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Pump modulation of a two-mode Fabry-Peot laser: Influence of an internal resonance
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We study the response of a two-mode laser to an external periodic pump modulation of small amplitude. The
control parameters are the pump-modulation frequency and amplitude. We first show that the ratio of the two
relaxation oscillation frequencies may be commensurate. We then investigate the parameter domain in which
the lowest of the two relaxation oscillation frequencies is close to half the other relaxation oscillation fre-
guency. We derive analytically a pair of nonlinear amplitude equations for the dynamical modes of the system.
This gives access to the stability of the time-periodic solutions that oscillate at the pump-modulation frequency
and its first(subharmonic. It also determines the occurrence of secondary bifurcations leading to more com-
plex solutions[S1050-294{@6)08909-3

PACS numbd(s): 42.55~f, 42.65.5f, 42.60.Mi

I. INTRODUCTION N
dN,
Tt =W No= 2 nlNo= N2l

The modal self-organization of multimode lasers is nowa-

days a field of active research. This is mainly due to the dN N
complex dynamics displayed by these systems and by the d—mzvaolm—Nm 1+ E 7k|k>, )
success of the theory to predict or explain the experimental t k=1

results. In this context, there has recently been a renewed

interest in the model proposed by Tang, Statz, and deMars dlipm
(TSD) [1]. This model describes &-mode free-running dt
Fabry-Peot solid-state laser for which atomic polarization

can be adiabatically eliminate@tate equation approxima- In these equationd,, is the intensity of the moden. The
tion). Its main feature is that the effects of the populationspace averaged population inversidg and the population
inversion grating caused by spatial hole burning are takemnversion gratings\,, are related to the population inversion
into account. Multimode lasers governed by the TSD equaN(Xx,t) inside the cavity through

tions display no oscillatory instabilities. Hence, in the long-

Kl Ym(No—Nw/2)—1], m=1,2,..N.

time limit, they relax always to the single stable steady state. Ry

For each of theN modes, this relaxation occurs via damped NO_E fo NOx,Ddx,

oscillations characterized Wy frequencies andl+1 damp- )
ing rates. However, under conditions which are easily 2 (L

achieved for solid-state lasers, the total intensitiz., the Nm=E fo N(x,t)cog 2k x)dXx,

sum of the modal intensitigss characterized by only one

frequency and one damping rate, as if it were a single mode ) .

laser. This frequency is the relaxation oscillation frequencyVN€rékn is the wave number of mode andL is the length
or McCumber frequenci2] and corresponds to the largest of of the cavity which is _ent|rely f|.IIed py the active medium.
the N modal frequencies. The property that only one fre-The pump parametew is normalized in such a way that the
guency is associated with the dynamics of the total intensit . s . .
has been called antiphase dynamié®) in laser physics. relative to the gain of mode 1 ig,<1, and « is the

This modal self-oraanization is a basic proberty found noinverse photon lifetime in the cavity. As usual, all decay
9 property -rates are assumed to be the same for each rbfdeFor

only in the transient relaxation to the steady state, but also I0olid-state lasersy is a large quantity being typically of
the output of externally modulated and in chaotic lasers a3der 1d to 1. The dimensionless time is measured in
well as in the noise spectrum ofw lasers[3—-10]. In laser nits of the population inversion relaxation time.

physics, AD has been found first in lasers with intracavity The analytical study of the TSD equations was initiated in
second-harmonic generation in the self-pulsing redifie-  [5). |n [7], a reference model was derived and analyzed by
16]. It was shown recently that this problem has unexpecte@ssumingy,,=1, Ym. Although this is a drastic simplifica-
links with the TSD equatiofi17]. An attempt to classify the tion, many properties of the system are preserved. The ref-
different types of antiphased states has been undertaken érence model predicts two oscillation frequencies, namely,

laser first threshold correspondswe=1. The gain of mode

[18] and[19]. Qg and Q; <Qg. Owing to the mode equivalencé), is
The N-mode TSD equations we shall considd] are  (N—1) degenerate. In the general cdsey., y,=1, y,<1),
given by Q, splits intoN—1 different frequencief7].
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04 (a) 0.4 (b) pears on _the _right side of the peak. The fully deyeloped case
A() A is shown. in Fig. W) fpr Qr/Q =2. Moreover, AD is clegrly
7 present in Fig. (d) sinceA(l;)+A(l,)=A(l,+1,), which
0.3 — 0.3 — is not the case in Figs.(d—(c).
i ] Ity Of particular physical interest is how AD depends on the
resonant interactions between modes and on the modulation
0.2 frequencyQey. As will be demonstrated, a strong selection
- between temporal patterns results from the modulation of the
01 — two-mode laser. A general observation of our analysis is that
I1lg Il the simplest model we developed already captures the con-
TTTT T 1 1T T 1 dition for pure AD, pure in-phase regimes and mixed anti-
142 144 148 148 150 137 138 139 140 141 142 and in-phase regimes.
When a nonlinear system is subject to a periodic modula-
%47 () 04 (d) tion, the natural tool to analyze its response is the power
A(D AQ) - spectrum. Unless the dynamics is chaotic, each oscillation
03 ] frequency present in the system appears as a peak. The peak
’ \ EI'H" position indicates the frequency and its height measures the
\/ amplitude of the oscillation at that frequency. General rela-
; \ tions between the power spectra of the modal intensities and
: of the total intensity af); and(Qg have recently been found

