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Maxwell-Bloch equations for spatially inhomogeneous semiconductor lasers.
I. Theoretical formulation
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Space-dependent Maxwell-Bloch equations are derived for the description of spatiotemporal dynamics of
spatially inhomogeneous semiconductor lasers. The dynamics of the charge carriers is described in a density-
matrix approach using a Wigner function representation. On this basis, the coupled set of equations of motion
for the active medium and the space-dependent light field is derived. Based on typical length and time scales,
approximations are performed to obtain a numerically tractable problem. The many-body interactions give rise
to space-dependent energy renormalizations, Coulomb enhancement, and scattering processes. The latter ones
are considered in the form of momentum- and density-dependent microscopic relaxation rates due to carrier-
carrier and carrier-phonon interaction for the carrier distribution functions and the polarization. For the spatial
transport or the carriers an ambipolar diffusion model is deri{/®8d050-29476)01409-4

PACS numbes): 42.55.Px, 42.65.Sf, 78.20.Bh

I. INTRODUCTION direct-gap semiconductor is reduced to a two-level system
without spectral broadening. The linear dependence of the
In early theoretical studies of the semiconductor laser thgain on the density\N of charge carriers assumed in many
interplay between the light field and the laser medium haghenomenological approximations does not include nonlin-
mainly been analyzed in terms of rate equations for the derear effects such as the saturation of the gain medium at very
sity of photons and charge carrigis—3]. Disregarding the high pumping rates. Recently, attempts have been made to
spatial dependence, these models generally describe the dfjclude the dynamics of the polarization variable on various
namic behavior of a single-stripe semiconductor laser rathdfVe!S: Assuming spatial homogeneity, i.e., disregarding any
well. Various methods from nonlinear dynamics were ap_transport processes, MaxweII—BIoch formu_latlons ha\(e been
plied for the description of the dynamics of the semiconducProPosed on the basis of phenomenological two-Iirel

tor laser within the rate-equations approximation, e.g., to?teealdaoérmn?(raz_ren?gsg]c B’Vqr;baﬁgrggmggggt'ogser]:?::gr']ed a((::t-or
characterize the relaxation oscillatigrs3] and the behavior Ve 1as lum»,5j. sing 9 us ' u

L A : Bloch equations the ultrashort time nonequilibrium carrier
upon variation of the applied injection current. With delayed : . . X :
. o and intensity dynamics of microcavity lasers have recently
optical feedback and in linear afidshaped external resona-

o - X ) _been investigatef7]. Describing the dynamics of broad-area
tors dynamic instabilities and chaotic behavior have experiizsers on the basis of a spatially dependent Maxwell-Bloch,
mentally been observed]. o first results on the spatiotemporal dynamics and propagation
In spite of their popularity, general limitations in the theo- 4 gptical filaments have been presenf&l Those results
retical description of semiconductor lasers in terms of phehaye given the strong indication of the necessity to include in
nomenological modelginvolving, e.g., the linewidth en- the theoretical description the spatial degrees of freedom to-
hancement factor have been pointed out previously. gether with the band structure of the semiconductor medium.
Generally, the interaction of the optical light field and the |n this paper we will derive a hierarchy of space-
active semiconductor medium is strongly dependent on spe@ependent Maxwell-Bloch equations for spatially inhomoge-
tral properties of the semiconductor and on the local electromeous semiconductor lasers. The basic equations are valid for
and hole occupation in the conduction and valence band. Tharbitrarily strong inhomogeneities. Based on typical length
active medium, represented by its microscopic polarizatiorscales in a semiconductor laser and on the separation of the
and carrier distributions, in turn, acts as the source for théime scales between the dynamics in momentum and in real
optical field generated by the annihilation of an electron-holespace, transport processes are hierarchically included. In a
pair. Typically, however, the polarization is adiabatically successive paper, from now on termed II, we show results of
eliminated and, disregarding the wave-number dependenatensive numerical simulations on the spatiotemporal dy-
of the gain function, effectively the band structure of anamics of broad-area semiconductor lasers. While always
considering the spatial dependence of the microscopic vari-
ables and of the optical field in the calculations, approxima-
:Electronic address: Ortwin.Hess@DLR.de tions in the description of the active semiconductor laser
Present address: Institutrfiiheoretische Physik Il, Westiache ~ medium are made regarding the level of complexity in the
Wilhelms-Universita Wilhelm-Klemm-Str. 10, D-48149 Mhster,  explicit consideration of many-body effects in the model. In
Germany. particular, the formation and propagation of optical filaments
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in broad-area semiconductor lasers is studied in which, as we oh Sy
will show in I1, the microscopic properties strongly influence fen(k,r =2, e f_ Loks Lq7 (1a)
the macroscopic spatiotemporal dynamics of the whole de- d
vice.
Pk =2 &P S+ Fa- (1b)

Il. THE ACTIVE SEMICONDUCTOR
Here,c] andd] (c, andd,) denote creatiorfannihilatior)

The active medium in a semiconductor laser is the SOUrC8 erators for electrons and holes with wave-vektaespec-
of the optical radiation which is produced and amplified in ively

the Ia;er. In the spirit of the s_emiglassic Iase_r theory only the The free carriers in the semiconductor are described by

classical character of the optical field is considered while ON& e Hamiltonian

accounts for the quantum-mechanical properties of the semi-

conductor medium. In the derivation outlined in the follow-

ing, the concept of the density-matrix thed§-13 is fol- Ho=2, GECle"'E ehdldy, 2

lowed [14]. A characteristic feature of a semiconductor as K K

the active medium of a laser is the fact that, besides the

interaction with the light field, other types of interactions where g = £,+7%2k?/2m, and ef=#2k?/2m,, are the disper-

play an important role. These are, in particular, the Coulomision relations of electrons and holes, respectivety,and

interaction among the carriers giving rise to many-bodym;, being their effective masses, afiglis the band gap.

