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We consider a single perfectly reflecting plane mirror moving in the vacuum of the electromagnetic field, in
the nonrelativistic approximation. We calculate the frequency and angular spectra of the emitted radiation.
Photons are created in pairs, implying some simple and general properties of the spectra. In the case of
TM-polarized photons, the angular distribution is concentrated on a particular direction that depends on the
photon frequency, whereas TE photons are smoothly distributed around the direction perpendicular to the
surface of the mirror. The total radiated energy is shown to be related to the dissipative force exerted on the
mirror, in agreement with energy conservation.@S1050-2947~96!09409-7#

PACS number~s!: 42.50.Lc, 42.50.Dv, 03.65.2w, 12.20.Ds

I. INTRODUCTION

The most well-known illustration of mechanical effects
related to the quantum vacuum field is the Casimir force
between two mirrors at rest. A new effect appears when the
mirrors are set to move. In this case, the vacuum field may
exert a force that tries to damp the motion@1–3#. Such dis-
sipative force may be understood as the mechanical effect of
the emission of radiation induced by the motion of the mirror
in vacuum. Pairs of photons are created out of the vacuum
state, and energy conservation entails the existance of a ra-
diation reaction force working against the motion.

The simplest theoretical model amounts to consider only
propagation along the direction perpendicular to the plane of
the mirror~one-dimensional or 1D models!. Photon emission
in the case of lossless 1D cavities with moving end mirrors
was considered in Refs.@4,5#. A more complete treatment,
taking into account a finite transmissivity through the mir-
rors, has been recently presented@6#.

Recently, three-dimensional~3D! calculations were per-
formed in several contexts, including dieletric media moving
sideways@7,8#, cavities with oscillating boundaries@9#, and
collapsing dieletric spheres@10# ~the latter in connection
with sonoluminescence!. Emission of photons may occur
even in the presence of a single moving mirror in vacuum, as
shown in the context of 1D models@6,11#. In this paper, we
calculate the spectra for photon emission considering the full
3D electromagnetic field. As a simple illustration, we take a
plane perfectly reflecting mirror moving along the normal to
its surface, which is taken to be thex direction. We neglect
the recoil of the mirror due to photon emission. Accordingly,
we assume that the mirror’s position is a given function of
time imposed by some external means:

x5dq~ t !.

Furthermore, we assume thatdq(t) corresponds to a
bounded nonrelativistic motion:dq̇(t)!c, where c is the
speed of light. This last assumption entails that only low-

frequency photons are emitted, allowing us to employ simple
analytical methods based on the long-wavelength approxi-
mation. The same model was considered by one of us in
order to calculate the dissipative force exerted on the mirror
@3#. Although the total radiated energy may be correctly ob-
tained from the dissipative force through energy conserva-
tion @12#, it is not possible to extract information about the
photon spectra from it. Accordingly, here we employ a dif-
ferent approach, based on the manipulation of suitable Green
functions, which turns out to be more convenient for the
derivation of the photon spectra.

The paper is organized in the following way. In Sec. II,
we derive the boundary conditions for the electromagnetic
field, treating separately the two field polarizations and em-
ploying the long wavelength approximation. Output fields
are then obtained in terms of input fields in Sec. III, allowing
us to compute the rate of photon emission at a given fre-
quency and spatial direction in Sec. IV. We discuss our re-
sults in Sec. V.

II. BOUNDARY CONDITIONS IN THE LONG
WAVELENGTH APPROXIMATION

The condition of perfect reflectivity implies that the elec-
tromagnetic fieldsE8 andB8 measured in the instantaneously
comoving Lorentz frameS8 obey the boundary conditions
@13#:

x̂3E8umirror50, x̂•B8umirror50. ~1!

In order to solve the problem of scattering by a moving plane
mirror, our first step is to decompose the input plane waves
into components corresponding to the electric field parallel
~TM! or perpendicular~TE! to the plane of incidence. Each
polarization is then represented by carefully chosen poten-
tials. We use mks units withe051, c51.

For the TE field, we take the usual vector potential
A~TE!, defined through the equations

E~TE!52] tA
~TE!, B~TE!5“3A~TE!, ~2!
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and which is taken in the Coulomb gauge:“•A~TE!50. The
key point in the derivation of the boundary condition for
A~TE! is the propertyx̂•A~TE!50, which entails the invariance
of A~TE! under the Lorentz boost from the comoving to the
laboratory frame. As shown in Ref.@3#, the condition result-
ing from Eqs.~1! and ~2! is given by

A~TE!
„x5dq~ t !,y,z,t…50. ~3!

