,] is responsible for
multicriticality. Indeed at the onset of instability correspond-
ing to K=Ky, (or 8= 6,,) andr =r,, an infinite set of wave
numbersK,, such thaté(K,)= 6,,+2m7n become simulta- Figures 2 and 3 display the near- and far-field intensity of
neously unstable. The ternif2k)K? may be interpreted in the (4-4) patterns obtained above threshold for increasing
terms of geometrical optics, as the optical path differencesalues of the critical parameter
between two rays, one propagating along the optical axis of
the cavity, the other one being inclined at an angle<ék =1 15
with respect to the optical axis. Without any calculation, one m= lin (15
can therefore predict that all the rays making an angle equal
to K, /k with respect to the optical axis, may be emitted by The pattern of Fig. 2, called “straight” pattern, has the
the ring cavity device at the onset of instability, since theirexpected critical wavelength,,=2#/K,,. Figures 2a) and
optical path differ by 2rn. 2(b) correspond tqu=0.1,0.3 and are stable. FigurécRis

The marginal stability curve of Eq11), obtained foru=0.45 and is metastable. The Fourier spectra

A. Numerical results
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FIG. 2. Numerical biconica{4-4) “straight”
patterns obtained near the threshold. Near-field
intensity contour plots itta—g, far-field intensity
contour plot in(d). The input-field amplitudes are
E(=0.0125(a), 0.015(b), 0.018(c). The thresh-
old input for the critical wave numbe,,, of this
K structure isE §'=0.00123. The peak labey, in
y (d) the far field(d) refers to the discussion in Sec. V.
O e ®
€ . Ao
o @ @
X Kx

for the three structures displays two sets of orthogonal modes The Fourier amplitudes of these two numerical patterns
with wave number¥,,, andv2K,,, oriented along the grid are reported in Fig. 4. The amplitudes on the four spots on a
axis and diagonals, respectivdlyig. 2(d)]. given ring are equal. Each amplitude diagram has two

After a very long time, the metastable structure in Fig.branches, the upper one is the amplitude of a spot on the first
2(c) and 2d) destabilizes, into the pattern in Fig(b3 and  ring, the lower one, about half the value of the other, is
3(c) as indicated by the the time trace in FigaB The ori- relative to the second ring. The latter property illustrates the
entation of the intensity peaks in the near- and far-fielgdiconical cha}racter. Therefore an analytical description of the
changes, and slightly smaller wave numbgs, v2K .} are weakly nonlinear regime requires to treat the two sets of
observed in the spectrum. We point out that the patterns ifff°des at the same order, as performed in the next subsec-
Fig. 2 are grid oriented because the grid size is equal tgons.
exactly 9\, i.e., fits the preferred wavelength near the
threshold. This orientation is choosen while a random noise
is added to the plane-wave input profile. A&=0.45, where The weakly nonlinear analysis of E(L1) in the vicinity
the preferred wavelength differs slightly froy,,, the pat-  of the instability boundary of Fig.(&) is detailed for the case
terns is not grid orientefFig. 3b) and 3c)]. The latter “ro-  of the bisquare pattern. With=(R+il)e", V=(R,1)", the
tated” pattern actually exists from=0.22 up tou=0.71, as  dispersion relation takes the form
r'eported on the numerical amplitude diagram in Figsdlid “A-1 —asiX—gpr|(R
lines). L(\,r)V= . )

In Figs. 2 and 3 the near-field patterns display a basic asinX+3yr  —x-1 |
square structure, with large modulations of wavelendth \yhere X=(L/2k)V2- 76,,,. Let V* be the eigenvector
(Awy and A, , respectively. The bright peaks are separated of the adjoint matrix, with the scalar produdV; V.)
by a secondary square structure growing withnside this  =1/2(/v**,(X)V,(X)dX+c.c. The stationary plane-wave so-
basic structure, with wavelength/v2. These observations |ution Eq becomes unstable to transverse modulations with
are confirmed by the far-field pattern, which displays, forwave numbelK, when the intensity reaches the marginal
both patterns, four bright spots on a ring with radiugK,;,  stability curve in Fig. 1Eq. (13)]. Let us be precise that in
or K,;), and four less intense spots, in quincunx, on a secondur problem the choice of the different scalings is not
ring with radius exactly equal té2K [Figs. 2d) and 3c)]. straightforward. The linear growth rate of the perturbation at

B. Amplitude equation for the bisquare

=0, (16)
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FIG. 3. Numerical biconical4-4) “rotated” patterns, obtained at the first bifurcation from the “straight” pattern in Figs. Eyt0.018
for ®=—2.7. (a) Time trace inXx=0, in units of the round-trip timel of the cavity.(b) Near-field intensity contour plotgc) Far-field
intensity contour plot.

the vicinity of the boundary =r.,+dr 6=80,,+ 466, which  the quadratic nonlinearity, should lead to the scalin¢r et,

is supposed to define the scalinds], is given by the ex- r=r.+er+---. This procedure, reported in Appendix A,

pression gives only qualitative agreement with the numerics as shown
in the inserts of Figs. 5. The scaling adopted in the following

N=(26g—3r¢) 8 +(2r o, — O,) 6. (17)  isthe one proposed by Tlidli and Lefe&], which balances

the time derivative with the cubic nonlinearify,= €%, and

The consistency condition at the lowest order between théhe control parameter with the quadratic nonlinear term

time derivative acting on the envelope=eA;+€A,, and  r=r +er,+€r,.
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o A with No(A;)=A2+2|A2|, and
N

0.2} ¢ fy c c ‘o
0.15 } g2 -3 7Ryt -3 R

—2cR3-2¢'R;2-2(c+c")R;R]

01 e “| (3+cA)R2+(3+c'2)R2+2(3+CC )RR} )
0.05 (23
0 1.4 16 1.8 2 Two solvability conditions imply that the vectorf{,g,) is
r orthogonal to the vectord/; =(c,1)' and V;"=(c’,1)".