renormalizations, screening, and a thermalization of the non- The light field couples electron and hole states. In the

equilibrium carrier distribution, as well as the interaction semiclassic laser theory the optical field is described by a

with phonons leading to an energy exchange between thelassical electric fieldE(r,t) with positive E(™)) and nega-

carriers and the crystal lattice. tive (EC)=E(")*) frequency components. Expanding the
The single-particle Hamiltonian and the mean-field part oflight field in a Fourier series according to

the many-body Hamiltonian will lead us to the semiconduc-

tor Bloch equations, which are generalized to include arbi- ) )

trary spatial inhomogeneities. They describe the coherent in-  E 7 (r,)=2 EJ()e'@ V=2 E{Y(1)e', (3)

teraction between the carriers and the laser light field as well a d

as transport due to spatial gradients and electrostatic forces.h denotes th tral f th ier-liaht in-

The remaining part of the Hamiltonian describing carrier- V€€ @ denotes the central frequency, the carrier-ight in

carrier and carrier-phonon correlations gives rise to a screeﬁ?raCt'on Hamiltonian is given by

ing of the bare Coulomb interaction and to scattering pro-

cesses leading to a dephasing of the polarization and a Hel=— [de(k)-E‘“(t)cT Ld .

relaxation of the carrier distribution functions towards a local k.q d k+za —kt3q

guasiequilibrium. Since we are here mainly interested in the

laser dynamics, we will not discuss in detail the derivation of

the latter contributions. Instead, we will treat them in a sim-

plified way in terms of a static screening of the CoulombHere, the coupling is treated in rotating wave approximation

potential and a relaxation-time approximation for the scatterand d., (k) denotes the dipole matrix element between va-

ing dynamics. The scattering rates, however, are obtaineldnce band and conduction-band states.

from the microscopic transition rates and, therefore, they be- Inserting the Wigner representation of the interband po-

come functions of wave vector, space and time. larization, the expectation value of the interaction Hamil-

tonian can be written as

5, (k) By (D0 ks JoCics Jal- @)

A. Microscopic variables and Hamiltonian L Bere() )
. . . . . . He¢ =—jdrE rt)-P(rt
The semiconductor is described in terms of an isotropic (H™) [ (r.H (r.H

two-band model where, for the case of the holes, a suitably
averaged effective mass is taken. A generalization to more
bands is straightforward. The basic variables describing the ) ) _
carrier dynamics are given by the single-particle density ma?/nich allows us to identify the space-dependent macroscopic
trices. Due to the formal analogy with semiclassical transporPolarizations

theory, it is convenient to use a Wigner representation for a 1

spatially inhomogeneous system. In the following we will (+) _= *

generalize the concept of the Wigner functiib] to the PrrY= VEk: de, (K)p(ler,) ©
case of a two-band model. Starting from the off-diagonal

density-matrices  f} ., =(c{cy), fE,k/:<dldkf>, and andP{)=P{("* entering Maxwell’s equations. Hene de-

P =(d_Cy/) space-dependent distribution functioffs"  notes a normalization volume of the crystal.

and interband polarizatiop can be introduced by perform- Electrons and holes as charged particles interact via the
ing a Fourier transformation with respect to the relative mo-Coulomb potentiaV,. In a two-band model the interaction
mentum according to Hamiltonian is given by

+EC(r,t)-PH(r,1)] (5
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—cldl,dku,qck_q (7)  with the energy of the optical phondiw,, and the optical
dielectric constante,,. Carrier-phonon interaction has a
with mean-field contribution only in the presence of coherent
phonons which require strong spatial inhomogeneities-
Ame? 20]. In a semiconductor laser which is operated at room tem-
q_Vs—oqz’ (8 perature the phonon system typically can be assumed to re-

main close to thermal equilibrium, thus there are no carrier-

&, being the static background dielectric constant. The thre@honon mean-field contributions. . .
parts refer to electron-electron, hole-hole, and electron-hole Then, the effective smgle-pamclg Hamiltonian consists of
interaction, respectively. We have neglected terms which=ds:(2), (4), and(9) and can be written as

lead to transitions between valence and conduction bands,

i.e., impact ionization and Auger recombinatifb6]. Fur- _ oL 1 e

thermore, the interband exchange energy has been neglectEB?ff— Ho+H™"+Hye

which is justified if, as in the present case, the exciton bind-

ing energy is much smaller than the band §ap|. => [ﬁk,clck&Sﬂk,dldk,+L{kk,cldik,+uﬁk,d_k,ck]
The carrier-carrier Hamiltonian can be separated into kk’
a mean-field (Hartree-Fock part Hz and a remaining (12)

partHZS,, depending on two-particle correlations. For an in-

homogeneous system the Hartree-Fock contribution is 9iveD ih the matriceséﬁ;(h, of the renormalized energies,

by

cc _ e _¢h h h _

HF E/ {[Vk—k’(fq,q_k_'_kr fq,q—k+k') (‘ik,: GE’h5kk’_ E [quz’+q,k+q+ Vk—k'(fz,q—k’+k
k.k',q q

t h —fa
_quE+q,k’+q]Ck’Ck+[Vk—k’(fq’q_k+kr_ fz,q—k+k’) fq‘q_k’+k)]! (13)
—qu2+q]k,+q]dl/dk—quk+q,kr+qCE,d1k where the uppetlower) sign refers to electronéoles, and
the matrixl4 of the effective field,

