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Motional quantum states of a trapped ion: Measurement and its back action
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We develop a method for reconstructing the quantum mechanical state of a trapped ion by bichromatically
irradiating it on a weak electronic transition and subsequently probing a strong electronic transition for reso-
nance fluorescence. Based on this recently proposed sdiserdéallentowitz and W. Vogel, Phys. Rev. Lett.

75, 2932(1995] the density matrix of the vibrational motion can be readily obtained either in a generalized
position representation or in the number-state representation. The method allows to uniquely define an ultimate
classical noise level by a reference measurement with an ion cooled to its vibrational ground-state. Disturba-
tions of the measurement and their suppression are considered. Moreover, we study the effect of the back
action of the measurement principle on the motional quantum state. It consists in the splitting of the state to be
measured into two substates, giving rise to quantum interference eff8t®50-29476)10710-1

PACS numbg(s): 32.80.Pj, 42.50.Vk, 03.65.Bz

[. INTRODUCTION This prediction has been confirmed in recent experiments
[20]. Such a strongly nonlinear dynamics allows to experi-

The experimental realization and observation of a singlementally realize interesting features of quantum mechanical
trapped ion[1] opened new possibilities not only for spec- couplings.
troscopy but also for fundamental tests of quantum physics. For studying such fundamental effects of quantum me-
In the latter context, quantum jumps have been visualized bghanics, one important problem must be solved: An appro-
recording the intermittent resonance fluorescence from ariate method for measuring the full quantum state of the
trapped ion[2—4]. Photon antibunching, for the first time center-of-mass motion of a trapped ion is desired. For a ra-
observed in resonance fluorescence from an atomic Pfgahm diation mode the quantum state has been recorded by optical
has later been demonstrated with a single trapped6¢#. homodyne tomography24]. Moreover, the quantum me-
Moreover, a trapped ion in combination with an appropriatechanical state of a molecular vibration has been derived from
observation technique should allow to detect squeezing imonstationary spectra of the resonance fluoresdgeThe
resonance fluorescenf®], an effect that was predicted sev- latter method, however, can hardly be applied for a trapped
eral years ag99] but has not been observed yet. ion since its vibronic coupling differs significantly from that

A trapped ion is not only a well defined light source for of a molecule.
studying quantum effects of radiation, it also represents an In the present paper we give a detailed study of the
almost ideal object for fundamental experiments in quantummethod of reconstruction of the motional quantum state pro-
mechanics. The trap potential may be regarded, to a googosed by us in Ref26]. Besides the reconstruction of the
approximation, as a quantum mechanical harmonic oscillatodlensity matrix of the vibrational motion in a generalized po-
[10]. Laser sideband cooling allows the preparation of thesition representation, we derive results for the direct sam-
center-of-mass motion of the ion in the vibrational groundpling of the density matrix in the number-state representation
state of the trap potentidl1,12. This is not only of interest of the harmonic oscillator. Perturbing effects due to imper-
for high-resolution spectroscopy, it may also serve as théections in the detection scheme are studied. Moreover, we
starting point for the preparation of well defined quantumanalyze the effect of the back action of our measurement
mechanical states. There exist several proposals for prepgrrinciple on the motional quantum state to be measured. This
ing nonclassical quantum states of the ionic center-of-masgields an interesting way to prepare nonclassical motional
motion [13-19. Recently, number states, squeezed statequantum states by the measurement principle. Quantum
[20], and Schrdinger-cat-like states of motiof2l] have states obtained in this manner can be measured subsequently
been realized. by the same technique.

Beside the feasibility of studying quantum effects of both  The paper is organized as follows. In Sec. Il we describe
the light and the mechanical motion, the trapped ion can b¢éhe measurement principle and derive the electronic dynam-
used for dynamical studies of elementary quantum interacics of the trapped ion. The quantum state reconstruction is
tions. A vibronic Jaynes-Cummings coupling can be ob-studied in Sec. lll, where the motional density matrix is dis-
tained by appropriately irradiating a long-livifg.g., quad- cussed in two representations, the generalized position rep-
rupole electronic transition of an ion localized within the resentation and the number-state representation. Examples
Lamb-Dicke limit [22]. Beyond the Lamb-Dicke regime, for the measured quantities are given in Sec. IV, where we
where the spatial extension of the wave function of the vi-consider also the disturbing effects due to imperfections of
brational ground state is no longer small compared to théhe measurement scheme. The back action of the measure-
wavelength of the irradiating laser, there even may occur anent and its applications are studied in Sec. V. A summary
nonlinear multiqguantum Jaynes-Cummings dynanji23]. and some conclusions are given in Sec. VI.
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H =\E)(X,t)Ap+H.c. 3)

Herea anda' are the annihilation and creation operators of
vibrational quanta, respectively, aldd,=|a)(b| is the elec-
tronic flip operator, for the weak transitiona)< |b)
(a,b=1,2). The parametein determines the coupling
strength of the transition with the laser fields, which are reso-
nant to the upper and lower vibrational sidebands of the tran-

--------------- sition | 1)« |2),
v 2 [1e=]2)

EC)(X,t) = ell(@at =kl 4 E gilloa—nt=kid — (g)

ws Ey, andE, are the complex amplitudes of the laser fields with
phasesp, ande, , respectively. The wave vectors of the two
lasers ky, andk, , determine the corresponding Lamb-Dicke

1) parameters of the vibrational sideband transitions,

kbg(: nb(éT‘l'é)- krs\(: ﬂr(éT‘Fé), %)
FIG. 1. Scheme of the trapped ion with a weak electronic tran-
sition |1)«|2) and a strong electronic transitidd)«[3). Two  which characterize the localization of the trapped ion with
incident lasers of frequencies,= w1+ v andw,=w, —v are de-  regpect to the corresponding laser wavelengths. Note that

tuned from the electronic tra_msmon by the V|bfa_t|onal frequency H, already contains the optical rotating wave approximation,
to the blue and red, respectively. The laser driving the strong tran- - e . .

