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The propagation of a pair of electromagnetic pulses through a coherently prepared atomic medium in the
L configuration is studied. We find that even in an absorbing medium, it is possible to produce pulses that
propagate shape invariant. The results reveal the spatiotemporal dynamics associated with field propagation,
and highlight the role of atom preparation, pulse intensities, and medium length, on the final output pulses that
one obtains. We also explore the prospects for pulse shaping and control by using dissimilar shaped pulses at
the input to the medium and following their evolution.@S1050-2947~96!06109-4#

PACS number~s!: 42.50.Fx, 42.50.Gy, 42.50.Md

I. INTRODUCTION

The pioneering work of McCall and Hahn on self-induced
transparency@1# was followed by a number of theoretical
and experimental works on pulse propagation through two-
level atoms. It is known that an electromagnetic pulse of area
betweenp and 2p, resonant with a two-level transition, will
evolve into a characteristic shape that is described by a se-
cant hyperbolic function, which then propagates shape in-
variant through the medium. In the absence of damping, one
can analytically derive this pulse profile. However, if the
relaxation of the upper state is accounted for, even this
simple problem of a two-level atom is not amenable to an
analytic solution, and one resorts to numerical methods.

Lately there has been tremendous interest in quantum co-
herence effects, such as inversionless lasing and electromag-
netically induced transparency, that arise in strongly driven
atoms. In this context, Scully and co-workers have discussed
a medium in which the atomic population is coherently dis-
tributed between two energy levels of a three-level atom@2#.
This medium can exhibit an enhanced refractive index with
vanishing absorption, even on a transition to which a reso-
nant field is applied. Fleischhaueret al.have detailed various
techniques for obtaining a coherently prepared medium, and
studied the effect of field incoherence and Doppler broaden-
ing on the preparation of such a medium@3#.

Most studies on pulse propagation through three-level at-
oms assume the standard initial condition of the population
being in the ground state@4~a!,4~b!,5,6#. These include re-
ports on population transfer to high-lying states,@7# and the
recent work of Cerboneschi and Arimondo on pulse-pair
propagation through a double-L system@8#. While all previ-
ous works on coherently prepared media have been in the
context of continuous-wave fields, application of pulsed
fields leads to a number of interesting features. In this paper
we study the dynamics associated with pulse-pair propaga-
tion through a medium in which the atomic population is
coherently distributed between the ground state and the
metastable state of a three-levelL system. Our theoretical

model, outlined in Sec. II, consists of the coupled
Schrödinger-Maxwell equations, which describe the tempo-
ral and spatial evolution of the atomic states and the two
electromagnetic fields that are initially applied to the me-
dium. We will show that the evolution of the pulses in a
coherently prepared medium exhibits key differences from
the problem where the atoms are prepared in the standard
way. Specifically, we find that it is possible to produce twin
pulses, which propagate invariant even in an absorbing me-
dium. Our calculations reveal the spatial dynamics associ-
ated with pulse propagation through a coherently prepared
medium, and illustrate the dependence of these dynamics on
the intensity of the input pulses. An important experimental
issue that is addressed by our calculations is the role of the
medium length in determining some crucial aspects of the
pulse-pair behavior. The medium length is not an issue if one
invokes the adiabatic approximation@4,5#. However, if one
eschews this approximation, the medium length becomes a
critical parameter. Lastly, we find that a coherently prepared
medium permits one to control the phase and amplitude of
the final output pulses. We note here that starting from a
different set of initial conditions on the atoms, viz., a V
system with inverted population on one transition, Mazets
and Matisov recently reported a study on pulse propagation
@9#.

