
Optical dephasing by a random telegraph frequency modulation

Haiyu Wang, Huiqiu Li, and Shihua Huang*
Laboratory of Excited State Processes and Changchun Institute of Physics, Academia Sinica, Changchun 130021, China

~Received 12 January 1996; revised manuscript received 6 May 1996!

Using the random telegraph model, we investigate optical dephasing processes arising from Poisson sto-
chastic modulation, we obtain the analytic expression for free-induced decay~FID! and photon-echo decay in
the whole range of the stochastic parameters. In the small modulation range, FID or echo-intensity decay varies
from single exponential to multiexponential with the increase of frequency modulation. In the large modulation
range, FID is a damping oscillation, and the echo intensity decays exponentially with periodical fluctuations.
When the modulation is very large the echo-intensity decay tends to go back to an exponential. TheR1~2

3
2!

echo-intensity decay in ruby at high magnetic fields is calculated based on the analytic expression; the result is
compared with experiments and computer simulations.@S1050-2947~96!05609-0#

PACS number~s!: 42.65.2k

I. INTRODUCTION

In many systems, a common source of dephasing, both for
optical and magnetic resonance in solids, is magnetic fluc-
tuations at the impurity site due to nuclear spin flipping in
the host lattice and/or electron-spin flipping of the dopant ion
@1,2#. For low magnetic fields, the photon echo has been
observed to be exponential up to four orders in intensity@3#.
It can be described by the phenomenological optical Bloch
equation. However, more recent experiments showed that the
photon echo displays a series of nonexponential decay for
different magnetic fields or samples@4–6#. Many theories
using various statistical models attempted to explain the ex-
perimental results@7–10#. All these theories predict that
spin-flip-induced echo decay is expected to be nonexponen-
tial having a temporal formI5I 0exp[2(4t21/Tm)

x], where
t21 is the pulse separation andTm is the phase storage time.
The parameterx may take the values 0.5,1,2,3 depending on
the stochastic models. In general, the experimental decay
curves seem to take those forms withx changing from 1 to
2.6 @5,6#. It is not satisfactory that the previous theories can-
not give a clear analytic expression in the continuous range
of the stochastic parameter. Gaussian and Poisson processes
are two important stochastic processes in practical systems.
Gaussian modulation has been extensively studied@10,11#;
using the central limit theorem, an analytic solution has been
given. In the slow~Dtc@1, hereD is the magnitude of fre-
quency flip,tc the correlation time! or fast ~Dtc!1! modu-
lation region,x takes the values 3,1 respectively.

In this paper, we investigate the other important stochastic
process, i.e., Poisson modulation. Using the simple random
telegraph model we give the analytic expressions for free-
induced decay and photon-echo decay in the continuous
range of the stochastic parameters. The results are compared
with previous theories, especially with those concerning
Gaussian modulation. Furthermore, we calculate theR1~2

3
2!

echo-intensity decay in ruby at high magnetic fields, and

compare the result with experimental and computer simu-
lated results.

II. FREE-INDUCED DECAY

It is well known that the decay due to frequency flip~dv!
can be described by a relaxation function@12#. For free in-
duced decay~FID!, the relaxation function̂exp~f1!& is equal
to the field average over random frequency flip perturbations,
and can be expressed as
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We considerdv(t) flips between two possible frequency
valuesD and2D, the probabilities of takingD or 2D are
both 1

2. The distribution of time intervals between two adja-
cent flips is given byp(t)5W exp~2Wt!, andk, the number
of flips within T satisfies the Poisson distribution
pk5exp(2WT)(WT)k/k!. This model describes the bival-
ued random telegraph process.

For this model, we have the expectation value^dv(t)&50,
and the autocorrelation^dv(t)dv(t8)&5D2 exp~22Wut
2t8u!. It is derived as follows: if there is an even number
of flips within ut2t8u thendv(t)dv(t8)5D2; if there is an
odd number of flips thendv(t)dv(t8)52D2. Hence

^dv~ t !dv~ t8!&5 (
k50

`

D2@p2k~ ut2t8u!2p2k11~ ut2t8u!#

5D2e22Wut2t8u. ~2.2!

