
Master-equation theory of multimode semiconductor lasers. II. Injection locking

A. Eschmann
Physics Department, University of Waikato, Hamilton, New Zealand

C. W. Gardiner
Physics Department, Victoria University of Wellington, Wellington, New Zealand

~Received 5 March 1996!

The master-equation theory for multimode semiconductor lasers@A. Eschmann and C. W. Gardiner, Phys.
Rev. A 54, 760 ~1996!# is adapted to treat the case of an injection-locked laser. Both the intensity noise
and the phase noise of the system are examined. A decrease in the total intensity noise and in the inten-
sity noises of the individual modes is found for increasing injection power, provided the injection signal does
not dominate the entire system. A regime is found in which a reduction of the intensity noise below the shot
noise level is obtained which is not single-mode squeezing, but which is due to anticorrelations between the
individual modes, and a further regime in which true single-mode squeezing exists is also found. The phase
noise is found to decrease with increasing injection strength, in other words as phase locking occurs.
@S1050-2947~96!05409-1#

PACS number~s!: 42.50.Dv, 42.50.Lc, 42.55.Px

I. INTRODUCTION

The experiment of Marinet al. @1# examined intensity
squeezing in three different semiconductor laser systems, a
free-running laser, an injection-locked laser, and an external
grating laser. It was found that the type of squeezing which
occured was different for each laser system, and it was thus
concluded that the type of squeezing obtainable depended on
the degree of sidemode rejection of a system.

In a previous paper@2# ~which we refer to here as I!, we
considered the free-running and external grating laser theo-
retically, using a master-equation description for the multi-
mode semiconductor laser. We found results which agreed
with those of Marinet al.; for the free-running case, there is
no squeezing, and for the external grating case, single-mode
squeezing is obtained.

In this paper we focus our attention on the other situation
considered by Marinet al. of injection locking, which com-
pletes a comparison with their work. In this case Marinet al.
found that although there was squeezing of the total intensity
noise, the individual mode noises were unsqueezed. Thus
squeezing in the sense of single-mode squeezing is not ob-
tained, but squeezing of the total intensity noise arises as the
result of anticorrelated fluctuations of the individual modes
in the semiconductor. In addition to examining this intensity
noise theoretically, we also examine the phase noise of the
system, to see whether a reduction in noise occurs as locking
takes place.

In Sec. II we introduce the additional terms and equation
which must be included in a description of injection locking.
In Sec. III the linearized equations are given, which lead to
the drift and diffusion matrices used in calculating the spec-
trum. In Sec. IV we discuss how the steady-state solutions
are obtained, and in Sec. V give a detailed description of the
results obtained.

II. INCLUSION OF INJECTION LOCKING

Injection locking involves feeding a stable coherent signal
into the system. This serves the purpose of locking the fre-

quency of the dominant mode of the system to that of the
injected signal, the effect of which is to stabilize the system
with regard to fluctuations in the frequency.

Mathematically this process is written in terms of a
Hamiltonian which introduces a coupling between the domi-
nant mode and the injected signal.

H inj5 i\~b1
†e2b1e* !, ~1!

where ueu is proportional to the amplitude of the coherent
injected signal, andb1 is the annihilation operator for a pho-
ton in the dominant mode. Using standard input-output
theory arguments, the injected power in units of photons per
second can be found in terms ofueu to be 4ueu2/k. All other
Hamiltonian contributions are the same as in Sec. II of I, and
the reader is referred there and to Sec. II of the single-mode
treatment@3# for these terms.

Standard techniques can be used to write down the
injection-locking contribution to the master equation.
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@H inj ,r#5b1

†er2b1e* r2rb1
†e1rb1e* .

~2!

The remaining master-equation contributions are given in
Sec. III of @2# and Eq.~53! of @3#. Using operator correspon-
dences@4# to convert to the positive P representation, the
contribution to the Fokker-Planck equation obtained due to
injection locking is
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]b1*
e* GP~X!, ~3!

whereX is defined in Eq.~14! of I. This contribution leads to
additional terms in two of the stochastic differential equa-
tions~SDE’s!, Eqs.~C1!–~C6! of I. For clarity and complete-
ness, these altered equations@Eqs. ~C5! and ~C6! of I# are
given here in full.
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v1 jdh j1Ak1N̄1dJ12 ṽ11dh̃, ~4!
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where all symbols have the same definitions as in I. Since we wish to calculate the photon number fluctuations, we need a SDE
for the central mode photon number,m15b1*b1, and such an expression can be obtained from Eqs.~4! and ~5! using Ito
calculus.
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Equation~6! can be simplified somewhat by applying the rotating wave approximation~RWA! as done in Sec. VII of I, and
setting the phase of the injected field equal to zero. We obtain

d~m1!5$2G11
r ~n!~m111!22F11

r ~n!m12k1m112G̃11
r ~n!~m111!22F̃11
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@v1 jdh jb1*1v1 j* dh j*b1#1Ak1N̄1@dJ1b1*1dJ1*b1#2~b1* ṽ11dh̃1b1ṽ11* dh̃* !. ~7!