II. BASIC EQUATIONS

Here we outline the essential features of our theoretical
formalism. The atomic scheme we consider is theL system
shown in Fig. 1, with excited statesu1& and u2&, and ground
stateu3&, in which u1& decays at a rateg to states other than
u2& and u3&. A control ~secondary! pulse, with Rabi fre-
quency Vp (Vs), acts resonantly on theu1&↔u3&
(u1&↔u2&) transition. The Rabi frequencies are taken to be
strong. In the absence of any coherence betweenu2& and
u3& one will get the conventionalL system, and pulse propa-
gation in such a system has been recently reported@4,5#.
From Schro¨dinger’s and Maxwell’s equations, the coupled
temporal and spatial evolution of atoms and pulses in the
slowly varying envelope approximation can be written as*Electronic address: gvemuri@indyvax.iupui.edu
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wherec1, c2, and c3 are the probability amplitudes of the
atomic levels,mp(5ag/2) andms ~assumed equal tomp)
are the propagation constants~which depend on the dipole
moments and atomic number density! for the two pulses,
@10# anda is the absorption coefficient of the medium. The
two lower states of our medium are initially coherently pre-
pared@2,3# as

uC&5cosuu3&1sinuu2&, ~2!

whereu is the coherence angle. Equation~1! can be numeri-
cally solved by specifying the initial conditions att50 for
all z, viz., c35cosu, c25sinu, andc150, and the boundary
conditions atz50 for all t, which we take as

0,t,300, Vp5
Vp

0t

300
, ~3a!

300,t,950, Vp5Vp
0 , ~3b!

950,t,1250,
Vp

0~12502t!

300
, ~3c!

whereVp
0 is the peak Rabi frequency of the control pulse.

We adopt the usual convention of utilizing pulse-local vari-
ables,t5t2z/c and z5z, which are in units of 1/ac and
1/a, respectively. The secondary pulse has the same form as
the control pulse, withVp

0 replaced byVs
0 the peak Rabi

frequency of the secondary pulse. Though most of the results
presented in this paper utilize two pulses with identical en-
velopes, we emphasize that the principal results are quite
general and can be applied to pulses with different envelopes
also. We will demonstrate this explicitly in Sec. IV.

III. ANALYTIC RESULTS

Equation~1! is not, in general, amenable to an analytic
solution for obtaining the characteristics of the atoms and
fields. Under some limits, and assumptions, it is, however,
possible to derive certain analytical results. In this section,
we describe two distinct types of results, one that describes
the conservation of coherencewithin our system, and an-
other that enables us to predict the ratio of intensities of the
steady-state pulses after propagating through the coherent
ensemble of atoms, as well as the relative phases of the two
pulses.

Law of conservation of coherence: Starting from the basic
formalism in Eq.~1!, one can derive a general conservation
law that relates the atomic state amplitudesc2 andc3 to the
fieldsVp andVs , as

4m
]

]t
~c2c3!5

]

]z
~VpVs!, ~4a!

which can be written as

4m
]

]tE dz~c2c3!5~VpVs!z5L2~VpVs!z50 . ~4b!

This expression, true for allt, can be interpreted as the rate
of change ofatomiccoherence being equal to the flow of the
pulses’ coherence across the boundary of the medium. This
is analagous to the Poynting theorem, which relates the
change of energy to flux across a boundary. Note that this
law is similar to the law of conservation of charge in elec-
trodynamics, and to the equation of continuity in hydrody-
namics. It is interesting that such a law can be derived even
for a dissipative system, such as our three-level atoms inter-
acting with two pulses.

Twin pulses in the long length limit: If we focus on the
special case ofu53p/4, since forVp

05Vs
0 one would obtain

FIG. 1. Control and secondary pulse profiles as functions oft
for u53p/4, g50.04, and ~a! Vp

050.05, Vs
050.05Vp

0 , z50
~solid!, and 60~dashed!; ~b! Vp

050.1,Vs
050.75Vp

0 , z50 ~solid!,
and 60 ~dashed!; ~c! Vp

050.5, Vs
050.75Vp

0 , z50 ~solid!, 210
~dashed!, and 5000~dotted!; also plotted is the adiabatic result~in-
distinguishable fromz55000), where precise matching occurs
within a very short propagation length. All quantities are in dimen-
sionless units, as defined in the text.
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a trapped state@11# as the initial condition, identical input
pulses would propagate through the atoms unchanged~re-
sults not shown!. However, it can be demonstrated analyti-
cally that even if one starts with unequal pulse amplitudes,
the two pulses become identical during propagation, pro-
vided there is no limitation on the medium length. Assuming
that eventuallyVp andVs become independent ofz ~i.e.,
(]/]z)Vp,s50), Eq. ~1! suggests that

c1~t,z→`!50. ~5a!

