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Space-dependent Maxwell-Bloch equations are derived for the description of spatiotemporal dynamics of
spatially inhomogeneous semiconductor lasers. The dynamics of the charge carriers is described in a density-
matrix approach using a Wigner function representation. On this basis, the coupled set of equations of motion
for the active medium and the space-dependent light field is derived. Based on typical length and time scales,
approximations are performed to obtain a numerically tractable problem. The many-body interactions give rise
to space-dependent energy renormalizations, Coulomb enhancement, and scattering processes. The latter ones
are considered in the form of momentum- and density-dependent microscopic relaxation rates due to carrier-
carrier and carrier-phonon interaction for the carrier distribution functions and the polarization. For the spatial
transport or the carriers an ambipolar diffusion model is derived.@S1050-2947~96!01409-6#
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I. INTRODUCTION

In early theoretical studies of the semiconductor laser the
interplay between the light field and the laser medium has
mainly been analyzed in terms of rate equations for the den-
sity of photons and charge carriers@1–3#. Disregarding the
spatial dependence, these models generally describe the dy-
namic behavior of a single-stripe semiconductor laser rather
well. Various methods from nonlinear dynamics were ap-
plied for the description of the dynamics of the semiconduc-
tor laser within the rate-equations approximation, e.g., to
characterize the relaxation oscillations@2,3# and the behavior
upon variation of the applied injection current. With delayed
optical feedback and in linear andT-shaped external resona-
tors dynamic instabilities and chaotic behavior have experi-
mentally been observed@4#.

In spite of their popularity, general limitations in the theo-
retical description of semiconductor lasers in terms of phe-
nomenological models~involving, e.g., the linewidth en-
hancement factor! have been pointed out previously.
Generally, the interaction of the optical light field and the
active semiconductor medium is strongly dependent on spec-
tral properties of the semiconductor and on the local electron
and hole occupation in the conduction and valence band. The
active medium, represented by its microscopic polarization
and carrier distributions, in turn, acts as the source for the
optical field generated by the annihilation of an electron-hole
pair. Typically, however, the polarization is adiabatically
eliminated and, disregarding the wave-number dependence
of the gain function, effectively the band structure of a

direct-gap semiconductor is reduced to a two-level system
without spectral broadening. The linear dependence of the
gain on the densityN of charge carriers assumed in many
phenomenological approximations does not include nonlin-
ear effects such as the saturation of the gain medium at very
high pumping rates. Recently, attempts have been made to
include the dynamics of the polarization variable on various
levels. Assuming spatial homogeneity, i.e., disregarding any
transport processes, Maxwell-Bloch formulations have been
proposed on the basis of phenomenological two-level~in-
stead of more realistic two-band! approximations for the ac-
tive laser medium@5,6#. Using homogeneous semiconductor
Bloch equations the ultrashort time nonequilibrium carrier
and intensity dynamics of microcavity lasers have recently
been investigated@7#. Describing the dynamics of broad-area
lasers on the basis of a spatially dependent Maxwell-Bloch,
first results on the spatiotemporal dynamics and propagation
of optical filaments have been presented@8#. Those results
have given the strong indication of the necessity to include in
the theoretical description the spatial degrees of freedom to-
gether with the band structure of the semiconductor medium.

In this paper we will derive a hierarchy of space-
dependent Maxwell-Bloch equations for spatially inhomoge-
neous semiconductor lasers. The basic equations are valid for
arbitrarily strong inhomogeneities. Based on typical length
scales in a semiconductor laser and on the separation of the
time scales between the dynamics in momentum and in real
space, transport processes are hierarchically included. In a
successive paper, from now on termed II, we show results of
extensive numerical simulations on the spatiotemporal dy-
namics of broad-area semiconductor lasers. While always
considering the spatial dependence of the microscopic vari-
ables and of the optical field in the calculations, approxima-
tions in the description of the active semiconductor laser
medium are made regarding the level of complexity in the
explicit consideration of many-body effects in the model. In
particular, the formation and propagation of optical filaments
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in broad-area semiconductor lasers is studied in which, as we
will show in II, the microscopic properties strongly influence
the macroscopic spatiotemporal dynamics of the whole de-
vice.

II. THE ACTIVE SEMICONDUCTOR

The active medium in a semiconductor laser is the source
of the optical radiation which is produced and amplified in
the laser. In the spirit of the semiclassic laser theory only the
classical character of the optical field is considered while one
accounts for the quantum-mechanical properties of the semi-
conductor medium. In the derivation outlined in the follow-
ing, the concept of the density-matrix theory@9–13# is fol-
lowed @14#. A characteristic feature of a semiconductor as
the active medium of a laser is the fact that, besides the
interaction with the light field, other types of interactions
play an important role. These are, in particular, the Coulomb
interaction among the carriers giving rise to many-body
renormalizations, screening, and a thermalization of the non-
equilibrium carrier distribution, as well as the interaction
with phonons leading to an energy exchange between the
carriers and the crystal lattice.