They are of the formc(f,),+(g,),=c'(f5),'+(gy),' =0,

FIG. 4. Numerical amplitudes/I (K;)/I, for the modes(K,,, ~ Where the symbols.), - stand for the resonant terms on the
V2Ky,) of the “straight” pattern(solid line), and for the modes first and second cone; it gives
(K,v2K) of the “rotated” pattern(dashed lines vs the critical

parameter =1/l . riRi=re¥(RiRY);, (2439

At first order, with the notationsA;=(R;+R7)+i(l;
+1}), orA;=V;+V;, for the complex amplitude, the solu- rRi=r&v (R9),, (24b)
tion which corresponds to the uniform stationd#y4) pat-
tern described in the preceding subsection, are of the form

with
R;=Ae*+Be"+c.c., (183
. 3+c?—2cc’ 25
. . V=2, Y= ——F 7 (-
R, =C, &K+ D, e Y 1 ¢ c. (18 3—c'?
The two sets of active modes with wave numb&rsand Particular solutions of Eq(22) and (23) have Fourier

K’'=v2K, become linearly unstable &t.,,@=asingK)] components with wave numbers {0K,V2K,2K,

and [r.,,®=a sin §(K")], respectively. From now on the 5K,2v2K}. Since the presence of the filtB(K) restricts
calculation only depends on the coupled parame@r®’),  the spectrum to the first two components, we choose the
which are reported in Fig.(6) for the case of the straight solutionA, orthogonal toV,; andV;, on the form
pattern,K=K,;, as the solid and dashed vertical lines. We
search the dynamics of the amplitudgs= €A, B=¢€B,,
C=¢€C;, D=¢€D;) for a control parameter value in the

!

vicinity of re, andre, x(g+ip)+(|Cil+[DI (g +ip"), (26)

A,=u(1—ic)(RyRy),+U’(1—ic")(R?), +(|AZ|+|B2)

r=r.+er+er,=r" +er!/+éh. 19 .
cr 1 2 cr 1 2 ( ) with

The imaginary part of A; results from the relations

{L(O)¢)V1=0; L(Or(,)V;=0}, leading to

1
u=—c'nre; U'=—3 gri(2c+c’y’),

2
I+ 11 =c(Ae*+BeXY) + ¢/ (CeKXY + DelkxY))
2
+c.c., (20 . 2nC+re(3+C9)
——or, s
9=~ 2fa — 1732 27

where

and similar expression fog’ with c—c’, r,—r/,. The

c=—0+3yr,,= 1 . expressions fop,p’ are not given because they play no role
O—gre’ in the following.
1 At third order Eq.(11) with 6,=4T, gives
C/:—’+3rérzm . (21)
cr

L(Or)Az=3d,A1—L1(0F)A,—Lo(0r)A;—inriNa(Aq)
At second order, Eq(11) becomes —inrNs(AAy), (29)
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FIG. 5. Nonlinear analysis of the bisquare structure. Comparison between the analytical and numerical results. The moduli of the two
Fourier component#\| and|C| for the coupled set of modes with wave numbetsW2K), Egs.(36)—(40), are reported in solid lines, vs the
control parametep=1/1.—1; the numerical results taken from Fig. 4, are reported in dafs:Straight” pattern amplitude diagram for
0=-2, @' =-4, (modesK,, V2Ky,). The coefficients in Eqs21),(25),(36) are, in the left partr ., =1, r,,=1.45;c=-1, ¢'=—0.4;
y=-2, ¥=-1.15; \=0.6, \'=-0.1; 6=-20, §=-5.5; 0=—8.5, ¢'=—7; in the right part,r,,=1.66, c=—-3, O=-2, r/ =1.45,
¢c'=-04,0'=-4, y=—2, v¥=-3.35;A=0.6,\'=—-0.1; §=5.5, § =—5; 0=10, o' =—10. (b) “Rotated” pattern amplitude diagram for
0=-2.7,0'=—-5.4. Inthe left party’ =—1;\=0.8,\"=0.1; 6=—14, 8§ =—5; 0=—5, ¢’ =—5; in the right part)’ =—15;\=1.5,\"=0.1;
8=105,8 =—-5; 0=6, o' =—5. The insets compare the numerics with the analytical diagrams derived in Appendix A. The axes refer to the
same variables as in the main figures.
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FIG. 6. (a) Linear instability boundary. Scheme of the modal interaction in the diagf@n The mode with critical wave numbé&,
corresponds to the solid lin@;,=—2. For¥=m=/2, the mode/2K,,,, corresponds to the dashed li@g,=—4. For¥#«/2, the two modes
K’ correspond to the dotted lined) Angular coupling functions(¥) [defined in Eq.(42)]. The solid line and the dots are relative to a
monoconical pattern, the cross to a biconiggH) structure.

with Na(A1,Az)=2(A1A,+AAS +ATA,) +A|AZ], lead- e o f , o
ing to the solvability conditions W=7 (RiRg)r + o (RoRy) + h(R{R1?), +j(RS), +GRy,
(309
2c 3+c?
72 2R1= 7| 1R+ = 1Re+ 2(RyRy) F1+ 1 W), '
3—c 3—-c , ¢ )2 L, 3 ,
(293 w :U(Rle)r”Lh (RiRD)r +]"(Ry7) +GRy,
(30b
2c¢’ ) ) +c'z , , , ,
3—c2 R Rt 3T R G=2[g(|A}|+|B})+g'(IC}|+IDI] (300
,. 3+c*-2cc’ )
—Y(ROr ——z Nt W'|, and
(29b) oy , 23—02 1-c¢t  1-c*
e=cu, e=ogz oz 173 VT aT e

where (319
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The addition of the solvability conditions at the second an

third order [Egs. (24) and (29)], multiplied by € and €,

respectively, leads to the following set of coupled equation

for the amplitudes of the Fourier modes:

d,A= A+ ya2(B*C+BD)+2(h+f )A*DC
+A[(2g+3))|A?|+ (4e+2g+6j)|B?|

+(2g9'+2h+f )(|C?+|DF)], (324
9,B=uB+ ya3(A*C+AD*)+2(h+f )B*CD*
+B[(2g+3j)|B|?+ (4e+2g+6j)|A?]
+(29'+2h+f )(|C?+|D?])], (32b

[9..C=u'C+ycAB+(DB2+D*A?%) (e’ +h")
+C[(29'+2h'+e")(|A?|+|B?|)+(3j'+29")

x|C?|+(6j'+29")|D?], (320

[0.D=u'D++ ycAB* +(CB*2+C*A?)(e'+h’)
+D[(29' +2h'+e")(|A?|+|B?))