Thus, from Eqs.~1b! and ~1c!,

]

]t
c2,3~t,z→`!50, ~5b!

which implies that

c2,3~t,z→`!5c2,3~t50,z→`!. ~5c!

Then, Eq.~1a! can be written as

Vp~t,z→`!c3~t,z→`!1Vs~t,z→`!c2~t,z→`!50.
~5d!

Clearly, the decay rateg now becomes irrelevant. Substitut-
ing from Eq.~5c! into ~5d!, the final expression is

Vp~t,z→`!c3~t50,z→`!1Vs~t,z→`!c2~t50,z→`!

50. ~5e!

For a coherently prepared medium withu53p/4, the initial
condition isc3(t50,z→`)52c2(t50,z→`), which then
leads to the result

Vp~t,z→`!5Vs~t,z→`!, ~5f!

which indicates that the two pulses will be matched. In con-
trast to the coherently prepared medium, if atoms are pre-
pared in the standard way with the population in the ground
state, then the initial condition isc250, and one finds from
Eq. 5~e! that Vp(t,z→`)50, which means the control
pulse would simply decay to zero. Thus, the analytical argu-
ment leads us to conclude that even if we do not invoke the
approximation that the evolution ofu1& adiabatically follows
the evolution of statesu2& and u3&, one can still obtain
matched pulses after sufficient propagation distance. Note
that even though the above analysis predicts pulse matching
in coherently prepared media for all atom and field param-
eters, it provides no information about the transient spa-
tiotemporal dynamics, nor about the final steady-state pulse
shapes. This information is, however, available from the nu-
merical calculations, which are reported next. We emphasize
here that analytic solutions, especially for arbitrary values of
g, u, etc. are very difficult, due to the complexity of the
problem. As we have mentioned at the outset, even the seem-
ingly simple problem of solitons in two-level atoms becomes
analytically intractable when relaxation effects are incorpo-
rated into the formalism.

IV. NUMERICAL RESULTS

This section describes our numerical results. We begin by
describing the dynamical behavior of the system for
u53p/4, and input pulses with identical envelopes. Later,
we also analyze the role of different initial conditions, i.e.,
coherence angles other than 3p/4, and input pulses with dif-
ferent envelopes.

The standard case ofu50 has been studied by Harris,
who obtained a set of normal modes of the atom and field
system, when matched pulses were applied at the input@5#.
Agarwal has derived the quantum theory of this process@12#.
Eberly et al. provided the spatial details associated with
transparency in such a medium@4~a!#. In fact, our analytic
result thatVp decays to zero is evident in the numerical
results of Ref.@4~a!#. We now present numerical results for
the case whenu53p/4. In Fig. 1~a!, whereVp

050.05 and
Vs

0 is 5% ofVp
0 it is observed thatVsmatches the amplitude

and shape ofVp at z560. In general, ifVp
0.Vs

0 the me-
dium amplifies the secondary pulse, at the expense of the
control pulse, until the two match each other identically,
whereafter they propagate through the medium unchanged.
This is a consequence of the fact that once the Rabi frequen-
cies of the two pulses become identical, the atom and field
system evolves into a trapped state, whereafter there is no
further change in the dynamics of the pulse propagation.
This is in agreement with Ref.@5#.

If the control pulse is made stronger, while maintaining
all other parameters constant, one can illustrate the role of
the medium length. In fact, the ability of the medium to
produce matched pulses is crucially dependent on the me-
dium length, as shown in Fig. 1~b!, where we changeVp

0 to
0.1 andVs

0 to 75% ofVp
0 . The inability of the pulses to

completely match atz560 is in contrast to the matching that
does take place for smaller values ofVp

0 In Fig. 1~c! are
results for an even higherVp

0 ~50.5!, and there is almost no
change in the pulses as they propagate through the medium,
up to distances as large asz5210. Thus, if one has a me-
dium that corresponds to a length, say, ofz560, then for
large values ofVp