0.2 —

1
> ol
+
N

0.1

0.3 —

0.2 — I,+I3
e theoretically and experimentallj20,21. In this paper, we
o-__~ N extend these results by computing the height of these peaks
Inls Tnle as a function of the pump-modulation amplitude.
LU L. In Sec. Il, relations existing between the frequencies of a
134 136 138 140 142 115 117 119 121 123 . )
n Q N-mode laser are derived. The simple case of a two-mode
laser is also treated with more details. The analytical model
FIG. 1. Oscillation amplitude ofy, I, andl,+1,. A(l) is de- ~ describing the modulated two-mode laser dynamics is the
fined as maf!(t)] —min[1(t)] over the period of the oscillations. Object of Sec. Ill. The simplest case, called the reference
The average pump value () 2.70,(b) 2.56,(c) 2.50, andd) 15/7.  model with modulation, is then studied in detail in Sec. 1V,
The corresponding frequency ratifis,/ (), are(a) 1.948,(b) 1.956,  while other cases leading to secondary bifurcations are in-
(c) 1.964, andd) 2. The other parameters ayg=v,=1, M=0.075, Vvestigated in Sec. V. In Sec. VI the validity of our analytical
and k=5x10%. The dotted lines represent jumps between two peri-results is discussed by comparing them with numerical simu-
odic solutions. A hysteresis is clearly observeddin lations. Finally, we conclude in Sec. VII.

0

0.1

Another property of the reference model is that the ratio Il. FREQUENCY PROPERTIES

between the two frequencieQr and (), is bounded: Many nonlinear dynamical systems described by ordinary

—_— 2 = -
5(’)\'” slfl(g Ri g'-)hfzzl:sl foII ’:Ihez, ;hr?icruekr;rarkjr?qle r\ila?ue differential equations admit steady-state solutions, i.e., solu-
RoTL™ PP P pump tions that do not involve time. If such a steady state is

Wres=15/7. In this case, since the two frequencies are Comélightly perturbed, the system relaxes either back to or away

mensurate, resonant couplings occur between them. from it. The usual method to study the stability of a steady-

The purpose of th.'s Paper 1 'to study, analyt|cal'ly,'suchstate solution is to examine the rootof the characteristic
resonant couplings in the vicinity of g/, ~2. This is

achieved by probing the laser with a small amplitude umpoolynomial. The real part of eachis a measure of the rate
d by p 9 . np PUMELt which the system relaxes to or away from the steady state,
modulation whose frequenc§,,; is close to either}, or

QOg. In Fig. 1, the effects of the resonant coupling can b depending on whether RO<0 or Re\)>0, respectively.

e rhe imaginary part oh, if any, corresponds to a relaxation
observed. In thls_flggre, the two modes have been Chosef'i)equency. For thé\-mode TSD equations, the degree of the
equivalent, i.e.;;=y,=1. The oscillation amplituda of | ,,

. characteristic polynomial isi2+1. This means it cannot be
I,, and I;+1, are plotted as functions of the pump- POty

modulation frequency, chosen in the neighborhoodpf solved exactly for arbitrarfN. However, most free-running
quency, . - 9 ' solid-state lasers modeled by the TSD equations exhibit
The pump-modulation amplitude & =0.075. By progres-

, . X >1, suggesting an asymptotic approximation[Th it was
sively decreasing the average pump value, the 1@QtidQ), K . Y " )
increases from Fig.(8) to 1(d). In Fig. 1(a), O/, =1.948 shown how to exploit the limiic>1 by rewriting Egs(1) in

. . - . - erms of the deviations from the stable steady state. To this
and a single peak is observed. This peak is shifted towardtgnd’ we introduce the small parameser 1/, ar¥d the vari-

the low frequencies relative to the value obtained by the !
linear approximation[Q, (linean=149.7. In Fig. 1i(b), ablesa, no, Ny, andsy, defined by
0O/ =1.959 and a symmetry breaking appears between o=t/5

andl,, leading to bistable states. Fé¥gz/Q), =1.964[Fig. ’
1(c)], a discontinuity is clearly observed in the curves. More
precisely, this discontinuity results from a hysteresis, whose
range is too thin to be noticed on the figure. By increasing 0
OR/Q, towards two, a second hysteresis phenomenon ap- Sm=Im—Im

No=(Ng—N/8, nyp=(Np—N%)/é& ®3)
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()

. g FIG. 2. Resonance between the two relaxation
334— o 2.0 frequencies), and Qg. (8 w,dy,) at which
QOr/Q =2 based on the analytical expression
(11). (b) Numerical computation of)g/Q for a

0.90 range ofw and v,.
3 — 1.9 -
72=0.95
7,=1.00
2 LU I LI I LI I 1‘8 1 I 1 I ] l T I T I
0.85 0.90 0.95 1.00 1 2 3 4 5 6
%2 w

where the superscript 0 indicates the steady-state solutidretting N, vary from 1 atw=1 (laser first thresholdto
given by No=N/(N—1/2) atw=2=, the lower and upper bounds for
Q2/Q 2 are obtained from Eq8).

