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We discuss a model involving the interaction of a single-mode field with both a Kerr medium and a
parametric nonlinearity of thekth order. The system is externally driven by the parametric pump field. We
show that applying an appropriately chosen field frequency, and for weak nonlinear process,k-photon Fock
state of the electromagnetic field can be achieved.@S1050-2947~96!04909-8#

PACS number~s!: 42.65.2k, 42.50.Ar

Fock number states are commonly used in the theoretical
description of quantum fields. Nevertheless, the experimental
production of such states is no trivial problem. For instance,
Stoler and Yurke@1# have studied theoretically the possibil-
ity of generation of antibunched light. Hong and Mandel@2#
have shown that a one-photon Fock state is produced in the
parametric downconverter; they used signal photons to gate
the photodetector counting the corresponding idler photon.
Another way of experimental preparation of ann-photon
state is based on quantum nondemolition~QND! measure-
ment. Bruneet al. @3,4# have suggested a method for the
preparation of a Fock state based on the model in which
detection of the atomic phase by the Ramsey method plays
the role of a QND probe giving information on the cavity
field energy. After a sequence of atomic measurements the
cavity field collapses into a Fock state with an unpredictable
number of photons. Moreover, the system in which two-level
atoms injected into a kicked cavity gives us the possibility of
generation of highly excited Fock states@5#. Quite recently
Kozierowski and Chumakov@6# have shown that in the spon-
taneous emission of the partially inverted Dicke model Fock
states are also generated.

In this paper, we propose a rather general model, in fact,
a group of models, which can lead ton-photon state genera-
tion. This model is an extension of the systems discussed in
@7,8#. It combines the evolution of a Kerr nonlinear medium
in a cavity and a weak process of thenth order. We show
that for a sufficiently weak process and for an appropriately
chosen field frequency, resonance effects start to play a sig-
nificant role and lead ton-photon state generation. The non-
linear quantum evolution of the cavity field in the Kerr me-
dium is crucial for the preparation of a Fock state in such a
system. The effectiveness of the preparation is, however,
considerably diminished by the cavity losses. Nevertheless, it
seems important to us that a cavity with a nonlinear Kerr
medium, with a field initially in vacuum state, and a nonlin-
ear process, can lead with high accuracy to ann-photon Fock
state. For this situation we will derive analytical formulas for
the probabilities corresponding to the Fock states we are in-
terested in. Moreover, we will perform a numerical experi-
ment in which we simulate the dynamics of our system and
compare the results with those of an analytical attempt.

One should mention that the particular case of our system
has been discussed in the context of a comparison between
the classical and quantum dynamics in regions of classically
regular and chaotic behaviors@9–11#. A similar system has
been discussed from the point of view of the photon statistics
@12,13#. Moreover, one-photon state generation for a periodi-
cally kicked Kerr medium has been discussed earlier@7,8#
and the system described in this paper is a generalization of
that proposed in those papers.

Thus, our model contains an anharmonic oscillator~Kerr
medium! driven by ak-order process. The latter is governed
by the following Hamiltonian~in the interaction picture!:

ĤNL5e~ â†k1âk! , ~1!

where e denotes the strength of the nonlinear process,
whereasâ andâ† are the annihilation and creation operators
of the field, respectively. As it was mentioned previously, we
deal in fact with a group of models. Thus, fork51 we dis-
cuss the system involving coherent pumping@7,8#. For
k52 the model is equivalent to that referred to asCassinian
oscillator @14#. For this case the model involves the interac-
tion of a single mode of the field with both an intensity-
dependent refractive index and a parametric nonlinearity.
The system is driven externally entirely by the parametric
pump field. This model (k52) has been discussed in numer-
ous papers; for instance, by Tombesi and Yuen@12# and by
Gerry and Rodriques@13#. Since we discuss here rather gen-
eral models, we should mention about isolation of thekth
order process from the processes of lower orders. Since we
have involved parametric processes, the phase matching con-
dition between the fields of the frequenciesv and v/k
should be satisfied. Moreover, our models contain reso-
nances of the field with the cavity. In addition, the reso-
nances between the levels generated by the Kerr Hamiltonian
and the parametric process~we will mention about this prob-
lem further on! play a crucial role in our models. All of these
processes are responsible for choosing of the appropriate
kth-order process.

The Hamiltonian corresponding to the dynamics of the
Kerr medium can be written as follows~we use units of
\51):

ĤKerr5
l

2
n̂~ n̂2z!, ~2!
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wherel is proportional to the third-order nonlinear suscep-
tibility and n̂ is the photon number operator. The value of the
factor z appearing in~2! can be controlled by appropriately
chosen field frequency. For our purposes this value should be
equal to the order of the nonlinear process described by the
HamiltonianHNL , i.e., z5k. Thus the Hamiltonian govern-
ing the whole system is

H5e~ â†k1âk!1
l

2
n̂~ n̂2k!. ~3!