_qu:+qykl+qd—kck'}' (9)

The carriers also interact with static and dynamic perturba- 1

tions of the ideal lattice periodicity. Of particular importance Uik’ = —ch(E(H‘ k')
in a polar semiconductor is the interaction with optical

phonons via the Fidich interaction. The corresponding

Hamiltonian is given by

. E(kt)kr(t) - % quk'+q,k+q .
(14)

B. Equations of motion

By using Heisenberg’s equations of motion, the equations
Hcp:% Yol G ggCk— CubCrrq daaDydkt dkbedial:  of motion for the single-particle density matrices in the
(10) Wigner representation can be derived. The effective single-
particle Hamiltonian leads to a closed set of equations of
where ba (by) denote creatiorfannihilatior) operators of a motion for distribution functions and interband polarization.
phonon with wave-vectay and the Fralich coupling matrix ~ The result, e.g., for the electron distribution function is given
element is given by by

0 1 . ) )
; e _ 3 iq'r’ ik'r —ik'r
'ﬁﬁf (k,r)—]—}j d r,kz, e {[e 5ﬁ+(1/2)q'+(1/2)k',k+(1/2)q'—(1/2)k'_e éel;f(l/2)q’f(1/2)k’,k7(l/2)q’+(l/2)k’]
q

Xfek— (L/2)K',r =)+ Uy (1/2)q'+ (112) k' k+ (112 q'— (172 k' P* (K= 3K/, r=1")

—ik’ 1,1
—e ru’lrf(1/2)q’+(l/2)k’,kf(1/2)q’7(1/2)k’p(k_ sk, r=r")}. (15
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Performing a Taylor expansion, this integro-differential ) At At A
equation can be formally written in terms of a differential V°®(r)=———p(r)= ﬁik: [fe(k,r)—f"(k,n], (2D
equation of infinite order. By using 0 0

. p(r) being the electric charge density.

fe( K— Ek’ r—r’) _ E 1 (_ p i)n We notice that in each orden(m) spatial derivatives of

2 nzo 2™n!m! ar the ordern+m appear. If the length scales of spatial inho-

mogeneities are sufficiently large, one may assume that

terms with increasing order will be of decreasing importance.
Let us consider the lowest orders: In zeroth order
(n=m=0) we obtain the well-known semiconductor Bloch
and after a partial integration the equation of motion, e.g., foequations
the electron distribution function is obtained as

m

X fe(k,r) (16)

k’ J
"ok

&fek —afh k =g(k
E ( vrvt)_ﬁ (_ !r!t)_g( ,r,t), (223)

J el B 1 i in+m o r
i ,r)_mn,mzom [(=1)"=(=1)"]
d 1
g a\"[ o a\m —p(k,r,t)= —[&(k,r,t)+&E"(=k,r,t)]p(k,r,t)
) = = 1 eryfe ot i%
WA LT
1
a d\"[ a9 o\ +.—L{(k,r,t)[1—fe(k,r,t)—fh(—k,r,t)],
| L ) et h
(=1 (ak’ ar) (ar’ &k) Uk’,r’y I
(22b)
Xp*(k,r)—(— 1)m<m~ ﬁ_r) with the generation rate

a a\"
X(aT%) Lf"(k’.r’)p(k,r)] oo @D g(k,r,t)=%[Z/l(k,r,t)p*(k,r,t)—L{"(k,r,t)p(k,r,t)].

= (23)

The equations for the hole distribution function and the po—pq space coordinate appears only as a parameter, i.e.

larization are given in Appendix A. Here, we have intro- |oq\1y the dynamics is the same as in the homogeneous case
duced the space-dependent renormalized energies and fields there are no effects of spatial transport. Typically, four-
wave-mixing experiments are interpreted on the basis of
oh . B these equationg21,22. In the present case of a broad-area
EY +AEN(k,r)¥ed(r), laser, however, carrier diffusion plays a crucial role and

z (189 transport terms have to be included.
In first order f=1,m=0 andn=0m=1) we obtain,
e.g., for the electron distribution function

n _ iq eh
EN(k,r) % e ng%q’k

U(k,r)=§ Ui Jak-3q

d 1 a&%(k,r) afé(k,
2 el = (_ (k,r) af%(k,r)

= —do,(K)- EC)r )+ AUKT), (18D T ar

d&(k,r) afé(k,r)
where T Tk
1 aU(k,r) ap*(k,r)
AN K = =S Vi o FN(K 1) (19 TR T Tk ar
k!
ouk,r) ap*(k,ry au*(k,r) ap(k,r)
denotes the energy renormalization due to the exchange in- + a ok ok or

teraction and

+&L{*(k,r).(9p(k,r)}. 24

ar ak
— !

Auk.r) % Viciep(r) 20 The corresponding equations for the hole distribution func-
tion and the polarization are given in Appendix B. In the first
is the internal field being responsible for excitonic effectsrow of (24) we recover the two contributions of the drift term
and Coulomb enhancement. The electrostatic potentidh the Boltzmann transport equation exactly as in the case of
®(r) due to the Hartree terms in the mean-field Hamiltoniana one-band model. The second and third row can be inter-
satisfies the Poisson equation preted as a local generation rate due to an in or out flow of
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polarization in the corresponding volume element of they

phase space. Thus we obtain the generalization of the Bolt; fen(k,r)
zmann equation to the case of a two-band model including

the coherent interband transport contributions. Higher de- _weh geh s _feh

rivatives, which become important if the variables exhibit Wie fR(K NI 120k, n]}, - (299
spatial variations on very short length scales, are responsible

for typically quantum-mechanical transport features like tun- d

neling as, e.g., in resonant tunneling diod28]. However, S Pk
in the present laser structures studied here they can be safely
neglected.