The remaining equations describing the system are unaltered by the presence of injection-locking and so are not repeated here.
The reader is referred to Eqs.~C31!–~C35! of I for these. We can see that the system of equations for the injection-locked
system is now no longer closed, since Eq.~7! couples to the field amplitudesb1 andb1* . A closed system can be retained,
however, at the expense of introducing a further variable to our system,

b1,15b11b1* . ~8!

The variableb1,1 has the Ito SDE

d~b1,1!5H(
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whereb1,252 i (b12b1* ).
Making the same approximations as those made in arriving at Eq.~7!, and assuming that the imaginary part ofGl j and

Fl j is much less than the real part~this amounts to assuming that the dephasing time is much less than the inverse of the
frequency separation between states in the conduction and valence bands, and as such is a realistic assumption!, the new
variableb1,2 appearing in the above equation can be eliminated, and the above expression can be simplified to

d~b1,1!5HG11
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1Ak1N̄1~dJ11dJ1* !2 ṽ11dh̃2 ṽ11* dh̃* , ~10!

which couples only tob1,1 , and thus a closed system is recovered.
The phase noise of the system is also worth calculating, since it would be interesting to see whether this decreases as the

injection strength is increased, and phase locking begins to occur. The easiest correlation to measure the spectrum of, in order
to gain information about the phase noise is the^b1,2(t)b1,2(0)& correlation. Sinceb1,2 is proportional to the sine of the
phase, a reduction in the noise ofb1,2 translates directly into a reduction in the noise of the phase. This is not the case for the
variableb1,1 , which is proportional to the cosine of the phase, and hence the phase noise would increase for decreasing noise
in b1,1 . Hence, in order to consider the phase noise, we include the SDE forb1,2 in our system.

The equation of motion forb1,252 i (b12b1* ) can be written down from Eqs.~5! and ~6!.
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j
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Making the RWA, setting the phase of the injected field to zero, and assuming that the imaginary parts of theFi j andGi j terms
are much less than the real parts, the above expression simplifies to

d~b1,2!5HG11
r ~n!b1,22F11

r ~n!b1,22
k1

2
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2 iAk1N̄1~dJ12dJ1* !1 i ~ ṽ11dh̃1 ṽ11* dh̃* !. ~12!

III. LINEARIZED EQUATIONS

Calculation of the spectrum requires use of the drift and diffusion matrices of the system of equations linearized about their
steady-state values. These linearized equations are

dz52F~Z0!z~ t !dt1G~Z0!dW~ t !, ~13!

where

z51
ne

nh

ñe

ñh

b1,1

b1,2

m1

m2

m3

2 , ~14!

and the following definitions,

r j52aj j ~mj
011!, ~15!

sj j52aj j ~N
22nenh!, ~16!

r̃ 152ã11~m1
011!, ~17!
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s̃1152ã11~Ñ
22ñeñh!, ~18!

and

t~mj
0!52mj

0aj j ne
0nh

0 , ~19!

u~mj
0!5t~mj

011!12mj
0aj jN

21dne
0nh

0 , ~20!

t̃~m1
0!52m1

0ã11ñ e
0 ñ h

0 , ~21!

ũ~m1
0!5 t̃~m1

011!12m1
0ã11Ñ

21d̃ ñ e
0 ñ h

0 , ~22!

are used in the matrices

and
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~24!

and Z0 is the vector of steady-state values ofz. We have
made the same approximations for theGi j

r (n) andFi j
r (n) as

in I @Eqs.~C23!–~C30!# in the matrices above. In the diffu-
sion matrix we have dropped terms of the form

2Gk1
r (n)bk,1 where k52,3 in the off-diagonal elements

where they appear. This can be done for the same reasons as
we make the RWA.

Although the variableb1,2 does not couple to any of the

FIG. 1. The functionf (m1
0)5m1, depicted by

the plotted points, shows an apparent discontinu-
ity, and a regime in which the bisection algorithm
could produce negative solutions. Because the it-
eration procedure gives rise to discrete values of
f (m1

0)5m1, it is difficult to be sure as to whether
the function is actually continuous. If a small
enough range of initial values ofm1

0 is iterated
over, it becomes apparent that for some param-
eters the function is actually continuous and that
there is no asymptote. This continuous function is
indicated by the lightly drawn solid line. The
dashed line is the functionf (m1

0)5m1
0.
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other SDE’s under the approximations we have made, we
have included its linearized SDE in the drift and diffusion
matrices, since it is required for the phase noise description.
However, for the calculations of intensity noise, the SDE for
b1,2 is ignored, and we deal with 838 matrices rather than
939, where the sixth row and column ofF(Z0) and
G(Z0) ~which are those corresponding to the equation for
b1,2) are deleted, as is the sixth element of the vectorz.