2

1 ' _1<_R
Sl—<N——)N8 IN—1< QE<2|\|+1. @)

0 If the ratio g/}, is rational, resonant interactions be-

NO =2(N°— 1y) 0 =i No—1/vm @ tween the oscillations dg and (), appear. Because of the
m 0 Ym)r o m 1 guadratic nature of the nonlinearities of the TSD syst&m

)No the simplest casé€)g/(), ~2 is expected to lead to strong
resonant parametric interactions. As indicated by(Ey.this

Ny L is possible only foN=2. In this case, it is found from Egs.
. _ - _ (4) and(6) that the exact resonané&g/), =2 occurs for a

with Sl_gl vk’ Sz—k; 2 pump valuew=w,,=15/7.
This result can be generalized to the asymmetric two-
After inserting Egs.(3) into Egs. (1), the limit 50 is  Mode casey;=1, %,<1. Let us determine, for this general
taken. The resulting equations are then linearized and réwo-mode case, the pump value under which exact resonance

duced to happens. The characteristic polynomial of E@S. factors
out into A P,(\?) where the biquadratic polynomi&,(\?) is

dn,
d—;:—zk S, Po(AN2) = 4N+ 2N2[(4—NG) I+ ya(4— y,NQ) 9]
+{¥a[8+4(1+ y2)NS—37,2(N9)?]
dn
= asaNE- N s, (5) —4(1+ NI ®

The imaginary part of the roots &,(\?) gives two oscillat-
dsn ing frequencies
o = Ymlm(No=ne/2).

@

JA—B A+
. . . QL: and QR: ’ (9)
To proceed analytically with thH-mode case, we restrict 2 2
the analysis to the degenerated cage=1, Vm. As a result, .
all the modal intensities are equal, i.6%,=Z, Vm. The ei- With
genvalues of systertb) can then be computed analytically. 0 0 0 0
They are 0, =Q,, *0s with Q =(INY2Y? and A=17(4=Np)+ 72l 2(4— 72No),
Qr=(IN+NJ-1)Y2[7]. By using Egs(4), we note that o0 . .
B=A%+21715{2y,Ng[3¥,Ng—4(1+ 7,)]+8(1-7,)%}.
02 4N 10)
—R=1-2N+ —. 6) N , (
Of No The exact resonance conditiéli/, =2 requires
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25B=9A2. (11) Qe = and Q,~Qg. By the way it is defined(), is al-

ways close td}, . The detuning betweef}, and(}, is mea-

As A andB depend orw andy,, Eq.(11) is a fourth degree  sured byw,. Note that(), =1 and Qg=2 with the scaling

polynomial in each of these two parameters. In Fig),2he  (16) for t if e=0.

implicit equation 2B=9A? has been solved numerically to Introducing Eqs(12) to (16) into Egs.(1) and equating to

obtainw{y,). In Fig. 2b), it is demonstrated thalr/€);  zero the coefficients o€ gives a sequence of linear prob-

remains in the vicinity of two over a large neighborhood of lems. To first order, the evolution equations are

w aroundw,. This explains why strong interactions be-

tween the two oscillating modes are observed evenwfor dng, ;
away fromw,, as is the case in Figs(H) and Xc). d; ~ #(S11tS20)+ M, codar),

Ill. AMPLITUDE EQUATIONS dn, ,

. . . . . _':(3511_52 1)/4,
In this section, we derive the amplitude equations of a dr : :
weakly pump modulated two-mode TSD laser for which
W~~W,g (i.€., for whichQg/Q ~2). A perturbation method dny
is used to take advantage &% 1. For the laser with modu- d,; ~ (3S217S10)/4, (17
lation, it is mathematically more convenient to introduce a
new small parameter ds
1,1
7\ 12 dr Moa~ N1
€= ( ZK) , (12
. . dsyq
instead ofé. We then seek a solution of Eq4) of the form ar No1—N2;1-
2
No(t)=Ng-+€7no,(1) +O(e?), The general solution of the linear systéty) is the solu-
tion of the homogeneous problem plus a particular solution.
Nin(t)=Np,+ €70 1(t) + O(€?), (13)  Let us write Eqs(17) in compact formdv,/dr="Luv;+N;
whereLv, and N, are, respectively, the homogeneous and
In(D) =19+ 3Sma() +O(e), mMm=1,2. the inhomogeneous parts of the right-hand <ithe) of Eqgs.

) . L (17). The general solution of the homogeneous problem
The problem is further restricted by consideripgclose to 1 doy/dr=Loy is

y1=1, y,=1—-€g+O0(€?). (14

e — 7 aloT > aNiT
In the unmodulated cad¢], the results of this expansion vH(7) Vo€ +i:zL,R [vie""+c.cl. (18

hold for y, as small as 0.8. However, an essential assumption
for the derivation of the amplitude equations is that the dy-n these equations, theés and they’s (as well as their com-
namical variableiNy, N,,, andl,, be explicit analytic func-  plex conjugatesare the eigenvalues and the eigenvectors of

tions of e. the matrixL
The pump is weakly modulated aroumg..=15/7 at an
external frequencyl,,. This is expressed by Ao=0, 1v0%(1,1,1,0,0,
w(€)=w(e)+M(e)cod Qeyt), (19 A =i, 0,%(0,—i,i1,—1), (19)
where

Ag=2i, vg*(7il4,—il4,—i/4,1,D).
w=L+ ew; +0(€?),
The oscillation amplitude of the total intensity is given,

M=€e3[M,+eM,+0O(€?)], for each frequency, by the sum of the eigenvector’s last two
terms. This sum vanishes for but not forvg. Therefore,
andw, M, M, are parameters. the low frequency), does not contribute to the total inten-