== 2 W fe (k,N[L=fo"(k',n)]
2 (W,

col

=— E [Wp',kp(k'r)_WE,k/p(k,,r)].
k/
(29b

col

_ _ Here, terms which are quadratic or of higher order in the
C. Screening and scattering processes polarization (polarization scatteringhave been neglected.
The correlation part of the carrier-carrier interaction The Boltzmann scattering matrica¥,;, for electrons and
Hamiltonian and the carrier-phonon interaction Hamiltonianholes are real quantities, the scattering matria&s, in the
give rise to two phenomena: screening of the bare interactiogquation of motion for the polarization in general are com-

and scattering processes among the carriers. Here, we Wdex, the real part being related wﬁ,[hk according to
not discuss this part explicitly, but model the effects in terms ‘

of a static screening model and a relaxation-time approxima-

tion for the scattering processgk?,21,24,2% Re(Wy, )= 3{W,, [1—fe(K',r)]+ W, fe(k',r)
The bare Coulomb potential is replaced by the screened h N ,
potential +FW_ L [1-7(=K",r)]
W (=K ) 30
. 4me? ltax? —k -k F (=K D)} (30)
Vo= 2 2 7 (25 . . .
Vegk® 1+X°+ ax The imaginary part describes second-order corrections to the

. 5 4 band-gap renormalization. Typically, these corrections can
with x=0/k, a=(eoh’x*)/(16mmNe€?), and the space- e neglected compared to the first-ord@tartree-Fock
and time-dependent screening wave-vector renormalization terms.

The scattering rates are obtained from Fermi’s golden rule
and the matrices are given by

K?=—

47e? ( dey

1( afr(k,r)
ok

27 Y Y
N(r)=Nér)=N"(r) being the carrier density, \/\/ﬁ’_hg‘f)=7|va|21};e N % G €kr+q E ")
m,=(m;1+ mgl)*l being the reduced mass, and an isotro- '
pic distribution function has been assumed. For sufficiently x{f(k",n[1-f"(k"+q,r)]} (31)
weak deviations of the carrier distributions from local quasi- _ o _
equilibrium, the energy renormalization can be modeled by 40r carrier-carrier interaction and
rigid shift of the bands according to

goV vSen X

2 1 1
a (k T)2 -1/4 Wﬁ'ﬁg?kp)ZTE |’}/g'h|25(fﬁfq_éﬁ’hiﬁwop) nq+§i§)
AERN(r)= = S&| 14b2 sy 27 :
20 Na3&s| (32)

with the exciton binding energgl,=m,e*/(22%2), the ex-  for carrier-phonon interaction.

citon Bohr radiusag=f2e,/(e2m,), the temperatureT Carrier-carrier scattering processes, due to the conserva-
Boltzmann's constankg, and the numerical factors are ton of carrier density, total momentum, and energy, tend to
given bya=4.64 ancb=0.107[26]. Furthermore, under the establish a local heated displaced Fermi-Dirac distribution,
condition of a pronounced gain, as is the case in an activ¥/nilé carrier-phonon scattering processes, which conserve
semiconductor laser, a high-density approximation for the?nly the carrier density, lead to a relaxation towards a Fermi-
internal field describing the Coulomb enhancement can bPirac distribution at lattice temperature. Both kinds of pro-
used. It is obtained by replacing the wave-vedtom Eq. cesses, by destroying phase coherence, lead to a dephasing of

(20) by the Fermi wave-vectdkg [27] resulting in the interband polarization. _
A full kinetic treatment of the scattering processes can be

performed by using various techniques, e.g., Monte Carlo
_ s / simulationg[12,29,3(Q, or a direct integration25,31] which,
Au(r)= kE VkF*k’p(k ") (28) already for the case of spatially homogeneous system, in-
volve extensive numerical calculations. In the present case,
Within a semiclassical picture, i.e., when describing scathowever, due to the high densities and, consequently, the
tering processes in terms of a scattering rate, the scatterifggh scattering rates, the distribution functions of electrons
contributions to the equations of motion have the structure oénd holes will not exhibit strong deviations from local qua-
the Boltzmann collision termgl3,2§ siequilibrium distributions. Therefore, with
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feh(k,r)= fgi(;‘(k,r)-}- 5Nk, r), (33)  The scattering matrices are calculated with the quasiequilib-
rium distributions[35].
eh oh  eh . In Fig. 1 the relaxation rates for carrier-carrigfigs.
feq(K,r)=(exd Ble" —u®(rN]+1)77, (34  1(a)-1(c)] and carrier-phonon scatteringrigs. Xd)—1(f)]
1 o ) are plotted as functions &fand the carrier densityNote the
B=(kgT) " ~, the Boltﬁrmann collision terms can be linear- gitferent orientations of the left and right columiBoth rates
ized with respect t&f*" andp. _ _ . have been calculated in the static screening model. Above a
I_Due to the conservation of carrier density, the deV'at'O“%ensity of the order of 2 cm ™3, the Fermi edge leads to a
satisfy the sum rule pronounced minimum in the relaxation rates due to phase-
space filling. This dip is more pronounced for electrons due
eh to their smaller density of states resulting in a higher degree
; ot=7(k,r)=0 (35 of degeneracy. In the case of carrier-phonon interaction we
also see the strong increase in the relaxation rate if, with
which determines the chemical potentiai&"(r). Their de-  increasingk, the threshold for the onset of phonon emission
pendence on carrier density can be approximated Bjla IS reached.
Padeapproximatior{32] and as a function of the normalized