Equation~3! was first obtained by Moore@13# in the particu-
lar case of 1D models.

In the case of TM polarization, the vector potential de-
fined as in Eq.~2! does have in general a component along
the x direction, thus resulting in complicated boundary con-
ditions. A much simpler approach was introduced in Refs.
@3,14#, which relies on the definition of a new vector poten-
tial A~TM! as

E~TM!5“3A~TM!, B~TM!5] tA~TM!. ~4!

Moreover, we choose the gauge given by“•A~TM!50. As
in the case of TE polarization, we havex̂•A~TM!50, hence
yielding a simple boundary condition forA~TM! in the non-
relativistic approximation~see Ref.@3#!:

@]x1dq̇~ t !] t1O„dq̇~ t !2…#A~TM!~x,r i ,t !ux5dq~ t !50.
~5!

In the particular case of astationarymirror, we may write
a normal mode decomposition for the fields, which are then
denoted asAsta

~TE! andAsta
~TM! . We take periodic boundary

conditions on theyz plane over a square of surfaceS, which
is identified with the~very large! surface of the mirror. Then
the components of the wavevectors parallel to the plane of
the mirror are restricted to discrete values:

kin
5
2p

AS
~nyŷ1nzẑ!, ~6!

where the indexn denotes a given pair of integer numbers
(ny ,nz). We assume the mirror to be atx50, and hence take
dq(t)50 in Eqs.~3! and ~5!. For the TE field, we find

Asta
~TE!~x,r i,t !5 i E

0

`dkx
2p (

n
A 2\

vnS
sin~kxx!

3eikin•r ie2 ivntan
~TE!~kx!x̂3 k̂in

1H.c., ~7!

with

vn5Akx21kin
2 ~8!

and where H.c. means the Hermitian conjugate. The TM
field is written as follows:

Asta
~TM!~x,r i,t !5E

0

`dkx
2p (

n
A 2\

vnS
cos~kxx!

3eikin•r ie2 ivntan
~TM!~kx!x̂3 k̂in

1H.c.

~9!

The fields in Eqs.~7!–~9! are normalized so as to yield the
following representation for the field Hamiltonian corre-
sponding to the half-spacex>0:

H5 (
e5TE, TM

(
n
E
0

`dkx
2p

\vn~kx!

2

3@an
e~kx!

†an
e~kx!1an

e~kx!an
e~kx!

†#. ~10!

The operatorsan
~TM!(kx) andan

~TE!(kx) obey the commutation
relations

@an
e~kx!,an8

e8~kx8!#50 ~11!

and

@an
e~kx!,an8

e8~kx8!†#52pd~kx2kx8!dn,n8de,e8, ~12!

wheree5TE,TM stands for the polarization.
In order to consider the effect of the motion of the mirror,

we write the fields as

A~TE!5Asta
~TE!1dA~TE! ~13!

and

A~TM!5Asta
~TM!1dA~TM!, ~14!

wheredA~TE! anddA~TM! correspond to the field modifica-
tion due to the mirror’s motion. They are usually of the order
of dq(t), and hence represent a small perturbation of the
motionless case. The only exception occurs in the case of
TM polarization, when the parameters are such as to scatter
radiation near the grazing direction@14#. Here we neglect
this possibility and accordingly solve Eqs.~3! and ~5! by
taking a perturbative expansion. Furthermore, we assume
that the fields are nearly constant over a distance of the order
of dq(t), and hence expand Eqs.~3! and~5! up to first order
in dq(t). As discussed in Sec. IV, the long-wavelength ap-
proximation is closely connected to the nonrelativistic limit
as far as the photon emission effect is concerned. Replacing
Eqs.~13! and ~14! into Eqs.~3! and ~5! yield

dA~TE!~0,y,z,t !52dq~ t !]xAsta
TE~0,y,z,t ! ~15!

and

]xdA~TM!~0,y,z,t !52~dq~ t !]x
21dq̇~ t !] t!Asta

~TM!~0,y,z,t !.
~16!