The external frequency is tuned to a value close to eitheity, which oscillates only af)z. This phenomenon is the
Q, or Q. This motivates the introduction of the basic time Signature of AD. .
7 defined by The inhomogeneous terM, is [M, cog«7),0,0,0,0. If
a=2, N; oscillates at the resonant frequer@y=2. Such a
7=Q.t, where resonance with the homogeneous system leads to secular
terms and unbounded solutions appear. The only way to
Qot 1+ €wet O(€?) avoid the divergence is to imposé,=0. This constraints
Qe= e 16 the pump oscillation amplitude to be @€ quantity. If
a=1, N, oscillates at the resonant frequen@y=1, but in
with eithera=1 if Qg =Q, or a=2 if Qg ~=Qg. The aim of  this caseN, is orthogonal ta), . Because of this orthogonal-
using « is to derive simultaneously the equations for ity, the secular divergence is avoided and the pump oscilla-
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tion amplitude can remain aB(e) quantity. Also, the laser is w1=we+ 29— 2wy,
much more sensitive to a modulation aroung than around

Q_, since the value of the pump modulation amplitude w,=2w+ 2g—Iw,,
required to produce similar laser intensity oscillation ampli-

tudes is of order ¥ greater at(), than atQg. This is a 3g
well-known experimental propertj4,22]. A similar result |a5—2 P,

has been derived for pump-modulated multimode intracavity
second harmonic generatidifSHG) lasers[23]. It is then

: : - M,_1=13M2, m,_,=—4M (23
easy to verify Dby direct substitution that a=1=1:aM7, a=2 16 VI2.
v=(>,—1i,—1,2,2)(M,/12)e'"+c.c. is a particular solution of i . .
Egs.(17). Eventually, the general solution of E€?) reads ~ Equations(22) are the amplitude equations of the laser os-
cillations. They describe the slow time dynamics of the
weakly modulated laser. The analysis of these equations will

No.1 7',/4 , ',P"/lz be the main purpose of the next two sections.
N1, - i(—2ib—P,/12)} Equations(22) are formally equivalent to the equations
Ny1| =2ia| —il4|ed"+| i(2ib—P,/12) |e'™ used to describe nonequilibrium phase transitions in sub-
S11 1 2ib+P,/6 second-harmonic generatip®4,25. In that context, a non-
Sp1 1 —2ib+P,/6 linear crystal is placed inside an optical cavity. An external
coherent pumping field is used to maintain the system in a
L nonequilibrium state. The crystal transfers energy between
1 two optical modes of the cavity via two photons processes. If
+c| 1| +c.c., (20)  the ratio of the two optical frequencies is close to two, either
0 second-harmonic generatid®HG) or degenerated optical
0 parametric oscillationgDOPQO appear, depending on the

pumping field frequency. These systems also exhibit squeez-
ing properties[26,27. Because of this formal link, results
well known for SHG or DOPO systems can be formally
translated for the two-mode pump-modulated laser.

To conclude with this section, let us consider the physical
meaning of the parameters appearing in E88). The driv-
ing termsm and| are related to the pump-modulation am-

whereP,_,=M,, P,_,=0 anda, b, ¢ are unknown ampli-
tudes. It is worth noting thah is the amplitude of an in-
phase oscillation arouny, P, that of an in-phase oscilla-
tion around(), , andb that of an antiphase oscillation around
Q, . Thus, itis already clear from the first-order soluti@d)

that in case of a modulation &,,~Qg, asP, is null, there plitude M, while o, (resp. w,) is the detuning betweefd,

iS no in-phase modulation aroury| .
The O(é?) problem has to be considered in order to deter-and {2, (resp. Qg and 2),) at ordere. In the absence of

mine a, b, andc. This problem differs from Eqg(17) onl external modulation, i.e., iIM=0=I1=m, it can be shown
P ' P wiers from Eas-L7).on'y that d(|a|?+ |b|?)/d»=<O0. By this we mean that the system

by the inhomogeneous termdv,/d7=Lv,+N, (N, is | | / vial solution=b=0. Thi I
iven in the Appendix It leads to secular terms and thus always relaxes (o Its trivial solutioa=b=0. This result

9 . . . ; L eliminates the possibility of having isolated solutions.

unbounded solutions. To avoid this unphysical situatin,

b, andc are assumed to depend on a slow tigreer. In this

way, a multiple time-scale analysis is undertaken. Because V.- THE REFERENCE PROBLEM WITH MODULATION

and n have to be treated as two independent variables, the

chain ruled/dr=dldr+edldn applies. Doing that, cancella- simplest case, namelg=w,=w;=w,=1=0. In terms of

tion of the secular terms requiras b, andc to satisfy three the initial parameters, that corresponds tg,=1,

compatibility equations. One of these compatibility equa-W—:WreS:15/7 andQ), , equals to eithef), or Q. This wil

