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We study the response of a two-mode laser to an external periodic pump modulation of small amplitude. The
control parameters are the pump-modulation frequency and amplitude. We first show that the ratio of the two
relaxation oscillation frequencies may be commensurate. We then investigate the parameter domain in which
the lowest of the two relaxation oscillation frequencies is close to half the other relaxation oscillation fre-
quency. We derive analytically a pair of nonlinear amplitude equations for the dynamical modes of the system.
This gives access to the stability of the time-periodic solutions that oscillate at the pump-modulation frequency
and its first~sub!harmonic. It also determines the occurrence of secondary bifurcations leading to more com-
plex solutions.@S1050-2947~96!08909-3#

PACS number~s!: 42.55.2f, 42.65.Sf, 42.60.Mi

I. INTRODUCTION

The modal self-organization of multimode lasers is nowa-
days a field of active research. This is mainly due to the
complex dynamics displayed by these systems and by the
success of the theory to predict or explain the experimental
results. In this context, there has recently been a renewed
interest in the model proposed by Tang, Statz, and deMars
~TSD! @1#. This model describes aN-mode free-running
Fabry-Pe´rot solid-state laser for which atomic polarization
can be adiabatically eliminated~rate equation approxima-
tion!. Its main feature is that the effects of the population
inversion grating caused by spatial hole burning are taken
into account. Multimode lasers governed by the TSD equa-
tions display no oscillatory instabilities. Hence, in the long-
time limit, they relax always to the single stable steady state.
For each of theN modes, this relaxation occurs via damped
oscillations characterized byN frequencies andN11 damp-
ing rates. However, under conditions which are easily
achieved for solid-state lasers, the total intensity~viz., the
sum of the modal intensities! is characterized by only one
frequency and one damping rate, as if it were a single mode
laser. This frequency is the relaxation oscillation frequency
or McCumber frequency@2# and corresponds to the largest of
the N modal frequencies. The property that only one fre-
quency is associated with the dynamics of the total intensity
has been called antiphase dynamics~AD! in laser physics.
This modal self-organization is a basic property found not
only in the transient relaxation to the steady state, but also in
the output of externally modulated and in chaotic lasers as
well as in the noise spectrum ofcw lasers@3–10#. In laser
physics, AD has been found first in lasers with intracavity
second-harmonic generation in the self-pulsing regime@11–
16#. It was shown recently that this problem has unexpected
links with the TSD equation@17#. An attempt to classify the
different types of antiphased states has been undertaken in
@18# and @19#.

The N-mode TSD equations we shall consider@1# are
given by
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In these equations,I m is the intensity of the modem. The
space averaged population inversionN0 and the population
inversion gratingsNm are related to the population inversion
N(x,t) inside the cavity through
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wherekm is the wave number of modem andL is the length
of the cavity which is entirely filled by the active medium.
The pump parameterw is normalized in such a way that the
laser first threshold corresponds tow51. The gain of mode
m relative to the gain of mode 1 isgm<1, and k is the
inverse photon lifetime in the cavity. As usual, all decay
rates are assumed to be the same for each mode@1#. For
solid-state lasers,k is a large quantity being typically of
order 104 to 106. The dimensionless timet is measured in
units of the population inversion relaxation time.

The analytical study of the TSD equations was initiated in
@5#. In @7#, a reference model was derived and analyzed by
assuminggm51, ;m. Although this is a drastic simplifica-
tion, many properties of the system are preserved. The ref-
erence model predicts two oscillation frequencies, namely,
VR and VL,VR . Owing to the mode equivalence,VL is
~N21! degenerate. In the general case~e.g.,g151, gm,1!,
VL splits intoN21 different frequencies@7#.
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Another property of the reference model is that the ratio
between the two frequenciesVR and VL is bounded:
2N21<(VR/VL)

2<2N11. If N52, the remarkable rela-
tion VR/VL52 happens for the particular pump value
wres515/7. In this case, since the two frequencies are com-
mensurate, resonant couplings occur between them.

The purpose of this paper is to study, analytically, such
resonant couplings in the vicinity ofVR/VL'2. This is
achieved by probing the laser with a small amplitude pump
modulation whose frequencyVext is close to eitherVL or
VR . In Fig. 1, the effects of the resonant coupling can be
observed. In this figure, the two modes have been chosen
equivalent, i.e.,g15g251. The oscillation amplitudeD of I 1,
I 2, and I 11I 2 are plotted as functions of the pump-
modulation frequency, chosen in the neighborhood ofVL .
The pump-modulation amplitude isM50.075. By progres-
sively decreasing the average pump value, the ratioVR/VL
increases from Fig. 1~a! to 1~d!. In Fig. 1~a!, VR/VL51.948
and a single peak is observed. This peak is shifted towards
the low frequencies relative to the value obtained by the
linear approximation @VL~linear!5149.7#. In Fig. 1~b!,
VR/VL51.959 and a symmetry breaking appears betweenI 1
and I 2, leading to bistable states. ForVR/VL51.964 @Fig.
1~c!#, a discontinuity is clearly observed in the curves. More
precisely, this discontinuity results from a hysteresis, whose
range is too thin to be noticed on the figure. By increasing
VR/VL towards two, a second hysteresis phenomenon ap-

pears on the right side of the peak. The fully developed case
is shown in Fig. 1~d! for VR/VL52. Moreover, AD is clearly
present in Fig. 1~d! sinceD(I 1)1D(I 2)>D(I 11I 2), which
is not the case in Figs. 1~a!–~c!.