Equations~19! and ~20! provide the first-order boundary
conditions for the fields. They result from the long wave-
length approximation as well as from assuming the motional
corrections to be small perturbations.

In order to benefit from the plane symmetry, we Fourier
transform the fields as follows:

An
~TE!@x,v#5

1

SE dtE
S
d2r ie

ivte2 ikin
•r iA~TE!~x,r i ,t !,

~17!

wherer i5(y,z) is the position on the surface of the mirror,
and proceed likewise forA~TM!. The mixed representation of
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Eq. ~17! differs from its reciprocal space analog used in Eqs.
~7! and ~9! by keeping the real space coordinatex. This is
convenient for treating the scattering by the mirror, which is
at a given time-dependent position along thex axis. Since
A~TE! andA~TM! satisfy the wave equation, the two represen-
tations are closely connected. In fact, the variableskin

and

v define exactly two wave vectorsk, which are given by
k56kxx̂1kin

with

kx5@~v1 i e!22kin
2 #1/2, e→01, ~18!

defined as a function ofv with a branch cut along the seg-
ment on the real axis between2kin

and kin
. Herev is an

independent variable assuming both positive and negative
values, whereas the frequencyvn in Eq. ~8! is positive de-
fined.

In the Fourier representation defined by Eq.~17!, the
boundary conditions given by Eqs.~15! and ~16! read

dAn
~TE!@0,v#52E dv8

2p
u~kx8

2!dq@v2v8#]xAstan
~TE!@0,v8#

~19!

and

]xdAn
~TM!@0,v#52E dv8

2p
u~kx8

2!dq@v2v8#

3~kin
2 2vv8!Astan

~TM!@0,v8#, ~20!

wheredq@v# is the Fourier transform ofdq(t), kx8 is a func-
tion of kin

and v8 as in Eq.~18!, and u(kx8
2) is the step

function of kx8
2. Note that the same indexn appears in both

sides of Eqs.~19! and ~20!, corresponding to the property
that kin

is conserved in the scattering by the mirror, as ex-
pected from plane symmetry. Accordingly, the scatering of
An

~TE!@x,v# provides vector fields all polarized along a fixed
direction in space, given by the productx̂3kin

~the same
holding for TM polarization!. Therefore, the scattering of the
electromagnetic field by a plane boundary is reduced to two
independent effective scalar problems, corresponding, ac-
cording to Eqs.~19! and ~20!, to Dirichlet and Neumann
boundary conditions. Their solutions are obtained in the next
section.

III. INPUT AND OUTPUT FIELDS

In this section, we derive a linear transformation between
output and input field operators. We start from Eqs.~13! and
~14!, and then use Dirichlet and Neumann Green functions,
GD(xux8) andGN(xux8) in order to write

An
~TE!@x,v#5Astan

~TE!@x,v#2]x8GD~xux850!dAn
~TE!@x850,v#

~21!

and

An
~TM!@x,v#5Astan

~TM!@x,v#1GN~xux850!

3]x8dAn
~TM!@x850,v#, ~22!

with dAn
~TE!@x50,v# and dAn

~TM!@x850,v# given by Eqs.
~19! and ~20!.

We assume that the motion takes place during a finite
time interval. Then, if we take retarded Green functions~de-
noted by the superscriptR) in Eqs.~21! and~22!, which are
such that

]x8GD
R~xux850!52eikxuxu, GN

R~xux850!5 ieikxuxu/kx ,
~23!

and with kx defined by Eq.~18!, the stationary fieldsAsta
~TE!

andAsta
~TM! in Eqs. ~21! and ~22! represent input fields, de-

noted asA in
~TE! andAin

~TM! . They correspond to the total field
in the limit t→2`. On the other hand, when taking ad-
vanced Green functions, being such that

]x8GD
A~xux850!52e2 ikx* uxu,

GN
A~xux850!52 ie2 ikx* uxu/kx* , ~24!

the stationary fields are replaced by the output fieldsAoutn
~TE!

andAoutn
~TM! in Eqs. ~21! and ~22!, which correspond to the

limit t→`.
We consider the radiation emitted into the half space cor-

responding to the positivex axis, and accordingly assume
x>0 from now on. In order to derive the relation between
input and output fields, we combine the retarded and ad-
vanced Green functions to write, from Eq.~21!,

Aoutn
~TE!@x,v#5A inn

~TE!@x,v#

2@]x8GD
R~xux850!2]x8GD

A~xux850!#

3dAn
~TE!@x850,v#1O~dq2! ~25!

and likewise we derive from Eq.~22!,

Aoutn
~TM!@x,v#5Ainn

~TM!@x,v#

1@GN
R~xux850!2GN

A~xux850!#

3]x8dAn
~TM!@x850,v#1O~dq2!. ~26!