Equations(22) are first investigated by considering the

tions is serve as the reference problem. Under these assumptions
Egs.(22) reduce to the tuned DOPO equations
dc 53 21)
—=—_C.
d 32 a
’ G- - Ha-brem,,
Obviously,c decays exponentially to zero. Therefore, it can (24
be neglected as we are not interested by the transient behav- db .
ior of the laser. The two other compatibility equations are ﬁ: —b+ab*.
da 75 ) These equations have already been widely studied
dn @287 58 b*+m,, [24,25. They admit two steady-state solutions
(22 64

a===m,, b=0, which is stable for

db
— = —iw;b—b+ab*+1,,
dy O<m,<mp=25, (25)

where the coefficients are defined by and
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FIG. 3. Reference problem with modulation: analytical results.. FIG. 4. Time evolution of 4(t), 15(t) andly(t) +1(t) illustrat-
(@ and (c): O, peak height of the Fourier spectra bf, |, and ing typical dynamlcallbehav.lors of .the modulated laser. Each plot
. . corresponds to a point indicated in Fig. & (M=0.03, 8 (M
I1+15. The pump-modulation frequendy,, is (a) ; and(c) Qg. ~0.0 M =0.00 d5 (M=0.0003. The oth {
(b) and(d): same aga) and(c) for the O Fourier peak height, The —0-09: ¥ (M=0.009, and 5 (M=0.0003. The other parameters

pointse, B, v, andé correspond to typical dynamical behaviors that ?r:(;ther:arzectgselln F'ghghartféz a;eererg)é?s:nttﬁea(i by fﬁisnzgo.t ted
are illustrated in Fig. 4. Stable solutions are plotted in full lines, INes, respectively, w y ar quae., w 'S

unstable ones in dotted lines. The other parameterscalcf, ~ P/eSent On the bottomw(t) has been plotted to give a phase
w=15/7, y;=7,=1. reference.

B 5 75 L where the equality is satisfied if there is no antiphased oscil-
a=1, b"=m,—g, which is stable for my=<m,. lation, i.e., ifm,<my,. On the other hand, since there is no
antiphased oscillation d2, we have

In Fig. 3, the laser behavior is analyzed in terms of the Fll1+1,5,00) =F(11,Qp) + F1,,Qr). (29)
Fourier peak height&(l,Q) with I =1,,I, or I;+1,. In this
expression() is the frequency of the peak studiegil ,Q2) is

defined by The time evolution ofl,, I, and1,+1, is displayed in

Fig. 4 for four characteristic points labeled 8, v and §in
Fig. 3. The pointsx and § correspond tan,<my,, implying
b=0 and thus no antiphased behavior. The presence of AD is
' @7 revealed by the difference existing betwegnand I,, as
shown for the pointg and vy, for which m,>my,,. A spec-
. ) tacular effect of AD occurs around the poipt each modal
The functionZ(l,€2) is computed from Eqsi13), (20), and  intensityl, and!, strongly oscillates a€}, while their sum
either (25) or (26) in order to getl (t). The upper bound of | 4|, oscillates only af)g. This comes from the fact that
the integration in the definitioi27) corresponds to the pe- the external modulation being &, the in-phase), oscil-
riod of the modal intensities; and I, (taking into account |ation termP, cancels identicallfsee solution20)], while
the fact that a period doubling could happen for a modulationhe antiphase), oscillation found inl, and I, interferes
at )g). As can be observed in Fig. F(l;,Qg) equals  destructively inl,;+1,. There is thus no trace of th@,
F(12,Qr ) whether (g, equals() or Qg. This equality  ogcillation in the total intensity.
holds because the terms2+ P 16 and—2ib+ P16 of the
linear solution(20) have the same modulyb andP , being
real in the reference probléniThey thus give the same peak V. THE GENERAL CASE

height. The triangular inequality leads to The full system Eqs(22) is now investigated. The detun-
ings w; and w, do not cancel either if the exact resonant
F(l+1,,Q0)<F11,Q)+F1,,Q,), (28)  conditionQg=2Q, is not satisfiedi.e., if w#w,{y,)], or

(9] 27l .
at ,Q)E‘—Z; f Ll(t)e'mdt
0
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if the external frequency),,; is not exactly tuned td), or 0.05 4 () I+

O . . Des¥ Y. /1
However, there are two cases for which the driving am- . bad

plitudel , cancels. First , cancels if the external modulation 4

frequencyQ,,; is close toQ)z. Second], cancels ify,=1, ? ] W

whatever the external modulation frequency is. Then, Egs. 3 8-

(22) reduce to the equations for the DOPO with detuning L3 a

[24,25. These equations admit two steady-state solutions
which are more easily described by the new complex vari-
able X=Db?2. From Egs.(22), an equation foX is derived 0.00

75 .75 _ 0.00 0.05 0.10 0.00 0.'25 0.10
[(§3— wiwa T |X]) +i(G ot w) IX=m,|X|. (30) M

. . . . . 1.20

This equation admits a trivial solutio,=0. In terms of i

the amplitudes andb, it corresponds to 1.00 -

m, B 0.80 —

A= 7564 +iw,” PO BD  eo-

The trivial solution is stable for €m,<my, 0.50 —

=[|(1+iw,)(75/64+i w,)|]1Y2 . v N

To find the nontrivial solutions of Eq30), the equationis ~ %#° L B T B B
0.0 t 0.1 0.0 t 0.1

multiplied by its complex conjugate. This yields a quadratic

equation in|X| whose solutions are v NN DN N

LI LA I LI I T 17 I LI B '