Our aim here is to determine the time evolution of the
system. We assume that the system was initially in the
vacuum stateu0&. The history of our system is governed by
the unitary evolution operatorÛ(t) defined as follows:

Û~ t !5exp~2 iĤ t !. ~4!

Hence, the wave functionuC(t)& for arbitrary timet can be
expressed as:

uC~ t !&5Û~ t !u0&. ~5!

Although we already can apply here the method of numerical
diagonalization as performed in,@7# we shall first try to find
analytical formulas for the cases of interest to us. Thus we
assume here that the nonlinear process~1! is weak, i.e.,
e!l. In consequence, we are able to treat our problem per-
turbatively.

Let us express the wave function in a Fock basis:

uC~ t !&5(
j50

`

aj~ t !u j &. ~6!

This wave function obeys a Schro¨dinger equation with
Hamiltonians expressed by Eqs.~1! and ~2!:

i
d

dt
uC~ t !&5~HKerr1HNL!uC~ t !&. ~7!

Applying the standard procedure to the wave function~6!
and the Hamiltonian~3! we obtain a set of equations for the
probability amplitudesaj . They are of the form:

i
d

dt
aj~ t !5

l

2
j ~ j2k!aj1eAj ~ j21!•••~ j2k11!aj2k

1eA~ j11!~ j12!•••~ j1k!aj1k ,

j50,1,2,. . . , ~8!

wherek denotes the order of the nonlinear process. Obvi-
ously, one should keep in mind that forj,0 we have
aj50. Although we see from~8! that the set of equations for
aj is infinite, the nonlinear process cuts some subspace of
states out of all of the Fock states. In consequence, the dy-
namics of the physical process starts from the vacuumu0&
and is restricted to the statesumk&, where (m50,1,2,. . . ).
Moreover, the nonlinear process is weak (e!l) and we can
apply the standard rediagonalization procedure. Neverthe-
less, the crucial point of our considerations is the fact that the
unperturbed Hamiltonian for the Kerr process~2! produces

degenerate statesu0& anduz&, where (z5k). In consequence,
we deal here with some kind of resonance between the states
produced by the Hamiltonian~2! and the interaction gov-
erned by the Hamiltonian~1!. Obviously, the character of
this resonance differs from those for the commonly dis-
cussed situations when the field frequency is equal to the
cavity frequency. This situation resembles that for degener-
ate atomic levels coupled to each other by the zero-frequency
field, where this resonant interaction selects from the whole
set of levels only two of them leading to the two-level atom
dynamics. Interaction with the remaining atomic levels can
be treated as a negligible perturbation@15#. In practice, we
deal here with a situation analogous to that discussed above
and we can write the following equations of motion for the
probability amplitudes:

i
d

dt
a0~ t !5eAk!ak ,

i
d

dt
ak~ t !5eAk!a0 . ~9!

Assuminga0(t50)51 andak(t50)50 (kÞ0) we get the
following solution for the probability amplitudes

a05 icos~eAk! t !,

ak5sin~eAk! t !. ~10!

We treat Eqs.~10! as the zero-order solution. For this
order the amplitudea2k50. To obtain the formula fora2k
we need higher-order solutions. We write the first-order for-
mula fora2k :

a2k52
eA~2k!!

lk2Ak!
sin~eAk! t !1O~e2!, ~11!

where we have removed all terms proportional toe2. Obvi-
ously, we are in a position to perform this perturbative pro-
cedure due to the fact that the nonlinear process~1! is weak,
i.e., e!l. Moreover, since we are interested in finding the
time evolution of the probabilities rather than the amplitudes
aj , we neglect the influence of the dynamics of the state
u2k& on the system as proportional toe2.

To verify these results we shall now perform a numerical
experiment and compare its results with those based on our
formulas. This will be done on the same basis as that de-
scribed in@7#. Namely, we shall obtain the wave function for
arbitrary time by computing numerically the evolution opera-
tor Û @Eq. ~4!# and applying it to Eq.~5!. Of course, both of
them, the wave functionuC(t)& and the operatorÛ, are ex-
pressed in the Fock-state basis. For our experiment we will
chose the nonlinear process fork52, so that we expect to
obtain a pure two-photon Fock state.

Thus, Fig. 1 shows the probabilities of finding the system
in the vacuumu0& and two-photon statesu2&. This figure
corresponds to the case whenk52. We assume that for the
time t50 the field was in the vacuum state@a0(t50)51
and a250#. Moreover, the nonlinear process~1! is weak,
e5p/50 ~in units ofl51). We see that our theoretical~ana-
lytical! results~solid and dashed lines! agree strongly with
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those generated in the numerical experiment~star marks!.
The system starts to evolve from the vacuum and after the
time t5p/(2A2e).17.7 the probabilityua2u251. In prac-
tice, for this moment of time the field is in the pure two-
photon state. For longer times the system returns to its initial
state and starts to evolve in the same way as fromt50.
Moreover, we have plotted in Fig. 1 the time dependence for
the mean number of photonsn(t) ~dotted line!

n~ t !5^C~ t50!uÛ†â†âÛuC~ t50!& ~12!

found in our numerical experiment. We see that the behavior
of n(t) reflects the evolution of the probabilities and oscil-
lates between 0 and 2.