L ; . ... neglecting all terms oscillating in time with the optical fre-
sition is used for testing the ground-state occupation probabilities

1(t) by means of probing for resonance fluorescence. quencyw,;. Expanding this Hamiltonian up to first order in
the Lamb-Dicke parameters, and 7, , which are assumed

Il. MEASUREMENT PRINCIPLE to be sufficiently small, in the vibrational rotating wave ap-

. . . proximation (vibrational frequencyv) the resulting interac-
In the following we ‘.N'” show that the quantum me(_:hanl tion Hamiltonian in the interaction picture reads as
cal state of a trapped ion can be reconstructed from its elec-

tronic dynamics, provided the ion is appropriately irradiated
by two laser field§26]. For this purpose a wedle.g., quad-

1[iue Fl)gsle r(zsg;r;):tlcvsirt?lntsrlltéo\?v;fl trr;:icl)(lj\?eg Srlvgp :%/ dtvlvgwlgrsiri_The application of the vibrational rotating wave approxima-
bratio,nal sidebands. For appropriatel cﬁgsen laser intensEi-on requires well resolved sidebands of the weak transition.
j pprop y It is important that the Lamb-Dicke approximation used

Elzsmm(l)snigr?i e?;glzst:)rrozﬁcéca;otr; erz?gclftsromcat?a;]gti?i:)icﬂ)%rjhere is not a serious restriction. It does not exclude the study
lized ition operator which de- of r.n'otlo.nal quantum states containing signatures of nonlin-
erators and a generaiized pos| peracpr earities in the vibronic coupling beyond the Lamb-Dicke re-
per_lds on the dlfferen_ce pha&eof the two Iaser_s. By mea- gime[23]. One may get the same interaction Hamiltonian by
suring the Rabi oscillations of the electronic levels via ging Raman-like excitaion of the two sidebands

p.rpbing for resonance fluprescenpe of a second str.ong tra 13,16,20,27. In this case the effective Lamb-Dicke param-
sition, one therefore gets information on the generalized sp Sters depend on the difference of the wave vectors of the

tial distribution for one choser_l phage Doing this for all ._lasers driving each Raman transition. This allows to alter the
phases, the completg mfprmaﬂqn on the quantum mechanlcg lues of the effective Lamb-Dicke parameters in a wide
state of the trapped ion is obtained. range, by changing the propagation geometry of the lasers.
Therefore, schemes for the preparation of nonclassical quan-
tum mechanical states beyond the Lamb-Dicke redib@-

The excitation scheme of the trapped ion is shown in Fig21] can be used for quantum state preparation using Raman
1. The weak transitiohl)«|2) is irradiated on its well re- excitations with counterpropagating laser beams. The mea-
solved upper and lower first vibrational sidebands by twosurement of these states can be done in the Lamb-Dicke re-
laser fields of frequencies,=w,;+ v andw, =w,;— v, re-  gime by using copropagating beams or an intermediate
spectively, wherew,,=w,— w; is the electronic resonance propagation configuration. In this manner, in ‘Bexperi-
frequency. The trap in which the ion is bound can be deiments the Lamb-Dicke parameter can be changed by 6-7
scribed to a good approximation by a harmonic trap potentiabrders of magnitude, values af=0.2 realized in Ref[20]
[10] of vibrational frequencyr. The Hamiltonian for the could be reduced up tg=10 ’. Moreover, in Bd Lamb-
electronic and vibrational degrees of freedom consists of tw®icke parameters ofy=10"*...10 > have been realized
parts describing the free evolutid#y and the interaction of [28], which could also be enlarged in the above described

Hine=—iX(7,Epa+ 7,E,a") A+ H.c. (6)

A. Hamiltonian

the ion with the two lasersi, driving its weak transition, ~ manner. Therefore, the Lamb-Dicke approximation made in
o Eq. (6) is not a serious limitation of the method for funda-
H=Hy+H_, (1) mental applications in the nonlinear domain beyond the

- R R Lamb-Dicke regimg?29].
Ho=Ava'a+ oAyt himAy,, (2 Defining complex-valued, effective Rabi frequencies by
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Q= L(n |E/|+ mp| Ep| &' eoT ™ m/2 (7) IX; @) 200‘, ! e_WH X e ny, (19
r r ’ X = _ | _ ,
2h T 2m Y2t "2
50 = L(erErl_ 7| Ep| )€/ (e0t €02, (8)  With Hy(x) being the Hermite polynomials and the number
2h states|n) being the energy eigenstates of the harmonic trap

. potential. The electronic eigenstates) read as
Eq. (6) can be rewritten as

“ “ ~ “ N A * A _
Fin= 1 ( QA+ Q% Ag) X+ ( 8QA .+ 5Q* AgX - (QAR+O*A)|x) == [0 ), (19
C
1 O*
Here we have introduced the generalized, phase dependent |+)= T(|1>iw|2>). (20
position operator of the center-of-mass motion, 2
Q@:aeicmréw‘eficp_ (100  The unitary time evolution due to the interaction with the

two lasers is now easily calculated to be
In the Schrdinger picture this operator is the well known

phase dependent quadrature operator, Oint(t):f dx{x: @)(x: @[ 19M 4+ y(+ | + @il Xt _y(— .