In Eqs. ~25! and ~26! dAn
~TE!@0,v# and dAn

~TM!@0,v# are
given by Eqs.~19! and ~20! with the stationary fields re-
placed by the input fields. Then, from Eqs.~19! and ~23!–
~25! we derive for the TE fields

Aoutn
~TE!@x,v#5A inn

~TE!@x,v#22isin~kxx!

3E dv8

2p
u~kx8

2!dq@v2v8#]xA inn
~TE!@0,v8#,

~27!

a result valid to first order indq. For the TM field, we use
Eqs.~20! and~26! instead of Eqs.~19! and~25! and then find

3422 54P. A. MAIA NETO AND L. A. S. MACHADO



Aoutn
~TM!@x,v#5Ainn

~TM!@x,v#2
2icos~kxx!

kx
E dv8

2p
u~kx8

2!

3dq@v2v8#~kin
2 2vv8!Ainn

~TM!@0,v8#. ~28!

An important property of Eqs.~27! and~28! is the absence of
evanescent wave components. This is expected, since eva-
nescent waves are bounded near the mirror’s surface, and
hence do not contribute to radiation. Note however that both
the retarded and advanced solutions of Eqs.~19! and ~20!
contain evanescent components, which are~exactly! sub-
tracted away when computing the input-output relations from
Eqs.~25! and ~26!.

We may get more physical insight on the input-output
transformation by considering the field normal mode decom-
position and then deriving a linear transformation for the
annihilation and creation operators. We assume that the mir-
ror was initially atx50, and then after bouncing during a
finite time interval it comes back to its original position.
Thus, both output and input fields have the same normal
mode decomposition as in Eqs.~7! and ~9!. We replace
Asta

~TE! by A in
~TE! andAsta

~TM! byAin
~TM! and then Fourier trans-

form the expressions in Eqs.~7! and~9! according to the rule
defined by Eq.~17! to find

A inn
~TE!@x,v#5 iu~kx

2!A2\uvu
kx
2S

sin~kxx!

3@u~v!ainn
~TE!~kx!2u~2v!ain2n

~TE! ~2kx!
†# x̂3kin

,

~29!

and

Ainn
~TM!@x,v#5u~kx

2!A2\uvu
kx
2S

cos~kxx!

3@u~v!ainn
~TM!~kx!2u~2v!ain2n

~TM!~2kx!
†# x̂3kin

,

~30!

with kx given by Eq.~18!.
By taking the output instead of the input fields, we obtain

similar expressions forAout
~TE! andAout

~TM! , where the input
operatorsainn

~TE!(kx) andainn
~TM!(kx) are replaced by the output

operatorsaoutn
~TE!(kx) andaoutn

~TM!(kx). They all satisfy the com-

mutation relations given by Eqs.~11! and ~12!, and are im-
plicitly related by the input-output transformation given by
Eqs.~27! and ~28!. From Eqs.~27!–~30!, we obtain the fol-
lowing result for the input-output transformation of opera-
tors:

aoutn
~TE!~kx!5ainn

~TE!~kx!12i
kx

Avn
E dv8

2p
u~kx8

2!

3Auv8udq@vn2v8#

3@u~v8!ainn
~TE!~kx8!2u~2v8!ain2n

~TE! ~2kx8!†#

~31!

and

aoutn
~TM!~kx!5ainn

~TM!~kx!2
2i

Avn
E dv8

2p
u~kx8

2!

3
Auv8u~kin

2 2vnv8!

ukx8u
dq@vn2v8#

3@u~v8!ainn
~TM!~kx8!2u~2v8!ain2n

~TM!~2kx8!†#,

~32!

wherekx8 is related to the integration variablev8 as in Eq.
~18!. Within the first-order approximation considered here,
Eqs ~31! and ~32! are fully consistent with the commutation
relations of Eqs.~11! and ~12!.