density »®"= Ne’h/NS'h they are given by D. Injection and spontaneous recombination
Modeling the behavior of a semiconductor laser requires
BulM=~InveN—K,In(K,»®"+1)+K5®",  (36)  additional processes to be taken into account. In a laser diode
the carriers are electrically injected from the contacts into the
where active region. This injection is modeled by an injection rate
1(2mg,\%? d
eh_— e.h _ _¢eh — Aeh
No 4(ﬁ277ﬁ) 37 ' inj ATterd
and the coefficients are [32] K;=4.8966851, 7iip(r) ?e,h(k,r,t)[l_fe-h(k,r,t)]
K,=0.044 964 57, an&;=0.133 376 0. =~ ed - , (40
Linearizing the collision term for the polarizatidriEq. V‘lz feh(k,r,t)
K

(29b)] simply consists in calculating the scattering matrices
with the quasiequilibrium distribution functions. Since the .
polarization as a complex quantity is typically an oscillatingwhere f&"(k,r,t) denotes the pump generated Fermi-Dirac
function of k, we may assume that the second term in Eqdistribution just outside the active regioj), is the electric
(29b) is negligible due to random phases in the summationpump current density is the vertical thickness of the active
As a result, the dephasing is described in terms of a dephasegion, andy; is the injection efficiency, i.e., the proportion
ing rate[33]. Linearizing the collision term for the distribu- of carriers which actually reaches the active region.
tion functions results in a similar structure with a term which ~ Since in semiclassic laser theory the light field is treated
has the structure of a relaxation rate and other terms involvin terms of a classical electric field, only absorption and
ing a summation over differelt components obf. Due to  stimulated emission are obtained. Thus, in the absence of a
the sum rule[Eq. (35)] the latter terms usually are much light field, no processes occur and the laser cannot turn on.
smaller than the former one and may be neglefBddl Thus  Spontaneous emission, being related to the quantum nature
the collision terms can be expressed in terms of a relaxatiorsf the light field, has to be added to the equations in order to
time approximation start the lasing process. This leads to a recombination term in
the equations of motion for the distribution functions

= —ron(K[ (k) = fed(k,r1)],

ife*h(k rt)
at 1 7

Jd
col __feh - _ e + hy—
(383 atf . Fs(k)fe(=k,r,0)f"(=k,r,t), (41
J the upper sign refering to electrons and the lower sign refer-
Ep(k,r,t) =— Trjl(k)p(k,r,t) (38b  ing to holes, with the spontaneous recombination coefficient
col
with the relaxation rates 4n? ) 2K2\3

-1 _ .h e hoeeh
7'e,h(k)_%; {We',k[l_fgq(k ,r)]+\/\/§yk,f§q(k 10)¢ and n, being the refractive index of the active layer. Typi-
cally, in a semiconductor additional nonradiative recombina-
(3% ; . =
tion mechanisms are present reducing the efficiency of the

. N 1 carrier-light coupling. These are modeled by a constant rate
7 (K)=3[7e (k) + 7, "(K) ]. (399 4., according to
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motion for the polarization, on the other hand, no conserved

(43 quantities exist and thus spatial transport of polarization is
usually not important.

Keeping the first-order spatial derivatives of the distribu-

tion functions and neglecting any spatial transport of polar-

ization, the equations of motion for electron and hole distri-

_ The microscopic semiconductor dynamics is described byytion functions are given by the Boltzmann equations
distribution functions of electrons and holes and by the in-

terband polarization. All these quantities are functions of ¢ eh fk  af®h(k,r)
space and momentum. Typically, however, there is a strong Sk + T
. . ot Me h or

separation of time scales between tkespace and the '
r-space dynamics. Scattering and dephasing processes lead 1 (dAE(r)  ad(r)| afe"(k,r)
to a fast relaxation of the microscopic variables towards their ~ ~ 7|~ gr e a ET%
local quasiequilibrium values on a femtosecond time scale.
The spatial transport occurs on a much slower time scale. For 1

i i i - =— ——=[fe"(k,r,t) = & (k,r.t)]
this reason, the influence of spatial gradients on the Ten(K) i eq\fls
k-space dynamics is often negligible. However, the scatter- ’ )
ing terms in the equations of motion for the distribution +g(=k,r,t)+ A" (k,r,t)
functions conserve the density of carriers. Therefore, the _ e hy — _ e.h
density is not influenced by the fast relaxation processes and Fop( Tk, DT FK. D) = yn 20 (K1),
its spatial transport cannot be neglected. In the equation of (44)

E. Plasma diffusion and ambipolar approximation
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where, again, the upper sign refers to electrons and the lower

