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Quantum radiation generated by a moving mirror in free space
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We consider a single perfectly reflecting plane mirror moving in the vacuum of the electromagnetic field, in
the nonrelativistic approximation. We calculate the frequency and angular spectra of the emitted radiation.
Photons are created in pairs, implying some simple and general properties of the spectra. In the case of
TM-polarized photons, the angular distribution is concentrated on a particular direction that depends on the
photon frequency, whereas TE photons are smoothly distributed around the direction perpendicular to the
surface of the mirror. The total radiated energy is shown to be related to the dissipative force exerted on the
mirror, in agreement with energy conservatif81050-294{©6)09409-1

PACS numbe(s): 42.50.Lc, 42.50.Dv, 03.65.w, 12.20.Ds

I. INTRODUCTION frequency photons are emitted, allowing us to employ simple
analytical methods based on the long-wavelength approxi-
The most well-known illustration of mechanical effects mation. The same model was considered by one of us in
related to the quantum vacuum field is the Casimir forceorder to calculate the dissipative force exerted on the mirror
between two mirrors at rest. A new effect appears when th3]. Although the total radiated energy may be correctly ob-
mirrors are set to move. In this case, the vacuum field mayained from the dissipative force through energy conserva-
exert a force that tries to damp the motidn-3]. Such dis- tion [12], it is not possible to extract information about the
sipative force may be understood as the mechanical effect gfhoton spectra from it. Accordingly, here we employ a dif-
the emission of radiation induced by the motion of the mirrorferent approach, based on the manipulation of suitable Green
in vacuum. Pairs of photons are created out of the vacuurfunctions, which turns out to be more convenient for the
state, and energy conservation entails the existance of a rderivation of the photon spectra.
diation reaction force working against the motion. The paper is organized in the following way. In Sec. I,
The simplest theoretical model amounts to consider onlyve derive the boundary conditions for the electromagnetic
propagation along the direction perpendicular to the plane dfield, treating separately the two field polarizations and em-
the mirror(one-dimensional or 1D modglPhoton emission ploying the long wavelength approximation. Output fields
in the case of lossless 1D cavities with moving end mirrorsare then obtained in terms of input fields in Sec. Ill, allowing
was considered in Ref$4,5]. A more complete treatment, us to compute the rate of photon emission at a given fre-
taking into account a finite transmissivity through the mir- quency and spatial direction in Sec. IV. We discuss our re-

rors, has been recently presenfédl sults in Sec. V.

Recently, three-dimension&BD) calculations were per-
formed in several contexts, including dieletric media moving II. BOUNDARY CONDITIONS IN THE LONG
sidewayd[7,8], cavities with oscillating boundarid®], and WAVELENGTH APPROXIMATION

collapsing dieletric spheregl0] (the latter in connection N o
with sonoluminescenge Emission of photons may occur The condition of perfect reflectivity implies that the elec-

even in the presence of a single moving mirror in vacuum, affomagnetic field&’ andB’ measured in the instantaneously
shown in the context of 1D model§,11]. In this paper, we C€omoving Lorentz frame5’ obey the boundary conditions
calculate the spectra for photon emission considering the full13J:
3D electromagnetic field. As a simple illustration, we take a
plane perfectly reflecting mirror moving along the normal to

its surface, which is taken to be thedirection. We neglect |, orqer to solve the problem of scattering by a moving plane
the recoil of the mirror due to photon emission. Accordingly, mirror, our first step is to decompose the input plane waves
we assume that the mirror's position is a given function ofinig components corresponding to the electric field parallel

XX E’|mirror: 0, X B’|mirror: 0. (1)

time imposed by some external means: (TM) or perpendiculafTE) to the plane of incidence. Each
polarization is then represented by carefully chosen poten-
x=6q(t). tials. We use mks units witep=1, c=1.