According to Eqs.~31! and~32!, the motion of the mirror
may induce a mixture between creation and annihilation op-
erators. As shown in the next section, such mixture is a sig-
nature of the effect of emission of photons out of the vacuum
state.

IV. SPECTRA OF THE EMITTED PHOTONS

As a result of the motion of the mirror, the field operators
are transformed according to Eqs.~31! and ~32!. In the rep-
resentation considered here, the field state remains un-
changed. We consider the simplest situation where it corre-
sponds to the vacuum state associated to the input field
operators:u0in&. According to Eq.~10!,

^0 inuaoutj
e ~kx!

†aoutj
e ~kx!u0 in &

dkx
2p

~33!

represents the average number of emitted photons with po-
larization e ~TE or TM! and wave vectork with parallel
component equal tokin

and x component betweenkx and

kx1dkx .
For the sake of simplicity, we consider a damped sinu-

soidal motion:

dq~ t !5dq0e
2utu/Tcos~v0t !, ~34!

with

v0dq0!1 ~35!

and

v0T@1. ~36!

The first assumption corresponds to the nonrelativistic ap-
proximation, which is vital for the entire approach developed
in this paper. The second assumption, on the other hand, is of
secondary importance, and is taken only to avoid unneces-
sarily complicated results.

The matrix elements in Eq.~33! are different from zero on
account of the contamination of the output annihilation~cre-
ation! operators by input creation~annihilation! operators.
This also corresponds to a mixture between positive and
negative frequencies, since they are, according to Eqs.~29!
and ~30!, associated to annihilation and creation operators,
respectively. In fact, the termsain2n

~TE! (2kx8)
† and

ain2n

~TM!(2kx8)
† in Eqs.~31! and ~32! are associated to a nega-
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tive input frequencyv8 from which is generated an output
sideband at the positive frequencyvn5v01v8. From this
simple reasoning, we infer that all emitted photons have fre-
quenciesvn in the rangevn<v0 . As a consequence, the
nonrelativistic regime, Eq.~35!, entails that the wavelengths
l generated out of the vacuum satisfyl@dq0 . Actually, the
long-wavelength approximation employed in this paper is
equivalent to assuming the motion to be nonrelativistic and
bounded, as it is the case for the example considered in Eq.
~34!.

A second restriction on the emitted photons originates
from the plane symmetry and the corresponding conservation
of the parallel component of the wave vector,kin

. Since the

input frequencies satisfy the innequality2v8>kin
, we have

the following additional condition on the emitted photons:

v02vn>kin
. ~37!

We write the matrix elements in terms of the angleQ be-
tween thex direction and the direction at which the photon is
emitted:

Q5sin21~kin
/vn!. ~38!

If vn>v0/2, Eq. ~37! implies that no emission occurs out-
side the angular range defined by the inequality

Q<Q0~vn![sin21
v02vn

vn
. ~39!

Within this range, we find nonzero matrix elements from
Eqs.~31!–~34!:

^0 inuaoutn
~TE!~kx!

†aoutn
~TE!~kx!u0 in &

5~dq0!
2Tvn

2Asin2Q02sin2Qcos2Q ~40!

and

^0 inuaoutn
~TM!~kx!

†aoutn
~TM!~kx!u0 in &

5~dq0!
2T

~v02vncos
2Q!2

Asin2Q02sin2Q
. ~41!

Note that the average photon numbers do not depend on the
direction ofkin

, as expected because of the plane symmetry.
Moreover, they are proportional to the time duration of the
motion T. Since we consider an open system in this paper,
photon numbers are not meaningful per se, so that we must
ultimately deal with photon productionrates. For the steady
oscillation considered here@see Eq.~36!#, the latter should be
time independent, which is in accordance with the linear
time dependence in Eqs.~40! and ~41!. Note however that
when a closed cavity system is considered, a different time
dependence may result even in the case of stationary oscil-
lations, as in the problem of an ideal cavity with resonantly
oscillating boundaries, where the intracavity photon numbers
may grow exponentially in time@9#.