IV. STEADY-STATE SOLUTIONS

Steady-state solutions must be found for the system of
equations describing injection-locking if the matrices~23!
and ~24! are to be used to calculate the spectrum. Since the
variableb1,2 does not couple into any of the other equations
of the system, its steady-state solution can readily be found
from ~12!. Dropping the noise terms and setting
d(b1,2)50, we obtain

05SG11
r ~n!2F11

r ~n!2
k1

2
1G̃11

r ~n!2F̃11
r ~n! Db1,2 .

~25!

The term in the large parentheses is nonzero, so in the
steady-stateb1,2 will be zero.

The remainder of the system of equations is given by Eqs.
~7! and~10! of this paper, and Eqs.~C31!–~C35! of I, where
l52,3 in ~C35!. Because of the complexity of this system of
equations, however, steady-state solutions must be found nu-
merically, using an iterative procedure. This involves making
some initial guess for the central mode photon number, and
using it to calculate a new value of the central mode photon
number.

If the noise terms in the system of equations are dropped,
and the left hand sides set to zero, then forPe5Ph , Eqs.
~C31!–~C35! of I can be rearranged to give Eqs.~D1!–~D4!
and~D7!,~D8! of I, and Eqs.~7! and~10! of this paper can be
rearranged to give the equation

m15
4ueu212a11nenh~k112a11N

222a11nenh!

~k112a11N
222a11nenh!

2 . ~26!

Equations~D1!–~D4! of I use an input value of the central
mode photon number, which we callm1

0, to generate values
for ne , nh , ñe , andñh . These values can then be substituted
into ~26! to generate a new value of the central mode photon
numberm1. Thus, for a range of values ofm1

0, m1 can be
said to be a function ofm1

0, m15 f (m1
0).

When the calculated valuem1, equals~or becomes close
enough to! the input valuem1

0, a solution has been found.
Referring to Fig 1, we are finding the point at which the
function f (m1

0)5m1 intersects the linef (m1
0)5m1

0. The pro-
cedure used is similar to the bisection approach used in Ap-
pendix D of I, except because of the added complication of
the injection-locking, one must take extra care in choosing
the boundaries of the interval to be bisected at each step.

The plot of the generated valuem1 versus the input value
m1
0 ahown in Fig. 1 illustrates this point. The plot shows that

m15 f (m1
0) can be negative for some values ofm1

0. In addi-

FIG. 2. ~a! Injected photon number~solid line!, central mode
photon number~dotted line!, andb1,1

2 /45m1cos
2f ~dashed line!, as

a function of injected power, indicating the regime of injection-
locking. ~b! Total intensity noise as a function of injected power.
The dashed line indicates the shot noise level.~c! Central mode
intensity noise as a function of injected power. The dashed line
indicates the shot noise level of the central mode intensity, normal-
ized to the total intensity noise.~d! Side mode intensity noise as a
function of injected power. The dashed line indicates the shot noise
level of the side mode intensity normalized to the total intensity
noise. The intensity of the side modes~which is not plotted here!
also decreases at the same point as the side mode intensity noise
begins to decrease.~e! Standard deviation of sinf1 as a function of
injected power.
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ion it appears thatm15 f (m1
0) is discontinuous. However,

careful magnification ofm15 f (m1
0) reveals that the function

is in fact continuous for some choices of parameters~nota-
bly, high injection powers!. This continuity gives rise to two
possible solutions; however, the solutions which give rise to
positive values of the eigenvalues of the drift matrix~in other
words, stable solutions! lie on the part of the curvef (m1

0)
with negative slope.

We must be careful to consider these two properties of the
function and shift boundaries accordingly. It is important that
in finding solutions form1, we do not inadvertently shift the
boundaries so that our bisection interval spans only negative
solutions, or the regime of positive solutions where the slope
of f (m1

0) is positive~in which an unstable solution lies!, but
which lies beyond~to the left of! the stable solution.

The way in which we choose new upper and lower bound-
aries therefore differs from that used in the previous case.
The first thing to check is whether the value ofm15 f (m1

0)
obtained is negative. If so, then we shift the lower boundary
upwards and rebisect the interval until a positive
m15 f (m1

0) is obtained. Second, given that we have a posi-
tive value ofm15 f (m1

0), we need to check the slope in the
region ofm1. If it is positive, then we can shift the lower
boundary to this point. If we have a positive solution for
m1, and are on the strictly decreasing portion of the curve,
then we use the same procedure as in I. Introducing these
extra features was found to have no perceptible effect on the
running time of the program.