For the TE field, we take the usual vector potential
Furthermore, we assume thaiq(t) corresponds to a A(® defined through the equations

bounded nonrelativistic motionsq(t)<c, wherec is the
speed of light. This last assumption entails that only low- EM®=—3AT BME=yxATH, 2)
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and which is taken in the Coulomb gaude:A™=0. The  The fields in Eqs(7)—(9) are normalized so as to yield the
key point in the derivation of the boundary condition for following representation for the field Hamiltonian corre-
A® s the propertyk- A™=0, which entails the invariance sponding to the half-space=0:

of A™® under the Lorentz boost from the comoving to the
laboratory frame. As shown in Rdf3], the condition result- H= f“dkx fiwn(Ky)
e=TE,TM n

ing from Egs.(1) and(2) is given by 0 27 2
ATB(x=8q(t),y,z,t)=0. €) X[an(ko Tag(ko +an(koas(k) T (10
Equation(3) was first obtained by Moorgl 3] in the particu- The operatora™(k,) anda'®(k,) obey the commutation
lar case of 1D models. relations
In the case of TM polarization, the vector potential de- ,
fined as in Eq(2) does have in general a component along [a5(ky),ar, (k)]=0 11

the x direction, thus resulting in complicated boundary con-

ditions. A much simpler approach was introduced in Refsand

[3,14], which relies on the definition of a new vector poten- ,

tial A™ as [as(ky),ar, (k) TT=278(ky—Ky) Snnr Seery (12

EM=vx A™  BM=j 4™ (4)  wheree=TE,TM stands for the polarization.
In order to consider the effect of the motion of the mirror,
Moreover, we choose the gauge given By, A™)=0. As  we write the fields as
in the case of TE polarization, we haxe.A™ =0, hence
yielding a simple boundary condition fodA™ in the non- ATE=ATE 1 GATO (13

relativistic approximatior(see Ref[3]): q
an

: ~ 2V A(TM) _
[dx+ 69(1) 3+ O(5q(1)*) LA™ (X, 1), 1) |¢= sq(t)=0. © A= AW 5 4T (14)

In the particular case of stationarymirror, we may write  Where SAT® and 5.A4™ correspond to the field modifica-

denoted aSA‘(sIaE) and (ng_ We take periodic boundary of 5_q(t), and hence represent a _smaII perturbatlon of the
motionless case. The only exception occurs in the case of

conditions on the/ z plane over a square of surfaBewhich >
is identified with the(very large surface of the mirror. Then | M Ppolarization, when the parameters are such as to scatter
the components of the wavevectors parallel to the plane di2diation near the grazing directidi4]. Here we neglect
the mirror are restricted to discrete values: this possibility and accordingly solve Eqe3) and (5) by
taking a perturbative expansion. Furthermore, we assume
that the fields are nearly constant over a distance of the order
(ny§/+ n,2), (6) of 8q(t), and hence expand Eq8) and(5) up to first order
NE in 5q(t). As discussed in Sec. IV, the long-wavelength ap-
proximation is closely connected to the nonrelativistic limit
where the indexh denotes a given pair of integer numbers as far as the photon emission effect is concerned. Replacing
(ny,n,). We assume the mirror to besat0, and hence take Egs.(13) and(14) into Egs.(3) and(5) yield
8q(t)=0 in Egs.(3) and(5). For the TE field, we find

gk | 2%
Aga (X1 1) =i fo o En —nssm(kxx) and

3 A™(0y,2,t)=—(8q(t) 2+ 8q(t) ) A0y, 2, 1).

_277'

K,

SATE(0y,zt)= - 8q() AL Oy, zt) (15

x e'kinTle~1entaTE (k) XKy +H.c., (7)

(16)
with Equations(19) and (20) provide the first-order boundary
conditions for the fields. They result from the long wave-
W= \/kxz+ kfn (8) length approximation as well as from assuming the motional

corrections to be small perturbations.
and where H.c. means the Hermitian conjugate. The TM In order to benefit from the plane symmetry, we Fourier
field is written as follows: transform the fields as follows:

=dk 2h (TE) _E 2. diwta—iKy -1y (TE)
4(IaM)(X'rH't): fo _27:2” \ /w_nscoqux) A X w]= S dt Sd rje'te” M AR (X, 1y 1),
17)

wherer|=(y,z) is the position on the surface of the mirror,
9 and proceed likewise fad™). The mixed representation of

x elkinfle~1enta™)(k )X x k| +H.c.
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Eq. (17) differs from its reciprocal space analog used in Eqswith dA"®[x=0,0] and 6.A™[x’=0,w] given by Egs.
(7) and (9) by keeping the real space coordinateThis is  (19) and (20).
convenient for treating the scattering by the mirror, which is  We assume that the motion takes place during a finite
at a given time-dependent position along thaxis. Since time interval. Then, if we take retarded Green functi¢ahe-
AT® and A™ satisfy the wave equation, the two represen-noted by the superscrifR) in Egs.(21) and(22), which are
tations are closely connected. In fact, the variatklﬁsand such that
o define exactly two wave vectots, which are given by
k=*k&+k with Iy GR(X|x =0)= - GR(x|x'=0)=ieX/k,,
(23)
kxz[(w+ie)2—kﬁn]1’2, e—0", (19
and withk, defined by Eq.(18), the stationary field#J

defined as a function ab with a branch cut along the seg- and AT in Eqs.(21) and (22) represent input fields, de-

ment on the real axis betweenk; andk) . Herew is an  n5teq asA™® and A™ . They correspond to the total field
independent variable assuming both positive and negativiy the limit t— —o. On the other hand, when taking ad-

values, whereas the frequeney, in Eq. (8) is positive de-  vanced Green functions, being such that
fined.

In the Fourier representation defined by E47), the

A ’r_ _ —ik¥
boundary conditions given by Eq&l5) and (16) read 3 GH(X|x' =0)=—e "M,
do’ T
SATE[0,0]= - f S (ki) 80 0~ 0 10ATE 00 GA(xIx' =0) = —ie ki Mkt (24)

19
19 the stationary fields are replaced by the output fiedds’

and and AT()TU"{") in Egs. (21) and (22), which correspond to the

do’ limit t—e.
ﬁxﬁAgM)[O,w]= - f Za(kj(z) lo—w'] We consider the radiation emitted into the half space cor-

responding to the positive axis, and accordingly assume
X(k\lz —ww’).qu":')[O,w’], (200  x=0 from now on. In order to derive the relation between
n input and output fields, we combine the retarded and ad-

wheredq[ ] is the Fourier transform afq(t), k, is a func- vanced Green functions to write, from E@1),

tion of k; and ' as in Eq.(18), and 6(k;?) is the step
T : : ASEIX,0]=AT"[X,0]
function ofk,“. Note that the same indexappears in both ou, L™ inp L
sides of Egs(19) and (20), corresponding to the property
thatkHn is conserved in the scattering by the mirror, as ex-
pected from plane symmetry. Accordingly, the scatering of X BATE[ X' =0,w]+0(5g?) (25)
A8 x, ] provides vector fields all polarized along a fixed
direction in space, given by the produck an (the same
holding for TM polarization. Therefore, the scattering of the
electromagnetic field by a plane boundary is reduced to two (TM) U
independent effective scalar problems, corresponding, ac- AO“‘n [x,@] A‘”n %]
cording to Eqgs.(19) and (20), to Dirichlet and Neumann
boundary conditions. Their solutions are obtained in the next
section. X 9y BAT[ X' =0,0]+0(80°%).  (26)

— [0 GR(X|x"=0)— 3, Gp(x|x"=0)]
and likewise we derive from Eq22),
+[GR(X|x"=0)—GR(x|x'=0)]