0 the medium is transparent to the fields
and the atoms are unable to match the two pulses. One can
now raise the following question: for a given set of atom and
field parameters, should one expect a critical value of the
control pulse Rabi frequency, such that forVp

0 less than this
value, one will get matched pulses, and forVp

0 greater than
this value one would not? The answer is in Fig. 1~c!, where
pulse profiles are shown atz55000, where they match.
Clearly, if there is no limit to the length of the available
medium, one will eventually produce twin pulses after suffi-
cient propagation. This is supported by the analysis in Eq.
~5!. However, for a fixed medium length~as is typical in
experiments!, there will be a critical value ofVp

0 such that
only for strengths lower than this critical value does one
obtain matched pulses. This aspect of pulse matching cannot
be seen if the adiabatic approximation is invoked
@4~a!,4~c!,5#. For comparison, we also show in Fig. 1~c! the
result of the adiabatic approximation~obtained by setting
ċ150), which, as expected, restores pulse matching within a
very short propagation length. Note that these profiles are
indistinguishable from the profiles atz55000. In a recent

3396 54VEMURI, VASAVADA, AGARWAL, AND ZHANG



paper, using the standard initial condition, Harris and Luo
also examined the impact of relaxing the adiabatic approxi-
mation when matched pulses are applied to a medium of
three-level atoms, and discussed the requirements on the
pulse energy for producing transparency@6#. They found that
transparency is achieved when the number of photons in the
control laser becomes equal to the number of atoms in the
path of the pulses~if oscillator strengths of the two transi-
tions are the same!. Their results also indicate that asg is
reduced, the time required to induced transparency becomes
longer.

Even though one obtains matched pulses for allVp
0 , the

spatial evolution exhibits two distinct types of behavior, de-
pending on the strength of the control pulse. In Fig. 2~a! are
snapshots of the pulses for various propagation distances
within the medium, whenVp

0,g. The control pulse loses
energy uniformly across its temporal profile, and the second-
ary pulse gains energy uniformly across its profile, until the
two pulses are identical, whereafter they propagate invariant.
There is no significant distortion of the pulse shapes during
the evolution. In Fig. 2~b! are the snapshots whenVp

0.g,
and the profiles are quite different. Note that there is a strong
distortion of both pulses as they propagate into the medium.
Surprisingly, when the two pulses reach steady state, they
have almost the same shape as at the input@input pulses are
identical to those in Fig. 1~a!#. Also evident from this figure
is that for strong control fields, the matching takes place
across the temporal profile of the pulses, such that the lead-
ing edges match first, and then the trailing parts are progres-
sively matched as the pulses propagate further.

The differences in response, between strong control pulse
(Vp

0.g) and weak control pulse (Vp
0,g), also become ap-

parent in the propagation distance at which stable pulses are
formed. For example, in Fig. 3 we show how the pulse-pair
propagation in a coherently prepared medium is modified if
we reduce the decay rate of the excited state. For
g50.004,Vp

050.05, andVs
050.05Vp

0 twin pulses are now
obtained atz5390. Due to the complexity of the equations,
and the resulting behavior of the atoms and fields, it is not
possible to provide analytical estimates of how the propaga-
tion distance, at which pulse matching occurs, varies with
g. Our numerical experiments, however, can answer this
question. In Table I we indicate the values ofz at which twin
pulses are first attained, for differentVp

0 and g. We have
obtained similar data for a number of different parameter
values, and find two distinct types of behavior. For strong
control pulse and a constantVp /g, the distance at which
stable pulses are formed varies significantly withg, i.e., an
order of magnitude change ing leads to approximately an
order of magnitude change inz. Thus, even if the ratio
Vp

0/g is the same, the pulses may have to propagate different
distances before attaining steady state. On the other hand, the
table also shows that for a weak control pulse, and a given
ratio of Vp to g, the value ofz at which twin pulses are
formed is nearly independent ofg, i.e., an order of magni-
tude change ing produces a very small change inz. Finally,
note that for a given ratio ofVp