V. RESULTS

The variances of the individual and total intensity fluctua-
tions, given by Eqs.~19! and~21! of I were calculated, where
in this case, the matricesC(Y0) andE(Y0) appearing in Eqs.
~20! and ~22! of I are replaced withF(Z0) andG(Z0) @Eqs.
~23! and~24!, where the sixth column and row are ignored#,
and the intensity fluctuations in the individual modes are
normalized with respect to the total shot noise rather than the
individual shot noises. Results were obtained for the total,
central, and side mode spectrum as a function of injection
strength. The values of the decay constants used were
k15k25k352.4531011 s21, which corresponds to the free-
running laser whene50. All other parameter sizes are ex-
actly the same as those used in I.

Before we give the spectral results, we first examine the
photon number, the injected photon number, and the varia-
tion of the phase of the central mode. Referring to Fig. 2~a!,

the injected photon number, the central mode photon num-
ber, andb1,1

2 /4 are plotted as a function of the injection
power. Sinceb1,1

2 /4 can be shown to bem1cos
2f1, a plot of

b1,1
2 /4 when compared with the value ofm1 gives a measure

of the phasef1. When cosf1 51, b1,1
2 /45m1 and phase

locking has occurred~since we take the phase of the injected
signal to be zero!. It can be seen thatb1,1

2 /4 approaches the
central mode photon number for an injection power of about
107. Thus at this point, phase locking has occured, and we
expect to begin to see any effects on the spectra due to in-
jection locking.

The injected photon number becomes equal to the central
mode photon number for an injection power of about 1019.
At this point the injection signal is so strong that it dominates
any lasing processes occuring in the cavity, so essentially, all
we see is the bare injected signal. In fact, the dominance of
the injected signal can be seen in the sudden increase in
m1 for injection powers greater than about 1016. Thus it
would be undesirable to work in this regime. The region of
interest in terms of seeing effects of injection-locking on the
spectra is therefore between injection powers of 107 and
about 1016.

The intensity spectra are shown in Figs. 2~b!–~d!. It can
be seen in all three figures that a reduction in the noise oc-
curs as injection power is increased beyond 107, the point at
which locking occurs. The increase in noise for higher injec-
tion strengths is due to the injection power beginning to
dominate the system , and thus beyond injection powers of
about 1016 or 1017 the system becomes rather uninteresting.
In the regime of interest, the reduction of the noise with
increasing injection strength seen in each case, agrees with
the results of the Langevin approach of Marinet al. The
graphs indicate a regime in which there is squeezing in the
total intensity, but the side and central modes are un-
squeezed, which has been observed experimentally by Marin
et al., and a regime in which true single-mode squeezing
occurs. Due to technical problems arising at higher injection
powers, this single-mode squeezing has not been seen in this
system to date. The spectra, which are all normalized with
respect to the total noise in the system show particularly well
the noise cancellation due to anticorrelated fluctuations.
Thus, the intensity noises of the individual modes are almost
the same, and their difference gives the total noise which is
very small.

In calculating the phase noise, the real quantity of interest
is the standard deviation of sinf1. If this is less than 1, we
know that the phase is defined to within a revolution. The
standard deviation is calculated from the variance as follows,

A^sinf1~0!,sinf1~0!&5A 1

2pE2`

`

S6,6~v!dv

5A1

pE0
`@F$~Z0!1 iv%21G~Z0!$FT~Z0!2 iv%21#6,6dv

~b1,1!21~b1,2!2
~27!
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where S6,6(v) is the spectrum of the correlation function
^sinf1(t),sinf1(0)&. The standard deviation is plotted in Fig
2~e!. The axes have been chosen so that standard deviations
greater than one do not appear, since this means that the
phase is random. It can be seen that the standard deviation
decreases steadily as locking is achieved. Beyond a locking
strength of 1016, the phase noise is extremely small, corre-
sponding to the dominance of the injected signal. For injec-
tion powers lower than 105, there is no locking, and the
fluctuations in the phase are too large for our linearized
analysis to be valid.

VI. CONCLUSION

We have adapted the master-equation approach for the
multimode semiconductor laser to the case of an injection-

locked laser and examined the intensity and phase spectra.
We find that the injection-locking causes a decrease in the
noise for both the intensity and phase spectra, and that in
principle, either true single-mode squeezing, or squeezing
only in the total intensity are obtainable. The type of squeez-
ing which is obtained depends on the injected power.
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