The single-particle Hamiltonian and the mean-field part of
the many-body Hamiltonian will lead us to the semiconduc-
tor Bloch equations, which are generalized to include arbi-
trary spatial inhomogeneities. They describe the coherent in-
teraction between the carriers and the laser light field as well
as transport due to spatial gradients and electrostatic forces.
The remaining part of the Hamiltonian describing carrier-
carrier and carrier-phonon correlations gives rise to a screen-
ing of the bare Coulomb interaction and to scattering pro-
cesses leading to a dephasing of the polarization and a
relaxation of the carrier distribution functions towards a local
quasiequilibrium. Since we are here mainly interested in the
laser dynamics, we will not discuss in detail the derivation of
the latter contributions. Instead, we will treat them in a sim-
plified way in terms of a static screening of the Coulomb
potential and a relaxation-time approximation for the scatter-
ing dynamics. The scattering rates, however, are obtained
from the microscopic transition rates and, therefore, they be-
come functions of wave vector, space and time.

A. Microscopic variables and Hamiltonian

The semiconductor is described in terms of an isotropic
two-band model where, for the case of the holes, a suitably
averaged effective mass is taken. A generalization to more
bands is straightforward. The basic variables describing the
carrier dynamics are given by the single-particle density ma-
trices. Due to the formal analogy with semiclassical transport
theory, it is convenient to use a Wigner representation for a
spatially inhomogeneous system. In the following we will
generalize the concept of the Wigner function@15# to the
case of a two-band model. Starting from the off-diagonal
density-matrices f k,k8

e
5^ck

†ck8&, f k,k8
h

5^dk
†dk8&, and

pk,k85^d2kck8& space-dependent distribution functionsf e,h

and interband polarizationp can be introduced by perform-
ing a Fourier transformation with respect to the relative mo-
mentum according to
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e,h
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1
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Here,ck
† and dk

† (ck and dk) denote creation~annihilation!
operators for electrons and holes with wave-vectork, respec-
tively.

The free carriers in the semiconductor are described by
the Hamiltonian

H05(
k

ek
eck

†ck1(
k

ek
hdk

†dk , ~2!

whereek
e5Eg1\2k2/2me andek

h5\2k2/2mh are the disper-
sion relations of electrons and holes, respectively,me and
mh being their effective masses, andEg is the band gap.

The light field couples electron and hole states. In the
semiclassic laser theory the optical field is described by a
classical electric fieldE(r ,t) with positive (E(1)) and nega-
tive (E(2)5E(1)* ) frequency components. Expanding the
light field in a Fourier series according to

E~1 !~r ,t !5(
q
Eq
0~ t !ei ~qr2vt !5(

q
Eq

~1 !~ t !eiqr, ~3!

wherev denotes the central frequency, the carrier-light in-
teraction Hamiltonian is given by

HcL52(
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†
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2 q
ck1
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Here, the coupling is treated in rotating wave approximation
and dcv(k) denotes the dipole matrix element between va-
lence band and conduction-band states.

Inserting the Wigner representation of the interband po-
larization, the expectation value of the interaction Hamil-
tonian can be written as

^HcL&52E d3r @E~1 !~r ,t !•P~2 !~r ,t !

1E~2 !~r ,t !•P~1 !~r ,t !# ~5!

which allows us to identify the space-dependent macroscopic
polarizations

P~1 !~r ,t !5
1

V(k dcv* ~k!p~k,r ,t ! ~6!

andP(2)5P(1)* entering Maxwell’s equations. HereV de-
notes a normalization volume of the crystal.

Electrons and holes as charged particles interact via the
Coulomb potentialVq . In a two-band model the interaction
Hamiltonian is given by
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Hcc5 (
k,k8,q
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2ck
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† dk81qck2qG ~7!

with

Vq5
4pe2

V«0q
2 , ~8!

«0 being the static background dielectric constant. The three
parts refer to electron-electron, hole-hole, and electron-hole
interaction, respectively. We have neglected terms which
lead to transitions between valence and conduction bands,
i.e., impact ionization and Auger recombination@16#. Fur-
thermore, the interband exchange energy has been neglected
which is justified if, as in the present case, the exciton bind-
ing energy is much smaller than the band gap@17#.

The carrier-carrier Hamiltonian can be separated into
a mean-field ~Hartree-Fock! part HHF

cc and a remaining
partHcorr

cc depending on two-particle correlations. For an in-
homogeneous system the Hartree-Fock contribution is given
by

HHF
cc 5 (

k,k8,q
$@Vk2k8~ f q,q2k1k8

e
2 f q,q2k1k8

h
!

2Vqf k1q,k81q
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#dk8
† dk2Vqpk1q,k81qck8

† d2k
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2Vqpk1q,k81q
* d2kck8%. ~9!

The carriers also interact with static and dynamic perturba-
tions of the ideal lattice periodicity. Of particular importance
in a polar semiconductor is the interaction with optical
phonons via the Fro¨hlich interaction. The corresponding
Hamiltonian is given by

Hcp5(
q,k

gq@ck1q
† bqck2ck

†bq
†ck1q2dk1q

† bqdk1dk
†bq

†dk1q#,

~10!

wherebq
† (bq) denote creation~annihilation! operators of a

phonon with wave-vectorq and the Fro¨hlich coupling matrix
element is given by

gq52 i F2pe2\vop

V S 1«`
2

1

«0
D G1/21q ~11!

with the energy of the optical phonon\vop and the optical
dielectric constant«` . Carrier-phonon interaction has a
mean-field contribution only in the presence of coherent
phonons which require strong spatial inhomogeneities@18–
20#. In a semiconductor laser which is operated at room tem-
perature the phonon system typically can be assumed to re-
main close to thermal equilibrium, thus there are no carrier-
phonon mean-field contributions.