Of particular physical interest is how AD depends on the
resonant interactions between modes and on the modulation
frequencyVext. As will be demonstrated, a strong selection
between temporal patterns results from the modulation of the
two-mode laser. A general observation of our analysis is that
the simplest model we developed already captures the con-
dition for pure AD, pure in-phase regimes and mixed anti-
and in-phase regimes.

When a nonlinear system is subject to a periodic modula-
tion, the natural tool to analyze its response is the power
spectrum. Unless the dynamics is chaotic, each oscillation
frequency present in the system appears as a peak. The peak
position indicates the frequency and its height measures the
amplitude of the oscillation at that frequency. General rela-
tions between the power spectra of the modal intensities and
of the total intensity atVL andVR have recently been found
theoretically and experimentally@20,21#. In this paper, we
extend these results by computing the height of these peaks
as a function of the pump-modulation amplitude.

In Sec. II, relations existing between the frequencies of a
N-mode laser are derived. The simple case of a two-mode
laser is also treated with more details. The analytical model
describing the modulated two-mode laser dynamics is the
object of Sec. III. The simplest case, called the reference
model with modulation, is then studied in detail in Sec. IV,
while other cases leading to secondary bifurcations are in-
vestigated in Sec. V. In Sec. VI the validity of our analytical
results is discussed by comparing them with numerical simu-
lations. Finally, we conclude in Sec. VII.

II. FREQUENCY PROPERTIES

Many nonlinear dynamical systems described by ordinary
differential equations admit steady-state solutions, i.e., solu-
tions that do not involve time. If such a steady state is
slightly perturbed, the system relaxes either back to or away
from it. The usual method to study the stability of a steady-
state solution is to examine the rootsl of the characteristic
polynomial. The real part of eachl is a measure of the rate
at which the system relaxes to or away from the steady state,
depending on whether Re~l!,0 or Re~l!.0, respectively.
The imaginary part ofl, if any, corresponds to a relaxation
frequency. For theN-mode TSD equations, the degree of the
characteristic polynomial is 2N11. This means it cannot be
solved exactly for arbitraryN. However, most free-running
solid-state lasers modeled by the TSD equations exhibit
k@1, suggesting an asymptotic approximation. In@7#, it was
shown how to exploit the limitk@1 by rewriting Eqs.~1! in
terms of the deviations from the stable steady state. To this
end, we introduce the small parameterd51/Ak and the vari-
abless, n0, nm , andsm defined by

s[t/d,

n0[~N02N0
0!/d, nm[~Nm2Nm

0 !/d ~3!

sm[I m2I m
0 ,

FIG. 1. Oscillation amplitude ofI 1, I 2 and I 11I 2 . D(I ) is de-
fined as maxt[ I (t)]2mint[ I (t)] over the period of the oscillations.
The average pump value is~a! 2.70,~b! 2.56,~c! 2.50, and~d! 15/7.
The corresponding frequency ratiosVR/VL are~a! 1.948,~b! 1.956,
~c! 1.964, and~d! 2. The other parameters areg15g251,M50.075,
andk553104. The dotted lines represent jumps between two peri-
odic solutions. A hysteresis is clearly observed in~d!.
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where the superscript 0 indicates the steady-state solution
given by
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After inserting Eqs.~3! into Eqs. ~1!, the limit d→0 is
taken. The resulting equations are then linearized and re-
duced to
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k
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k

gksk , ~5!

dsm
ds

5gmIm
0 ~n02nm/2!.

To proceed analytically with theN-mode case, we restrict
the analysis to the degenerated casegm51, ;m. As a result,
all the modal intensities are equal, i.e.,I m

0 5I, ;m. The ei-
genvalues of system~5! can then be computed analytically.
They are 0, 6VL , 6VR with VL5~IN0

0/2!1/2 and
VR5~IN1N0

021!1/2 @7#. By using Eqs.~4!, we note that

VR
2

VL
2 5122N1

4N

N0
. ~6!

Letting N0 vary from 1 atw51 ~laser first threshold! to
N05N/(N21/2) atw5`, the lower and upper bounds for
V R

2/V L
2 are obtained from Eq.~6!.

2N21<
VR

2

VL
2 <2N11. ~7!

If the ratio VR/VL is rational, resonant interactions be-
tween the oscillations atVR andVL appear. Because of the
quadratic nature of the nonlinearities of the TSD system~1!,
the simplest caseVR/VL'2 is expected to lead to strong
resonant parametric interactions. As indicated by Eq.~7!, this
is possible only forN52. In this case, it is found from Eqs.
~4! and ~6! that the exact resonanceVR/VL52 occurs for a
pump valuew5wres515/7.

This result can be generalized to the asymmetric two-
mode caseg151, g2,1. Let us determine, for this general
two-mode case, the pump value under which exact resonance
happens. The characteristic polynomial of Eqs.~5! factors
out intolP2~l

2! where the biquadratic polynomialP2~l
2! is

P2~l2!54l412l2@~42N0
0!I 1

01g2~42g2N0
0!I 2

0#

1$g2@814~11g2!N0
023g2~N0

0!2#

24~11g2
2!%I 1

0I 2
0. ~8!