X,(1)=2e!(#* 0 4 g ie 1), (12) (21)
The phase This time evolution in the interaction picture supplemented
by the free time evolution,
o=(¢5—@0)I2, 1
can be externally controlled by the phase difference of the Uo(t)=Uei()Uyin(1), (22)
two incident laser fields. Since the laser fields can be derived . h
from a single laser by means of acousto-optical modulation\,’v't
this phase difference is highly stable. The sum phases occur- A _ ~ -
Uel(t) =exi —i(w1A11+ waA)t], (23

ring in the effective Rabi frequenci€) and(8) in general
undergo phase diffusion, so that lasers of small line widths .
are needed. By using the above mentioned Raman-excitation U,in(t) =exp(—iva'at), (29
scheme these phase-diffusion effects are also reduced due to
the high level of stability of the phase differences betweerdetermines the whole dynamics, provided the laser intensi-
the Raman beams. ties are adjusted to fulfil conditiof13). The full time evolu-

For our method it is important to eliminate the operatortion operator of the systetd(t) is then given by
X4+ 12 from the interaction Hamiltonia(®). This is done, by . A . .
fulfilling the condition U(t)=Ug(t)Uyin(H)Uin(1). (25)

Epl= 7/ |E/|, (13
nb' b| ml rl B. Electronic dynamics

where 6Q) vanishes and the interaction Hamiltonian is sim- 14 read out the information on the quantum state of mo-

plified to tion in our measurement scheme, the ground-state occupa-
~ ~ «h e tion probabilityo14(t) is observed. To measure this quantity,
Hin=7(Q AL+ Q% Agp)X,, . (14 the two lasers resonant on the sidebands are switched off at
time t and a third laser, exciting a strong dipole transition
from the ground statgl) to a third level3), is used to probe
for resonance fluorescence; see Fig. 1. The probabilities for
etecting resonance fluorescence, recorded as a function of
he interaction time of the two lasers on the weak transition,
give the needed ground-state occupation probabilities
oq1(t). This kind of quantum measurement exhibits a very
" high quantum efficiency, so that efficiency problems, as
known from optical homodyne tomographg4] and from
X0 =) =|x; 0)| +), (15) guantum state measurements of molecular vibra{iagk do
not occur.
HindX; 0; %) = | Qx| x; 0 ), (16 The initial state of the iorp(0) is assumed to be a de-
correlated one of the form
where the statelx; ¢) are the eigenstates of the generalized . ~ ~
position operatof30], 2(0)=p(0)®a(0), (26)

In generalized position representatiffor the phase value
¢), this Hamiltonian corresponds to a classically driven two-
level system with effective Rabi frequen€yx. The depen-
dence of this effective Rabi-frequency on the generalize
position couples in a very simple way the vibrational motion
of the ion with its electronic dynamics.

Due to the simple form of this interaction Hamiltonian
the solution of the eigenvalue problem is given by

X; @) =X|X; @), (17 where the electronic density operaiof0) is given by

Xe
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A. Generalized position representation

"(O)Za,b;,z oar(0)a)(bl, @7 The ground-state occupation probabilitig9) are deter-

mined by the initial, phase dependent spatial distributions of
11(0) being the initial ground-state occupation ang(0) the trapped ion. This allows to reconstruct the quantum me-
being the initial electronic coherence. The quantum mechaniehanical state of the trapped ion in a generalized position
cal state of the vibrational motion of the trapped ion is de-representation. To reconstruct the spatial distribution
scribed by the initial density operatp(0). With the help of  p(x;¢) from the measured ground-state occupation prob-
Egs.(21)—(25), the ground-state occupation probability after abilities oq;,(7,¢) we can separate the contributions

an interaction time reads as ps(X; @) andp,(X;¢) in Eq. (29 by two independent mea-
R surements ofoq1(7;¢), with incoherently and coherently
a(t)=Tr[|1){1]o(1)] prepared initial electronic states. The latter can be achieved
- A by prepumping the ion with a laser tuned to the pure elec-
=T 1)(1|Uin(D e (0)U (D], (28)  tronic resonance of the weak transition.

An incoherent measuremewtth an initial preparation of

where the symbol Tr denotes the trace over both the vibra.[-he ion in its electronic ground-state

tional and the electronic degrees of freedom. After some

straightforward calculation one finally obtains o11(0)=1, (34)
1 ; 1 . . e
o11(7;0)— §=J dx é”{ 011(0)— > Ps(X; @) yields the symmetrized spatial distributig(x; ¢),
i —i(eptop)/2 . (inc) 11 i
+iRd o10)e D ]palXi@) [, oi1%(me)—5=5| dx & pe(X; ). (35)
(29)
, i i i Performing an additionatoherent measuremenfor ex-
where is the dimensionless time, ample, with the electronic preparati¢®1]
7=2|Q|t. (30
1 ¢ept @
Note thato;; depends on the chosen phase vaju@harac- 011(0)=[o1(0)[= 7 adop(0)]=—F—=m,
terizing the representation ugeds a parameter. For conve- (36)

nience we have introduced the symmetrized and antisymme-

trized spatial probability densities, . . . e
P P y allows one to derive the antisymmetrized spatial distribution

1 Pa(X;¢),
Ps(Xi @)= 5[P(X ) +p(=X @)1, (31
1 i .
1 o (re)-5==3 f dx€¥py(xig).  (37)
Pa(X;¢)=5[P(X;¢) —p(=X;¢)], (32
with Combining both results we can relate the characteristic func-
tion W (7;¢) of the generalized spatial distribution,
P(X; @) =(X;¢[p(0)[X; ), (33)
being the probability to find the ion at the generalized posi- \I’(T;(,D):f dx €¥7p(x; @), (39

tion x for the chosen phase valge While the first integrand

in Eg. (29 is insensitive to coherences of the initial elec-

tronic state of the ion, the second integrand in &§) gives  directly to the measured fluorescence signal, via
contributions solely due to a coherent electronic preparation

of the ion.
(coh

_ 1
V(70)=2011%(mi0) = 5| +2i| o1 (T @)~ 5|
lll. QUANTUM STATE RECONSTRUCTION (39