Then, the effective single-particle Hamiltonian consists of
Eqs.~2!, ~4!, and~9! and can be written as

Heff5H01HcL1HHF
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k,k8

@Ekk8
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†ck81Ekk8
h dk

†dk81Ukk8ck
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with the matricesEkk8
e,h of the renormalized energies,

Ekk8
e,h

5ek
e,hdkk82(

q
@Vqf k81q,k1q

e,h
7Vk2k8~ f q,q2k81k

e

2 f q,q2k81k
h

!#, ~13!

where the upper~lower! sign refers to electrons~holes!, and
the matrixUkk8 of the effective field,

Ukk852dcvS 12 ~k1k8! D •Ek2k8
~1 !

~ t !2(
q
Vqpk81q,k1q .

~14!

B. Equations of motion

By using Heisenberg’s equations of motion, the equations
of motion for the single-particle density matrices in the
Wigner representation can be derived. The effective single-
particle Hamiltonian leads to a closed set of equations of
motion for distribution functions and interband polarization.
The result, e.g., for the electron distribution function is given
by

i\
]

]t
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1

VE d3r 8 (
k8,q8
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e

#
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2e2 ik8rUk2 ~1/2! q81 ~1/2! k8,k2 ~1/2! q82 ~1/2! k8
* p~k2 1

2k8,r2r 8!%. ~15!
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Performing a Taylor expansion, this integro-differential
equation can be formally written in terms of a differential
equation of infinite order. By using

f eS k2
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]

]r D
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and after a partial integration the equation of motion, e.g., for
the electron distribution function is obtained as
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The equations for the hole distribution function and the po-
larization are given in Appendix A. Here, we have intro-
duced the space-dependent renormalized energies and fields
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where
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k8

Vk2k8f
e,h~k8,r ! ~19!

denotes the energy renormalization due to the exchange in-
teraction and

DU~k,r !52(
k8

Vk2k8p~k8,r ! ~20!

is the internal field being responsible for excitonic effects
and Coulomb enhancement. The electrostatic potential
F(r ) due to the Hartree terms in the mean-field Hamiltonian
satisfies the Poisson equation

¹2F~r !52
4p

«0
r~r !5

4pe

«0V(k @ f e~k,r !2 f h~k,r !#, ~21!

r(r ) being the electric charge density.
We notice that in each order (n,m) spatial derivatives of

the ordern1m appear. If the length scales of spatial inho-
mogeneities are sufficiently large, one may assume that
terms with increasing order will be of decreasing importance.
Let us consider the lowest orders: In zeroth order
(n5m50) we obtain the well-known semiconductor Bloch
equations
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with the generation rate
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~23!

The space coordinater appears only as a parameter, i.e.,
locally the dynamics is the same as in the homogeneous case
and there are no effects of spatial transport. Typically, four-
wave-mixing experiments are interpreted on the basis of
these equations@21,22#. In the present case of a broad-area
laser, however, carrier diffusion plays a crucial role and
transport terms have to be included.

In first order (n51,m50 and n50,m51) we obtain,
e.g., for the electron distribution function
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]k J . ~24!

The corresponding equations for the hole distribution func-
tion and the polarization are given in Appendix B. In the first
row of ~24! we recover the two contributions of the drift term
in the Boltzmann transport equation exactly as in the case of
a one-band model. The second and third row can be inter-
preted as a local generation rate due to an in or out flow of
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polarization in the corresponding volume element of the
phase space. Thus we obtain the generalization of the Bolt-
zmann equation to the case of a two-band model including
the coherent interband transport contributions. Higher de-
rivatives, which become important if the variables exhibit
spatial variations on very short length scales, are responsible
for typically quantum-mechanical transport features like tun-
neling as, e.g., in resonant tunneling diodes@23#. However,
in the present laser structures studied here they can be safely
neglected.

C. Screening and scattering processes

The correlation part of the carrier-carrier interaction
Hamiltonian and the carrier-phonon interaction Hamiltonian
give rise to two phenomena: screening of the bare interaction
and scattering processes among the carriers. Here, we will
not discuss this part explicitly, but model the effects in terms
of a static screening model and a relaxation-time approxima-
tion for the scattering processes@17,21,24,25#.

The bare Coulomb potential is replaced by the screened
potential

Vq
s5

4pe2

V«0k
2

11ax2

11x21ax4
, ~25!

with x5q/k, a5(«0\
2k4)/(16pmrNe

2), and the space-
and time-dependent screening wave-vector

k252
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S ]ek
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]k D 21S ] f n~k,r !

]k D , ~26!

N(r )5Ne(r )5Nh(r ) being the carrier density,
mr5(me

211mh
21)21 being the reduced mass, and an isotro-

pic distribution function has been assumed. For sufficiently
weak deviations of the carrier distributions from local quasi-
equilibrium, the energy renormalization can be modeled by a
rigid shift of the bands according to

DEe,h~r !52
a

2
E0S 11b2

~kBT!2

Na0
3E02
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with the exciton binding energyE05mre
4/(2«0

2\2), the ex-
citon Bohr radiusa05\2«0 /(e

2mr), the temperatureT,
Boltzmann’s constantkB , and the numerical factors are
given bya54.64 andb50.107@26#. Furthermore, under the
condition of a pronounced gain, as is the case in an active
semiconductor laser, a high-density approximation for the
internal field describing the Coulomb enhancement can be
used. It is obtained by replacing the wave-vectork in Eq.
~20! by the Fermi wave-vectorkF @27# resulting in

DU~r !52(
k8

VkF2k8
s p~k8,r !. ~28!