The imaginary part of the roots ofP2~l
2! gives two oscillat-

ing frequencies

VL5
AA2AB

2
and VR5

AA1AB
2

, ~9!

with

A5I 1
0~42N0

0!1g2I 2
0~42g2N0

0!,

B5A212I 1
0I 2

0$2g2N0
0@3g2N0

024~11g2!#18~12g2!
2%.

~10!

The exact resonance conditionVR/VL52 requires

FIG. 2. Resonance between the two relaxation
frequenciesVL and VR . ~a! wres~g2! at which
VR/VL52 based on the analytical expression
~11!. ~b! Numerical computation ofVR/VL for a
range ofw andg2.
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25B59A2. ~11!

As A andB depend onw andg2, Eq. ~11! is a fourth degree
polynomial in each of these two parameters. In Fig. 2~a!, the
implicit equation 25B59A2 has been solved numerically to
obtainwres~g2!. In Fig. 2~b!, it is demonstrated thatVR/VL
remains in the vicinity of two over a large neighborhood of
w aroundwres. This explains why strong interactions be-
tween the two oscillating modes are observed even forw
away fromwres, as is the case in Figs. 1~b! and 1~c!.

III. AMPLITUDE EQUATIONS

In this section, we derive the amplitude equations of a
weakly pump modulated two-mode TSD laser for which
w'wres ~i.e., for whichVR/VL'2!. A perturbation method
is used to take advantage ofk@1. For the laser with modu-
lation, it is mathematically more convenient to introduce a
new small parameter

e[S 7

2k D 1/2, ~12!

instead ofd. We then seek a solution of Eqs.~1! of the form

N0~ t !5N0
01e 2

7n0,1~ t !1O~e2!,

Nm~ t !5Nm
0 1e 4

7nm,1~ t !1O~e2!, ~13!

I m~ t !5I m
0 1 1

2sm,1~ t !1O~e!, m51,2.

The problem is further restricted by consideringg2 close to 1

g151, g2512eg1O~e2!. ~14!

In the unmodulated case@7#, the results of this expansion
hold forg2 as small as 0.8. However, an essential assumption
for the derivation of the amplitude equations is that the dy-
namical variablesN0, Nm , and I m be explicit analytic func-
tions of e.

The pump is weakly modulated aroundwres515/7 at an
external frequencyVext. This is expressed by

w~e!5w~e!1M ~e!cos~Vextt !, ~15!

where

w̄5 15
7 1ew11O~e2!,

M5e 2
7 @M11eM21O~e2!#,

andw, M1, M2 are parameters.
The external frequency is tuned to a value close to either

VL or VR . This motivates the introduction of the basic time
t defined by

t[Vet, where

Ve[
Vext

a
5
11eve1O~e2!

e
, ~16!

with eithera51 if Vext'VL or a52 if Vext'VR . The aim of
using a is to derive simultaneously the equations for

Vext'VL andVext'VR . By the way it is defined,Ve is al-
ways close toVL . The detuning betweenVL andVe is mea-
sured byve . Note thatVL51 andVR52 with the scaling
~16! for t if e50.

Introducing Eqs.~12! to ~16! into Eqs.~1! and equating to
zero the coefficients ofen gives a sequence of linear prob-
lems. To first order, the evolution equations are

dn0,1
dt

52 7
4 ~s1,11s2,1!1M1 cos~at!,

dn1,1
dt

5~3s1,12s2,1!/4,

dn2,1
dt

5~3s2,12s1,1!/4, ~17!

ds1,1
dt

5n0,12n1,1,

ds2,1
dt

5n0,12n2,1.

The general solution of the linear system~17! is the solu-
tion of the homogeneous problem plus a particular solution.
Let us write Eqs.~17! in compact formdvW 1/dt5LvW 11NW 1
whereLvW 1 andNW 1 are, respectively, the homogeneous and
the inhomogeneous parts of the right-hand side~rhs! of Eqs.
~17!. The general solution of the homogeneous problem
dvWH/dt5LvWH is

vWH~t!5vW 0e
l0t1 (

i5L,R
@vW ie

l it1c.c.#. ~18!

In these equations, thel’s and thevW ’s ~as well as their com-
plex conjugates! are the eigenvalues and the eigenvectors of
the matrixL

l050, vW 0}~1,1,1,0,0!,

lL5 i , vW L}~0,2 i ,i ,1,21!, ~19!

lR52i , vWR}~7i /4,2 i /4,2 i /4,1,1!.

The oscillation amplitude of the total intensity is given,
for each frequency, by the sum of the eigenvector’s last two
terms. This sum vanishes forvW L but not forvWR . Therefore,
the low frequencyVL does not contribute to the total inten-
sity, which oscillates only atVR . This phenomenon is the
signature of AD.

