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Fock states in a Kerr medium with parametric pumping
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We discuss a model involving the interaction of a single-mode field with both a Kerr medium and a
parametric nonlinearity of thkth order. The system is externally driven by the parametric pump field. We
show that applying an appropriately chosen field frequency, and for weak nonlinear ptopbston Fock
state of the electromagnetic field can be achiey8d050-294{©6)04909-9

PACS numbd(s): 42.65—k, 42.50.Ar

Fock number states are commonly used in the theoretical One should mention that the particular case of our system
description of guantum fields. Nevertheless, the experimentdlas been discussed in the context of a comparison between
production of such states is no trivial problem. For instancethe classical and quantum dynamics in regions of classically
Stoler and Yurkd 1] have studied theoretically the possibil- regular and chaotic behaviof8—11]. A similar system has
ity of generation of antibunched light. Hong and Man@g]l  been discussed from the point of view of the photon statistics
have shown that a one-photon Fock state is produced in tHd 2,13. Moreover, one-photon state generation for a periodi-
parametric downconverter; they used signal photons to gateally kicked Kerr medium has been discussed eaflfe8]
the photodetector counting the corresponding idler photonand the system described in this paper is a generalization of
Another way of experimental preparation of amsphoton that proposed in those papers.
state is based on gquantum nondemoliti@ND) measure- Thus, our model contains an anharmonic oscilldierr
ment. Bruneet al. [3,4] have suggested a method for the medium driven by ak-order process. The latter is governed
preparation of a Fock state based on the model in whiclpy the following Hamiltonian(in the interaction pictune
detection of the atomic phase by the Ramsey method plays
the role of a QND probe giving information on the cavity Hy = e(atk+ak | 1)
field energy. After a sequence of atomic measurements the
cavity field collapses into a Fock state with an unpredictable .

. . Where € denotes the strength of the nonlinear process,

number of photons. Moreover, the system in which two-level A At 2 .

. : . o2 o whereasa anda' are the annihilation and creation operators

atoms injected into a kicked cavity gives us the possibility ofOf the field. respectivelv. As it was mentioned previously. we
generation of highly excited Fock statgs]. Quite recently : Tesp y: P Y,

Kozierowski and Chumakop6] have shown that in the spon- SS?'S ”:chgvggr: ?;?/gﬁ/i?]f mggﬁtlasrérrthusdr?i:ﬁlg é\;\]le Iglc?r
taneous emission of the partially inverted Dicke model FOCH<=2 the mo%jel i equivalegt to that referr)redri :’ éinian

states are also generated. oscillator [14]. For this case the model involves the interac-

a lrn o[tjhlso?;p: c;él\gevsr:%%oz: nal ;Z;hg %i?:;a;tggdeé, ng]r:mtfion of a single mode of the field with both an intensity-
group ' P 9 ependent refractive index and a parametric nonlinearity.

tion. This model is an extension of the systems discussed i . ; ) X
he system is driven externally entirely by the parametric

[7,8]. It combines the evolution of a Kerr nonlinear medium pump field. This modelK=2) has been discussed in numer-

in a cavity and a weak process of théh order. We show i : .
that for a sufficiently weak process and for an appropriatelyOus papers; for instance, by Tombesi and Y{2] and by

chosen field frequency, resonance effects start to play a Si%G_erry and Rodriquegl3]. Smcg we dISCUS‘fS her_e rather gen-
o : ral models, we should mention about isolation of kitle
nificant role and lead ta-photon state generation. The non-

linear quantum evolution of the cavity field in the Kerr me- order process from the processes of lower orders. Since we

dium is crucial for the preparation of a Fock state in such ahave involved parametric processes, the phase matching con-

system. The effectiveness of the preparation is, howeve?j'tIon between the fields of the frequencies and w/k

considerably diminished by the cavity losses. Nevertheless, ﬁhould be satisfied. Moreover, our models contain reso-