Within a semiclassical picture, i.e., when describing scat-
tering processes in terms of a scattering rate, the scattering
contributions to the equations of motion have the structure of
the Boltzmann collision terms@13,28#
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Here, terms which are quadratic or of higher order in the
polarization ~polarization scattering! have been neglected.
The Boltzmann scattering matricesWk8,k

e,h for electrons and
holes are real quantities, the scattering matricesWk8,k

p in the
equation of motion for the polarization in general are com-
plex, the real part being related toWk8,k

e,h according to

Re~Wk8,k
p

!5 1
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e
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h
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h f h~2k8,r !%. ~30!

The imaginary part describes second-order corrections to the
band-gap renormalization. Typically, these corrections can
be neglected compared to the first-order~Hartree-Fock!
renormalization terms.

The scattering rates are obtained from Fermi’s golden rule
and the matrices are given by

Wk2q,k
e,h~cc!5

2p

\
uVq

su2 (
n5e,h

(
k8

d~ek2q
e,h 1ek81q

n
2ek8
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2ek

e,h!
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for carrier-carrier interaction and
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e,h~cp!5

2p

\ (
6

ugq
e,hu2d~ek2q

e,h 2ek
e,h6\vop!S nq1 1

2
6
1

2D
~32!

for carrier-phonon interaction.
Carrier-carrier scattering processes, due to the conserva-

tion of carrier density, total momentum, and energy, tend to
establish a local heated displaced Fermi-Dirac distribution,
while carrier-phonon scattering processes, which conserve
only the carrier density, lead to a relaxation towards a Fermi-
Dirac distribution at lattice temperature. Both kinds of pro-
cesses, by destroying phase coherence, lead to a dephasing of
the interband polarization.

A full kinetic treatment of the scattering processes can be
performed by using various techniques, e.g., Monte Carlo
simulations@12,29,30#, or a direct integration@25,31# which,
already for the case of spatially homogeneous system, in-
volve extensive numerical calculations. In the present case,
however, due to the high densities and, consequently, the
high scattering rates, the distribution functions of electrons
and holes will not exhibit strong deviations from local qua-
siequilibrium distributions. Therefore, with
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f e,h~k,r !5 f eq
e,h~k,r !1d f e,h~k,r !, ~33!

f eq
e,h~k,r !5~exp@b„ek

e,h2me,h~r !…#11!21, ~34!

b5(kBT)
21, the Boltzmann collision terms can be linear-

ized with respect tod f e,h andp.
Due to the conservation of carrier density, the deviations

satisfy the sum rule

(
k

d f e,h~k,r !50 ~35!

which determines the chemical potentialsme,h(r ). Their de-
pendence on carrier density can be approximated by a2/1-
Padéapproximation@32# and as a function of the normalized
densityne,h5Ne,h/N0

e,h they are given by

bme,h' lnne,h2K1ln~K2n
e,h11!1K3n

e,h, ~36!

where

N0
e,h5

1

4 S 2me,h

\2pb D 3/2 ~37!

and the coefficients are @32# K154.896 685 1,
K250.044 964 57, andK350.133 376 0.

Linearizing the collision term for the polarization@Eq.
~29b!# simply consists in calculating the scattering matrices
with the quasiequilibrium distribution functions. Since the
polarization as a complex quantity is typically an oscillating
function of k, we may assume that the second term in Eq.
~29b! is negligible due to random phases in the summation.
As a result, the dephasing is described in terms of a dephas-
ing rate@33#. Linearizing the collision term for the distribu-
tion functions results in a similar structure with a term which
has the structure of a relaxation rate and other terms involv-
ing a summation over differentk components ofd f . Due to
the sum rule@Eq. ~35!# the latter terms usually are much
smaller than the former one and may be neglected@34#. Thus
the collision terms can be expressed in terms of a relaxation-
time approximation

]

]t
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52te,h
21~k!@ f e,h~k,r ,t !2 f eq

e,h~k,r ,t !#,

~38a!

]

]t
p~k,r ,t !U

col

52tp
21~k!p~k,r ,t ! ~38b!

with the relaxation rates
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2 @te
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The scattering matrices are calculated with the quasiequilib-
rium distributions@35#.

In Fig. 1 the relaxation rates for carrier-carrier@Figs.
1~a!–1~c!# and carrier-phonon scattering@Figs. 1~d!–1~f!#
are plotted as functions ofk and the carrier density.~Note the
different orientations of the left and right column.! Both rates
have been calculated in the static screening model. Above a
density of the order of 1018 cm23, the Fermi edge leads to a
pronounced minimum in the relaxation rates due to phase-
space filling. This dip is more pronounced for electrons due
to their smaller density of states resulting in a higher degree
of degeneracy. In the case of carrier-phonon interaction we
also see the strong increase in the relaxation rate if, with
increasingk, the threshold for the onset of phonon emission
is reached.

D. Injection and spontaneous recombination

Modeling the behavior of a semiconductor laser requires
additional processes to be taken into account. In a laser diode
the carriers are electrically injected from the contacts into the
active region. This injection is modeled by an injection rate

]

]t
f e,hU

inj

5Le,h~k,r ,t !