By a similar consideration, we have
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^dv~ t1!dv~ t2!•••dv~ tn21!dv~ tn!&5 H 0 if n5odd
Dne22W@~ tn2tn21!1•••1~ t22t1!# if n5even, andtn>tn21>•••>t2>t1 .

~2.3!

Substituting Eq.~2.3! into Eq. ~2.1!, and for shortening using 2W as frequency unit and 1/2W as time unit, we have
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The integral in the first step is performed in the space
t>tk>0 (k51,2,...,2n), the space is divided into (2n)!
subspaces, and the 2n variables are rearranged such that
t2n>t2n21>•••>t2>t1 . Integrals in every subspace are
equal. We define operatorsI and I 8 as follows:
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and abbreviate Eq.~2.4! as
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Then we calculate the first and second derivatives of^ f (t)&:
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Clearly, f (t) satisfies the differential equation:
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We define the dimensionless parameterD/W as p~modula-
tion!, with 2W as frequency unitp52D, and the solution of
this equation is
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This solution has been obtained by Wodkiewiczet al. in
their work on noise in strong laser-atom interaction using
different methods@13#. Some examples are shown in Fig. 1,
in a semilogarithmic plot. One can find that in the small
modulation region~p<0.2!, FID is a single-exponential de-
cay process. When the modulation is increased, it becomes a
multiexponential one. Forp.1, the decay is an oscillation
enveloped by an exponential. It is convenient comparing our
results with Gaussian modulation from a spectral point of

view. The Fourier transform of the relaxation function
^exp~f1!& gives the single-site absorption spectrum. For
Gaussian modulation, the spectrum varies from Lorentzian to
Gaussian as the magnitude of the frequency modulationp
increases@10,11#. For Poisson modulation~our results!, one
can find that the absorption spectrum corresponds to two
Lorentzian line shapes in the complete range of the fre-
quency modulation@see Eq.~2.9!#. When p,1, the two
Lorentzian lines have the same central frequency, but differ
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in their linewidth and magnitude. For very smallp, one of
them is dominated. So the spectrum is a Lorentzian line, like
that predicted by Gaussian modulation. In the range ofp.1,
two lines with the same linewidth and central frequencies are

separated by a value of~p221!1/2. In a practical system, all
spin flips with various values ofdv can induce the dephas-
ing; they all contribute to the absorption spectrum. Therefore
the practical line is an overlap of all the two separated lines;
it is no longer separate when the number of the spin flips is
large, so FID will have no oscillating form.

III. PHOTON ECHO

For a two-pulse photon-echo process, the relaxation func-
tion that describes the echo decay arising from the stochastic
frequency flip can be expressed as

^exp~f2!&5K expF i E
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~3.1!

For the extremely broad inhomogeneous spectrum, the
echo field ^E(t21)& is equal to ^exp~f2!&. Taking a Taylor
expansion of̂ E(t21)&, using the same consideration of the
integration range oft andt8 as in Sec. II and noting thatt8 is
always greater than or equal tot, we have
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Substituting~2.9! into ~3.2!, we have
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Echo intensities versust21 for various values ofp are
given in Fig. 2. Whenp,1, the echo decay contains several
different exponential decay terms. In the small modulation
case~p,0.2!, only one of these terms is dominant, so the
decay is exponential@see Fig. 2~a!#, like the results of con-
ventional optical Bloch equation withT2;2/Wp2. With the
increase of the modulation, the contributions of the other

terms become larger and the decay tends to a multiexponen-
tial process@Fig. 2~b!#. Whenp.1, the echo decays expo-
nentially and is modulated by a triangle function@Fig. 2~c!#.
In the range 1,p,2, the period of the triangle function is
long; in the first few decades, owing to the exponential en-
velope, the oscillation does not appear. Asp increases, the
period becomes shorter and shorter and the oscillation is no-

FIG. 1. Free-induced decay curves for different values of the
frequency modulationp.
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table. For very large modulation, however, the factor of the
triangle function term is very small, so echo decay tends to
go back to an exponential withT2;1/W.