I1l. INPUT AND OUTPUT FIELDS In Egs. (25) and (26) 5A§1TE)[0,0)] and 5A|<,1TM)[0,0)] are
In this section, we derive a linear transformation betweergiven by Eqgs.(19) and (20) with the stationary fields re-
output and input field operators. We start from E4®) and ~ Placed by the input fields. Then, from Eqd9) and (23)-
(14), and then use Dirichlet and Neumann Green functions(25) we derive for the TE fields
Gp(x|x') andGy(x|x") in order to write
ATEIX, 0] =ATE[ X, 0] — 2isin(kx)
ATFIX, 0]=AGPIX, 0] 3y Gp(X[x = 0) SATE[X' = 0,0] o g x
21 do’
Y X f %0<k;2)5q[w—w']afo,T?[o,w'],
and

(27)

A, 0]= AR, 0]+ Gy(X|x =0)
(TM)ror a result valid to first order i5q. For the TM field, we use
Xy 8A, TIX =0.0], (22 Egs.(20) and(26) instead of Eqs(19) and(25) and then find
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2icogkyx) , do'
A [x,0]= ATVX, 0] - —— —— f = 0(k?) al™(k,) = a(TM(k)—\/—_ 5 00K3)
’ _ ’ (TM) ’
X6[w—w ](kH 0w ).Amn [Ow']. (28 \/m(k”n_wnw,)a
X PN
An important property of Eqg27) and(28) is the absence of K| Alen=e’]

evanescent wave components. This is expected, since eva- , (TM) , yaT™(— Kyt

nescent waves are bounded near the mirror's surface, and X[0(w")ag, (k)= 0(—w"ay," (—k)'],

hence do not contribute to radiation. Note however that both (32)

the retarded and advanced solutions of E3G$®) and (20)

contain evanescent components, which ésgactly sub-  wherek, is related to the integration variable’ as in Eq.

tracted away when computing the input-output relations fromy18). within the first-order approximation considered here,

Egs.(25) and(26). Eqgs(31) and(32) are fully consistent with the commutation
We may get more physical insight on the input-outputrelations of Eqs(11) and(12).

transformation by considering the field normal mode decom- According to Eqs(31) and(32), the motion of the mirror

position and then deriving a linear transformation for themay induce a mixture between creation and annihilation op-

annihilation and creation operators. We assume that the mierators. As shown in the next section, such mixture is a sig-

ror was initially atx=0, and then after bouncing during a nature of the effect of emission of photons out of the vacuum

finite time interval it comes back to its original position. state.

Thus, both output and input fields have the same normal

mode decomposition as in Eqgé/) and (9). We replace IV. SPECTRA OF THE EMITTED PHOTONS
ATE by ATE and ATM by AT and then Fourier trans-
form the expressions in Eq&/) and(9) according to the rule As a result of the motion of the mirror, the field operators
defined by Eq(17) to find are transformed according to Ed81) and(32). In the rep-
resentation considered here, the field state remains un-
TE) 5 2h|o| changed. We consider the simplest situation where it corre-
S X 0]=i0(k)) Wsm(kxx) sponds to the vacuum state associated to the input field

operators]0in). According to Eq.(10),
X[ 6(w)ai &k, — 68— w)afl & (— k) Tk,

. € tL€ . de
29 (0 |n|a0ut]_(kx) aouﬁ(kx)|0 ln)ﬁ (33
and represents the average number of emitted photons with po-
2ol larization € (TE or TM) and wave vectok with parallel
w I k
Aﬂ:ﬂ)[x,w]:e(kz) kZS cogk,x) EO_TSEnem equa tda(Hn and x component betweek, and
X X

For the sake of simplicity, we consider a damped sinu-

X[ﬂ(w)a(TM)(kx) o(— w)a(TM)( k)T]XXkH’ soidal motion:

(30

8q(t)=ddoe” " Teog wot), (34)
with k, given by Eq.(18). ith
By taking the output instead of the input fields, we obtain*"'
similar expressions foAl® and AM™ = where the input 0o80e<1 (35)

operatorsajT®(k,) andai3"(k,) are replaced by the output
operatorsagL?(kx) and aOTu’\t:)(kx). They all satisfy the com- and
mutation relations given by Eqs§l1) and(12), and are im- woT>1. (36)
plicitly related by the input-output transformation given by
Egs.(27) and(28). From Eqgs.(27)—(30), we obtain the fol-  The first assumption corresponds to the nonrelativistic ap-
lowing result for the input-output transformation of opera- proximation, which is vital for the entire approach developed
tors: in this paper. The second assumption, on the other hand, is of
secondary importance, and is taken only to avoid unneces-
)2 sarily complicated results.
\/—f - 0(k%) The matrix elements in Eq33) are different from zero on
account of the contamination of the output annihilatiore-
XV o'|6q[ wp— '] ation) operators by input creatiofannihilation operators.
This also corresponds to a mixture between positive and
><[9(¢0’)61(TE)(|< )= 0(— w')a(TE)n( ko)1 negative frequencies, since they are, according to E2g5.
and (30), associated to annihilation and creation operators,
(3D respectively. In fact, the termsa{i®(—k)" and

and (TM)( k) in Egs.(31) and(32) are associated to a nega-

abu (k) =ai Pk
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tive input frequencyw’ from which is generated an output K
sideband at the positive frequenay,= wg+ »’'. From this X 1
simple reasoning, we infer that all emitted photons have fre-
guenciesw, in the rangew,<wy. As a consequence, the
nonrelativistic regime, Eq.35), entails that the wavelengths
\ generated out of the vacuum satiafyr 5q,. Actually, the
long-wavelength approximation employed in this paper is
equivalent to assuming the motion to be nonrelativistic and kz 0
bounded, as it is the case for the example considered in Eq. : 1
(34). é 52
A second restriction on the emitted photons originates
from the plane symmetry and the corresponding conservation 5
of the parallel component of the wave vectky,. Since the

input frequencies satisfy the innequalityew’ Bkun’ we have FIG. 1. Twin photons emitted at the directions indicated by the

the following additional condition on the emitted photons; 2ndles 1 and 6;, with wave vectorsk, and k,. Note that
ky=—ky (see text

wo— wp=K) . (37
SH=—5q(t)F, (42)
We write the matrix elements in terms of the an@lebe-
tween thex direction and the direction at which the photon is whereF is the field operator representing the force exerted
emitted: on the mirror along the direction. Since it is a quadratic
I operator on the field§H is formally analogous to the Hamil-
O=sin""(k /wy). (38)  tonian describing photon pair creation by parametric interac-
tion of a classical pump wave at frequeney with a y®
If wn=wo/2, EQq.(37) implies that no emission occurs out- nonlinear medium. Therefore, we may expect that the mo-
side the angular range defined by the inequality tional effect leads to the emission of pair of photons at fre-
quenciesw; and w, such that
. W0 W
0<0y w,)=sin1—— (39
wp w1+ W= wq. 43

Within this range, we find nonzero matrix elements fromg,hermore, the two photons have the same polarization and
Egs.(31)—(34): wave vectork, andk, such that

(0 infag (k) "ag (k[0 in)

=(800)°Tw2/siP@,—sif@cos®  (40)

on account of the translational symmetry along the plane of

and the mirror. In Fig. 1, we represent the two wave vectors and
(T T4 _ their angles®,; and @, with the x direction. According to
(0 injagy;, (kx) "agy (ko0 in) Eq. (44), they are related by the equation
2
:(5q0)2_|_(0)0_(1)nc052®) . (41) wlsin®1=wzsin®2. (45)
dsi?@o—si?@