2
IXi|= =G+ oiwx[m— (Goi+wy)?]"2 (32 0.0 t 01 00 t 01

As |X..| must be real and positive, there are restrictions on FIG. 5. The detuned symmetric case, with modulation at the low
the scaled-modulation amplitude,. Depending onw; and  frequency(a) [resp.(b)]: peak height of the Fourier spectralgf | ,
w,, two possibilities exist. Ifw,w,<75/64,|X,| exists for —andl;+1, at Qg (resp. X,). The two pointse and B, corre-
m,=my, and bifurcates fromX, at m,=my,, while |X_| sponding toM =0.07, have been chosen to illustrate the tristable
does not exist. On the other hand gifw,>75/64, both|X_ | state. For this pump value, two temporal behaviors of the system
and |X_| exist within a given range ofn,. The domain of have been plotted ific) aqd (d). I, andl, are represer_lted by full
existence ofX .| is m,=m;,=/(75/64w,+ w,|. The domain and_dotted lines, respectively, when they are not g(;l.ml, When
of existence ofX_| is my,<m,<my,. |X_| bifurcates from AD is presenk (c) corresponds to the=0 §o|utlpn(p0|nt a), Whll|e
X, at my, and joins|X,| at the limit pointmy,,. Over the (d) shows_one of the_ two nor_1tr|V|aI solutiofygoint B). Exchanging
domain of existence dfX_|, bistability occurs between the I, andl, gives the third solution. The other parametersa&10,
trivial solution X, and|X, |, since|X_| is always unstable. 271 W=2.18,0e,=120~0, . Atthe bottomw(t) has been plot-

In order to study the bistable regime,andb have to be ©¢ 0 give a phase reference. The two poiatand f are not
solved as functions afn,, and this requires the determina- reported in(b) for clarity.
tion of X. From Eqgs(30) and(32) the real and the imaginary

parts ofX are found to be into —b if | ,=0. Physically, the exchande— —b is equiva-

lent to a permutation of the two modes in Eq20). An

[mi—(g—i w1+ ) 2|12 intriguing feature based on this remark appears when

Re(X.)=*|X.]| ’ Q= and y,=1. This is quite clear ib is decomposed
- - m, into its real and imaginary partd, andb;, respectively.
e Inserting this decomposition into the soluti0), the com-
& wtow onents ofs; ; ands, ; at Q) defined in(13) are
IM(X.) = - |X.| #. (39 p 11 2,1 ext
Ma Pl 2 5 1/2
Finally, a andb are given by Si(Qed=4|| 57 0i| +br|  cosr+¢.),
Xa 2 1/2 (35)
a.=(l+iwy) o, bi=X.. 34 P
B ( wl) |xi| - - ( ) 52,1(Qext):4[(1_;+bi +br2 COST"" ¢+)!

The solution(34) shows that, for the nontrivial solution,
the modulus ofa is constant as it was in the reference prob-with tan(¢.)=b./(P1/12*+b;). Equations(35) demonstrate
lem with modulation. However, its phase is now a functionthat the amplitude and the phase of the oscillatiof2 gt are
of m,,. different for the modes,; ands,: the symmetry between
Solution (34) leads to an indetermination of on the the modes has been spontaneously broken. As a conse-
phase ofb. This indetermination finds its origin in the am- quence, the bistable state predicted above is in fact a tristable
plitude equation§22) which are invariant for a change bf  state withb=0, + X, and — X, as illustrated in Fig. 5.
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-
o

(39) @) furcation is unstable in the vicinity of the bifurcation point.
However this unstable solution becomes stable after a limit
(3b) point, as in the DOPO case. Thus there is a bistable behavior
between a periodic regime and a quasiperiodic regime. The
boundary between domain@ and domain &) has been

obtained numerically, and corresponds to the locus of exist-
ence of a vertical Hopf bifurcation. Note that in all cases,
(3b) antiphase dynamics persists in the sense that the sum of the
30 . . . A .
oscillating modal intensities is independenthify), as fol-
low directly from (20).

T 1 T T I T ) T T ] T 1 1 1 I 1 ] T L] I

-5 Eventually, the slightly nonsymmetrical case for which
°’2 the external modulatiofl,,; is close to(); has to be inves-

tigated. This requires to consider the full problem E@®),

with I ,#0. In the following, thea subscript will not be writ-

. ) ten anymore since fdR.,~(, , « equals 1 by definition. As

. suggested by the definitions bfand m in Egs.(23), a new

60 — parametefu is introduced to bindn with |

3]

&

e
-
o
poaa by s leaaald

|
-
o

l

G

8 2
_ =pul?, s(—) . 3
30 @ m=u M 9g (37)

Therefore,| becomes the only independent pump parameter
and is proportional to the modulation amplitulfe Without

0 10 f,‘: % 40 loss of generality, we restrict ourselves Ite0 since this

fixes the phase of the external modulation.

There are two simple particular cases that can be solved
(1), there is neither bistability, nor Hopf bifurcation. In doma, analytically. The first of these.two cases is the perfectly well
bistability is found and in domait8) the stable solution is destabi- tUned asymmetric problenti.e., € =Qq=0g/2,7,<1)
lized by a Hopf bifurcation. Domain 3 has been divided into two 1€adiNg 10w, =w,=0. It can be shown that the steady-state
parts. In domain @) [resp. 3b)], a supercriticalresp. subcritical ~ solutionb(l) of Egs.(22) must be real. Taking into account
bifurcation happens, while the separatrix is the locus of verticathat propertyp(l) has to satisfy a third degree polynomial
bifurcations. Such a division has not been plottedbinfor clarity.