seems important to us that a cavity with a nonlinear Ker12Nces of the field with the cavity. In addition, the reso-
medium, with a field initially in vacuum state, and a nonlin- hances between t.he levels gengrated by the Kerr Hamlltonlan
ear process, can lead with high accuracy tmghoton Fock and the parametric proce@se W|Il.ment|on about this prob-
state. For this situation we will derive analytical formulas for Ierrgcgggir g?eplfe)gaocr::%fg rfoolre Icnhgg;ir:()doeflsfhé" ;f trrlgsﬁate
the probabilities corresponding to the Fock states we are i th-order process P 9 pprop
terest(_ad in.. Moreov_er, we will perform a numerical experi- The Hamiltonién corresponding to the dynamics of the
ment in which we simulate the dynamics of our system anq(e

compare the results with those of an analytical attempt. ﬁ:rrl)medlum can be written as followgve use units of

*Also at Institute for Physico-Medical Research, Sk, 61- ¥ A
: ' ' Hierr==N(N—2), 2
801 PoznanPoland. Kerr =5 N(N=2) 2
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where\ is proportional to the third-order nonlinear suscep-degenerate stat¢8) and|z), where g=k). In consequence,
tibility and n is the photon number operator. The value of thewe deal here with some kind of resonance between the states
factor z appearing in(2) can be controlled by appropriately produced by the Hamiltonia2) and the interaction gov-
chosen field frequency. For our purposes this value should berned by the Hamiltoniaril). Obviously, the character of
equal to the order of the nonlinear process described by thiais resonance differs from those for the commonly dis-
HamiltonianHy, , i.e., z=k. Thus the Hamiltonian govern- cussed situations when the field frequency is equal to the
ing the whole system is cavity frequency. This situation resembles that for degener-
ate atomic levels coupled to each other by the zero-frequency
field, where this resonant interaction selects from the whole
set of levels only two of them leading to the two-level atom
dynamics. Interaction with the remaining atomic levels can

Our aim here is to determine the time evolution of thebe treated as a negligible perturbatid®]. In practice, we
system. We assume that the system was initially in theleal here with a situation analogous to that discussed above
vacuum statg0). The history of our system is governed by and we can write the following equations of motion for the
the unitary evolution operatdd (t) defined as follows: probability amplitudes:

Hze(aTkJrak)%ﬁ(ﬁ—k). (€©))

o o q
U(t)=exp(—iHt). 4 i&ao(t)=e\/ﬁak,
Hence, the wave functiofW (t)) for arbitrary timet can be
expressed as: d
) FrENOR evkla. ©)
W (1))=U(1)|0). )

. Assumingag(t=0)=1 anda,(t=0)=0 (k#0) we get the
Although we already can apply here the method of nur_ner'cafollowing solution for the probability amplitudes
diagonalization as performed ifif] we shall first try to find

analytical formulas for the cases of interest to us. Thus we ag=icog 6\/@[),
assume here that the nonlinear procébsis weak, i.e.,
e<\. In consequence, we are able to treat our problem per- a,=sin( e\/Ht). (10)
turbatively.
Let us express the wave function in a Fock basis: We treat Eqs.(10) as the zero-order solution. For this
order the amplitudea,,=0. To obtain the formula foa,,
- . we need higher-order solutions. We write the first-order for-
|‘1’(t)>=j20 aj(lj). ©  mula foray:

This wave function obeys a Scliinger equation with _eN@2K)! 2

e _ ay=— ————=sin(e\klt)+O(€?), (12)
Hamiltonians expressed by Eq4) and(2): Ak2Jk!