In the preceding section we have shown that the ground-
state occupation probabilities;1(7;¢) of a bichromatically  This function, known for an interval of the phageof size
driven trapped ion contains the full information on the prob-, provides the full information on the quantum mechanical
ability distributionp(x; ¢) for the generalized positionata  state of the ionic center-of-mass motion.
given phasep. This information is recorded, with a very Applying results for the reconstruction of the density ma-
high quantum efficiency, by probing a strong electronic tran-rix of a radiation mode in a field-strength bak32], we may
sition of the ion for resonance fluorescence. In this sectiomelate the density matrix in generalized position representa-
these results will be used to reconstruct the motional densittion to a twofold Fourier transform of the spatial distribution
matrix of the trapped ion. as follows:
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(x+0x;¢|p(0)[x— X; ) (-) 1
1 o1, (10)— 2
:Ef dsefist’ dx/eix’\32+§x2p Xr;¢+g ' .
=—j Rq—o_lz(o)e—l(%+¢r)/2]f dx éXTpa(X;¢)' (48)
—arg(is—éx)). (40) . i . o .
provided the initial electronic preparation is appropriately

) ] o ] ) chosen so that the prefactors on the right-hand sides of Egs.
Since the first Fourier integral with respect®6in Eq.(40)  (47) and(48) do not vanish.

can be identified as the characteristic functiBfr; ¢), Following Eqs(35), (37), (47), and(48), the relations be-
tween the two kinds of measuring the ground-state occupa-

W[ 2+ 6x2: o+ E—arg(is— %) tion probabilities read as
ETE ™ o)~ 5= - 0(11)(7'?‘#’)_%}
=f dx' X VX x o+ — —argis—ox) |, (41 2 2
2 2| 015(0)— 2
the density matrix in generalized position representation can (49
be obtained by a simple Fourier transform of the measured
characteristic function given in E@39), (cohy . \_ E
0-]_1 (T7(P) 2
(x+8x; ¢[p(0)|x— 6%; ¢) L L
_ (=)
o _ = — oy (1,0)— —}, (50)
_ Zi + ds e*'XS\[/[T(S, 5): (5, 5%)]. (42) 2Rd o1,(0)e I(¢b+¢r)/2] 11 2
M) -
so that in Eq(39) and in the following,o{7°°( 7; ¢) could
where the parameterized time and phase are be replaced by{7)(7;¢).
7(8,0%) = V™ + X7, (43 B. Number-state representation
T . An alternative approach to reconstruct the density matrix
¢(s,0X) = ¢+ 7 —arglis— ox). (44) s the use of the number-state basis. In this representation, a

direct sampling procedure of the density matrix of light from

Whereas in optical homodyne tomographyx; ) corre- o_ptical homodyne tomography has been developed in a se-
sponds to the measured quantf4], in our scheme we "€S of paper$33]. In our scheme the outcome of each prob-
record the first Fourier transform in E@40), that is, the N9 for resonance fluorescence can be also directly mapped
characteristic function? (7:¢). This simplifies the recon- [Nt0 the density matrix. For this purpose one may apply Eq.
struction procedure of the density matrix to only a single(18) to get the following expressions for the symmetrized
Fourier transform of the measured data. and antisymmetrized spatial probability densities

Another possibility to construct the characteristic function
W (7;¢) out of measured data is to use only one kind of P (X'cp)ze*XZ’Z .
electronic preparation and to measure with this initial prepa- ° nk pntk+ 3 [nl(n+ 2K)!
ration at the two different phases. To see this one can calcu-

e i2ke

late the following observables: X X
XH,| —=|H — , 51
o 1 n \/E n+2k \/E Pn,n+2k ( )
0'11(T§€D):5[011(7;<P+7T)+0'11(T;§0)], (45
e i(2k+1)e

2
X —g X 2
Pa(xi) nEK 2N kL [l (n+ 2k+ 1)!

1
oii (rio)=slon(re+m—ou(rie)l, (46

which are derived from the ground-state occupation prob- XHn Pon+acr1 (52)

x|, X
ict patl V2] TR 2
abilities measured at the two phagesnd ¢+ 7, with iden-
tical values ofo15(0) and R@o;(0)e™' (" ¢))] for both  \where we have used the motional density matrix in number-

measurements. - _ state representation,
These measured quantities can be related, following Eq.
(29), to the symmetrized and antisymmetrized spatial prob- Pmn={m|p(0)|n). (53

ability densities by

Inserting Eqs.(51) and (52) in Egs. (35 and (37) we may
relate the measurable ground-state occupation probabilities
to the density matrix in number-state representation,

1
ofi(rie) = 5=

1 4
011(0)—5“ dx €*py(X;¢), (47)
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i 1 2 n! 472
(o). )y == _g 712 k—1 )\ 7202
o1 (rie)~ 5 nE‘Q n+2|(),( 2) S5 (n=_7 " 62)
2k
x o i2ke T L2 2) In view of the fact that one measures directly the character-
Prn+2k istic function ¥(7;¢) and not the spatial distribution

p(Xx; @), the sampling functiong58) are much simpler than
(54 in the case of optical homodyne tomograpf88,35. By

multiplying the sampling functione’**S{¥(7) with the out-
( 2)k come of each probing for resonance fluoresceonoe= off)

at various timesr and phaseg and mapping these contri-

k41 butions into the density matrix elemenig ., the recon-
“i2k+1)e| T (2k+1)( 2 struction has been done after the processing of a sufficient
xXe = Ly (1)
large number of events.
If one is only interested in the motional number statistics,