Before computing the spectra from Eqs.~40! and~41!, we
shall discuss an alternative approach based on the effective
Hamiltonian@2#

dH52dq~ t !F, ~42!

whereF is the field operator representing the force exerted
on the mirror along thex direction. Since it is a quadratic
operator on the field,dH is formally analogous to the Hamil-
tonian describing photon pair creation by parametric interac-
tion of a classical pump wave at frequencyv0 with a x (2)

nonlinear medium. Therefore, we may expect that the mo-
tional effect leads to the emission of pair of photons at fre-
quenciesv1 andv2 such that

v11v25v0 . ~43!

Furthermore, the two photons have the same polarization and
wave vectorsk1 andk2 such that

k1i
1k2i

50, ~44!

on account of the translational symmetry along the plane of
the mirror. In Fig. 1, we represent the two wave vectors and
their anglesQ1 andQ2 with the x direction. According to
Eq. ~44!, they are related by the equation

v1sinQ15v2sinQ2 . ~45!

Equation ~43! shows again that the emitted photons have
frequencies smaller thanv0 . Let us takev1 to be the largest
frequency in the pair,v0>v1>v0/2. Then, Eq.~45! entails
that the low-frequency photon is emitted along a direction
further from thex direction:Q2.Q1 . AsQ1 increases from
zero to its maximum valueQ0(v1) given by Eq.~39!, Q2
varies from zero top/2.

Although the approach based on Eq.~42! is useful for the
interpretation of the results obtained in this paper, it is not
strictly consistent with our model of perfectly reflecting
moving mirrors. In fact, no Hamiltonian description is avail-
able in this case@13#. Nevertheless, this effective model cor-
rectly describes the physics of perfectly reflecting moving
mirors — including the connection between fluctuations and
dissipation@2,12,15# — because it loosely corresponds to the
model of a dielectric mirror~whose interaction with the field
may be described by a Hamiltonian model@11#! in the limit
of large refraction index~yet according to a recent calcula-

FIG. 1. Twin photons emitted at the directions indicated by the
angles u1 and u2 , with wave vectorsk1 and k2 . Note that
k1i52k2i ~see text!.
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tion, an unexpected effect occurs when taking this limit in
3D space, namely, the emission of photons inwards into the
medium@8#!.

In order to compute the photon spectra from Eqs.~40! and
~41!, we first consider the number of photonsdNe(k) emit-
ted with polarizatione and wavevectork inside a volume
d3k in reciprocal space. Since we have employed periodic
boundary conditions over the mirror’s surfaceS in the two-
dimensionalyz reciprocal space@see Eq.~6!#, we multiply
the expression in Eq.~33! by the number of cells in theyz
reciprocal space to find

dNe~k!5^0 inuaoutj
e ~kx!

†aoutj
e ~kx!u0 in&

d3k

~2p!3
S. ~46!

By taking polar coordinates in the 3D reciprocal space, we
obtain from Eq.~46! the number of photons with polarization
e per unit frequency interval and solid angle~denoted as
V):

dNe

dvdV
~v,Q!5S

v2

~2p!3
^0 inuaoutj

e ~kx!
†aoutj

e ~kx!u0 in &.

~47!

We express the number of photons at a given frequency
v1 and angleQ1 in terms of the frequencyv2 and the an-
gular coordinateQ2 of the accompanying emitted photon
~‘‘idle’’ or ‘‘twin’’ photon !, which are given by Eqs.~43!
and~45!, respectively. From Eqs.~40! and~47! we derive the
angular spectrum for TE polarization:

dN

dvdV
~TE!~v1 ,Q1!5T

S

~2p!3
~dq0!

2v1
3v2cos

2Q1cosQ2 .

~48!

For TM photons, Eqs.~41! and ~47! yield

dN

dvdV
~TM!~v1 ,Q1!

5T
S

~2p!3
~dq0!

2v1
3v2

~11sinQ1sinQ2!
2

cosQ2
.

~49!

The angular spectra as given by Eqs.~48! and ~49! are both
proportional to the mirror’s surfaceS as expected.

Since the photons are created in pairs, to each photon
emitted at frequencyv1 along the directionQ1 there is an
idle photon of frequencyv2 emitted along the direction
Q2 . As a consequence, the angular spectra must satisfy

dNe

dvdV
~v1 ,Q1!sinQ1dQ1udv1u

5
dNe

dvdV
~v2 ,Q2!sinQ2dQ2udv2u. ~50!