The inhomogeneous termNW 1 is @M1 cos~at!,0,0,0,0#. If
a52, NW 1 oscillates at the resonant frequencyVR52. Such a
resonance with the homogeneous system leads to secular
terms and unbounded solutions appear. The only way to
avoid the divergence is to imposeM150. This constraints
the pump oscillation amplitude to be anO~e2! quantity. If
a51, NW 1 oscillates at the resonant frequencyVL51, but in
this caseNW 1 is orthogonal tovW L . Because of this orthogonal-
ity, the secular divergence is avoided and the pump oscilla-
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tion amplitude can remain anO~e! quantity. Also, the laser is
much more sensitive to a modulation aroundVR than around
VL , since the value of the pump modulation amplitudeM
required to produce similar laser intensity oscillation ampli-
tudes is of order 1/e greater atVL than atVR . This is a
well-known experimental property@4,22#. A similar result
has been derived for pump-modulated multimode intracavity
second harmonic generation~ISHG! lasers@23#. It is then
easy to verify by direct substitution that
vW 5( i ,2 i ,2 i ,2,2)(M1/12)e

i t1c.c. is a particular solution of
Eqs.~17!. Eventually, the general solution of Eqs.~17! reads

S n0,1n1,1
n2,1
s1,1
s2,1

D 52iaS 7i /4
2 i /4
2 i /4
1
1

D e2i t1S iPa/12
i ~22ib2Pa/12!
i ~2ib2Pa/12!
2ib1Pa/6

22ib1Pa/6

D ei t
1cS 1110

0

D 1c.c., ~20!

wherePa51[M1 , Pa52[0 anda, b, c are unknown ampli-
tudes. It is worth noting thata is the amplitude of an in-
phase oscillation aroundVR , Pa that of an in-phase oscilla-
tion aroundVL , andb that of an antiphase oscillation around
VL . Thus, it is already clear from the first-order solution~20!
that in case of a modulation atVext'VR , asP2 is null, there
is no in-phase modulation aroundVL .

TheO~e2! problem has to be considered in order to deter-
mine a, b, andc. This problem differs from Eqs.~17! only
by the inhomogeneous term:dvW 2/dt5LvW 21NW 2 ~NW 2 is
given in the Appendix!. It leads to secular terms and thus
unbounded solutions. To avoid this unphysical situation,a,
b, andc are assumed to depend on a slow timeh[et. In this
way, a multiple time-scale analysis is undertaken. Becauset
andh have to be treated as two independent variables, the
chain ruled/dt5]/]t1e]/]h applies. Doing that, cancella-
tion of the secular terms requiresa, b, andc to satisfy three
compatibility equations. One of these compatibility equa-
tions is

dc

dh
52

53

32
c. ~21!

Obviously,c decays exponentially to zero. Therefore, it can
be neglected as we are not interested by the transient behav-
ior of the laser. The two other compatibility equations are

da

dh
52 iv2a2

75

64
a2b21ma ,

~22!

db

dh
52 iv1b2b1ab*1 l a ,

where the coefficients are defined by

v1[ve1
225
424g2 105

212w1 ,

v2[2ve1
15
16g2 7

8w1 ,

l a[
3g

32
Pa ,

ma51[
1
144M1

2, ma52[2 1
16M2 . ~23!

Equations~22! are the amplitude equations of the laser os-
cillations. They describe the slow time dynamics of the
weakly modulated laser. The analysis of these equations will
be the main purpose of the next two sections.

Equations~22! are formally equivalent to the equations
used to describe nonequilibrium phase transitions in sub-
second-harmonic generation@24,25#. In that context, a non-
linear crystal is placed inside an optical cavity. An external
coherent pumping field is used to maintain the system in a
nonequilibrium state. The crystal transfers energy between
two optical modes of the cavity via two photons processes. If
the ratio of the two optical frequencies is close to two, either
second-harmonic generation~SHG! or degenerated optical
parametric oscillations~DOPO! appear, depending on the
pumping field frequency. These systems also exhibit squeez-
ing properties@26,27#. Because of this formal link, results
well known for SHG or DOPO systems can be formally
translated for the two-mode pump-modulated laser.

To conclude with this section, let us consider the physical
meaning of the parameters appearing in Eqs.~22!. The driv-
ing termsm and l are related to the pump-modulation am-
plitudeM , while v1 ~resp.v2! is the detuning betweenVL
and Ve ~resp.VR and 2Ve! at ordere. In the absence of
external modulation, i.e., ifM505 l5m, it can be shown
that d(uau21ubu2)/dh<0. By this we mean that the system
always relaxes to its trivial solutiona5b50. This result
eliminates the possibility of having isolated solutions.

IV. THE REFERENCE PROBLEM WITH MODULATION

Equations~22! are first investigated by considering the
simplest case, namely,g5w15v15v25 l50. In terms of
the initial parameters, that corresponds tog251,
w̄5wres515/7 andVext equals to eitherVL or VR . This will
serve as the reference problem. Under these assumptions
Eqs.~22! reduce to the tuned DOPO equations

da

dh
52 75

64a2b21ma ,

~24!
db

dh
52b1ab* .

These equations have already been widely studied
@24,25#. They admit two steady-state solutions

a5 64
75ma , b50, which is stable for

0<ma<mthr5
75
64 , ~25!

and
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a51, b25ma2 75
64 , which is stable for mthr<ma .

~26!