XPnn+2k+1s (55  P,=pnn, Eq.(56) is reduced to

|
(coh) T a2 n
o1 (7T¢) Z (n+2k+1)!

with L™ (x) being the Laguerre polynomials. By Fourier in- - 1

n . . P =— d d+2e r/2L (7_2) 0_(lnc)(T. )__
tegrating over the phasge and using the orthogonality rela- "o ¢ 0 n 11 P 5|
tion of the Laguerre polynomials4] one finally obtains (63)

B fﬁd eik‘wadTS(k)(T) This result is valid for any quantum state of the vibrational
Pon+k ¢ n motion of the trapped ion. It can be further simplified for
completely incoherent superpositions of number states, that
is, for situations where the full information on the motional
quantum state is contained in its number statisgs

1
(r(l'fc(TNP)_E for k=0, k even

X (56)

1 o]
(coh) _
oy (1,9)— = for k=0, k odd. A

" 2 p(0)= 2 Pyln)(n. (64)
The elements of the density matrix far<O are obtained h )
from the symmetry relation In such casew{<°"(7; ) —1/2 vanishes and{1%(r; ) is

phase mdependent This situation is expected to appear in
Prikn=Prnik- (57)  standard laser-cooling experiments. From EG8) and(64)

we find
The sampling functions{(7) are explicitly given by
Pn=2f dr2e” "2 (1)
0

. 1
oﬁ%ﬂ—E] (65

oni S\ kL ,
‘S(k)(T)_ (n+k)' - L(k)(TZ)e*'T 12
V2 In the particular case where the state is a thermal one, the
(—2)k2 for k=0. k even statistics reads as
[(—2)“”’2 for k=0, k odd. 8 P,=(1—e F)e A" (66)

These sampling functions can be easily calculated using theith 8=#v/kgT, T being the temperature of the motional

recursion relation with respect tg degree of freedom arig; being the Boltzmann constant. Our
detection scheme renders is possible to rigorously check
Vn(n+k)SP(7)=(2n+k—2-1)8¥ (7 whether the motional state fulfills the conditiof®4) and
o (66). If it does, the temperatur€ can be easily determined.
—V(n=1)(n+k=1)S 5(7), To show this we insert the thermal statisti6$) in Eq. (54)
(590  and obtain
. . . 2
and a recursion relation with respectkdk=0), (ingy, N T _ 1 B T
o (1)-5=5€ 20-e | (67)
2
()=~ K= D) ——=S (1), (600 From this we readily obtain the relation between the expo-

nential decay timer., defining the exponential decay of the

(inc)
with the special values fan=0 andk=0,1 being quantity o3, *(7) —1/2, and the temperatue,

fiv 2+T§ -1

47' 2 -
SBO)(T):?G 7/2, (61) T kB In 5_ >

Te

(68)
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The temperaturd@ of the ionic center-of-mass motion is re-
lated to the mean thermal number of vibrational quanta, ps(x)

Ny, as follows:
B hv 1 -
ket

In terms of the decay time, it is given by

0.4F"

1
. (69) (a)

Ny

)
2— 175

Nh=—>_2"- (70)
e

IV. FLUORESCENCE SIGNAL
FOR PARTICULAR QUANTUM STATES

Let us now consider some examples for the resonance
fluorescence signal which can be recorded in experiments,
reflecting the different initial quantum states of the center-of-
mass motion of the ion. In Sec. IV A we will consider some
examples for the situation of our measurement scheme when
the Hamiltonian(14) applies. The case when the matching of
the laser fields according to E(L.3) is imperfect, so that the
full Hamiltonian (9) must be used, is studied in Sec. IV B.

A. Perfect scheme

First of all let us deal with the dynamics of the fluores-
cence signal for thermal states. In Figa2the symmetrized
spatial distributions are shown for the vibrational ground
state and for thermal states with,=1 andny,=4. Since the

dynamics of the electronic ground-state occupation probabil- T
ity o11(7;¢) is related by Fourier transform to the general-
ized position distributiorp(x; ¢), the widths of these distri- FIG. 2. Symmetrized spatial distributior(§) and incoherent

butions determine the decay times of the measured signaground-state occupation probabiliti¢h) for thermal states with

see Fig. ). Therefore the decays of the resonance fluoresPin=1 (solid), ny=4 (dashegl and for the vibrational ground state

cence signal become the faster the larger the temperatur&oned_ The temperature of the yibrational motion determines the

are, as described by E¢68). Due to the larger widths of decay time of the fluorescence signal.

their spatial distributions, for any thermal state the fluores-

cence signals decay faster than for the vibrational groun@dpproximation an ion in the vibrational ground stffe].

state. Figure 4 shows the fluorescence signal for a coherent vibra-
For coherent states the widths of the spatial distributiongional state in dependence on the phasdt the phase value

are equal to that of the vibrational ground state; see K&. 3 - /2 the ground-state decay can be seen. For this phase

In these particular cases the decay times are always the sagg, spatial distribution corresponds to that of the ground

and the fluorescence signals oscillate with frequencies detefi,ie since the coherent state is chosen to have a real-valued
mined by the amplitudes of the coherent states; see Hiy. 3 amplitude