where we have removed all terms proportionakto Obvi-
ously, we are in a position to perform this perturbative pro-
cedure due to the fact that the nonlinear procésss weak,
Applying the standard procedure to the wave functiéh i.e., e<\. Moreover, since we are interested in finding the
and the Hamiltoniari3) we obtain a set of equations for the time evolution of the probabilities rather than the amplitudes
probability amplitudes; . They are of the form: aj, we neglect the influence of the dynamics of the state
q \ |2k) on the system as proportional &.
Y _ M . T To verify these results we shall now perform a numerical
=310 Kay+eVi(j—1)---(j—k+1)a experiment and compare its results with those based on our
i i i formulas. This will be done on the same basis as that de-
+eV(j+1)(j+2)- - (j+k)a) ., scribed in[7]. Namely, we shall obtain the wave function for
i=0,12,. .., ®) arbitrary time by computing numerically the evolution opera-
tor U [Eq. (4)] and applying it to Eq(5). Of course, both of
wherek denotes the order of the nonlinear process. Obvithem, the wave functioft (t)) and the operatod, are ex-
ously, one should keep in mind that fgr<xO we have pressed in the Fock-state basis. For our experiment we will
a;=0. Although we see fron) that the set of equations for chose the nonlinear process for-2, so that we expect to
a; is infinite, the nonlinear process cuts some subspace afbtain a pure two-photon Fock state.
states out of all of the Fock states. In consequence, the dy- Thus, Fig. 1 shows the probabilities of finding the system
namics of the physical process starts from the vacy@m in the vacuum|0) and two-photon statel2). This figure
and is restricted to the stat@gmk), where (n=0,1,2,...).  corresponds to the case whies 2. We assume that for the
Moreover, the nonlinear process is weakg{)\) and we can time t=0 the field was in the vacuum stata,(t=0)=1
apply the standard rediagonalization procedure. Nevertheand a,=0]. Moreover, the nonlinear proce$$) is weak,
less, the crucial point of our considerations is the fact that the= /50 (in units of A =1). We see that our theoretic@na-
unperturbed Hamiltonian for the Kerr proces produces lytical) results(solid and dashed lingsagree strongly with

d
ialw(t»:(HKerr'l'HNL)|\P(t)>- (7)




54 FOCK STATES IN A KERR MEDIUM WITH ...

3371

a4 a4 o aN
N e (=] 0 o
Probabilities
o © © © o o o o =
N (4] - o [=2] ~ [ © (=]
T - T

o

(a)

ook
0

20 30 40 50 60 70 80

Time

90 100

FIG. 1. Analytical solutions for the probabilities for the vacuum 110

(solid line) and two-photor{dashed lingstates, and the numerically
found mean number of photon&lotted ling. The parameter
e= /50 (all parameters are measured in units\ef1). Star marks
correspond to the probabilities found in the numerical experiment.

1.06
those generated in the numerical experiméstar marks

The system starts to evolve from the vacuum and after the ¢
time t=/(2y2€)=17.7 the probabilityja,|>=1. In prac- 104
tice, for this moment of time the field is in the pure two-
photon state. For longer times the system returns to its initial
state and starts to evolve in the same way as fteng. 102
Moreover, we have plotted in Fig. 1 the time dependence for

1.08H

()

the mean number of photomgt) (dotted ling

n(t)=(¥(t=0)|UTatau|w(t=0)) (12)
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FIG. 3. Numerical experiment results for the system starting

found in our numerical experiment. We see that the behaviofrom the one-photon statéa) shows the probabilities fdt) (solid
of n(t) reflects the evolution of the probabilities and oscil- |ine) and |3) (dotted ling states,(b) shows the mean number of

lates between 0 and 2.
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FIG. 2. Analytical solution(solid line) and numerical experi-
ment results(star marks for the probability corresponding to the
four-photon state. All parameters are the same as in Fig. 1.

photons. All parameters are the same as in Fig. 1.