. ; . 10°
sign to holes. Integrating these Boltzmann equations &ver 0
results in the continuity equations for the carrier densites [ electrons
T, o holes
J > 10
ENe'h+divje'h=Ae'h(r,t)+G(r,t)—ynrNe'“(r,t)—W(r,t) g
(45 = T —
8 10°
with the densitieN®"(r,t)=V"13,f®"(k,r,t), the current =
densities j®"(r,t)=V 12, (hik/mg ) f¥"(k,r,t), the total
generation rates(r,t)=V"13,g(k,r,t), the total injection 10°
rate A®"(r,t), and the total spontaneous emission rate 10'® 10" 10" . 10 10*
W(r,t). Density (cm™)
If the scattering processes are sufficiently fast, the scatter- 10°
ing term in the Boltzmann equation is the dominant contri- oot
bution and the carrier distribution deviates only weakly from <, o s
the local quasiequilibrium distributioff In this case, in all < holes
. . . . c i
other terms except for the scattering term the distribution g ambipolar
function may be approximately replaced b‘:y(;‘ resulting in % 10°
the approximate solution e
S .y
@ 10
sfeN(k,r t 0 e+ Mg e
Nk,rt)y=— —fol(k,r _—
( Wy ) Te,h( ) ot eq( sy ) me’h ar 100
1(aAE(r)  ad(r)| afe (k,r) 0" 10" 0" 1o 10°
_ _( Te ) eq\™ Density (cm™)
h ar ar ak
N . FIG. 2. Electron and hole mobilitya) and electron, hole and
—g(k,r,t) = A®N(K,r, )+ Tgy(k)fg, ambipolar diffusion coefficiertt) plotted as functions of the carrier

densityN.

X (kO (Fkr 0+ v FEN (KTt } _ _
( Moo= ) ¥nrfeq( ) crease related to the reduction of the scattering rate close to

the Fermi energy due to phase-space filling effects.
(46) . )
The spatial transport of electrons and holes is coupled by
Thus due to the isotropy df, in the k space, the current electrostatic forces expressed by the electrostatic potential
density is given by @ which, in turn, is obtained from the carrier densities by
solving Poisson’s equatiof21). This coupling strongly in-
creases with increasing densities resulting eventually in an

fik
je.h =1 ____gfeh . - .
j*Nr )=y ; mehﬁfe (kr,t) effective one-component behavior, the ambipolar transport
’ of electrons and holes. In this case, no space charges exist
oh eh. eht and the densities of electrons and holes are equal
=—D%"gradN*"+ o* ngadb: (47) Ne=N"=N. In order to keep this neutrality, also the current
densities are equgf=j"=j. Eliminating the drift term in
with the diffusivities Eq. (47) results in the ambipolar diffusion current density
e 1 iy A2K2AT (K, 1) I uo N+ AESM) j=—D;grad\ (50)
- 3y eh m2 9 eh &Ne'h ] . ' . o
“ eh  O€k (ag  With the ambipolar diffusion coefficient
and the conductivities _"D®+0o°D"
D= )
eh_pnehaTieh— eZ ﬁzkzﬁfg’(;](k,r)
o =N>eu™" =~ V< Te'h(k)mgyh aeﬁ,ﬁ ' Under nondegenerate conditions, where due to the Einstein

(49) relationo®¢"=D®D" holds, Eq.(51) reduces to the well-
known formD; *=1/2(D® '+ D" ') [36—3§. Combining

Here, z®" denote electron and hole mobilities. In Fig. 2 the Egs. (45) and (50), the macroscopic transport equation for

mobilities and diffusivities obtained from the microscopic the carrier density is given by

scattering rates are plotted as functions of the carrier density.

At low densities we find approximately constant values. J )

When the carriers become strongly degenerate, which occurs 7y N=div(DgradN)+ A(r,t) + G(r,t) = yn,N(r,1)

for electrons at about 3 cm~2 and for holes at about

10'° cm~3, both transport parameters exhibit a strong in- —W(r,t). (52)
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The solid line in Fig. 2 shows the ambipolar diffusion coef-
ficient as a function of the density. The curve is flat up to
several 18 cm 3 and then exhibits the same strong increase
as discussed above for the electron and hole diffusion coef-
ficients.

contact

F. Linear and nonlinear polarization

For a numerical modeling of a semiconductor laser it is
convenient to separate the polarization in a “linear” and a
“nonlinear” part p(k,r,t)=p,(k,r,t)+pn(k,r,t). The in-
ternal field [Eq. (28)] is separated accordingly
AU(r,t)=AU(r,t) + AU, (r,t). Starting from Egs.
(22b),(38b), this leads to the equations of motion

FIG. 3. Schematic of the broad-area semiconductor laser. The
J 1 active GaAs layefshaded darkis sandwiched between two clad-
ﬁp|(k,r,t)=E[é’e(k,r,t)+é‘h(—k,r,t)]p|(k,r,t) ding layers of AlGa;_,As (white). Charge carriers, injected
through the contact strig® at the top of the devicéhatched may
1 recombine in the active zone. Light propagates in longitudiagl (
+E[—dCUE(+)(r,t)+AZ/{,(r,t)] direction. The transverse ribbed cladding structure at the bottom
serves as a passive waveguide.
_T[;l(k)pl(kirvt)i (533 - X . X X
The macroscopic linear polarization is given by

d 1
Ptk D=k, 0 +E(=k,r,D]pn(k,r1) PI(r D =x(wir, HECI(r ), (57)

1 1 with the susceptibility
AU (1) — 2 UK, DLkt

. 1 -~
X(w;r,t):X,(w;r,t)ﬂL|X"(w;r,t):]—/; x(okr,b).