5
h i j p~r !

ed

f̂ e,h~k,r ,t !@12 f e,h~k,r ,t !#

V21(
k

f̂ e,h~k,r ,t !
, ~40!

where f̂ e,h(k,r ,t) denotes the pump generated Fermi-Dirac
distribution just outside the active region,j p is the electric
pump current density,d is the vertical thickness of the active
region, andh i is the injection efficiency, i.e., the proportion
of carriers which actually reaches the active region.

Since in semiclassic laser theory the light field is treated
in terms of a classical electric field, only absorption and
stimulated emission are obtained. Thus, in the absence of a
light field, no processes occur and the laser cannot turn on.
Spontaneous emission, being related to the quantum nature
of the light field, has to be added to the equations in order to
start the lasing process. This leads to a recombination term in
the equations of motion for the distribution functions

]

]t
f e,hU

rec

52Gsp~k! f e~6k,r ,t ! f h~7k,r ,t !, ~41!

the upper sign refering to electrons and the lower sign refer-
ing to holes, with the spontaneous recombination coefficient

Gsp~k!5
4nl

3

\4pc3
udcv~k!u2S Eg1\2k2

2mr
D 3, ~42!

andnl being the refractive index of the active layer. Typi-
cally, in a semiconductor additional nonradiative recombina-
tion mechanisms are present reducing the efficiency of the
carrier-light coupling. These are modeled by a constant rate
gnr according to
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]

]t
f e,hU

nr

52gnr f
e,h~k,r ,t !. ~43!

E. Plasma diffusion and ambipolar approximation

The microscopic semiconductor dynamics is described by
distribution functions of electrons and holes and by the in-
terband polarization. All these quantities are functions of
space and momentum. Typically, however, there is a strong
separation of time scales between thek-space and the
r -space dynamics. Scattering and dephasing processes lead
to a fast relaxation of the microscopic variables towards their
local quasiequilibrium values on a femtosecond time scale.
The spatial transport occurs on a much slower time scale. For
this reason, the influence of spatial gradients on the
k-space dynamics is often negligible. However, the scatter-
ing terms in the equations of motion for the distribution
functions conserve the density of carriers. Therefore, the
density is not influenced by the fast relaxation processes and
its spatial transport cannot be neglected. In the equation of

motion for the polarization, on the other hand, no conserved
quantities exist and thus spatial transport of polarization is
usually not important.

Keeping the first-order spatial derivatives of the distribu-
tion functions and neglecting any spatial transport of polar-
ization, the equations of motion for electron and hole distri-
bution functions are given by the Boltzmann equations

]

]t
f e,h~k,r ,t !1

\k

me,h
•

] f e,h~k,r !

]r

2
1

\ S ]DE~r !
]r

7e
]F~r !

]r D • ] f e,h~k,r !

]k

52
1

te,h~k!
@ f e,h~k,r ,t !2 f eq

e,h~k,r ,t !#

1g~6k,r ,t !1Le,h~k,r ,t !

2Gsp~k! f e~6k,r ,t ! f h~7k,r ,t !2gnr f
e,h~k,r ,t !,

~44!

FIG. 1. Relaxation rates for
carrier-carrier @~a!–~c!# and
carrier-phonon scattering@~d!–
~f!#, plotted as functions ofk and
the carrier densityN. Note the dif-
ferent orientations of the left and
right column.
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where, again, the upper sign refers to electrons and the lower
sign to holes. Integrating these Boltzmann equations overk
results in the continuity equations for the carrier densities

]

]t
Ne,h1divje,h5Le,h~r ,t !1G~r ,t !2gnrN

e,h~r ,t !2W~r ,t !

~45!

with the densitiesNe,h(r ,t)5V21(k f
e,h(k,r ,t), the current

densities je,h(r ,t)5V21(k(\k/me,h) f
e,h(k,r ,t), the total

generation rateG(r ,t)5V21(kg(k,r ,t), the total injection
rate Le,h(r ,t), and the total spontaneous emission rate
W(r ,t).

If the scattering processes are sufficiently fast, the scatter-
ing term in the Boltzmann equation is the dominant contri-
bution and the carrier distribution deviates only weakly from
the local quasiequilibrium distributionf eq

e,h In this case, in all
other terms except for the scattering term the distribution
function may be approximately replaced byf eq

e,h resulting in
the approximate solution

d f e,h~k,r ,t !52te,h~k!F ]

]t
f eq
e,h~k,r ,t !1

\k

me,h
•

] f eq
e,h~k,r !

]r

2
1

\ S ]DE~r !
]r

7e
]F~r !

]r D • ] f eq
e,h~k,r !

]k

2g~k,r ,t !2Le,h~k,r ,t !1Gsp~k! f eq
e

3~6k,r ,t ! f eq
h ~7k,r ,t !1gnr f eq

e,h~k,r ,t !G .
~46!

Thus due to the isotropy off eq in the k space, the current
density is given by

je,h~r ,t !5V21(
k

\k

me,h
d f e,h~k,r ,t !

52De,hgradNe,h6se,h
1

e
gradF, ~47!

with the diffusivities

De,h52
1

3V(k te,h~k!
\2k2

me,h
2

] f eq
e,h~k,r !