In Fig. 3, the laser behavior is analyzed in terms of the
Fourier peak heightsF~I ,V! with I5I 1 ,I 2 or I 11I 2 . In this
expression,V is the frequency of the peak studied.F~I ,V! is
defined by

F~ I ,V![UVL

2p E
0

2p/VL
I ~ t !eiVtdtU. ~27!

The functionF~I ,V! is computed from Eqs.~13!, ~20!, and
either ~25! or ~26! in order to getI (t). The upper bound of
the integration in the definition~27! corresponds to the pe-
riod of the modal intensitiesI 1 and I 2 ~taking into account
the fact that a period doubling could happen for a modulation
at VR!. As can be observed in Fig. 3,F(I 1 ,VR,L) equals
F(I 2 ,VR,L) whetherVext equalsVL or VR . This equality
holds because the terms 2ib1Pa16 and22ib1Pa16 of the
linear solution~20! have the same modulus~b andPa being
real in the reference problem!. They thus give the same peak
height. The triangular inequality leads to

F~ I 11I 2 ,VL!<F~ I 1 ,VL!1F~ I 2 ,VL!, ~28!

where the equality is satisfied if there is no antiphased oscil-
lation, i.e., ifma,mthr . On the other hand, since there is no
antiphased oscillation atVR , we have

F~ I 11I 2 ,VR!5F~ I 1 ,VR!1F~ I 2 ,VR!. ~29!

The time evolution ofI 1, I 2 and I 11I 2 is displayed in
Fig. 4 for four characteristic points labeleda, b, g andd in
Fig. 3. The pointsa andd correspond toma,mthr , implying
b50 and thus no antiphased behavior. The presence of AD is
revealed by the difference existing betweenI 1 and I 2, as
shown for the pointsb andg, for whichma.mthr . A spec-
tacular effect of AD occurs around the pointg : each modal
intensity I 1 and I 2 strongly oscillates atVL while their sum
I 11I 2 oscillates only atVR . This comes from the fact that
the external modulation being atVR , the in-phaseVL oscil-
lation termP2 cancels identically@see solution~20!#, while
the antiphaseVL oscillation found in I 1 and I 2 interferes
destructively in I 11I 2 . There is thus no trace of theVL
oscillation in the total intensity.

V. THE GENERAL CASE

The full system Eqs.~22! is now investigated. The detun-
ings v1 and v2 do not cancel either if the exact resonant
conditionVR52VL is not satisfied@i.e., if wÞwres~g2!#, or

FIG. 3. Reference problem with modulation: analytical results.
~a! and ~c!: VL peak height of the Fourier spectra ofI 1, I 2 and
I 11I 2 . The pump-modulation frequencyVext is ~a! VL and~c! VR .
~b! and~d!: same as~a! and~c! for theVR Fourier peak height. The
pointsa, b, g, andd correspond to typical dynamical behaviors that
are illustrated in Fig. 4. Stable solutions are plotted in full lines,
unstable ones in dotted lines. The other parameters arek55104,
w̄515/7,g15g251.

FIG. 4. Time evolution ofI 1(t), I 2(t) andI 1(t)1I 2(t) illustrat-
ing typical dynamical behaviors of the modulated laser. Each plot
corresponds to a point indicated in Fig. 3:a ~M50.03!, b ~M
50.09!, g ~M50.009!, and d ~M50.0003!. The other parameters
are the same as in Fig. 3.I 1 andI 2 are represented by full and dotted
lines, respectively, when they are not equal~i.e., when AD is
present!. On the bottom,w(t) has been plotted to give a phase
reference.
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if the external frequencyVext is not exactly tuned toVL or
VR .

However, there are two cases for which the driving am-
plitude l a cancels. First,l a cancels if the external modulation
frequencyVext is close toVR . Second,l a cancels ifg251,
whatever the external modulation frequency is. Then, Eqs.
~22! reduce to the equations for the DOPO with detuning
@24,25#. These equations admit two steady-state solutions
which are more easily described by the new complex vari-
ableX5b2. From Eqs.~22!, an equation forX is derived

@~ 75
642v1v21uXu!1 i ~ 75

64v11v2!#X5mauXu. ~30!

This equation admits a trivial solutionX050. In terms of
the amplitudesa andb, it corresponds to

a5
ma

~75/64!1 iv2
, b50. ~31!

The trivial solution is stable for 0<ma<mthr
5[ u(11 iv1)(75/641 iv2)u]

1/2.
To find the nontrivial solutions of Eq.~30!, the equation is

multiplied by its complex conjugate. This yields a quadratic
equation inuXu whose solutions are

uX6u52 75
641v1v26@ma

22~ 75
64v11v2!

2#1/2. ~32!

As uX6u must be real and positive, there are restrictions on
the scaled-modulation amplitudema . Depending onv1 and
v2, two possibilities exist. Ifv1v2<75/64, uX1u exists for
ma>mthr and bifurcates fromX0 at ma5mthr , while uX2u
does not exist. On the other hand, ifv1v2.75/64, bothuX1u
and uX2u exist within a given range ofma . The domain of
existence ofuX1u is ma>mlim5u~75/64!v11v2u. The domain
of existence ofuX2u is mlim<ma<mthr . uX2u bifurcates from
X0 at mthr and joins uX1u at the limit pointmlim . Over the
domain of existence ofuX2u, bistability occurs between the
trivial solutionX0 and uX1u, sinceuX2u is always unstable.