Equation (43) shows again that the emitted photons have

Note that the average photon numbers do not depend on thequencies smaller than,. Let us takew; to be the largest
direction okan, as expected because of the plane symmetryfrequency in the pairwy=w;= wo/2. Then, Eq(45) entails
Moreover, they are proportional to the time duration of thethat the low-frequency photon is emitted along a direction
motion T. Since we consider an open system in this paperfurther from thex direction:®,>®,. As ©, increases from
photon numbers are not meaningful per se, so that we mugero to its maximum valu®,(w»4) given by Eq.(39), 0,
ultimately deal with photon productiorates For the steady varies from zero tar/2.
oscillation considered hefsee Eq(36)], the latter should be Although the approach based on E4?2) is useful for the
time independent, which is in accordance with the linearinterpretation of the results obtained in this paper, it is not
time dependence in Eq$40) and (41). Note however that strictly consistent with our model of perfectly reflecting
when a closed cavity system is considered, a different timenoving mirrors. In fact, no Hamiltonian description is avail-
dependence may result even in the case of stationary oscikble in this casgl3]. Nevertheless, this effective model cor-
lations, as in the problem of an ideal cavity with resonantlyrectly describes the physics of perfectly reflecting moving
oscillating boundaries, where the intracavity photon numbersnirors — including the connection between fluctuations and
may grow exponentially in timg9]. dissipation2,12,19 — because it loosely corresponds to the

Before computing the spectra from E@¢40) and(41), we  model of a dielectric mirrofwhose interaction with the field
shall discuss an alternative approach based on the effectiveay be described by a Hamiltonian mod#L]) in the limit
Hamiltonian[2] of large refraction indexXyet according to a recent calcula-
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tion, an unexpected effect occurs when taking this limit in
3D space, namely, the emission of photons inwards into the
medium[8]).

In order to compute the photon spectra from E¢§) and
(41), we first consider the number of photodbl¢(k) emit-
ted with polarizatione and wavevectok inside a volume
d3k in reciprocal space. Since we have employed periodic
boundary conditions over the mirror's surfaen the two-
dimensionalyz reciprocal spacésee Eq.(6)], we multiply
the expression in Eq:33) by the number of cells in thgz
reciprocal space to find

d3k
dNE(k):<0 in|agutj(kx)Tagut]-(kx)|O m>WS (46)

By taking polar coordinates in the 3D reciprocal space, we
obtain from Eq(46) the number of photons with polarization

€ per unit frequency interval and solid angldenoted as
0):

dN¢ w2 H € Toe€ H
m(w,@)IS(ZT)g <O m|a0utj(kx) aoutj(kx)|o in >

(47)

3425

photon distribution (a.u.) 0
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FIG. 2. Polar diagrams representing the angular distributions for
photon emission as functions of the emission ar§leand for a

We express the number of photons at a given frequenc{}xed photon frequencw. The direction corresponding ©=0 is

wq and angle®; in terms of the frequencw, and the an-
gular coordinate®, of the accompanying emitted photon
(“idle” or “twin” photon ), which are given by Eqs43)
and(45), respectively. From Eq$40) and(47) we derive the
angular spectrum for TE polarization:

N
(TE)(wl.l)

Sod0 (690)?03w,C080 ;c0M,.

(48)

B S
~ T2y

For TM photons, Eqs(41) and(47) yield

N
(T™m)
dodq  (©1.01)

(1+sin® ,sin®,)?
— 2 3
T(27T)3 (5QO) wiwWy CO@Z .

(49

perpendicular to the surface of the mirror. We employ different
scales to represent T&) and TM (b) polarizations. The dashed
lines correspond tow=(2— \/E)wo (then vyielding O o= w/4),
whereas the solid lines correspond cto=(\/§—1)w0. Accord-
ingly, dashed and solid curves represent the angular distributions
for “signal” and “idle” photons which constitute a given pair
created out of the vacuum state, since the two frequencies consid-
ered are such that their sum equals the mechanical frequegcy
When integrated over the solid angle, the dashed and solid lines for
each polarization provide the sanfolarization dependenspec-

tral distributions(see Fig. 3.