The decay for the vibrational ground state given in Fif) 3 Examples for nonclassical quantum states with structures

represents an envelope, containing all states for which thﬁarrower than those of the ground-state are considered in

widths of their spatial structures are equal or larger than tha]I:i <. 5 and 6. where the fluorescence sianal shows a dvnanm-
of the ground state. Since nonclassical states usually exhibjt 3> ’ 9 y

structures in their distributiom(x;¢) which are narrower ics beyond the ground-state envelope. This is illustrated in
than the spatial ground-state distribution, the vibrationaf'9: © for a number state and for an even coherent state
ground-state decay may be regarded as a boundary betwegschralinger-cat state Figure 6 shows the phase-dependent
classical and nonclassical behavior of the motional quanturfficeherent ground-state occupation probability for even and
states of the trapped ion. Any quantum state which exhibit§dd coherent states of atomic motifit8,21]. One observes

in our detection scheme a fluorescence signal with a dynanfignatures for a nonclassical behavior around the phase value
ics beyond this boundary has some spatial structures nag= /2, where even and odd coherent states can be easily
rower than that of the vibrational ground state, and may bélistinguished by their long-time dynamics. These long-time
considered as a nonclassical motional quantum state of thgfructures ine%)(7;¢) are a direct reflection of the quan-
ion. To determine this boundary between classical and quarium interference fringes of the statespix;¢), which ex-

tum mechanics one has to measure the fluorescence signiidit structures narrower than the ground-state distribution.
of a laser-cooled ion, which may represent to a very goodn our scheme these effects can be easily recorded without
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FIG. 3. Symmetrized spatial distributio® and incoherent
ground-state occupation probabiliti¢s) for coherent states with FIG. 4. Phase-dependent incoheref@ and coherent(b)
amplitudesa=1 (solid), «=2 (dashed, and for the vibrational ground-state occupation probabilities for a coherent state of ampli-
ground state corresponding te=0 (dotted, considered for the tudea=2.
phasee=0. Due to the same spatial widths the decay times are
equal. probabilities depending on the relative strength of the mis-
matchsQ/Q and on the quantum state under study.
requirements of high resolution: The sharper the fringes are, The temporal behavior of the fluorescence signal for an
the slower is the dynamics. ion prepared in the vibrational ground state depends crucially
For the quantum states under consideration, the cohepn the intensity mismatch; see Fig. 7. In an experiment this

ently prepared measurements yield for all phases and timesgansitivity enables one to accurately calibrate the two laser
probability of 1/2 to observe a fluorescence signal. This iSptensities to fulfill condition(13) by measuring the reso-
due to the fact that the number states and the even and o

coherent states have a symmetric Spat|a_l dIStrIletlorfum state. By laser cooling the ion, one can presently reach
(x&—x). In other words, their density matrix elements

; dck. | | the det the vibrational ground stat) with a probability of about
Pn.n+k Aré Z€ro for odw. In more general cases, e deter- gg,, [12]. An ion prepared in this manner can be used as a
mination of the antisymmetric distributions must be per- . )
X . reference state and the dynamics of the corresponding fluo-
formed to get the full information on the quantum state to be . .
rescence signal can be compared with the expected result for
measured. . )
6Q=0. Varying the ratio of the laser strengths to get an
agreement of the measured values with the calculated ones
for a rather long time scale, one can precisely calibrate the
An important assumption of our measurement principle isneasurement apparatus to fulfill EG3). In Fig. 8 the modi-
that the intensities of the lasers fulfill conditi¢h3). If this is fications of the fluorescence signal due to intensity mismatch
not the case one gets a mismatch leading to nonvanishingre shown for an even coherent state. Obviously, the magni-
values of Q) in the Hamiltonian(9). The additional term in  tude of the mismatch effects is seen to depend on the quan-
the Hamiltonian includes the momentumlike operatortum state to be measured. It appears that a relative accuracy
>”<¢+7T,2 in the dynamics of the system. Due to this contribu-of matching the intensities of 16 already gives suitable
tion one gets a modification of the measured ground-stateesults. Note that the fields can be derived by acousto-optical

nce fluorescence probabilities of a known motional quan-

B. Mismatch of the laser intensities
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FIG. 5. Symmetrized spatial distributiors) and incoherent FIG. 6. Phase-dependent incoherent ground-state occupation
ground-state occupation probabilitiés) for nonclassical states in Probabilities for everfa) and odd(b) coherent states with=2. A
comparison with the vibrational ground stdtiotted: even coher- signature for the nonclassical properties of these states are the long-
ent statgSchralinger-cat statewith =2 (solid) and number state time dynamics around the phase-valge /2.
with n=4 (dashedl The nonclassical properties are seen in the
long-time dynamics of the fluorescence signal beyond that of thavith a,b=1,2. For equal electronic states=b) this opera-

vibrational ground-state envelope. tor reads as
modulation from a single laser, which allows a high preci- ~ - . (§<‘Pt)“ - -
sion of matching. <a|Uint(t)|a>:nZO (=)' ——(al(QA+ Q" Ax)"|a)
1 . .
V. BACK ACTION OF THE MEASUREMENT _ E(e"xv7’2+ &%) 72

In the previous sections we have shown that the proposed
measurement scheme is able to obtain the complete informa-
tion on the quantum mechanical state of the trapped ion. Th
measurement allows one to determine an initially prepare
ionic vibrational quantum state, which evolves due to the
intergction with the two lasers into a new quantum s_tate. By <1|Oim(t)|2>:&(e_ing_ ei)?(pf/Z)’ (73)
probing for resonance fluorescence at tintkis state will be 2|1Q|
further modified. To see this back action of the measurement,
let us consider the electronic matrix elemeta$U;,(t)|b) - Q* e s
of the time evolution operatofinteraction pant which are <2|Uim(t)|1>=2|Q| (e XeT—ge™), (74
still operators in the motional degree of freedom. Based on
Eq. (14) it reads as

here 7 is given in Eq.(30). For different electronic levels
a#b) one gets in the same manner