+(=k,r,0)]= 7, (K)pi(k.r,t), (53b)
(58)

with d.,=d, - e, e being the polarization vector of the light
field, and thek dependence of the dipole matrix element has IIl. MAXWELL-BLOCH EQUATIONS
been neglected. Strictly speaking,is not exactly the linear
part since in Eq(533 we have included energy renormal-  Based on the microscopic semiconductor model discussed
izations, Coulomb enhancement, and dephasing rates whigbove, in this section a general Maxwell-Bloch formulation
depend on the carrier density. However, we can take advarfor spatially inhomogeneous semiconductor lasers is devel-
tage of the separation of time scales disscussed above: Tie@ed and applied for the description of edge-emitting broad-
nonlinear polarization is determined by the fllldepen- area semiconductor lasers. Figure 3 shows a schematic plot
dence of the carrier-distribution functions and thus it is a fasPf a typical broad-area laser structure. The microscopic ef-
variable. The linear polarization, on the other hand, is govfects of the active semiconductor medium are considered
erned by the carrier density. Its temporal evolution is muctself-consistently with the macroscopic properties of the laser
slower and retardation effects can be neglected. Theran  devices. Macroscopically, Maxwell's wave equation
be expressed in terms okadependent susceptibility defined

2 2
as 190 4 9

2 . _ =
dg,pi(k,r,t) =x(w;k,r, ) ET(r 1), (54)
for the optical fieldE and the macroscopic polarizatiéhis
In the high-density approximation for the internal field, thethe basis for the theoretical description of the spatiotemporal

susceptibility is given by behavior of the broad-area semiconductor lasers. In semicon-

ductor lasers with transversely wide active zones, e.g., the

_ Yo(w:K,r,t) broad-area lasers, a careful consideration of the spatial de-
Yok, r,)=Y"+iy'= 1 , pendence is vital. Transversely in tRalirection the evanes-

1— d_ZE Ve Xkt cent optical-fields scatter and charge carriers diffuse away

e, K from the point where they were generated by the external

(55 pump current. Strong waveguiding effects in the vertigal
direction which are a consequence of the sequence of semi-

with conductor heterolayers, however, confine the optical field
) and limit the diffusion of the charge carriers in this direction.

o w:kor t) = |de, | This allows the approximate consideration of the optical
AR Se(k,r,t)+6’h(—k,r,t)—ﬁw—iﬁrgl(k)' fields in the verticaly direction in the steady state. In the

(56) longitudinal z direction the laser cavity forms a Fabry-Perot
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resonator so that the optical fields counterpropagate in a ¢ n é i 1 5 o 24T
positive and negative direction. Effectively, the problemis  — EE + < EE 2K, WE - §E + FYS Pars
thus reduced to a quasi-two-dimensional one with the trans- z ! 670
verse direction denoted by

Due to the consideration of counterpropagation in ayijth the index of refractiom,, the absorption coefficient
Fabry-Perot resonator, the optical fields are split into longi-y ()= (47wy")/(nic), the(longitudina) length of the laser
tudinally slowly varying counterpropagating fiel#s" and | | the wave number irflongitudina) propagation direction
E K,=n Ky, Kg being the unperturbed wave number in the

vacuum, and the confinement factdr describing the
E=L(ETeKz ety E-eiKazmioty ¢ c) (60)  Waveguiding properties of the heterostructure.
The fields are coupled to the active semiconductor via the
traveling in an opposite positivd“ +”) and negative linear polarizations, expressed in termsnpfand «, and the
(* =) z direction, where c.c. indicates complex-conjugatenonlinear polarizations
contributions. Thus, the positive frequency components in
Egs.(3) and(6) are given by

d*
Pai(r =372 pakr.b). (68)
ECF(r,t)=3[E*(r,t)eKZ 1o E~(r,t)e KZ71et] (62)
Due to the strong carrier-carrier and carrier-phonon scatter-
In the laser medium, the optical field induces the polarizatioring, thek-space dynamics occurs on a much faster time scale
than ther-space dynamics. Therefore, in a first step the latter
P=1(PtelKaz oty prg-iKaz-ioty ¢ o) (62) one can be dis_regardeo_l for the cglcul_ation of the microscopic
carrier dynamics. In this approximation, the spatial coordi-
which, on the microscopic level, is related to the interband1at€s enter only as parameters and the distribution functions
polarization and interband polarizations are isotropidispace, i.e., they
depend onlk= |k|. Furthermore, the confinement of the car-
riers in the verticaly direction as a consequence of the semi-
conductor heterostructure reduces also the semiconductor
part to a quasi-two-dimensional problem with the spatial co-
ordinatex=(x,z).
The microscopic dynamics of the distribution functions
tand the nonlinear polarizations are then governed by the
(g'quations of motion

p(k,r,t)=2%[p*(k,r,t)eKZ 1+ p=(k,r,t)e Kz 1o,
(63

Accordingly, the effective field is decomposedlifi.

The fieldsE* andP* as well as the differential operator
V are further separated into transverse and longitudinal par
according to

+ + + J
*=E7+eFE;, (64) Efe'h(k,x,t)=g(k,x,t)+Ae'h(k,x,t)— Tan(K[FEN(k,x,1)
Pt=pZ+ieP:, (65) — 20k, X, 1) 1= Tsp(k) ek, x, 1) (K, X, 1)
_YHrfe’h(klxlt)y (696)
and
d 0 b ko) = —[i@0k)+ 74k fkt+1Auft
V:V_I__l_ez5 (66) ot pnl( X, )_ [Ia ) Tp ( )]pnl( Xy ) i% n|(X, )
1 +
Expansion of the resulting longitudinal and transverse wave —mu*(x,t)[fe(k,x,t)Jrf“(k,x,t)], (69b)

equations in terms of the parametesw/(=(K,w) !, w

being the width and=K,w? being the diffraction length of with the generation rate