It is obvious that the parametric process produces not only
two-photon states but also statesu2k& (k52,3, . . . ). How-
ever, the mentioned earlier resonance choses some of these
states. As the parameterk in the Hamiltonian~3! is equal to
2 the stateu2& is one state resonant to the vacuum state only.
Thus, Fig. 2 corresponds to this situation and depicts the
probability for the four-photon stateu4&, where the solid line
corresponds to the formula~11!, whereas the star marks
originate from the numerical experiment. We again obtain
good agreement between the results of the experiment and
our theory. Tiny oscillations visible in the experimental re-
sults are proportional toe4 and can be neglected. We see
from Fig. 2 that the influence of the coupling between the
statesu2& and u4& ~and, in consequence, the couplings for
higher states! is negligible. The oscillations of the probabili-
ties are restricted to the subset of two states (u0& and u2&)
and the probability for the four-photon state is proportional
to e2.331023.

For cases when our system does not exhibit resonant fea-
tures the situation changes drastically. Figure 3 corresponds
to the same situation as that for Figs. 1 and 2, but we assume

FIG. 1. Analytical solutions for the probabilities for the vacuum
~solid line! and two-photon~dashed line! states, and the numerically
found mean number of photons~dotted line!. The parameter
e5p/50 ~all parameters are measured in units ofl51). Star marks
correspond to the probabilities found in the numerical experiment.

FIG. 2. Analytical solution~solid line! and numerical experi-
ment results~star marks! for the probability corresponding to the
four-photon state. All parameters are the same as in Fig. 1.

FIG. 3. Numerical experiment results for the system starting
from the one-photon state:~a! shows the probabilities foru1& ~solid
line! and u3& ~dotted line! states,~b! shows the mean number of
photons. All parameters are the same as in Fig. 1.
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here that the field is in one-photon state fort50. In conse-
quence there are no resonant couplings between the Fock
states~we are interested here mainly in the coupling between
the statesu1& and u3&). We show in Fig. 3~a! the time de-
pendence of the probabilitiesa1 ~solid line! anda3 ~dotted
line! for the one-photon and three-photon states, respec-
tively, generated in our numerical experiment. It is seen that
the field remains in the one-photon state for the whole time
and is only slightly perturbed by the interaction with the
three-photon state. This is the result of the nonresonant in-
teraction by way of the very weak nonlinear process. The
mean number of photons@Fig. 3~b!# oscillates near its initial
value 1. The amplitude of these oscillations is very small
(0.05) and can be neglected in practice.

Of course, we should mention at this point about losses in
our system, that may destroy the effects discussed here. This
problem has been already discussed in the previous paper@7#
where the similar model~with the kicked nonlinear oscilla-
tor! has been studied. It was shown that the damping con-
stantg should be much smaller than the nonlinearityl. We
realize that it is a very strong requirement for the experiment.
Nevertheless, various experiments, for instance, the experi-
ments where the very tiny effect of ‘‘vacuum Rabi splitting’’
@16,17# give us some hope for practical realization of our
models.

We have shown here that it is possible to generate Fock
states by the use of Kerr media. This generation is associated
with resonant transitions between two Fock states and can be
described analytically using standard perturbative procedure.
Moreover, we have performed a numerical experiment that
shows good agreement with our analytical solution. Of
course, our considerations are of model character only and
one should realize that many difficulties, for instance damp-

ing processes, can occur during the realization of practical
experiments. Although the aim of this paper was not to in-
vestigate the influence of such obstacles, one should keep
them in mind. A discussion of these problems was given in
@7#. Thus, for instance, the ideas applied in experimental
measurements of the very tiny effect of ‘‘vacuum Rabi split-
ting’’ @16,17# could be helpful in practical realizations of our
model. Moreover, one should keep in mind that this paper
describes a rather general group of models; for various val-
ues ofk we deal with the models that differ completely from
each other. Therefore it is difficult to propose the straightfor-
ward experimental method of realization of our system.
Moreover, some nonlinear processes governed by the Hamil-
tonian ĤNL are more suitable for experimental application
than others. For instance, the model involving a Cassinian
oscillator @9–14,18# (k52) seems to be a reasonable pro-
posal for experiment. At this point we should remind the
problem of the isolation of thekth-order nonlinear process
from the lower order ones. As we have mentioned earlier, the
crucial role will play here phase matching and resonance
effects. In addition, it is worth mention that the novel branch
of optics, namely,atomic optics, @19# seems to be very help-
ful in practical realization of our models. However, this
problem is not a subject of this paper, although it is worthy
of further investigations.

Concluding, we believe, that we have found an interesting
feature of quantum optics that can lead to thek-photon Fock-
state generation.
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