+(6j"+29")|C?+]|(3j'+29")D?], (320
where the time is scaled as=t[r. 7n(3—c?)/2c],
{=[rec’(3—cdir,,c(3—c'?)] and the coefficientsy, ¢
depend on the control parameter value,

{yva=—2y(1+\p), yc=-2y"(1+N'w)}, (339

(3+c)u

(3+c'?)u’
- y(3-¢c? -

(33b

Numerical patterns havé— —X symmetry in the near
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{5=4e+4g+9j,8' =29’ +9j},
{o=4f+4g’+6h,0'=4€'+4g’'+6h'}, (37

and the second s€Eq. (35)], leads to a system identical to

Egs. (36) except (/a,yc)—(— va,— vc), whose solutions
re the opposite of Eqg36), so that all the symmetrical
olutions of Egs(32) can be deduced from the single set of

Egs.(36). The “+" solutions of Egs.(32) are the solutions

A,C) of Egs.(36), whereas the “” solutions of Egs.(32)

are (—A,—C).

In Egs. (36) the quadratic coupling terms describe the
resonant interaction between the mode¥ofndv2K, and
negative values ob, o, &', o’ ensure the stability for posi-
tive values ofu. The bifurcation diagram of Eq$36) have
been studied14-14 in the context of one-dimensional
transverse codimension two modal interactions. Moreover,
basic mechanisms that generate a secondary drift instability
were reported by Fauve, Douady, and Thiuad].

Let us now compare the stationary solutions of Eg§)
with the numerical diagrams of Fig. 4 which display4a4)
pattern for a very large range of the critical parameter
(1=r=<1.7). Let us first notice the unusual shape of the in-
stability boundaryr (®) drawn in Fig. &a), which displays
two branches J, andr ., located one above the other. The
growth of any mode with wave numbKrobviously depends
on the two critical parameters €r ;) and ¢ —r,). Con-
sequently a correct treatment of the coupled amplitude equa-
tions should involve tricriticality, whereas Eq®6) are de-
rived in a bicritical frame.

Secondly the relevant variable for the analytical treatment
is notK, or K2, as usual, bu®=10 sirg(K). It follows that
while the ratio of the critical wave numbers for the two cones
differs from v2 by less than 1%, the two sets of modes
{K,v2K} are not at exact resonance, on the contrary, their
critical parameters,(K) andr,(v2K) noticeably differ. In
terms of the analytical variables the relevant threshold values
for the “straight” pattern correspond to,

0=-2, 0'=-4 (39)
cf. the scheme in Fig.(8), and for the “rotated” pattern to

@=-27, ©'=-54, (39)

field, andK— —K in the far field and satisfyA|=|B|, |C|
=|D|. Therefore among the solutions of E¢32) we choose
solutions with realA,B,C,D leading either to solutions like

The analytical amplitudes for th¢, v2K modes

|A(p)|=](1+ic)A+(1—ic)uAC)|, (409

{A,A,C,C} named solution ‘“+"", (39 (40b)

|C(w)|=|(1+ic")C+(1—ic')u'A?)]
or to are drawn in Figs. @) and 3b) for the straight and rotated
(A,—A,C,C}, or {A,A,—C,—C} named solution ‘" patterns, respec_tively. The two parts of the d.iagrams are cal-
(35) culated by refering to the closest boundary, i.e., the left part
of each diagram is calculated foX®) close to the lower
boundary (.,=r), whereas the right corresponds rt@®)
close to the upper brandn,, =r*, ri,=r,). The two ana-

cr’

The first set[Eq. (34)], gives two real coupled equations

9,A=uA+ ypAC+A(SA%+ oC?), (363 Iytical branches fit the numerical results near each boundary,
and finally reproduce fairly well the numerical resulia
£9,C=pu'C+ ycA%2+C(6'C2+ o' A?), (36h) dots. In fact, in the middle of the diagranr [,<r<r ),

the dots are located in between the left and right curves, that

where is, the signature of tricriticality. Nevertheless, the numerical
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results are globally reproduced by our bicritical analysis, infeedback-mirror devicg5], for example. Nevertheless, the
the sense that the analytical amplitudes are of the same ordpresent study shows that the coupling coefficient between
of magnitude,|C(w)|~(1/2)|A(w)| in the whole domain of two orthogonal wave vectors increases freré up to+2.5
existence of the patterns, and the treatment reproduces théhen the pattern formation changes from a mono- into a
unusual bell-shape diagram. biconical one. Therefore the role of thi ¢2K) coupling is
The inserts in Figs. 5 are the diagrams obtained with theo stabilize the square pattern.
scalingdy~r —r~e€. The derivation is given in Appendix Let us now discuss the possibke—v3K coupling that
A. The results display clearly the relevance of the scalingvas not investigated in the above study, but must be consid-

(0~ €®r—r.~e) treated in this section. ered since the cutoff filter is transparent for the third cone
having a wave number ratig;},/K,, equal to 3.1. One could
C. Angular coupling expect that the K,v3K) coupling either enforces the hex-