which follows from Eq.(45), anddw;= —dw,, which fol-
lows from Egs.(43).
When considering propagation along the normal to the
surface of the mirror, TE and TM polarizations become rig-
orously equivalent. In accordance with this property, Egs.
(48) and (49) provide identical results for the photon distri-
butions at the forward directio®(=®,)=0. However,

The angular spectra as given by EG8) and (49) are both  they behave very differently at larger angles. In Fig) 2we

proportional to the mirror’'s surfac® as expected.

plot the TE angular photon distributiordN™(w,,0,)/

Since the photons are created in pairs, to each photofiwd() as given by TEEQ(48) with @, =(2— V2)w, (dashed
emitted at frequency», along the directior®; there is an  line) as well asdN™(w,,0,)/dwdQ with w,=wy—w;

idle photon of frequencyw, emitted along the direction =(y2—1)w, (solid line). Note that TE photons are loosely
0,. As a consequence, the angular spectra must satisfy concentrated near the forward direction. On the other hand,
the angular distribution for TM polarization is minimum at

€

the forward direction as illustrated in Fig(8, where we

dodq (@1 01)siN01d6;|dw,| plot  dN™)(w,,0,)/dodQ  (dashed ling and
aN dN™)(,,0,)/dwdQ (solid line for the same values of
_ ¢ . w1 andw, considered in Fig. @). High-frequency TM pho-
dwdQ(w2’®2)Sm®2d®Z|de|' G0 tons are mostly emitted into a rather narrow angular sector

) bounded by the angl®,(w;) (which is equal tor/4 in the
In order to show that the results in Eq48) and (49) agree  numerical example considered in Fig. As a matter of fact,

with Eq. (50), we write

X wo ZCO@Z
S|n®1d®1= -

w3

SinB,d®,, (51)

the angular spectrum of TM photons as given by E#f)

diverges a® ;= 0y(w), since this corresponds to the situa-
tion where the idle photon is emitted along the grazing di-
cos, rection: ®,= /2. Such singular behavior results from the
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effect of resonant excitation of surface TM waves induced by

the motion [14]. Note, however, thatdN™)(w,,0,)/
dwd() is finite as®,— /2, because the corresponding solid 6t
angle 27sin®,d®, as given by Eq(51) also becomes very 5
large in this limit. In other words, for eadtiow-frequency &
TM photon emitted over a broad angular sector near the % 4t
grazing direction, its(high-frequency “twin” is emitted of
into a narrow angular sector close to and bounded®gy 2

We may obtain the frequency spectra from E@8) and £ 2t
(49) by integrating the angular spectra over the solid angle T
Q). We obtain simpler results by taking the dimensionless )
variable 0 : :

0.0 0.2 04 0.6 0.8 1.0
w
A=2—-1, olo,

wo

FIG. 3. Frequency spectra of Tgolid line and TM (dashed

representing the difference between the two frequencies aﬁ'ﬁe) photons as functions ab/w,. They are symmetric with re-

sociated to a given pair of photons. For TE polarization Wespect to the value/wy=1/2. Note that the TM spectrum diverges

find at this value.
dN(T® S 1
do (w) =TW(5QO)20)8 Z(l—A4)+A2Iog|A|}. The total radiated energy is-directly _related to the di;sipative
(52) force F(t) exerted on the mirror, which was derived in Ref.
[3]. For the particular motion given by E¢B4), it reads
The result for TM polarization is 5
dNT™ S F(t)= WSwgéqoe’WTsin(wot). (57)
4o (@)=~ Te; (800 w;

Then Eqgs(34) and (55)—(57) yield

X

1(7—8A2+A4)+(2+A2)Iog|A|}. _
4 E=— f dtF(t)8q(t), (58)
(53

. in agreement with energy conservation.
Both dN™®/dw and dN™)/dw are even functions of\, 9 9y
hence implying that