(a) is related to the Eqg22) parameters(b) axes labels are direct b3+b(&—pul?)—-21=0. (38)
physical quantities. Only the first quadrant has been plottgt)in

guadrants 2 and 4 belong to dom#®), and quadrant 3 is symmet-
ric with quadrant 1.

FIG. 6. Parameter planes fgs=1 and/orQ.,~Qg. In domain

This polynomial has always a real positive solutiop The
two other solutions, andb, are real only fod >1;;,,, with

This phenomenon does not exist fog,~(y sinceP ,_,=0,

and the oscillation amplitude is the same for the two modes. | = 1283hm
A linear stability analysis around the solutio(®l) and fim 75
(34) shows thaiX_| is always unstable if it existgX,| is
stable if 275/64+ w,w,)+(75/642+ w5>0. Otherwise, it is 75 7\ 13
destabilized by a Hopf bifurcatiof28] at | X, | =Xy with Biim { 11—/
128/ i

X:_24oo[(§) W3[5+ w3] 39
"T13F (L 4 wiwy) + ()24 w2 "

1/2
] for u=1,

1/3
-1
1+ 2=
72
The condition of destabilization of the solution by the Hopf v

75 arcco$u)
bifurcation is incompatible with the existence of the bi- or - m co 3
tristable solution. Hence, there are three possibilities, sum- #

marized in Fig. 6: a monostable solutiédomain 1 with- (39
out Hopf instability, a bi- or tristable solution without Hopf

instability (domain 2, and a monostable solution destabi- If real, b, andb; are also negative.

lized by a Hopf bifurcationdomain 3. Domain 3 is subdi- The behavior ofb, , ; can be understood by solving Eqg.
vided into two parts. In the main pddomain 3a)], a super- (38) as a second degree polynomial igb). The positive
critical Hopf bifurcation leads to the appearance of a newsolutionb,; equals 0 at=0 and increases with Orderingb,
frequency in the solution. This oscillation transforms the pe-andb; such thatb,>0>b,> b, the solutionb, is found to
riodic solution into a quasiperiodic solution which is stable.increase fromb;,,<0 to 0 andb; to decrease fronbj,, to

In domain 3b), the Hopf bifurcation is subcritical. There- —by(l) as | increases froml;,, to +«. Also the point
fore, the quasiperiodic solution emerging from the Hopf bi- (I}, ,b;m) is a limit point at whichb, andb, join each other.

for u<1.
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A linear stability analysis of the solutiorts, , ; provides 0.05 4 () ‘o
the following results. Around=0, b, is always stable. It is Qqut=0y. 8°
destabilized by a Hopf bifurcation ifu<<4096/41209 7 60
~0.0994 atl =1, with &£
T o
12 3 o°
1015 417 ¥ o
lh: (40) 7 O'o
4096 1_(26_043)21“ o° I,
- + +
|""*1++*$$$$$$++
The solution b, is always unstable. Ifu<4096/5625 0.00 Is
o LI | T T 1 1 1 1 1 I

~0.7282,b; is unstable. If 0.7282 u<3.4273,b; is stable
for b2>b2=10425(75°u—64%). At bz=bh,,, this solution is " M
destabilized by a Hopf bifurcation. ji>3.4273,b; is stable

over its whole domain of existende> b3, . o

The second particular case that can be solved analytically %95 () i
requiresg~8/9. That condition can lead to a remarkable so- T
lution for which the oscillation af),,, vanishes. Iig=8/9, by
linking the external frequencyl.~, with the pump-
modulation amplitude M in such a way that
w;=(212/105w.+20/21, w,; vanishes and the steady-state
solution of system22) is a=0, b?=m. This demonstrates
the possibility of canceling the(Z,,, component of the solu-
tion which then oscillate only a@,,;. If these conditions on 0.00
g, w; and o, are not fulfilled exactly, e.g., ig=5+0(5) " oo T o!as S 0'10
and/orw;=(212/105)w,+ 20/21+ O( ) with <1, a small ) M ’
oscillation at 2),,, appears, whose amplitude@®{d). A lin-
ear stability of this solution shows that it is stable. FIG. 7. Analytical vs numerical solutiong) [resp.(b)] repro-

We conclude this section by stating that there is a majotiuces Fig. &) [resp. Fig. §a)] for I, and|, with numerical results
difference between the symmetfig,=1) and the asymmet- in addition. The crossegresp. circles are the numerical stable
ric (y»,<<1) problems in the case of a modulation aroddd.  (resp. unstablesolutions. The full(resp. dotteilines are the ana-

In the former problem, there is a bifurcation between theytical stable(resp. unstablesolutions.

b=0 and theb+#0 solutions. In the later problem, such a

bifurcation is absent. By studying the lim—1, it appears cation of the Hopf bifurcations. Two mechanisms have been
that theb=0 solution is replaced by a nonzero solution of found to destabilize a periodic solution by a Hopf bifurca-
very small amplitude which is smoothly transformed into antion. The first mechanism is induced by the detuningsind
O(1) solution asy, is decreased. This clearly indicates thatw,. In the domain of the Hopf bifurcations, the values re-
the bifurcation existing in the symmetric case is not structur-quired for w; and w, are such that the parametévs,| and