. ._agonal structure, or that a tricritical bifurcation involving an
Square patterns were already observed in the monoconicaP ’ . )
ersson of he ig cauiy on e focusig iR, butTIETIO0 (V20K ieracton, lead Lo 3 bielvelold
they were unstable, and destabilized help to a slight noise tructures was obser(\q/ed ir?our si;nulationg while a biconical
into a hexagonal pattern. The stabilization of squares due f 3.1" structure (with wave number ratio\/S_l) was ob
the (K,v2K) intermode coupling is now illustrated by com- _*: ) v i

( ) Ping y tained, which has a rhombus on the second curith vertex

paring the mono- and biconical coupling coefficieBity) ; : ;
between two wave vectots; andK; belonging to the first angle 577’ and a roll on the; third corle, Igcated in the bisec-
tor of this vertex angle. This stable “3.1” structure was ob-

cone, with vertex angles. Let us define first the angular ) : S
coupling function. With the notatioA=R+il and _sgr_ved by 2 two-step procedure. .the. pr_of|le def_mmg the
initial conditions of the intracavity field is first obtained by
integration of Egs(1) (with plane-wave input plus a small
random noisg without any filter. In the transient, all the
the coupling function appears in the amplitude equations ~unstable wavelengths grow simultaneously, leading to a mul-
ticonical “noisy” intracavity profile. Then the numerical
9.A = uA+ A (|AY| +,8(¢r)|AJ-2|)+other terms.(42)  simulation starts again with this multiconical noise as initial
conditions, and with the cutoff filteitransparent for the first,
Let us first deduce from E¢323 the value of the biconi- second, and third cofeThe study of such structure is out of
cal coupling coefficient between the two orthogonal modesur purpose, but one can conjecture that the strong resonant
BYC(wl2), coupling of the 3.1 structure, with two critical modes having
bic_ _ ) the same threshold,'/r =1 explains why it wins versus the
B**=(4e+29+6j)/(29+3]) (43 hexagonal order. AK,v3K) structure with threshold ratio

L N r"/r=2[see Fig 6a), (®=—-2, ®"=—6)], would correspond
which is about 2.5 for an)K~Ky, [cross in Fig. €)]. The . .
general derivation of8”'°(y) for a vertex angle close but to a much weaker biconical coupling process.

R=Aie‘Kii+AjeiKii+ other terms-c.c. (42

different from /2 is given in Appendix B. The curves for D. Drift bifurcation
different values ofK near Ky,, are very narrow around o )
y~ml2 because the biconical coupling functiBf®(y) does Why does the “first" pattern with wave numbers

not exist outside a very tiny domain arousié=7/2, as de- 1K V2Kyn} rotate atr =1.43? The above nonlinear analysis
duced from Figs. 1 and relatior§). More precisely for displays real amplitudé for r<1.48[Fig. 5a)], that could

K =K, the biconical emission concerning the first two coneseXPlain this observation. Actually we demonstrate that the
is only possible for rotation of the “straight” pattern actually occurs before

r=1.48, due to the onset of a drift bifurcation, when the real
Y=90°+1°, (44) solutions get unlocked phases. In the context of one dimen-
sional (K,2K) modal competition, drifting solutions with
The monoconical coupling functiof(¢), derived in Ap- complex amplitudequnlocked phasgswere predicted to
pendix C, is drawn in Fig. @). One may observe the three emerge from real amplitudd44—16 solutions. They were
following points: shown to grow because theK2modes are not sufficiently
(a) The valueB(w/3), indicated in dots, smaller than unity, damped, but they are generally unstable and thus difficult to
ensures the coexistence of the two adjacent wave vectorebserve[17].
This result agrees with the observation of monoconical hexa- A very simple qualitative approach to predict the onset of

gons. the drift instability, or the growth of the2K modes, consists
(b) B(53°)~0. This result will be used in our interpreta- in the observation of the linear threshold boundary. The
tion of the(8-8,12 pattern formation. boundaries, for bot{K,v2K} modes, orr(0) and r(20)

(c) The large negative value @{(#/2) forbids the forma- curves, are drawn in Fig.(&. The domain inside the solid
tion of monoconical squares. The monoconical analysis isine corresponds approximately to the stable domain for the
thus unable to reproduce the numerical observations of bitwo modes. An analytical study of the drift onset actually
conical structures. requires more investigation than the linear analysis itself,

Let us notice thatl(L) model Eqg.(11) and also the am- since drift bifurcation occurs when the solutions of E(@®)
plitude equationg32) do not display the variational struc- loose the reflexion symmetry, or th%&,B,C,D amplitudes
ture. Therefore the coupling functigs(i)) cannot be invoked loose their phase-locked property. In order to investigate
to predict the more stable pattern, as it was done in théhe bifurcation towards complex solutions, we write
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A=R,e'%  B=Ry %, C=R.'%, D=Rye'?%, B RaRp Rb R\ .
S =g ($a+ dv), A= g—(ba— dp), in Eqs.(32) or 2= "7c TR S YR 5+ g[S
9.Ra+iRa,¢a= uRa+ 3 7aARu(Ree'* + Re™) Rd(Rb Ra) e +h) [R2 A
, —Ya 5 |5 si e Si
+2R,RRy(h+ 1 )eEF0 L Af,, (459 "2 \R, Ry

—3)-R2si(A+3)]-2(h+f )RdRC[sin(AJrE)

9,Rp+iRpd,p= Ry + 3 YaRa(Ree A + Rc€')

’ +sin(S—-A)] (469
+2R,R.Ry(h+f )el*~2+Bf,, (45bh
and
3. Re+TiIR, b= u' R+ ycRaRpe T+ R[R2e 374
{9 Re cdrbc=p'Re 7Cab dLRb R.R, R, R,
+R§e_'(E+A)](e’+h’)+Cfc, (450) ﬁTA:—’yC IR, smA—yARd Z—Ra-i-z—Rb
) : R: /Ry R
{0, Ry+iRyd,pg= 'Ryt ycRaRpe 2+ R R %) X SinS, — yu 7" (R—b— R—"") sin,
a b
+R3e'**Y](e'+h')+Dfy, (450
—(e'+h’ ) [Rb SiNA—2)—RZ sifA+3)]
wheref; are real functions oR; independent o and A.
The phases obey —2(h+f )RdRC[sin(AJrE)—sin(E—A)] (46b)
a \ 7
(a) \ ;
2.5
2 -
1.5
1 -
0.5