V. DISCUSSION AND CONCLUSION
dN¢ dN¢ 54
o (@)= (w0~ w). (54)

From Eq.(55) we may obtain the total photon production
rate, which is written in terms of the maximum value of the
. _ . ) ) . mirror's velocity v ma= woddg and the length\ y=27c/wq
This is again a signature of generation of twin photons withich js smaller and of the order of the wavelengths gener-
frequencies given by Eq43), as in a parametric process aieq by the motionso as to allow for a direct comparison

with a classical pump field of frequeneyy. with the 1D result of Ref[6]:
In Fig. 3, we plotdN"™®/dw anddN™)/dw as functions
of w/wqy. As expected the plots are symmetric with respect N 1 S{vma?
to the axisw/wy=1/2. According to Eq.(53) and as dis- T 1532 T) wo, (59

played in Fig. 3, the TM spectrum has a logarithmic diver-
gence at/wo=1/2, aresidue of the S|ngu!ar behgwor of the \yhere we have reintroduced the constarih order to pro-
angular spectrum a8 —®,. In fact, w/2 is a unique fre- ;4 an explict evaluation of the orders of magnitude. As
qluency r']n the S(_ansedt_hat both twin phc;:ons ”E)ay It:_)e gm'ttegompared to the 1D result, the 3D production rate contains
along the grazing direction — as shown by E€B9), an extra “geometrical” factor equal t6/\2, as already sur-

O;hﬂf |tn|th|s csse. ¢ emitted photons is derived from the™S€d in Ref.[6]. Note that we have considered from the
€ total number of emitted photons 1S derived Irom teg, 1 oy jnfinite plane mirror, which actually describes the

ts(?:s(:tz;?egI\:ggu?:LjEiqnggzl)a?ngr(r513)rﬁ;)/\e/:$ :;\r;c:] t.lr.lle:_lt -I;]'\gtg:g_' limit S/)xé»l (see Ref[12] for a detailed discussion on how
P 9 P " such limit is obtained from the general case of a finite-size

time-dependent deformation of a plane mijr@n the other
TS(6q0)w;. (55  hand, whenS/A3~1, diffraction at the boundaries of the
mirror play an important role, then resulting in a different
As a consequence of the symmetry expressed by, ~ dependence o8. For the presently available mechanical fre-
the total radiated energy is given by guencies) is at least in the centimeter range. Therefore, we
believe that a calculation taking into account diffraction due
E=(NTE+N™)7 40/2. (56) to the mirror’s finite size would be necessary for the quanti-

N = 11NTE =

7207°
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tative description of an experiment aimed to observe quanehanical frequencyw,, ©, tends to zero, and thereby the
tum radiation by moving mirrors. Nevertheless, a rough esangular distributions become very narrow. Most photons,
timate of the photon production rate may be obtained fromhowever, are emitted at frequencies negf2, and hence
Eq. (59) by taking S/A3~1, wo/(2m)~10 GHz and over a broad angular range, sif®g= /2 in this case. Low-
Umax/C~1077, then yieldingN/T~10"° photons/sec. This frequency TM photons are preferably emitted at directions
shows that quantum radiation by a single moving mirror is anot far from the grazing direction.
very small effect. Unlike the Hamiltonian approach developed in Refs.
In conclusion, we have obtained the angular and fre{7,11], our method does not explicitly unveil the two-photon
guency distributions of the photons created out of the elechature of the emission process. However, the symmetry
tromagnetic vacuum state when a plane mirror oscillates ifproperties of the spectra obtained in this paper clearly indi-
the nonrelativistic regime. TM-polarized photons are createdate that the photons are emitted in pairs, the “twin” pho-
at a larger rate than TE photons, except when measuring &ns having identical polarizations, opposite momenta along
the direction perpendicular to the mirror’s surface, where théhe plane of the mirror, and frequencies that add to give
production rates are equal. TE and TM angular distributionsvg.
are respectively maximum and minimum at this direction.
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