Since the coherent displacement operator of the vibrational
motion is defined as

(alUin(t)|b)=(alex — i (QA+ O* Ay t]|b), o
(71 D(a)=expad'—a*a), (75)
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FIG. 7. Deviations from the perfect dynami¢solid) due to FIG. 8. Deviations from the perfect dynami¢solid) due to

laser intensity mismatch, for the ion being prepared in the vibrajaser intensity mismatch for a nonclassical even coherent state
tional ground state. Mismatch parametefsQ|/|Q)|=+0.25%  (4=2). Mismatch parametergsQ|/|Q|=+0.1% (dashedl and

(dashediand|5Q/[Q|= 1% (dotted. |5Q|/|Q| = +0.5% (dotted, for the phasep= /2.
the exponential operators occurring in EG&)—(74) can be  (81) can be simplified by using the free time evolution of the
rewritten as vibration (24), so that the conditioned density operator reads
s ~ . as
e*e™2=D(ire '%/2). (76)

©(t)=U,in()(c| Ui p(0)3(0) U (1) [) U (1)
Therefore the operatof2)—(74) can be expressed as super- i O(C|Uin(V)p m(DIOU o (82)

positions of coherent displacements,
With the initial electronic preparatio(27), Eq. (82) can be

W0mDI1)=(210n(]2) = 5 (D a(re)] related (@ the operaton =T,

+Bla(re)]) - Ft= 3 oa(0)U upt){clUin(t)]a)a(0)
- Q : ><(b|U,m(t)|c>U vib()- (83
(1/Uim(0]2) =5q7{D [a(r ¢)]=Dla(rie) I} )
(79) By omitting the arguments dD[ «(7;¢)], one obtains for
the conditioned motional quantum states the results

. Q* . .
<2|Uim(t)|1>=m{DT[a(T;¢)]—D[a(T;qo)]}, p ()= Up(t) 1%65(0)6@1?71)6*,3(0)6
(79

. . L wW—iu - w+
where the coherent displacement amplitude is given by — Dp(0 )D—

- D'5(0)D*|Ufiy(t),
a(r,o)=ire 1¢/2. (80 (84)

The full time evolution(25) determines the density opera- and
tor after an interaction time, where the ion is probed for
resonance fluorescence. The probing for resonance fluores-
cence can be described by a projection on the electronic state
|1) or|2), depending on the outcome of the prob[i3§,37.
Therefore the resulting motional density operator is condi-
tioned on the outcome of the probing and reads as

~2) ~ 1+v ~ . o4 l—vATA “
p () =Vyin(t) —3—Dp(0)D"+——D p(0)D

w
+

u -~ ~ WH+iu
BH(0)D+ = DTH(0)D|U(h),

—(c|Ug(t) Ui 2(0) OF () 0D [c),  (81) (85)

with the coefficientsv, u, andv defined by the initial elec-
with c=1 if one detects resonance fluorescence@n@ if  tronic preparation,
no fluorescence signal can be detected. Note that in the case
of c=1 the motional state is disturbed by the light scattering, W= 05,5(0)—014(0), (86)
for c=2 this effect is absent since no resonance fluorescence _
occurs. Due to the projection on the electronic levels, Eq. u=2Rd o,,(0)e ' (¢oTer)/2] (87)
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v=2Im[o,(0)e " (eoTer)2], (89

From Egs.(84) and(85) it can be seen that if the probing for
resonance fluorescence is not performed, the interference

terms of the two displaced componen®;p(0)D' and

If)f)(O)f), vanish and the resulting state is a statistical mix-
ture of the two components. This can be shown by taking the
electronic trace of the density operator,

p()=Tre)]=pM(t)+p(t)

+v

“ 1 ~ ~ L 1-v ~ Al
=Uyip(t) Dp(0)D +—D p(0)D U p(t).

(89

The back action of the measurement is rather simple when .
the ion is initially prepared in its electronic ground state E'f gd Qhuantutr:l_ SLl'perpos'tt'O;f:Oi 4tw:|ththerr;1wt1:1 s.ta.tfsl of
011(0)=1 (w=—1,u=v=0). The conditioned density op- M= and conerent displacementsr = 2. ough the Initia
. state is completely incoherent, the quantum superposition of the
erators after the probing for resonance fluorescence follow; S : .
from Egs.(84) and (85) dlsplgced colmponenFs clearly exhibits |nterf§rences in the Wigner
: ’ function, which are signatures of a nonclassical behavior.

R p'+D]. [D™+D]".. o . . .
pP(t)=U, (1) > p(0) 5 Ulp(t), (90 with its pronounced interference fringes betw_een the dis-
placed number states. To produce states of this type, recent
x 5r_pTt methods of preparing motional number stgt28] could be
~@ty=U.. il - ot readily combined with the measurement scheme under study.
PO =Uyip(t) 2 p(0) 2 Usin(t). (91) That is, besides the feasibility of measuring arbitrary quan-

tum states of motion, our scheme is suited to create interest-
By appropriately choosing the interaction time quantum  jng quantum superpositions of the states to be measured.
superpositions of the initial motional quantum state with it- Supsequently, the created states could be measured by the
self can be created. For example, if the ion is |n|t|a”y in dsame technique_ C|ear|y, this procedure could be repeated
vibrational coherent stater), the two conditioned quantum several times in order to create a variety of complex quantum

states read as superposition states.
1 ~ 1
[ P(O)=Uuin(t) 5[+ a(7;0)) +|a—a(r¢))], VI. SUMMARY AND CONCLUSIONS
(92 In conclusion, we have shown that the full information on
L the quantum mechanical state of a trapped ion can be ob-
@\ — 11 (1) = NN X tained from the dynamics of the ground-state occupation
[2(0)=Uin(t) 2[|a+a(7"’0)> |a—a(m )] probability of a long-living electronic transition. To achieve