FIG. 7. Drift bifurcation threshold(a) Linear

boundaries of th& andv2K instability, orr(®)
and r(20) functions [Eq. (13)]. (b)-(c) Linear
growth rate\s of the phaseg, A [Eq. (47)] ver-
susu=I/l;,—1 for the “straight” and “rotated”
bisquare patterns, respectively.
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FIG. 7 (Continued.

w

'S

and two equations ford, , ¢;,). pattern rotates. In agreement with the qualitative prediction,
In our problem, near the lower branch, wherbecomes the drift bifurcation occurs close to the upper solid boundary

positive, the null state is expected to bifurcate towards @f Fig. 7(a). Finally the growth rate study allows to select

stable “+” or * —" solution described by Eqs(36) which  petween the “" and “ —" solutions, near each boundary,

corresponds to the “mixed modes” introduced by Arm- moreover, it predicts that the real solution for the straight

bruster, Guckenheimer, and Holmigs]. They have reflex-  pattern becomes unstable far and C#0, as numerically

ion symmetry, since by the appropriate change of coordinatgpserved.

Eq. (11 takes the form R=R.coKx+R,coKy No drifting solution was observed numerically. This can

+Recos[K(x+y) + 2]+ RycosK(x—y) +A]. The stability o explained by the Fauve, Douady, and Thual anafyists

of the m'xed .mo.des will now be |nvest|gated._ who have shown that “even if the bifurcation is supercriti-
The linearization of Equation@ls) and (46) gives cal, the homogeneous drifting solution is generally unstable,

I3=\s3, 9A=\sA and the propagation of drifting inclusions changes the wave
} 7 number, thus stabilizating a new static pattern”. Actually we
with a linear growth rate have not investigated the transient solutions riegt200d,

but a new static pattern stabilizes rat+1.43 with a wave
number located inside the solid lines of Figaj?
In the case of the “rotated” pattern the growth rate of the
(47 “ +" solution in the left part, and of the *-" solution in the
right part, are negative for the whole domain of the existence

If Ay is negative the real solutions are stable, but when  of the bisquareFig. 7(c)]. The bifurcation of this pattern
becomes positive a new state emerges, characterized by il be described in the next section.

1
Ng=— = 2e’+2h’+;—: RZ— y,R,—4(h+f )RZ.

¢

’L-Ra,b,c,dzor (972:(97.A:O,

but 9.4, and d,¢,=const, (48) IV. BICONICAL (8-8) AND (8-12 PATTERNS

) ) . The(4-9) rotated structure wit®(K)=-—2.7 is observed
which has no reflexion symmetry, and the pattern may drify, 5 |arge domain, from the linear threshalg~1.2 until
with constant velocities ¢, andd. ¢, in thex andy direc- 1 7, with both filtersF, (K). At Eo=0.022 it destabilizes
tions, respectively, with into two stationary periodi¢8-8) and (8-12) patterns, de-

-tba=(yal2+ (h+f )ROR(S +A), (499 pending on the filter functions used in the code.

,0p=(yal2+ (h+T )R)R(Z —A). (49b A. (8-8) pattern
The evolution of the growth ratgy calculated with the Let us first describe th€8-8) pattern obtained with the

analytical values of4,C) of Figs. 5a) and Rb), is reported gaussian filter[Eq. (9)]. At E;=0.022 the near field has

in Figs. 7b) and 7c), for the straight and rotated patterns, reflection symmetry[Fig. 8@-8(c)] but it looses this prop-

respectively. In the left part of the diagrams, only the™  erty atEy,=0.024[Fig. 8d)], and destabilizes into rolls at

solution is stable, with negative valuesaf<O0 reported on  E4=0.025. Surprisingly the spatial period in Fig. 7 is neither

the left of Figs. Tb) and 7c). In the right part of the dia- equal toA=2#/K corresponding to the first cone, nor the

grams, only the “-” solution is stable, and for the case of A/v2 corresponding to the second cone, but to 2A23and

Fig. 7(b), Ay becomes positive at=1.43, where the straight the large intensity peaks are not aligned along the wave vec-
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FIG. 8. Mode-locked(8-8) periodic structure obtained with the Gaussian fili&g. (9), with a’'=5x10"%], in the range 0.0
23<E(=0.024.(a) and (b) Near-field intensity, in 3D graph and contour plots f4=0.023.(c) Near-field intensity forEq=0.024. The
pattern is still periodic, but a slight curvature in the contour plots indicates the onset of the phase instability, or the loss>of the
symmetry. A very slow evolution of the time trace, scarcely visible after integration over several thousands of photon lifetime, might be the
signature of a drifting solution(d) and(e) Far-field contour plots.

tors but along the grid axis. The explanation lies in the ob-8(e), the wave vectors responsible for the large period 223
servation of the spectrum, which consists in two bisquareare the orthogonal vector sets(j&z,ﬁl), and
patterns twisted by an angle equal to §&fod. /2), with  (D,B},C;B}) and the symmetrical ones. They are actually
equal amplitudes on each ring. With the notations of Figlocked to other vectors by the relation



54 BICONICAL EMISSION OF SPATIALLY MODE-LOCKBD . . . 3441

> 120

X
(€) (d)
>N
. o
() (= < @
® 6 e @ E—8—6 —E
@ © @ © @ C-| —- -9 |©
21 (® ( () |
' (
B © e € a3l e |- -J-0l®
& G ¢ @ Br o — O Fi
= @
Kx Kx

FIG. 9. Mode-locked periodi8-12) structure obtained with the flat filtér; [Eq. (8)]. Near-field 3D view in(a), and contour plot irfb),
far-field intensity contour plot iric) and(d) for E;=0.022. The time trace is constant f65=0.022, but a very slow evolution is observed
for Ep=0.023.