0/Vs
0 ~all entries in Table I!,

the ratio of steady stateVp
0 to the inputVp

0 is, to a good
approximation, independent ofg. This, in fact, is also the
reason why the adiabatic result and the profiles atz55000

are indistinguishable in Fig. 1~c!.
If instead of a coherence angle of 3p/4, we choosep/4,

the secondary pulse is out of phase~by p radians! with the
control pulse~result not shown!. From Eq.~2! we note that
u5p/4 implies that the atomic system is prepared as
uC&5(u3&1u2&)/A2. Thus, only ifVp andVs have opposite

FIG. 2. Snapshots of control~solid! and secondary~dashed!
pulse profiles as functions oft at various propagation distances
(z) within the medium foru53p/4, g50.04, and~a! Vp

050.005,
Vs

050.05Vp
0; ~b! Vp

050.05,Vs
050.05Vp

0 . All quantities are in di-
mensionless units, as defined in the text.
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signs is it possible to form a trapped state, which would then
lead to the generation of pulses that are out of phase. It must
be borne in mind that we are considering the cases when
u5p/4 or 3p/4, for which, not only are the pulses matched
in envelope but also in amplitude.

Dissimilar pulse envelopes, and other coherence angles:
So far we have concentrated on the control pulse and the
secondary pulse having identical envelopes, andu53p/4.
The question then arises: Are the results presented specific to
the choices of the initial conditions we made, or can they be
generalized? To answer this question, we next explore sev-
eral different sets of initial conditions. Both from a funda-
mental viewpoint as well as an applied perspective, it is in-
teresting to examine the consequences of utilizing input
pulses with different shapes. In Fig. 4~a!, we show what
happens when we use a soliton forVp , and maintain the
same shape forVs as previously. Thus, the control pulse is
now defined by

Vp5
2

s
sechS t2t0

s D . ~6!

In Fig. 4~a!, s540 ~this choice makesVp
050.05), andt0,

the peak of the soliton, is at 600. Note that in addition to the

envelopes, now the widths of the two pulses are also differ-
ent at the input to the atomic medium. At a propagation
distance of approximatelyz560, it is clear that one obtains
twin pulses of identical shapes and amplitudes. We have ex-
perimented with a number of different pulse envelopes, and
found that the production of twin pulses by a coherently
prepared medium is a very general and robust phenomenon.
We note that no matter what the shape, width, and amplitude
of the input pulses, they attain nearly the same shape as the
stronger control pulse. For example, in Fig. 4~a!, if the
steady state twin pulses are fit to a sech profile, there is a
mismatch only in the tails~the extent of this mismatch de-
creases as the ratio ofVs

0/Vp
0 decreases!. These results sug-

gest a powerful technique for pulse control and shaping. To
produce a pulse of desired shape at theu1&↔u2& transition
frequency, one needs to apply a pulse of that shape at the
u1&↔u3& transition frequency. This scheme can be especially
useful for producing tailored pulses at frequencies where
conventional pulsed lasers are not easily available.

Next we examine whether it is the specific choice of
u53p/4 that produces stable, shape-invariant pulses, or
whether other coherence angles can provide similar results.
In Fig. 4~b! are the pulse profiles foru58p/9. Once again
we find that at certain distances within the medium, one ob-
tains stable, shape-invariant pulses, which then propagate
through the medium. While a coherence angle of 3p/4 can
provide amplitude and envelope matched pulses, we now
find that the final steady-state intensity of the secondary
pulse can be either larger or smaller than the steady-state

FIG. 3. Control and secondary pulse profiles as functions oft
for u53p/4, g50.004,Vp

050.05,Vs
050.05Vp

0, z50 ~solid!, 210
~dotted!, and 390~dashed!. All quantities are in dimensionless units,
as defined in the text.

FIG. 4. ~a! Control and secondary pulse profiles as functions of
t, when the input pulses have different envelopes.Vp is a soliton
~definition in text!, andVs is identical to those in other figures.
Vp

050.05,Vs
050.05Vp

0 g50.04, andz50 ~solid! and 60~dashed!;
~b! control and secondary pulse profiles as functions oft for
g50.04,Vp

050.05, Vs
050.05Vp

0 , u58p/9, andz50 ~solid! and
60 ~dashed!. All quantities are in dimensionless units, as defined in
the text.