It is obvious that the parametric process produces not only
two-photon states but also statk) (k=2,3,...). How-
ever, the mentioned earlier resonance choses some of these
states. As the parametkerin the Hamiltonian(3) is equal to
2 the statd2) is one state resonant to the vacuum state only.
Thus, Fig. 2 corresponds to this situation and depicts the
probability for the four-photon statd), where the solid line
corresponds to the formuléll), whereas the star marks
originate from the numerical experiment. We again obtain
good agreement between the results of the experiment and
our theory. Tiny oscillations visible in the experimental re-
sults are proportional te* and can be neglected. We see
from Fig. 2 that the influence of the coupling between the
states|2) and|4) (and, in consequence, the couplings for
higher stateksis negligible. The oscillations of the probabili-
ties are restricted to the subset of two staty @nd |2))
and the probability for the four-photon state is proportional
to €?=3x10"3,

For cases when our system does not exhibit resonant fea-
tures the situation changes drastically. Figure 3 corresponds
to the same situation as that for Figs. 1 and 2, but we assume
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here that the field is in one-photon state fer0. In conse- ing processes, can occur during the realization of practical
guence there are no resonant couplings between the Foekperiments. Although the aim of this paper was not to in-
stateswe are interested here mainly in the coupling betweervestigate the influence of such obstacles, one should keep
the stateg1) and|3)). We show in Fig. 8) the time de- them in mind. A discussion of these problems was given in
pendence of the probabilities, (solid line) anda; (dotted  [7]. Thus, for instance, the ideas applied in experimental
line) for the one-photon and three-photon states, respedheasurements of the very tiny effect of “vacuum Rabi split-
tively, generated in our numerical experiment. It is seen thati"d” [16,17 could be helpful in practical realizations of our

the field remains in the one-photon state for the whole timédnc’de_lb Moreovre]:r, one Sh?UId kee% in rgirlld. :chat this papelr
and is only slightly perturbed by the interaction with the d€SCrDes a rather general group of models; for various val-

three-photon state. This is the result of the nonresonant inees ofk we deal with the models that differ completely from

teraction by way of the very weak nonlinear process. Theeach other. Therefore it is difficult to propose the straightfor-

mean number of photorj&ig. 3b)] oscillates near s initial ward experimental method of realization of our system.
PN 9- I ; Moreover, some nonlinear processes governed by the Hamil-
value 1. The amplitude of these oscillations is very small ~

(0.05) and can be neglected in practice tonian Hy_ are more suitable for experimental application

Of course, we should mention at this point about losses iﬁhan others. For instance, the model involving a Cassinian

our system, that may destroy the effects discussed here. Th?§cillator [9-14,1§ (k=2) seems to be a reasonable pro-

problem has been already discussed in the previous paper posal for expen.mentl. At this point we shoyld remind the
where the similar modelwith the kicked nonlinear oscilla- Problem of the isolation of théth-order nonlinear process
tor) has been studied. It was shown that the damping corfrom the lower order ones. As we have mentioned earlier, the

stanty should be much smaller than the nonlineantyWe crucial role Wi.”. pla_y_here phase matching and resonance
realize that it is a very strong requirement for the experiment?ffeCt.S' In addition, it IS wort_h mention that the novel branch
f optics, namelyatomic optics[19] seems to be very help-

Nevertheless, various experiments, for instance, the exper}- - . o .
ul in practical realization of our models. However, this

ments where the very tiny effect of “vacuum Rabi splitting” ; : . L
[16,17 give us som)é hgpe for practical realizatiog of gurproblem is not a subject of this paper, although it is worthy
' of further investigations.

models. . . . .
Concluding, we believe, that we have found an interesting

We have shown here that it is possible to generate Foc ;
states by the use of Kerr media. This generation is aSSOCiatbng:Le”ge;e%fei:zgaum optics that can lead to kiehoton Fock-

with resonant transitions between two Fock states and can
described analytically using standard perturbative procedure.
Moreover, we have performed a numerical experiment that
shows good agreement with our analytical solution. Of The author wishes to thank Professor Tafascarefully
course, our considerations are of model character only angkading this text and for his valuable discussions and sugges-
one should realize that many difficulties, for instance damptions.
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