]ek
e,h

]~me,h1DEe,h!
]Ne,h

~48!

and the conductivities

se,h5Ne,hem̃e,h52
e2

3V(k te,h~k!
\2k2

me,h
2

] f eq
e,h~k,r !

]ek
e,h .

~49!

Here,m̃e,h denote electron and hole mobilities. In Fig. 2 the
mobilities and diffusivities obtained from the microscopic
scattering rates are plotted as functions of the carrier density.
At low densities we find approximately constant values.
When the carriers become strongly degenerate, which occurs
for electrons at about 1018 cm23 and for holes at about
1019 cm23, both transport parameters exhibit a strong in-

crease related to the reduction of the scattering rate close to
the Fermi energy due to phase-space filling effects.

The spatial transport of electrons and holes is coupled by
electrostatic forces expressed by the electrostatic potential
F which, in turn, is obtained from the carrier densities by
solving Poisson’s equation~21!. This coupling strongly in-
creases with increasing densities resulting eventually in an
effective one-component behavior, the ambipolar transport
of electrons and holes. In this case, no space charges exist
and the densities of electrons and holes are equal
Ne5Nh5N. In order to keep this neutrality, also the current
densities are equalje5 jh5 j . Eliminating the drift term in
Eq. ~47! results in the ambipolar diffusion current density

j52DfgradN ~50!

with the ambipolar diffusion coefficient

Df5
shDe1seDh

se1sh . ~51!

Under nondegenerate conditions, where due to the Einstein
relationse/sh5De/Dh holds, Eq.~51! reduces to the well-
known formDf

2151/2(De211Dh21) @36–38#. Combining
Eqs. ~45! and ~50!, the macroscopic transport equation for
the carrier density is given by

]

]t
N5div~DfgradN!1L~r ,t !1G~r ,t !2gnrN~r ,t !

2W~r ,t !. ~52!

FIG. 2. Electron and hole mobility~a! and electron, hole and
ambipolar diffusion coefficient~b! plotted as functions of the carrier
densityN.
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The solid line in Fig. 2 shows the ambipolar diffusion coef-
ficient as a function of the density. The curve is flat up to
several 1018 cm23 and then exhibits the same strong increase
as discussed above for the electron and hole diffusion coef-
ficients.

F. Linear and nonlinear polarization

For a numerical modeling of a semiconductor laser it is
convenient to separate the polarization in a ‘‘linear’’ and a
‘‘nonlinear’’ part p(k,r ,t)5pl(k,r ,t)1pnl(k,r ,t). The in-
ternal field @Eq. ~28!# is separated accordingly
DU(r ,t)5DUl(r ,t)1DUnl(r ,t). Starting from Eqs.
~22b!,~38b!, this leads to the equations of motion

]

]t
pl~k,r ,t !5

1

i\
@Ee~k,r ,t !1Eh~2k,r ,t !#pl~k,r ,t !

1
1

i\
@2dcvE

~1 !~r ,t !1DUl~r ,t !#

2tp
21~k!pl~k,r ,t !, ~53a!

]

]t
pnl~k,r ,t !5

1

i\
@Ee~k,r ,t !1Eh~2k,r ,t !#pnl~k,r ,t !

1
1

i\
DUnl~r ,t !2

1

i\
U~k,r ,t !@ f e~k,r ,t !

1 f h~2k,r ,t !#2tp
21~k!pnl~k,r ,t !, ~53b!

with dcv5dcv•e, e being the polarization vector of the light
field, and thek dependence of the dipole matrix element has
been neglected. Strictly speaking,pl is not exactly the linear
part since in Eq.~53a! we have included energy renormal-
izations, Coulomb enhancement, and dephasing rates which
depend on the carrier density. However, we can take advan-
tage of the separation of time scales disscussed above: The
nonlinear polarization is determined by the fullk depen-
dence of the carrier-distribution functions and thus it is a fast
variable. The linear polarization, on the other hand, is gov-
erned by the carrier density. Its temporal evolution is much
slower and retardation effects can be neglected. Then,pl can
be expressed in terms of ak-dependent susceptibility defined
as

dcv* pl~k,r ,t !5x̃~v;k,r ,t !E~1 !~r ,t !. ~54!

In the high-density approximation for the internal field, the
susceptibility is given by

x̃ ~v;k,r ,t !5x̃81 i x̃95
x̃0~v;k,r ,t !

12
1

udcvu2
(
k8

VkF2k8
s x̃0~v;k8,r ,t !

,

~55!

with

x̃0~v;k,r ,t !5
udcvu2

Ee~k,r ,t !1Eh~2k,r ,t !2\v2 i\tp
21~k!

.

~56!

The macroscopic linear polarization is given by

Pl
~1 !~r ,t !5x~v;r ,t !E~1 !~r ,t !, ~57!

with the susceptibility

x~v;r ,t !5x8~v;r ,t !1 ix9~v;r ,t !5
1

V(k x̃~v;k,r ,t !.

~58!