K . —D.B.=iAA,=1BB.=lD.C ’ 50 of the coupling coefficienB() in Eig. 6(b), Which also fa-
ock1=D1B2=2A1A2= 38,81 =5D1Co, - (508 0 e Bae angle. Indee() vanishes for this value of,
indicating that the eight sets of wave vectors like

(OA;,0A,) are not coupled, and may coexist on the first
o _ - . S ring. On the contrary the large value of the coupling coeffi-
and similar equations fob,A;, andC;B;. The far field in  cient between orthogonal vectorg(y)~2.4, prevents the
Fig. 8(d) may be seen as the superposition of the two *“ro-quasiperiodic pattern formatiofthe coupling between vec-
tated” (4-4) patterns, with angles-arctgl/2, emerging from tors (OA,,0B,) is also strong, but its contribution is twice

the “straight” one. The stability of the total structure being g1 iler for the preser(8-8) pattern than for a quasipattdm
warranted by the vectorial mode-locking relation in Egs.

(50).

A question arises: why does the eight spots are not regu- B. (8-12 pattern
larly distributed on each circle, as in the case reported by With the flat filter R;(K) the (4-4) pattern also destabi-
Muller and recently observelb—6]? The main reason prob- lizes near~1.7. leading to th€8-12) pattern show in Figs.
ably lies into the mode-locking process which favors the 5399. From the onset the near field has lost the reflection sym-
(mod. 7/2) orientational order. Let us also consider the rolemetry, while it is spatially periodic, as th8-8) pattern, but

Kiocke= C1A2=3B1B,=2A,A1=5C;D;  (50b)
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greatly differs[Fig. (@ and 9b)]. The spectrum, symmetri- 4, E(r)A(F,t)=— E{(r)A(F,t) +i grE4(r)(2A+A* + A?
cal with respect to the two axgig. 9c) and 9d)], displays

the same peaks as tl{8-8) pattern described above, plus +2|A[2+AJA]?)

four E; peaks on the second ring, which are the brightest L

ones. +a exp’(ﬂ V%necav) —1]E5(r)A(F,t).
At E4=0.022 the time trace is constant over thousands of

round trip times, the spectrum displays two sets of bisquares (51

twisted by 53°, with equal amplitudg#;~0.15, C;=0.05
on the first and second ring, respectively, plus the four brigh]E
E; peaks with amplitude 0.15.

At E(=0.023, a very tiny increment is observed on the
time trace after a very long integration time. In the near fiel

In the case of a Gaussian input profile, let us set
(N=E;exp(—r¥w? and A(F)=Aexp(Kyx), with
r’=x2+y2. The effect of the free-space propagation in the
cavity, which appears in the last term of E&§1) may be

the pattern is still periodic, but in the far field there is no ritten as

more equipartition of the energy in the first set of modes. Lo, . )

The two rectangles joined by the solid lines in Figd)9 (GXPE VT_l]Es(r)A(r):{eXF(_'9C+,3)_1}
become brightefA;=0.25, C;=0.1), the others get darker R
(A;=0.1,C;=0.04. In that case the far field mainly consists XEg(r)A(r), (52)

in three rhombuses, but their vertex angles forbid any reso- .
nant coupling between mode (K’ ), while the resonant with 6.= 6(K.) [Eq. (4], and
(K,v2K) coupling persists between the two orthogonal 2K Lx
rhombuses of the first ring. While this pattern formation is T kW
not well understood, let us notice that it also results from a

mode-locking process, since the vectorial mode-locking retn the beam waist, fox~w, one hasg~(2K,L/kw). The
lations, Eqgs(51), still exist, moreover the growth of thig condition for Eq.(51) to reduce to Eq(11) is B<|sin 6|,

KL Lx?

peaks occurs becauE?E'f B_§§1. else in terms of the aspect ratic=K w/r.
In summary these patterns illustrate a case of secondary 4 9
bifurcation where two twisted patterns are formed from an > — W (54
™ c

original structure. The original4-4) structure is here not

destroyed, similarly to the case analyzed byllgiuin terms At threshold the diffraction parameter correspahet0.2,

of weak (K, 2K) coupling. _ and 6.1 for the focusing and defocusing case, respectively,
But the final (8-8) or (8-12) arrangements are different, (sin 9,.=—0.2), that gives

since the peaks are not regularly distributed in our case.

Moreover, the twisting angle 53° does not result from a tri- I'>1 in the focusing case, (55)
adic interaction between critical wave vectdks,K') as in _ .
Muiller’s case, but it results from the vectorial relations, Egs. I'’>40 in the defocusing case. (56)

(50), that allows a spatial mode locking with basic wave

vectorsKye1 2> NOw let us return to the “rotated” straight S ; .
pattern described in Sec. Il A, and use the notations of Figvery large aspect ra_tlos in the defpcusmg side. . .
2(d) and 8e) to describe t'he Io,cation of the peak intensity in " Let us now describe the numerical results obtained either
. ) . with a Gaussian input, and aspect ratios increasing from
the ]‘ar field of Figs. 2 and 3, withAp,Bo,Cq,Do) for the I'~=10 up toI'=20, or with a flat circular input with aspect
straight pattern, and;,B5,C5,D,) for the rotated one. Cu- 4iins yp toI'~35. For these simulations a 38884 grid
riously Kiqq is also equal to the drift vectohoA, respon- a5 ysed. We have no results for larger value§.of
sible for the rotation of the first “straight” structure, there- (a) With a Gaussian input amplitudg,, for ['~10, the
fore the ki,x modes which emerge near~1.8 were  gtationary profile is bell-shaped over a large range of control
responsible for the rotation at=1.43. parameter, untiEq .,=5E, ;, Where it destabilizes into an
hexagonal structure2]. ForI'~20, the top of the bell-shaped
profile gets rings aEy=2.8E, y,, then the inner rings get
modulations; and the hexagonal structure appears at