°
:} + 00°°
b~y
w

ally stable. |we| have to be, respectively, larger than 47 and 21 ferl
[Fig. &b)]. This means that for moderate values gfthe
VI. ANALYTICAL VERSUS NUMERICAL RESULTS linear approximation used to computg and w, may not be

precise enough to guarantee that the state of the system
The asymptotic argument>1 has been used to build stands into the thin zone three of Fighs Moreover, the
Egs. (22). Therefore, it is useful to compare the analytical theoretical value of the pump-modulation amplitude at which
results with a direct numerical integration of the TSD Eqgs.the model predicts a Hopf bifurcation has to ®é¢®) to be
(1). Experimentally x can go up ta(10°) butk=5x10* has  consistent(with a=1 or 2 depending o).~ or O,
been chosen because it is a typical value for a yttrium alurespectively. For example, using y,=1, w=2.615,
minum garnet'YAG) laser. A comparison between the nu- Q,,=289.9 anck=5x10" the detunings which are given by
merical results and the analytical results is shown in Fig. 7Egs. (23) are w;=—2.5 andw,=1.5. For these values, the
As can be observed, the quantitative validity of our model ismodel predicts a Hopf bifurcation 8 ~5.53x10 3. Noting
very good. that M> ¢, the result is not meaningful and the Hopf bifur-
However, two differences have been noticed between theation has not been found numerically. Increasingto
analytical and the numerical results. The first one come$x10° and takingw=2.190,0,,,=2441.3 to keep the same
from the existence of a dissymmetry betwderandl, for  value forw; andw, as before, the Hopf bifurcation has been
the oscillation around)y [Fig. 7(@]. This dissymmetry is found numerically for a pump modulation only 15% larger
observed numerically if the system is excited at a frequencyhan the theoretical predicted value.
close to(), and ifAD is present, i.e., ifn>my, . But, as the The second mechanism leading to a Hopf bifurcation
Qg oscillation is given forl; andl, by the same expression comes from the dissymmetry existing between the two
in the analytical mode[cf. Egs.(20)], any dissymmetry is modes of the laser whep,<1. For the numerical tests, we
absent from the first-order solution. An increasecoduces chose() =, andw=w,J{y,) in order to havew;=w,=0.
this dissymmetry. Therefore, to catch this feature, the exparifhe other parameters of the two tests we performed were
sion in 14« should be continued at least an order further. ,=0.95, k=5x10* and v,=0.995, x=5x10°, respectively,
The second difference concerns the existence and the Ifer the first and the second test. For the first set of values, the
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numerical pump-modulation amplitude at which the Hopfterized secondary bifurcations destabilizing a periodic solu-
appears is twice the value predicted by the asymptotic analytion either to another periodic solutidigorresponding to a
sis. However, for the second set of parameters, the relativeteady-steady bifurcation in the mogel to a quasiperiodic

error is reduced to less than 3%. solution (corresponding to a Hopf bifurcation in the model
A multistability domain between two periodic solutions has
VIl. CONCLUSION been found.

. ] o In conclusion, our asymptotic analysis succeeded in
In this paper, an asymptotic model describing a pumpcatching the main properties of the modulated laser. Its

modulated two-mode TSD laser has been derived. Thigygjitative and quantitative validity has been checked via
model was aimed at studying the strong energy exchangegmerical integration.

existing between the two relaxation frequencigs and Qg
when the resonance conditiéls/Q), ~2 is achieved. As the
ratio Qg/Q), depends on the pump parametig. 2), the
resonance condition is easily fuffilled by adjusting the pump-  This research was supported in part by the Interuniversity
ing strength. A weak pump modulation has been used t@ttraction Pole program of the Belgian government and by

sustain the intensity oscillations. The main results derivehe Fonds National de la Recherche ScientifigBelgium).
from the analytical study of the model. Pure in-phase and

pure antiphased dynamics as well as a mix of antiphase and
in-phase dynamics have been predicted and observed nu- .
merically. Specifically, it has been shown how antiphase and The inhomogeneous teri, of the second-order problem
in-phase dynamics interfere together. We have also charads
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APPENDIX

—wd — 7 (S1+5,0) T P, cogam)]+ 3 (Ny1+Nz1)—2ng 4
~ [ INgy— & (1 we)— & NYgJsia+ 3 (9= NY s+ we)Spat 3
No=| [N§ 1= § (g+we)— 3 N3 JSp 1+ & (1= N3 1+ we)Sy 1+ 7 NG1— 2N
—we(Ng1— Ny 1)+ (St ?,1_ 1)(ng1—Ny9)
—we(Ng 1= Ny 1) + (S 11 2,1_ 9)(Ng1—Ny1)

0
No1—2N11

In this expressionNg 5, N9, N3, 195,13, are the first- NO (W Q)= (AW + 2
order terms of the steady-state expansion aroundeth@ 04(W1,0)= 55(4Wy +269),
problemy,=1 andw=w,.{1)=15/7

B NQ 1(w1,9)= d5(8w;+520),
NO(W, ¥2) = § + eNg ((wy 4) + O(€?),

0/ 2 0 2 Ng,l(Wlag): 35(8w; —54g),
Np(W,y2)= 7 + eNm,l(Wl,g)+O(€ )s

_ N ,0)= =(49w, +133y),
572 = b +eldwy,0)+O(), m=12 bl 0 aos (A TASR)

Explicitly, they are given by N3 {(W1,9) = 765(49w; — 185g).
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