III. MAXWELL-BLOCH EQUATIONS

Based on the microscopic semiconductor model discussed
above, in this section a general Maxwell-Bloch formulation
for spatially inhomogeneous semiconductor lasers is devel-
oped and applied for the description of edge-emitting broad-
area semiconductor lasers. Figure 3 shows a schematic plot
of a typical broad-area laser structure. The microscopic ef-
fects of the active semiconductor medium are considered
self-consistently with the macroscopic properties of the laser
devices. Macroscopically, Maxwell’s wave equation

¹2E14p¹~“•P!2
1

c2
]2

]t2
E5

4p

c2
]2

]t2
P, ~59!

for the optical fieldE and the macroscopic polarizationP is
the basis for the theoretical description of the spatiotemporal
behavior of the broad-area semiconductor lasers. In semicon-
ductor lasers with transversely wide active zones, e.g., the
broad-area lasers, a careful consideration of the spatial de-
pendence is vital. Transversely in thex direction the evanes-
cent optical-fields scatter and charge carriers diffuse away
from the point where they were generated by the external
pump current. Strong waveguiding effects in the verticaly
direction which are a consequence of the sequence of semi-
conductor heterolayers, however, confine the optical field
and limit the diffusion of the charge carriers in this direction.
This allows the approximate consideration of the optical
fields in the verticaly direction in the steady state. In the
longitudinalz direction the laser cavity forms a Fabry-Perot

FIG. 3. Schematic of the broad-area semiconductor laser. The
active GaAs layer~shaded dark! is sandwiched between two clad-
ding layers of AlxGa12xAs ~white!. Charge carriers, injected
through the contact stripe~s! at the top of the device~hatched! may
recombine in the active zone. Light propagates in longitudinal (z)
direction. The transverse ribbed cladding structure at the bottom
serves as a passive waveguide.
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resonator so that the optical fields counterpropagate in a
positive and negativez direction. Effectively, the problem is
thus reduced to a quasi-two-dimensional one with the trans-
verse direction denoted byx.

Due to the consideration of counterpropagation in a
Fabry-Perot resonator, the optical fields are split into longi-
tudinally slowly varying counterpropagating fieldsE1 and
E2

E5 1
2 ~E1eiKzz2 ivt1E2e2 iK zz2 ivt1c.c.! ~60!

traveling in an opposite positive~‘‘ 1’’ ! and negative
~‘‘ 2 ’’ ! z direction, where c.c. indicates complex-conjugate
contributions. Thus, the positive frequency components in
Eqs.~3! and ~6! are given by

E~1 !~r ,t !5 1
2 @E1~r ,t !eiKzz2 ivt1E2~r ,t !e2 iK zz2 ivt#. ~61!

In the laser medium, the optical field induces the polarization

P5 1
2 ~P1eiKzz2 ivt1P2e2 iK zz2 ivt1c.c.! ~62!

which, on the microscopic level, is related to the interband
polarization

p~k,r ,t !5 1
2 @p1~k,r ,t !eiKzz2 ivt1p2~k,r ,t !e2 iK zz2 ivt#.

~63!

Accordingly, the effective field is decomposed inU6.
The fieldsE6 andP6 as well as the differential operator

¹ are further separated into transverse and longitudinal parts
according to

E65ET
61ezEz

6 , ~64!

P65PT
61ezPz

6 , ~65!

and

¹5¹T1ez
]

]z
. ~66!

Expansion of the resulting longitudinal and transverse wave
equations in terms of the parameters5w/l5(Kzw)

21, w
being the width andl5Kzw

2 being the diffraction length of
the laser, leads to a hierarchy of wave equations@39#. In the
following we will restrict ourselves to the first-order wave
equation of the hierarchy which implies that the field vari-
ables are purely transverse, while still allowing for their lon-
gitudinal dependence.

In first order of s the spatiotemporal dynamics of the
counterpropagating optical fieldsE1 andE2 is described by
the system of partial differential equations

]

]z
E11

nl
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]

]t
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]2

]x2
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2
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2p iG

nl
2L

Pnl
1 ,

~67a!

2
]

]z
E21

nl
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]
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E25
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Kz

]2

]x2
E22

a

2
E21

2p iG

nl
2L

Pnl
2 ,

~67b!

with the index of refractionnl , the absorption coefficient
a(v)5(4pvx9)/(nlc), the~longitudinal! length of the laser
L, the wave number in~longitudinal! propagation direction
Kz5nlK0, K0 being the unperturbed wave number in the
vacuum, and the confinement factorG describing the
waveguiding properties of the heterostructure.

The fields are coupled to the active semiconductor via the
linear polarizations, expressed in terms ofnl anda, and the
nonlinear polarizations

Pnl
6~r ,t !5

dcv*

V (
k

pnl
6~k,r ,t !. ~68!

Due to the strong carrier-carrier and carrier-phonon scatter-
ing, thek-space dynamics occurs on a much faster time scale
than ther -space dynamics. Therefore, in a first step the latter
one can be disregarded for the calculation of the microscopic
carrier dynamics. In this approximation, the spatial coordi-
nates enter only as parameters and the distribution functions
and interband polarizations are isotropic ink space, i.e., they
depend onlyk5uku. Furthermore, the confinement of the car-
riers in the verticaly direction as a consequence of the semi-
conductor heterostructure reduces also the semiconductor
part to a quasi-two-dimensional problem with the spatial co-
ordinatex5(x,z).

The microscopic dynamics of the distribution functions
and the nonlinear polarizations are then governed by the
equations of motion

]

]t
f e,h~k,x,t !5g~k,x,t !1Le,h~k,x,t !2te,h

21~k!@ f e,h~k,x,t !

2 f eq
e,h~k,x,t !#2Gsp~k! f e~k,x,t ! f h~k,x,t !