In order to study the bistable regime,a andb have to be
solved as functions ofma , and this requires the determina-
tion of X. From Eqs.~30! and~32! the real and the imaginary
parts ofX are found to be

Re~X6!56uX6u
@ma

22~ 75
64 v11v2!

2#1/2

ma
,

Im~X6!52uX6u
75
64 v11v2

ma
. ~33!

Finally, a andb are given by

a65~11 iv1!
X6

uX6u
, b6

2 5X6 . ~34!

The solution~34! shows that, for the nontrivial solution,
the modulus ofa is constant as it was in the reference prob-
lem with modulation. However, its phase is now a function
of ma .

Solution ~34! leads to an indetermination ofp on the
phase ofb. This indetermination finds its origin in the am-
plitude equations~22! which are invariant for a change ofb

into 2b if l a50. Physically, the exchangeb↔2b is equiva-
lent to a permutation of the two modes in Eqs.~20!. An
intriguing feature based on this remark appears when
Vext'VL andg251. This is quite clear ifb is decomposed
into its real and imaginary parts,br and bi , respectively.
Inserting this decomposition into the solution~20!, the com-
ponents ofs1,1 ands2,1 at Vext defined in~13! are

s1,1~Vext!54F S P1

12
2bi D 21br

2G1/2 cos~t1f2!,

~35!

s2,1~Vext!54F S P1

12
1bi D 21br

2G1/2 cos~t1f1!,

with tan~f6!5br /(P1/126bi). Equations~35! demonstrate
that the amplitude and the phase of the oscillation atVext are
different for the modess1 and s2: the symmetry between
the modes has been spontaneously broken. As a conse-
quence, the bistable state predicted above is in fact a tristable
state withb50, 1AX1 and2AX1, as illustrated in Fig. 5.

FIG. 5. The detuned symmetric case, with modulation at the low
frequency.~a! @resp.~b!#: peak height of the Fourier spectra ofI 1, I 2
and I 11I 2 at Vext ~resp. 2Vext!. The two pointsa and b, corre-
sponding toM50.07, have been chosen to illustrate the tristable
state. For this pump value, two temporal behaviors of the system
have been plotted in~c! and ~d!. I 1 and I 2 are represented by full
and dotted lines, respectively, when they are not equal~i.e., when
AD is present!. ~c! corresponds to theb50 solution~pointa!, while
~d! shows one of the two nontrivial solutions~pointb!. Exchanging
I 1 andI 2 gives the third solution. The other parameters arek55104,
g251,w52.18,Vext5120'VL . At the bottom,w(t) has been plot-
ted to give a phase reference. The two pointsa and b are not
reported in~b! for clarity.
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This phenomenon does not exist forVext'VR sincePa5250,
and the oscillation amplitude is the same for the two modes.

A linear stability analysis around the solutions~31! and
~34! shows thatuX2u is always unstable if it exists.uX1u is
stable if 2~75/641v1v2!1~75/64!21v2

2.0. Otherwise, it is
destabilized by a Hopf bifurcation@28# at uX1u5XH with

XH52
2400

1392
@~ 75

64 !21v2
2#@~ 203

64 !21v2
2#

2~ 75
64 1v1v2!1~ 75

64 !21v2
2
. ~36!

The condition of destabilization of the solution by the Hopf
bifurcation is incompatible with the existence of the bi- or
tristable solution. Hence, there are three possibilities, sum-
marized in Fig. 6: a monostable solution~domain 1! with-
out Hopf instability, a bi- or tristable solution without Hopf
instability ~domain 2!, and a monostable solution destabi-
lized by a Hopf bifurcation~domain 3!. Domain 3 is subdi-
vided into two parts. In the main part@domain 3~a!#, a super-
critical Hopf bifurcation leads to the appearance of a new
frequency in the solution. This oscillation transforms the pe-
riodic solution into a quasiperiodic solution which is stable.
In domain 3~b!, the Hopf bifurcation is subcritical. There-
fore, the quasiperiodic solution emerging from the Hopf bi-

furcation is unstable in the vicinity of the bifurcation point.
However this unstable solution becomes stable after a limit
point, as in the DOPO case. Thus there is a bistable behavior
between a periodic regime and a quasiperiodic regime. The
boundary between domain 3~a! and domain 3~b! has been
obtained numerically, and corresponds to the locus of exist-
ence of a vertical Hopf bifurcation. Note that in all cases,
antiphase dynamics persists in the sense that the sum of the
oscillating modal intensities is independent ofb~h!, as fol-
low directly from ~20!.

Eventually, the slightly nonsymmetrical case for which
the external modulationVext is close toVL has to be inves-
tigated. This requires to consider the full problem Eqs.~22!,
with l aÞ0. In the following, thea subscript will not be writ-
ten anymore since forVext'VL , a equals 1 by definition. As
suggested by the definitions ofl andm in Eqs.~23!, a new
parameterm is introduced to bindm with l

m[m l 2, m[S 8

9gD
2

. ~37!

Therefore,l becomes the only independent pump parameter
and is proportional to the modulation amplitudeM . Without
loss of generality, we restrict ourselves tol>0 since this
fixes the phase of the external modulation.