. ) . Eohex=4Eq 1. For aspect ratid'~20, the patterns obtained
While one expects a continuous transition between resultggjow Eq hexare therefore similar to the ones obtained in the

using the plane-wave approach, and those of a finite-sizg,cysing case with aspect ratio of order unity, leading to the
beam, the patterns obtained in the defocusing side of thgajsylike structure$11].

resonance are boundary dependent up to very large aspect (p) With a flat circular input, the profile gets concentric
ratios. This result can be supported by an estimation of théings below the linear plane-wave threshold, even for an as-
boundary effects in Eq(10). Let us suppose now that pect ratio of order ten, and they persist above the threshold.
E=E4(r)(1+A), whereEg(r) is the stationary profile for a When increasing,, the rings become slightly modulated as
circular input beanE,(r). The perturbatiorE;A obeys the shown in Fig. 10, and finally large hexagonal modulations
equation are observed. As in the Gaussian input case, the threshold for

Therefore the plane-wave limit is expected to be valid for

V. CIRCULAR INPUT BEAM
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Then the bisquare structure destabilizes into the mode-locked
structures of Figs. 8 and 9, which keep the “memory” of the
biconical one, splitting into two twisted biconical structures.

The secondary bifurcation leading to the “rotate-4)
structure, was interpreted as a drift bifurcation while no drift-
ing solution was observed. On the contrary, after destabili-
zation of the latter structure we have obsery@eB,12 pat-
terns that clearly display unlocked phases and drift very
slowly on a small range of critical parameters.
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APPENDIX A: AMPLITUDE EQUATIONS
FOR THE BISQUARE WITH é,, u~e

FIG. 10. With a flat circular inpul’=10 the concentric rings The second-order equatid@?) is still valid with a right-

observed on the near—fielnd intensity profffeom E4=0.006, up to hand side {,,9,) given by Eq.(23) plus the additional term
0.060 get small modulations above the threshéi} ;,=0.012. (1,)'9,R, . The solvability conditions are then
Here Eq=0.025. ’

2ncC
the appearance of hexagons decrease when increasing the (3——CZ) d1R1=r1R;+2r(R.R}),, (A1)
aspect ratiqEg pe,~5Eq ¢, for I'~10; while Eq e,~2.4E¢ yn
for I'~35). 2nc’
These numerical results agree with the prediction of the R =T!R,—2r.,v'(R?), . (A2)
finite-size effects for aspect ratios as large as 35. The role of (3=¢’?) T AT Sery ALY

the boundary is to favor the rings at the first bifurcation. The ) ) )
spectral components for the second, third, etc., cones ard particular solut|on_ol1c second—ord_er equation, orthogonal to
present on the form of concentric rings in the far field, butthe kemel of the adjoint operator is

they are much weaker than the first ring. Thus the boundary . , . , o2
seems to raise the outer cone thresholds, that may explain tH82=U(1~1€)(RiRy); +v(1=ic)raRy+u'(1—=ic)(Ry%),
appearance of hexagons at the secondary bifurcation. Finall , A 2 2 2 2\’
thpep observation of gbi—square with a cirycular input beamy Fol(=iehnRet (Al + B g+ (IC +[Dal)g
should require very large aspect ratios, due to relats). (A3)
Such important effects due to the boundary conditions were _ )

absent in the focusing case, in agreement with rela@ay, ~ With the same notations as in E@6), and

and also in the study of polarization instability of the

2
feedback-mirror devicgs] where(6,/|siné;|)~1 on both side w=— gr i+f+cr R i+2c+c_-
of the resonance. “\2¢c 2 ’ e\ ¢’ c')

7 [3—c? 7 [3—c'?
VI. CONCLUSION = | — ' =—— | ———+ ¢’
v 2(20+C’U 2(20’+C'

Multiconical emission of light was also observed after _ N -
propagation through a nonlinear mediya8], without any At third order, the solvability condition are
cavity. This process was understood in the case of a thin

nonlinear medium, as an interference effect in the far field 2

3+c ,
rR1+ 5—=ri(Ry),—2r;(RRy),—r.Z=0, (A4)

between two parts of the phase-encoded beam profile. Such 3—¢c?

effect appears if the intensity of the input varies along the

transverse profile, consequently it cannot be observed with a 34+¢'2

plane-wave input. While in the ring cavity case, the multi- roR;+ 3-c2 ri(Ry),—2ry(R3),—rlz'=0, (A5)

conical emission is predicted and numerically observed ei-
ther with a finite-size beam or with a plane-wave input with
periodic boundary conditions.
In summary with a plane-wave input beam, the pattern

formation results from a strong intermode coupling, differ- Z=W+
ently from the Miler model. Indeed the monoconical hex-

agonal structure is never obtained with a plane-wave input )
beam, the emerging structure being a bisquare at threshold. Z'=W'+2rp(Ry); . (A7)

where

f
2riv'+ar10)(R1Ri)r- (A6)
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A combination of the second- and third-order solvability r.R=—rl. v (R%, . (B7)
" : L 3 1= cx V=R

conditions, respectively, multiplied bsf and €’ leads to the

following system of coupled equations: Particular solutions of the second-order equatjém.