(93)  this, the transition is irradiated by two lasers, tuned to the

If =0, i.e., if the ion is initially laser-cooled to its vibra-

tional ground state, then the resulting states are the even and

odd coherent statg¢48]. Note that both even and odd coher- W(a)
ent quantum superpositions can be created without disturbing
effects due to light scattering by starting with the electronic
states|2) and|1), respectively, and observing no resonance  ¢.2s
fluorescence signal. That is, to avoid disturbations due to

light scattering it may be advantageous to change the elec- 0
tronic initial preparation by applying & pulse on the elec-
tronic resonance.

A more complex situation for the preparation of quantum  -o0.s
superposition states is shown in Fig. 9. The ion is initially
prepared in a thermal state of motion of a mean thermal
excitation n,=1. The superposition of this initial, com-
pletely incoherent state with itself gives rise to quantum in-
terferences, which are clearly seen in the Wigner function. In

Fig. 10 we show the Wigner function for a superposition of  F|G. 10. Quantum superposition of two number staféswith
displaced number states. It displays the features of thgoherent displacements af= 4. The quantum superposition of
Wigner function of each displaced number state, attaininghe displaced components clearly exhibits interferences in the
already negative values, and of the quantum superpositiowigner function, which are signatures of a nonclassical behavior.

-0.25
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well resolved upper and lower vibrational sidebands. Theeffects of imperfect matching of the intensities of the lasers
intensities of the two laser fields are matched in such a marirradiating the weak transition. These effects modify the
ner that the couplings of both transitiofgescribed by the long-time dynamics and can be used to calibrate the match-
vibronic Rabi frequencigsare equal. In this case, the inter- ing of the laser intensities, by using a laser-cooled ion and
action Hamiltonian describing the coupling between theadjusting the intensities in order to suppress the long-time
moving ion and the two lasers corresponds to the couplinglynamics of the fluorescence signal.
between a two-level system and a classical light field, mul- Moreover, we have studied the back action of the mea-
tiplied by the phase-dependent, generalized position operatsurement procedure on the motional quantum state. The sim-
of the ionic center-of-mass motion. This interaction trans-plicity of the interaction Hamiltonian allows one to exactly
forms the full information on the motional quantum state intosolve this problem. It turns out that the interaction dynamics
the occupation dynamics of the electronic ground stateon the weak transition effectively leads to a simultaneous
which directly yields the characteristic function of the phase-displacement of the state to be measured into two opposite
dependent, generalized spatial distribution. directions in phase space. The probing for resonance fluores-
The occupation of the electronic ground state is readilycence disentangles the vibronic quantum state, thereby re-
observed by switching on a laser, driving a second, stronglucing the motional quantum state to a quantum superposi-
transition of the ion. Only when the ion is in its electronic tion of two displaced replica of the motional state to be
ground state does this lead to the onset of resonance fluorasieasured. Thus, our measurement scheme allows one to cre-
cence. The ground-state occupations, measured as a functiate Schrdinger-cat-like quantum superpositions of the initial
of the interaction time of the two lasers driving the weakstate, displaced in two opposite directions in phase space.
transition, allow to determine the desired information on theThereby, interesting quantum interferences can be produced
motional quantum state. Explicit results have been derivedrom completely incoherent states. For example, quantum
relating the time-dependent fluorescence signals to the desuperpositions of thermal states and of number states are
sity matrices in both a generalized position representatiomonsidered. Our scheme allows one to produce and detect
and a number-state representation. Since the test for fluoresuch interesting quantum states by the same technique. Re-
cence on a strong transition is highly efficient, the method igpeating this procedure allows one to create a variety of mo-
almost free of the limitations due to nonideal detectiontional quantum states exhibiting rich structures in phase
known from other methods of measuring quantum states. space, connected with strong quantum interference effects.
Our method allows one to record a well defined, ultimate Note added in proofAfter submission of this paper we
classical noise level for the motion of the ion. A referencebecame aware of some other contributions concerning the
measurement of the fluorescence signal of an ion lasemeasurement of motional quantum states of trapped ions; cf.
cooled to its vibrational ground state may serve as a bound=. D'Helon and G. J. Milburn, Phys. Rev. 34, R25(1996);
ary between classical and nonclassical behavior of the quar®. J. Bardroff, C. Leichtle, G. Schrade, and W. P. Schleich,
tum state under study. Typical nonclassical quantum state®hys. Rev. Lett.77, 2198 (1996; D. Leibfried, D. M.
such as number states or quantum superposition states, shdteekhof, B. E. King, C. Monroe, W. M. Itano, and D. J.
a fluorescence dynamics on a time scale that is longer thawineland (unpublished
the corresponding dynamics of the laser-cooled ion. That is,
nonclassical effects are easily measured as a slowly decaying
long-time dynamics, instead of giving rise to sharp structures
in measured distributions that are easily smoothed out. This The authors gratefully acknowledge valuable discussions
is an advantage due to the fact that the method allows twith C. Monroe, P.E. Toschek, and D.J. Wineland. This re-
directly observe the characteristic functions rather than theearch was supported by the Deutsche Forschungsgemein-
corresponding spatial distributions. We have considered thechaft.
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