There are two simple particular cases that can be solved
analytically. The first of these two cases is the perfectly well
tuned asymmetric problem~i.e., VL5Vext5VR/2,g2,1!
leading tov15v250. It can be shown that the steady-state
solutionb( l ) of Eqs.~22! must be real. Taking into account
that property,b( l ) has to satisfy a third degree polynomial

b31b~ 75
642m l 2!2 75

64 l50. ~38!

This polynomial has always a real positive solutionb1. The
two other solutionsb2 andb3 are real only forl. l lim , with

l lim52
128blim

3

75
,

blim52H 75

128A3 m
F S 12Am21

m D 1/3
1S 11Am21

m D 1/3G J 1/2

for m>1,

52F 75

64Am
cosS arccos~Am!

3 D G 1/2 for m<1.

~39!

If real, b2 andb3 are also negative.
The behavior ofb1,2,3 can be understood by solving Eq.

~38! as a second degree polynomial forl (b). The positive
solutionb1 equals 0 atl50 and increases withl . Orderingb2
andb3 such thatb1.0.b2.b3 , the solutionb2 is found to
increase fromblim,0 to 0 andb3 to decrease fromblim to
2b1( l ) as l increases froml lim to 1`. Also the point
~l lim ,blim! is a limit point at whichb2 andb3 join each other.

FIG. 6. Parameter planes forg251 and/orVext'VR . In domain
~1!, there is neither bistability, nor Hopf bifurcation. In domain~2!,
bistability is found and in domain~3! the stable solution is destabi-
lized by a Hopf bifurcation. Domain 3 has been divided into two
parts. In domain 3~a! @resp. 3~b!#, a supercritical~resp. subcritical!
bifurcation happens, while the separatrix is the locus of vertical
bifurcations. Such a division has not been plotted in~b! for clarity.
~a! is related to the Eqs.~22! parameters.~b! axes labels are direct
physical quantities. Only the first quadrant has been plotted in~b!:
quadrants 2 and 4 belong to domain~2!, and quadrant 3 is symmet-
ric with quadrant 1.
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A linear stability analysis of the solutionsb1,2,3 provides
the following results. Aroundl50, b1 is always stable. It is
destabilized by a Hopf bifurcation ifm,4096/41209
'0.0994 atl5 l h with

l h5
1015

4096F 417

12~ 203
64 !2mG1/2. ~40!

The solution b2 is always unstable. Ifm<4096/5625
'0.7282,b3 is unstable. If 0.7282,m<3.4273,b3 is stable
for b 3

2.b h
2510425/~752m2642!. At b35bh , this solution is

destabilized by a Hopf bifurcation. Ifm.3.4273,b3 is stable
over its whole domain of existenceb 3

2.b lim
2 .

The second particular case that can be solved analytically
requiresg'8/9. That condition can lead to a remarkable so-
lution for which the oscillation atVext vanishes. Ifg58/9, by
linking the external frequencyVext'VL with the pump-
modulation amplitude M in such a way that
w15(212/105)ve120/21,v1 vanishes and the steady-state
solution of system~22! is a50, b25m. This demonstrates
the possibility of canceling the 2Vext component of the solu-
tion which then oscillate only atVext. If these conditions on
g, w1 and ve are not fulfilled exactly, e.g., ifg58

91O~d!
and/orw15(212/105)ve120/211O(d) with d!1, a small
oscillation at 2Vext appears, whose amplitude isO~d!. A lin-
ear stability of this solution shows that it is stable.

We conclude this section by stating that there is a major
difference between the symmetric~g251! and the asymmet-
ric ~g2,1! problems in the case of a modulation aroundVL .
In the former problem, there is a bifurcation between the
b50 and thebÞ0 solutions. In the later problem, such a
bifurcation is absent. By studying the limitg2→1, it appears
that theb50 solution is replaced by a nonzero solution of
very small amplitude which is smoothly transformed into an
O~1! solution asg2 is decreased. This clearly indicates that
the bifurcation existing in the symmetric case is not structur-
ally stable.

VI. ANALYTICAL VERSUS NUMERICAL RESULTS

The asymptotic argumentk@1 has been used to build
Eqs. ~22!. Therefore, it is useful to compare the analytical
results with a direct numerical integration of the TSD Eqs.
~1!. Experimentally,k can go up toO~106! butk553104 has
been chosen because it is a typical value for a yttrium alu-
minum garnet~YAG! laser. A comparison between the nu-
merical results and the analytical results is shown in Fig. 7.
As can be observed, the quantitative validity of our model is
very good.

However, two differences have been noticed between the
analytical and the numerical results. The first one comes
from the existence of a dissymmetry betweenI 1 and I 2 for
the oscillation aroundVR @Fig. 7~a!#. This dissymmetry is
observed numerically if the system is excited at a frequency
close toVL and ifAD is present, i.e., ifm.mthr . But, as the
VR oscillation is given forI 1 and I 2 by the same expression
in the analytical model@cf. Eqs. ~20!#, any dissymmetry is
absent from the first-order solution. An increase ofk reduces
this dissymmetry. Therefore, to catch this feature, the expan-
sion in 1/Ak should be continued at least an order further.