5 5 (22)] are similar to Eqs(26), with u’—u’ ,g’—g., and
GA=p(1+mu)A+ BAACHA(SAT+0CY),  (A8) finally the third-order solvability condition is similar to Egs.
(30). The relevant term for our purposeMg, which contains
the self-couplingA;,A; and the intermode coupling;, A .
Let us noteW,; the part ofW relative to the Fourier com-

£0,C=u'(1+m u')C+ BoA2+C(8'C2+ o' A2), (A9)

with ponent expiK;X). The generalization of Eq30) gives
=2 +uli+1, ;Bc=—2y+u'l+15,, (A10 .
Pam 2yt phitluifem =2y uidat e, (A0, a[(29+3))|A2 +y A7| +a,|CE +a_| D3]]
3+c? 3+c’?
m=3=gzfers M=3=cz0v'Ma;  (ALD) +aA’CyDy, (B8)
where a;;=2g+2(e, +e_)+6j. The coupling coefficient
f f between the two modex(,K;) is then
11:2 27+rcrv— y 112:2r,crl), —_, 12:_2)\,},/,
u u a.
_ i .
1,1=2rqv m (A12) (B9)
, . . with
andé, o, 8, o’ are given in Eqs(37).
[, 3+c?—2ccl
APPENDIX B: ANGULAR COUPLING FOR TWO SETS OF e.=—7nry|Ccx WvLZC : (B10)
ACTIVE MODES *
The weakly nonlinear analysis of the biconical pattern is APPENDIX C: ANGULAR COUPLING EOR A
presented in the text, Sec. lll C, within the hypothesis of MONOCONICAL PATTERN

orthogonal wave vectors on each cone. Here we generalize ) ) ) )
the calculation to d4-4) pattern with arbitrary vertex angle _ 1he weakly nonlinear analysis of EQL0) solutions in the

V=(K;,K;). Let us write vicinity of the threshold is detailed here when monoconical
' i i emission occurs. This problem was treated in the case of
Rl:AieiKi3<+ Ajeikj;+ c.C. (B1) critical wave numbeK,, [2,8,9; here we generalize the cal-

culation for arbitrary valué, in the vicinity of K, , with the
notations of Sec. Il B.

R;=C e/ kitK)xq Dlei<'2i"<i)3<+ c.c. (B2)
The two sets of active modes with wave numbers 1. Hexagonal structure
Kc=|Ki|=|K;| andK’ =|K;+ K|, become linearly unstable In the case¥=/3, the quadratic nonlinearity leads to
at[ry,, ®=asing(K)] and[r.,., ®.=asin®(K,)], re- resonant terms at second order, as in the biconical case. The
spectively, withé.. given by amplitude equations are derived with the same scalings as in
Sec. Il B.
0.-=0(K.)=20(K)(1=cos ) (B3) At first order the complex field amplitude has real and

_ o ~ imaginary parts
With these three distinct threshold values, the derivation

of the amplitude equations for the biconical nonorthogonal Rlele"Zi;‘+ Bleilzj;(+ (;1ei'<ﬂn5ur c.c. (CY
structure is a straightforward generalization of the orthogonal
mode case. The only difference lies in the fact that the modes l,=cRy,

K’ have two different thresholds, it results that all the coef- .
ficients depending onc(,y’,e,e’,...), in Sec. lll C, split whereK;; ., are three wave vectors with vertex angte's,

into (c% ,e,y%), with and equal modulK which become linearly unstable gg,
- - given by Eq.(13)
cL=—04L+3r. (B4) At second order, Eq22) with
deduced from Eqg21). f2 c 2cR:
At first order the imaginary part of the order parameter g2/ |\ -3 nraR+ e —(3+c?HR? (€2

is
leads to the solvability conditionf,+g,=0 or
[, +1;=cRy+c Ry, +c . R;j_+c.c. (B5)
rR;= _rcr(Ri)r (C3
At second order Eq22) leads to the system
) , and the particular solution which is orthogonal to the kernel
rRy1=rey[(RiRy ) +(RiRy )], (B6)  of L is of the form
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Ro= (R ot as(R)k+ as(RE)ys, + aa(RD) ok,  (CH)

1= Bo(R?)o+ Bi(RDk + Bs(RD)ys, + Ba(RD) ok, (CH)

where the indexnK in (R?) is relative to the modulus of the
wave vector, and

a1=mnCrel2, B1=—cay, (Co)
f2(n)+b(n)g,(n) c(n)fa(n)+g,(n)
T pme(n—1 P b(nje(n)—1
for n#1 (C7)
with ®,=R/(1—R) sin(nK?+ 56,,,) and
b(nN)=0,—nrc,, c(nN)=379re—0,. (C8)

At third order the solvability condition is

2

2ncC c
) 2R =T1,R+r14 32 (Ro)r +rer VRIRy,
1+c® )
+(1_C)—(R1)r+rl(R1)r- (C9)

3—c?

The addition of the two solvability condition6C2)—(C5)

multiplied by € and € respectively, leads to the coupled set

of amplitude equations foh= €A, B=¢€B;, C=¢C,,
d,A=uA+(1+1u)BC+A[e|A%]+f(|B?+|C?], (C10

where
3+c? (1—c)(1+c?)
BRI A e

The coupling function defined in Eq47) appears in Egs.
(C10 as

B(wl3)= g (C13

For a tuned cavity(6,,~0) and K=K, the valueB(#/3)
=0.77 is reported in dots in Fig.().

BICONICAL EMISSION OF SPATIALLY MODE-LOCKBD . . .
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2. Two modes with vertex angleW # /3

In the case of two modes with amplitudas: €A, + €?A,,
B=eB,+€’B,, and arbitrary value off#7/3, the first-
order expansion for the field is of the form

R;=A,eKi*+B,ej*+c.c.

Since the quadratic term in the second order EZR) is
nonresonant, the solvability conditigkq. (C3)], is

r1=0, (C15)
and the particular solution
Ro=ao(Rio+ a4 (RD+ + a— (R k- + as(RD) ok, (C16

where « is given in Eq.(A7) and (A8) and a.. is like «,
with

n—¢.=2(1*xcost). (C17
In the case of critical wave numb&r,=Kj;,,
3-26 20—-3+2¢.(2—6
¢+ (2-6) c18

T T 9-2)2 T 2= 0)2(1-47)

At third order, the solvability condition, Eq(C9) where
r,=0, leads to the amplitude equation,
d,A=uA+Ale|A?|+f|B?] (C19

and symmetrical relation fog B, wheree is given by Eq.
(C13 and

f=2ap+ a,+a_+4j. (C20
The coupling function between thhe B modes appearing in
Eg. (C19,

f
B(Y)= s (C21

is drawn on Fig. éo) for the tuned cavity with critical wave
numberK, .
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