In order to show that the results in Eqs.~48! and ~49! agree
with Eq. ~50!, we write

sinQ1dQ15S v2

v1
D 2cosQ2

cosQ1
sinQ2dQ2 , ~51!

which follows from Eq.~45!, anddv152dv2 , which fol-
lows from Eqs.~43!.

When considering propagation along the normal to the
surface of the mirror, TE and TM polarizations become rig-
orously equivalent. In accordance with this property, Eqs.
~48! and ~49! provide identical results for the photon distri-
butions at the forward directionQ1(5Q2)50. However,
they behave very differently at larger angles. In Fig. 2~a!, we
plot the TE angular photon distributionsdN~TE!(v1 ,Q1)/
dvdV as given by Eq.~48! with v15(22A2)v0 ~dashed
line! as well asdN~TE!(v2 ,Q2)/dvdV with v25v02v1

5(A221)v0 ~solid line!. Note that TE photons are loosely
concentrated near the forward direction. On the other hand,
the angular distribution for TM polarization is minimum at
the forward direction as illustrated in Fig. 2~b!, where we
plot dN~TM!(v1 ,Q1)/dvdV ~dashed line! and
dN~TM!(v2 ,Q2)/dvdV ~solid line! for the same values of
v1 andv2 considered in Fig. 2~a!. High-frequency TM pho-
tons are mostly emitted into a rather narrow angular sector
bounded by the angleQ0(v1) ~which is equal top/4 in the
numerical example considered in Fig. 2!. As a matter of fact,
the angular spectrum of TM photons as given by Eq.~49!
diverges atQ15Q0(v), since this corresponds to the situa-
tion where the idle photon is emitted along the grazing di-
rection:Q25p/2. Such singular behavior results from the

FIG. 2. Polar diagrams representing the angular distributions for
photon emission as functions of the emission angleQ and for a
fixed photon frequencyv. The direction corresponding toQ50 is
perpendicular to the surface of the mirror. We employ different
scales to represent TE~a! and TM ~b! polarizations. The dashed
lines correspond tov5(22A2)v0 ~then yielding Q05p/4),
whereas the solid lines correspond tov5(A221)v0 . Accord-
ingly, dashed and solid curves represent the angular distributions
for ‘‘signal’’ and ‘‘idle’’ photons which constitute a given pair
created out of the vacuum state, since the two frequencies consid-
ered are such that their sum equals the mechanical frequencyv0 .
When integrated over the solid angle, the dashed and solid lines for
each polarization provide the same~polarization dependent! spec-
tral distributions~see Fig. 3!.
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effect of resonant excitation of surface TM waves induced by
the motion @14#. Note, however, thatdN~TM!(v2 ,Q2)/
dvdV is finite asQ2→p/2, because the corresponding solid
angle 2psinQ2dQ2 as given by Eq.~51! also becomes very
large in this limit. In other words, for each~low-frequency!
TM photon emitted over a broad angular sector near the
grazing direction, its~high-frequency! ‘‘twin’’ is emitted
into a narrow angular sector close to and bounded byQ0 .

We may obtain the frequency spectra from Eqs.~48! and
~49! by integrating the angular spectra over the solid angle
V. We obtain simpler results by taking the dimensionless
variable

D52
v

v0
21,

representing the difference between the two frequencies as-
sociated to a given pair of photons. For TE polarization we
find

dN~TE!

dv
~v!5T

S

64p2 ~dq0!
2v0

4F14 ~12D4!1D2loguDuG .
~52!

The result for TM polarization is

dN~TM!

dv
~v!52T

S

64p2 ~dq0!
2v0

4

3F14 ~728D21D4!1~21D2!loguDuG .
~53!

Both dN~TE!/dv and dN~TM!/dv are even functions ofD,
hence implying that

dNe

dv
~v!5

dNe

dv
~v02v!. ~54!

This is again a signature of generation of twin photons with
frequencies given by Eq.~43!, as in a parametric process
with a classical pump field of frequencyv0 .

In Fig. 3, we plotdN~TE!/dv anddN~TM!/dv as functions
of v/v0 . As expected the plots are symmetric with respect
to the axisv/v051/2. According to Eq.~53! and as dis-
played in Fig. 3, the TM spectrum has a logarithmic diver-
gence atv/v051/2, a residue of the singular behavior of the
angular spectrum asQ→Q0 . In fact,v0/2 is a unique fre-
quency in the sense that both twin photons may be emitted
along the grazing direction — as shown by Eq.~39!,
Q05p/2 in this case.