The second difference concerns the existence and the lo-

cation of the Hopf bifurcations. Two mechanisms have been
found to destabilize a periodic solution by a Hopf bifurca-
tion. The first mechanism is induced by the detuningsv1 and
v2. In the domain of the Hopf bifurcations, the values re-
quired forv1 andv2 are such that the parametersuw1u and
uveu have to be, respectively, larger than 47 and 21, forg251
@Fig. 6~b!#. This means that for moderate values ofk, the
linear approximation used to computev1 andv2 may not be
precise enough to guarantee that the state of the system
stands into the thin zone three of Fig. 6~b!. Moreover, the
theoretical value of the pump-modulation amplitude at which
the model predicts a Hopf bifurcation has to beO~ea! to be
consistent~with a51 or 2 depending onVext'VL or VR ,
respectively!. For example, using g251, w̄52.615,
Vext5289.9 andk553104, the detunings which are given by
Eqs. ~23! arev1522.5 andv251.5. For these values, the
model predicts a Hopf bifurcation atM'5.5331023. Noting
thatM@e2, the result is not meaningful and the Hopf bifur-
cation has not been found numerically. Increasingk to
53106 and takingw̄52.190,Vext52441.3 to keep the same
value forv1 andv2 as before, the Hopf bifurcation has been
found numerically for a pump modulation only 15% larger
than the theoretical predicted value.

The second mechanism leading to a Hopf bifurcation
comes from the dissymmetry existing between the two
modes of the laser wheng2,1. For the numerical tests, we
choseVext5VL andw5wres~g2! in order to havev15v250.
The other parameters of the two tests we performed were
g250.95,k553104 andg250.995,k553106, respectively,
for the first and the second test. For the first set of values, the

FIG. 7. Analytical vs numerical solutions.~a! @resp.~b!# repro-
duces Fig. 3~b! @resp. Fig. 5~a!# for I 1 andI 2 with numerical results
in addition. The crosses~resp. circles! are the numerical stable
~resp. unstable! solutions. The full~resp. dotted! lines are the ana-
lytical stable~resp. unstable! solutions.
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numerical pump-modulation amplitude at which the Hopf
appears is twice the value predicted by the asymptotic analy-
sis. However, for the second set of parameters, the relative
error is reduced to less than 3%.

VII. CONCLUSION

In this paper, an asymptotic model describing a pump-
modulated two-mode TSD laser has been derived. This
model was aimed at studying the strong energy exchanges
existing between the two relaxation frequenciesVL andVR
when the resonance conditionVR/VL'2 is achieved. As the
ratio VR/VL depends on the pump parameter~Fig. 2!, the
resonance condition is easily fulfilled by adjusting the pump-
ing strength. A weak pump modulation has been used to
sustain the intensity oscillations. The main results derive
from the analytical study of the model. Pure in-phase and
pure antiphased dynamics as well as a mix of antiphase and
in-phase dynamics have been predicted and observed nu-
merically. Specifically, it has been shown how antiphase and
in-phase dynamics interfere together. We have also charac-

terized secondary bifurcations destabilizing a periodic solu-
tion either to another periodic solution~corresponding to a
steady-steady bifurcation in the model! or to a quasiperiodic
solution~corresponding to a Hopf bifurcation in the model!.
A multistability domain between two periodic solutions has
been found.

In conclusion, our asymptotic analysis succeeded in
catching the main properties of the modulated laser. Its
qualitative and quantitative validity has been checked via
numerical integration.
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APPENDIX

The inhomogeneous termNW 2 of the second-order problem
is

NW 25S 2ve@2 7
4 ~s1,11s2,1!1Pa cos~at!#1 1

2 ~n1,11n2,1!22n0,1

@N0,1
0 2 3

4 ~11ve!2 1
4 N1,1

0 #s1,11
1
4 ~g2N1,1

0 1ve!s2,11
1
4 n0,1

0 22n1,1

@N0,1
0 2 3

4 ~g1ve!2 1
4 N2,1

0 #s2,11
1
4 ~12N2,1

0 1ve!s1,11
1
4 n0,1

0 22n2,1
2ve~n0,12n1,1!1~s1,11I 1,1

0 21!~n0,12n1,1!

2ve~n0,12n2,1!1~s2,11I 2,1
0 2g!~n0,12n2,1!

D .

In this expression,N0,1
0 , N1,1

0 , N2,1
0 , I 1,1

0 , I 2,1
0 are the first-

order terms of the steady-state expansion around thee50
problemg251 andw̄5wres~1!515/7

N0
0~w̄,g2!5 8

7 1eN0,1
0 ~w1,g!1O~e2!,

Nm
0 ~w̄,g2!5 2

7 1eNm,1
0 ~w1,g!1O~e2!,

I m
0 ~w̄,g2!5 1

2 1eI m,1
0 ~w1 ,g!1O~e2!, m51,2.

Explicitly, they are given by

N0,1
0 ~w1 ,g!5 1

53 ~4w1126g!,

N1,1
0 ~w1 ,g!5 1

53 ~8w1152g!,

N2,1
0 ~w1 ,g!5 1

53 ~8w1254g!,

N1,1
0 ~w1 ,g!5 1

106~49w11133g!,

N2,1
0 ~w1 ,g!5 1

106~49w12185g!.
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