2gnr f
e,h~k,x,t !, ~69a!
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]t
pnl

6~k,x,t !52@ i v̄~k!1tp
21~k!#pnl

6~k,x,t !1
1

i\
DUnl6~x,t !

2
1

i\
U6~x,t !@ f e~k,x,t !1 f h~k,x,t !#, ~69b!

with the generation rate

g~k,x,t !5
1

4\
Im@U1~x,t !p1* ~k,x,t !1U2~x,t !p2* ~k,x,t !

1U1~x,t !p2* ~k,x,t !e2iK zz

1U2~x,t !p1* ~k,x,t !e22iK zz#, ~70!

Im@z# denoting the imaginary part ofz, and the ‘‘detuning’’

\v̄~k!5Eg1
\2k2

2mr
1DEe~x!1DEh~x!2\v. ~71!

3356 54ORTWIN HESS AND TILMANN KUHN



The ‘‘grating terms’’ which involve high-wave-vector
modulations can be disregarded in a first approximation due
to the presence of diffusion which has the effect to wash out
these amplitude gratings. In this approximation, when sepa-
rating linear and nonlinear polarizations, one retains

g~k,x,t !5
x̃9~v;k,x,t !

2\
@ uE1u21uE2u2#

2
1

2\
Im@dcvE

1~x,t !pnl
1* ~k,x,t !

1dcvE
2~x,t !pnl

2* ~k,x,t !2DU1~x,t !p1* ~k,x,t !

2DU2~x,t !p2* ~k,x,t !#. ~72!

The spatial transport of the carriers is described by the am-
bipolar diffusion equation for the carrier density

]N

]t
5S ]

]x
D f

]

]x
1

]

]z
D f

]

]zDN1L~x,t !1G~x,t !2gnrN

2W~x,t ! ~73!

with the total generation rate

G5
x9~v;x,t !

2\
@ uE1u21uE2u2#2

1

2\
Im@E1~x,t !Pnl

1* ~x,t !

1E2~x,t !Pnl
2* ~x,t !#1

1

2\dcv
Im@DU1~x,t !P1* ~x,t !

1DU2~x,t !P2* ~x,t !#. ~74!

The spatial transport of the electron-hole plasma is coupled
to the k-space dynamics by the chemical potentials in the
quasiequilibrium distribution functions for electrons and
holes which are obtained from the carrier density determined
by the ambipolar diffusion equation~73!.

The partial differential equations for the fields and the
carrier density have to be supplemented by boundary condi-
tions. A certain fraction of the charge carriers recombines at
the surface of the laser structure with the characteristic sur-
face recombination velocityvsr resulting in

Df

]N

]x
56vsrN at x57

W

2
, ~75a!

Df

]N

]z
56vsrN at z50,L. ~75b!

The semiconductor laser cavity being a Fabry-Perot resona-
tor, the longitudinalboundary conditions

E1~x,z50,t !52AR1E
2~x,z50,t !, ~76a!

E2~x,z5L,t !52AR2E
1~x,z5L,t ! ~76b!

represent reflection of the optical fields at the facet mirrors of
the laser structure,R1 and R2 being the reflection coeffi-
cients. Transversely the optical fields are strongly damped in
the cladding layers on both sides of the main laser stripe
area. The appropriatetransverseboundary conditions are

]E1

]x
56awE

1 at x57
W

2
, ~77a!

]E2

]x
56awE

2 at x57
W

2
, ~77b!

whereW5w1wc , with wc being the width of the absorbing
cladding wings. In practice, with sufficiently wide absorbing
layers ('10 mm!, the optical fields and thus the polariza-
tions are damped to insignificantly small values.

IV. CONCLUSIONS

Maxwell-Bloch equations for spatially inhomogeneous
semiconductor lasers have been derived which include both
space dependence and momentum dependence of the charge-
carrier distributions and the polarization. Based on a Wigner
function representation of the single-particle density matri-
ces, a system of equations for space-dependent distribution
functions and interband polarization is obtained which holds
for arbitrary inhomogeneities. The momentum and density
dependent relaxation rates for the carrier distributions as well
as for the polarization include carrier-carrier scattering and
carrier-phonon interactions. From the relaxation rates, the
ambipolar diffusion coefficient has been obtained. Thus spa-
tial transport and momentum space dynamics are described
in a consistent model. Assuming sufficiently slow variations
in space and, consequently, a separation of the characteristic
time scales between the fast momentum space and the slow
real-space dynamics, the latter has been approximated by an
ambipolar diffusion model. This microscopic semiconductor
model is coupled to Maxwell’s equation via the linear and
nonlinear polarization. Taking into account the specific
structure of a broad-area semiconductor laser, i.e., a Fabry-
Perot resonator in the longitudinal direction and strong
waveguiding in the vertical direction, the system of equa-
tions ~67!–~74! describes the dynamics of the counterpropa-
gating optical fields together with the microscopic properties
of the spatially inhomogeneous active laser medium. This
model accounts for the mechanisms and consequences of
spectral as well as spatial hole burning. A detailed numerical
analysis of the spatiotemporal dynamics of the broad-area
laser structure shown in Fig. 3 will be given in II.
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APPENDIX A

For completeness, we give here the full effective single-
particle parts of the equations of motion for the hole distri-
bution function and the interband polarization
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APPENDIX B

The first-order (n51,m50 andn50,m51) equations of
motion for the hole distribution function and the polarization
read
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