It is interesting to compare the echo-intensity decay by
Gaussian and Poisson processes. With our notation, both
processes lead to an exp@2p2t# decay for small modulation
p, while for largep, they take the form exp@2p2t3/3# and
exp~22t!, respectively. Different from the Gaussian process,
the Poisson process results in a comparable slow and
D-independent decay. From Eq.~3.2!, we calculate the de-
rivatives of ^E(t21)& with respect tot21. The first nonzero
derivative is [d3^E(t21)&/dt 21

3 ]52p2 at t2150, so when
t21→0, the asymptote of the echo intensity is the same as
exp@2p2t3/3#, similar to the Gaussian process.

IV. OPTICAL DEPHASING IN PRACTICAL SYSTEMS

We have discussed the optical dephasing of an ion at an
impurity site arising from the flipping of a single spin. In the
practical system, all spin flips contribute to the optical
dephasing. If we assume that the effect of the different spins
are independent, the total relaxation function can be ex-
pressed as: ^exp~f!&5Pi^exp~f!&i , where ^exp~f!&i is the
relaxation function describing the decay due to the flip of the
spin i .

In dilute ruby, Al nuclear spins at the lattice interact with
each other and with the Cr31 electron spin by magnetic
dipole-dipole interactions. This causes the fluctuation of the
Cr31 transition frequency@14#, and is the main source of the
dephasing at high magnetic fields and low temperature@5,6#.

The mutual spin-flip rate of Al spinsi and j , Wij , can be
calculated as in@15#. The parameters used in the calculation
are as follows: Al nucleus gyromagnetic ratio 1.1 kHz/G; the
bulk nuclear magnetic resonance linewidth 3.0 kHz@half
width at half maximum~HWHM!#; g factors of the ground
and excited states of Cr31, 1.984 and 2.445, respectively; and
W0 the characteristic nearest-neighbor mutual spin-flip rate 5
kHz.

We calculatedvi of the Cr31 ion caused by each of the
1100 surrounding Al nuclear spins and mutual flip rate of
each Al spin with its 26 neighbors (Wi5( j51

26 Wij ). The sto-
chastic parameterpi of the spini is equal toWidv i , using
Eq. ~3.3!, one can get̂exp~f!&i . Taking their product, we
obtain the echo-intensity decay as shown in Fig. 3. Fitting
the result withI5I 0exp@2(4t21/Tm)

x#, we haveTm548.8ms
andx52.56, which are very close to the experimental results
Tm550 ms andx52.4 @4,5#, and to the computer simulated
resultsTm554 ms andx52.6 with the same parameters car-
ried out recently by Huang and Szabo@16#. As mentioned in
Ref. @15#, x would be rather universal for any paramagnetic
ion with a large electron spin magnetic moment, independent
of structural details. The result of the simulation reported in
Ref. @15# is x52.8 for Er31:YLiF4 ~a little larger value ofx
arose from the largeg factor of the Er31 in the simulation!.
So, the simple bivalued random telegraph model is in very
good agreement with these results.

V. CONCLUSION

In this paper, we have investigated optical dephasing pro-
cesses arising from Poisson stochastic modulation. Using a
simple random telegraph model, we gave the analytic expres-
sion for free-induced decay and photon-echo decay in the
whole range of the stochastic parameters. In the small modu-
lation range, FID or the echo-intensity decay varies from
single exponential (T2;2/Wp2) to multiexponential with an

FIG. 2. Echo-intensity decay curves for different values of fre-
quency modulationp. ~a! p50.1, 0.2;~b! p50.6, 0.8, 1;~c! p51.5,
2, 20.

FIG. 3. Calculated results of the echo-intensity decay of
R1~2

3
2! in ruby. The solid curve is the fitted result using the form

I 0exp@2(4t21/Tm)
x#.
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increase of frequency modulation. In the large modulation
range, FID and the echo decay are damped oscillations.
Whenp is very large, the oscillations can be neglected, the
echo-intensity decay is back to exponential (T2;1/W). Con-
sidering contributions of all the spin flips in a practical lat-
tice, we calculatedR1~2

3
2! echo-intensity decay in ruby at

high magnetic fields. The calculated echo intensity decay is

very close to the experimental and computer-simulation re-
sults.
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