The total number of emitted photons is derived from the
spectra given by Eqs.~52! and ~53!. We find that TM pho-
tons are produced in a larger number than TE photons:

N~TM!511N~TE!5
11

720p2TS~dq0!
2v0

5 . ~55!

As a consequence of the symmetry expressed by Eq.~54!,
the total radiated energy is given by

E5~N~TE!1N~TM!!\v0/2. ~56!

The total radiated energy is directly related to the dissipative
forceF(t) exerted on the mirror, which was derived in Ref.
@3#. For the particular motion given by Eq.~34!, it reads

F~ t !5
\

60p2Sv0
5dq0e

2utu/Tsin~v0t !. ~57!

Then Eqs.~34! and ~55!–~57! yield

E52E dtF~ t !dq̇~ t !, ~58!

in agreement with energy conservation.

V. DISCUSSION AND CONCLUSION

From Eq.~55! we may obtain the total photon production
rate, which is written in terms of the maximum value of the
mirror’s velocity vmax5v0dq0 and the lengthl052pc/v0
~which is smaller and of the order of the wavelengths gener-
ated by the motion! so as to allow for a direct comparison
with the 1D result of Ref.@6#:

N

T
5

1

15

S

l0
2S vmaxc D 2v0 , ~59!

where we have reintroduced the constantc in order to pro-
vide an explict evaluation of the orders of magnitude. As
compared to the 1D result, the 3D production rate contains
an extra ‘‘geometrical’’ factor equal toS/l0

2 , as already sur-
mised in Ref.@6#. Note that we have considered from the
start an infinite plane mirror, which actually describes the
limit S/l0

2@1 ~see Ref.@12# for a detailed discussion on how
such limit is obtained from the general case of a finite-size
time-dependent deformation of a plane mirror!. On the other
hand, whenS/l0

2;1, diffraction at the boundaries of the
mirror play an important role, then resulting in a different
dependence onS. For the presently available mechanical fre-
quencies,l0 is at least in the centimeter range. Therefore, we
believe that a calculation taking into account diffraction due
to the mirror’s finite size would be necessary for the quanti-

FIG. 3. Frequency spectra of TE~solid line! and TM ~dashed
line! photons as functions ofv/v0 . They are symmetric with re-
spect to the valuev/v051/2. Note that the TM spectrum diverges
at this value.
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tative description of an experiment aimed to observe quan-
tum radiation by moving mirrors. Nevertheless, a rough es-
timate of the photon production rate may be obtained from
Eq. ~59! by taking S/l0

2;1, v0 /(2p);10 GHz and
vmax/c;1027, then yieldingN/T;1025 photons/sec. This
shows that quantum radiation by a single moving mirror is a
very small effect.

In conclusion, we have obtained the angular and fre-
quency distributions of the photons created out of the elec-
tromagnetic vacuum state when a plane mirror oscillates in
the nonrelativistic regime. TM-polarized photons are created
at a larger rate than TE photons, except when measuring at
the direction perpendicular to the mirror’s surface, where the
production rates are equal. TE and TM angular distributions
are respectively maximum and minimum at this direction.
TM photons with frequencies larger thanv0/2 ~high-
frequency photons! are mostly emitted along directions at
angles close to and smaller than the frequency-dependent
angleQ0 defined by Eq.~39!, which is also an upper bound
for the angular directions of emission of high frequency pho-
tons for both polarizations. As the photon frequencyv ap-
proaches its maximum allowed value — given by the me-

chanical frequencyv0, Q0 tends to zero, and thereby the
angular distributions become very narrow. Most photons,
however, are emitted at frequencies nearv0/2, and hence
over a broad angular range, sinceQ05p/2 in this case. Low-
frequency TM photons are preferably emitted at directions
not far from the grazing direction.

Unlike the Hamiltonian approach developed in Refs.
@7,11#, our method does not explicitly unveil the two-photon
nature of the emission process. However, the symmetry
properties of the spectra obtained in this paper clearly indi-
cate that the photons are emitted in pairs, the ‘‘twin’’ pho-
tons having identical polarizations, opposite momenta along
the plane of the mirror, and frequencies that add to give
v0 .
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