the laser, leads to a hierarchy of wave equati@®. In the

following we will restrict ourselves to the first-order wave 1

equation of the hierarchy which implies that the field vari- g(k,x,t)= —Im[2/" (x,t)p™* (k,x,t) + U~ (x,1)p~* (k,x,t)
ables are purely transverse, while still allowing for their lon- 4h

gitudinal dependence. U XD * (K x.1)edKZ
In first order of s the spatiotemporal dynamics of the xHp~*(kxt)e .
counterpropagating optical fields" andE~ is described by +U (x,t)pT*(k,x,t)e” 2KZ], (70)

the system of partial differential equations
Im[z] denoting the imaginary part & and the “detuning”

a n d i1 a 2mil |

—E'+— —Ef=-— —SE"--E'+——P;, 72K2

Iz c gt 2 Kz ax 2 niL ho(k)=E+ 5— +AEX) A () —ho. (7D
(673 2m,
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The ‘“grating terms” which involve high-wave-vector JET W
modulations can be disregarded in a first approximation due e *a,ET at x= o (779
to the presence of diffusion which has the effect to wash out
these amplitude gratings. In this approximation, when sepa- JE- W
rating linear and nonlinear polarizations, one retains —= +a,E- at x= = (77b
X' (w;k,x,t
a(koxt) =X ey ey o _
2h whereW=w-+w,, with w; being the width of the absorbing
1 cladding wings. In practice, with sufficiently wide absorbing
—Elm[chEWx,t)prﬂ*(k,x,t) layers (=10 pm), the optical fields and thus the polariza-

tions are damped to insignificantly small values.
+de, E7 (X, ) pry™ (KX, 1) — AUT (X,t) pT* (K, X,t)

— AU (X,t)p*(k,x,1)]. (72 IV. CONCLUSIONS

The spatial transport of the carriers is described by the am- Maxwell-Bloch equations for spatially inhomogeneous
bipolar diffusion equation for the carrier density semiconductor lasers have been derived which include both
space dependence and momentum dependence of the charge-
carrier distributions and the polarization. Based on a Wigner
function representation of the single-particle density matri-
ces, a system of equations for space-dependent distribution
—W(x,1) (73 functions and interband polarization is obtained which holds
for arbitrary inhomogeneities. The momentum and density
dependent relaxation rates for the carrier distributions as well
1 as for the polarization include carrier-carrier scattering and
ﬁlm[E*(x,t)P,m*(x,t) carrier-phonon interactions. From the relaxation rates, the
ambipolar diffusion coefficient has been obtained. Thus spa-
1 tial transport and momentum space dynamics are described
+ E*(x,t)P;l*(x,t)]+mlm[AU*(x,t)P**(x,t) in a consistent model. Assuming sufficiently slow variations
cv in space and, consequently, a separation of the characteristic
+ AU (X DPT*(x,1)]. (74) time scales between the fast momentum space and the slow
real-space dynamics, the latter has been approximated by an
The spatial transport of the electron-hole plasma is coupledmbipolar diffusion model. This microscopic semiconductor
to the k-space dynamics by the chemical potentials in themodel is coupled to Maxwell's equation via the linear and
quasiequilibrium distribution functions for electrons andnonlinear polarization. Taking into account the specific
holes which are obtained from the carrier density determinedtructure of a broad-area semiconductor laser, i.e., a Fabry-
by the ambipolar diffusion equatiaf73). Perot resonator in the longitudinal direction and strong
The partial differential equations for the fields and thewaveguiding in the vertical direction, the system of equa-
carrier density have to be supplemented by boundary condtions (67)—(74) describes the dynamics of the counterpropa-
tions. A certain fraction of the charge carriers recombines agating optical fields together with the microscopic properties
the surface of the laser structure with the characteristic sulef the spatially inhomogeneous active laser medium. This

Z\ 1% d

g _ 9
0 = 5 Dt T 5o D INF A + GO =y

with the total generation rate

"(w:X,t
YAOXD a2y g2y

C="2n

face recombination velocity, resulting in model accounts for the mechanisms and consequences of
spectral as well as spatial hole burning. A detailed numerical
dN W analysis of the spatiotemporal dynamics of the broad-area
Doy =FvsN atx==+=, (758 |aser structure shown in Fig. 3 will be given in II.
N
i—==*v,N at z=0L. (75b
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represent reflection of the optical fields at the facet mirrors of APPENDIX A

the laser structureR; and R, being the reflection coeffi-

cients. Transversely the optical fields are strongly damped in For completeness, we give here the full effective single-
the cladding layers on both sides of the main laser stripgarticle parts of the equations of motion for the hole distri-
area. The appropriateansverseboundary conditions are bution function and the interband polarization
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APPENDIX B

The first-order (=1,m=0 andn=0m=1) equations of
motion for the hole distribution function and the polarization
read

_ hy _
%fh(l)(k’r): 1[95h( k,r) _ af(=k,r)

3 ok or

g (=k,r) of"(=k,r)
ook

1 (auk,r) ap*(k,r)
26| ok or

aU(k,r) ap*(k,r)
a ok

au* (k,ry ap(k,r) U (k,r)
* dk o or

(Bla)

ap(k,r)
VN

7 oDk, = SU(k

1 (age(k,r) agh(—k,r)) ap(k,r)
72 R R oo

g (k,r)  dEN—=k,r)\ ap(k,r)
+ — .
ar ar ok
afe(k,r)y  af(k,r)\ au(k,r)
+ — .
Jk ok or

afe(k,ry  af(k,r)\ au(k,r)
_( or)_ 0 ) g j (B1b)
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