TABLE I. How the propagation distancez, at which pulse
matching takes place, varies withg, for different values ofVp

0 .
Other parameters areVs

050.05Vp
0 and u53p/4. The last column

indicates the steady-state amplitude of the control pulse. One can
note that, e.g., whenVp

050.05, the steady-state value is nearly the
same forg, varying over three orders of magnitude. All quantities
are in dimensionless units, as defined in the text.

Vp
0 g z Vp

0 ~steady state!

0.005 0.4 10 0.003
0.005 0.04 15 0.003
0.05 0.4 16 0.03
0.05 0.04 60 0.03
0.05 0.004 390 0.035
0.05 0.0004 ;10,000 0.036
0.5 0.04 5,000 0.36
0.1 0.04 195 0.07
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intensity of the control pulse. It is, in fact, possible to predict
from the analysis of Eq.~5! whether, for a given coherence
angle, the steady-state intensity of the control pulse would be
smaller or larger than that of the secondary pulse, and also
what their relative phases would be. One can rewrite Eq.~5e!
as

Vp~t,z→`!cosu1Vs~t,z→`!sinu50. ~7!

This implies that the ratioVp /Vs will be equal to
2sinu/cosu @13# and explains why the final pulses are out of
phase whenu5p/4, and also how the ratio of the final pulse
intensities depends on the coherence angle. It is therefore
apparent that depending on the value of the coherence angle,
one can arrange for the final secondary pulse to be either
more or less intense than the final control pulse.

V. CONCLUSIONS

In summary, we have reported on a study of pulse-pair
propagation through a coherently prepared system. It is
shown that one can produce twin pulses of arbitrary shapes
that propagate unaltered through an absorbing medium. For
certain coherence angles one can generate twin pulses, which
can be important in studies related to the production of non-
classical states of light, and investigating ultrafast chemical
and biological processes via transient coherent phenomena,
and we hope to examine the consequences of our results on
correlated, twin pulses@14#. A conservation law for coher-
ence within the system has been derived. An analytic argu-
ment is presented, which indicates that two pulses in a co-
herently prepared medium will become identical to each
other in the steady state, whereas if all atoms are initially in
the ground state, the control pulse would simply decay.
Thus, medium preparation is the key to having shape-
invariant pulses propagate through this ensemble of atoms.
The analytic and numerical work indicates that one can tailor
the amplitude and phase of a pulse through suitable medium
preparation, and suggests a method of pulse control that is
entirely different from conventional techniques that rely on
the characteristics of the control field@15#. Furthermore, it is

shown that a coherently prepared medium acts as a fre-
quency converter and amplifier, where a weak field at one
frequency is amplified by utilizing a control field at a differ-
ent frequency.

The numerical results provide insight into the spatial evo-
lution of the pulses, which is a sensitive function of the con-
trol pulse intensity. For a weak control pulse, there is no
distortion of the pulse shapes as they propagate through the
medium, and eventually become identical. However, when
the control pulse is strong, there is a significant reshaping of
the pulse profiles, and it is interesting that in spite of this
distortion during the transient stages, the final steady-state
pulses have nearly the same shape as the input pulses. This
implies that the steady-state output pulses are independent of
g, which can provide significant flexibility in experiments.
Also, for high intensities of the control pulse, the exact re-
sults from numerically solving Eq.~1! indicate a much
longer propagation distance to attain steady state than do the
results of the adiabatic approximation. This distinction be-
comes significant for designing experiments with realistic
propagation lengths.

Finally, we have explored the consequences of using dis-
similar shaped pulses at the input to the medium, and find
that for u53p/4, one always obtains twin pulses. For a
strong control pulse, and a weaker secondary pulse, with
different envelopes, both fields evolve into the shape of the
control pulse. As mentioned previously, this provides a tech-
nique for pulse control and shaping at frequencies not con-
ventionally possible. The results also indicate that for coher-
ence angles other than 3p/4, one still obtains stable, shape-
invariant pulses, though of unequal amplitudes. In the
context of pulse control, it is clear from our work that
through a suitable choice of a single parameter, the coher-
ence angle, one can control the final amplitude and phase of
the steady-state pulses.
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