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We develop a method for reconstructing the quantum mechanical state of a trapped ion by bichromatically
irradiating it on a weak electronic transition and subsequently probing a strong electronic transition for reso-
nance fluorescence. Based on this recently proposed scheme@S. Wallentowitz and W. Vogel, Phys. Rev. Lett.
75, 2932~1995!# the density matrix of the vibrational motion can be readily obtained either in a generalized
position representation or in the number-state representation. The method allows to uniquely define an ultimate
classical noise level by a reference measurement with an ion cooled to its vibrational ground-state. Disturba-
tions of the measurement and their suppression are considered. Moreover, we study the effect of the back
action of the measurement principle on the motional quantum state. It consists in the splitting of the state to be
measured into two substates, giving rise to quantum interference effects.@S1050-2947~96!10710-1#

PACS number~s!: 32.80.Pj, 42.50.Vk, 03.65.Bz

I. INTRODUCTION

The experimental realization and observation of a single
trapped ion@1# opened new possibilities not only for spec-
troscopy but also for fundamental tests of quantum physics.
In the latter context, quantum jumps have been visualized by
recording the intermittent resonance fluorescence from a
trapped ion@2–4#. Photon antibunching, for the first time
observed in resonance fluorescence from an atomic beam@5#,
has later been demonstrated with a single trapped ion@6,7#.
Moreover, a trapped ion in combination with an appropriate
observation technique should allow to detect squeezing in
resonance fluorescence@8#, an effect that was predicted sev-
eral years ago@9# but has not been observed yet.

A trapped ion is not only a well defined light source for
studying quantum effects of radiation, it also represents an
almost ideal object for fundamental experiments in quantum
mechanics. The trap potential may be regarded, to a good
approximation, as a quantum mechanical harmonic oscillator
@10#. Laser sideband cooling allows the preparation of the
center-of-mass motion of the ion in the vibrational ground
state of the trap potential@11,12#. This is not only of interest
for high-resolution spectroscopy, it may also serve as the
starting point for the preparation of well defined quantum
mechanical states. There exist several proposals for prepar-
ing nonclassical quantum states of the ionic center-of-mass
motion @13–19#. Recently, number states, squeezed states
@20#, and Schro¨dinger-cat-like states of motion@21# have
been realized.

Beside the feasibility of studying quantum effects of both
the light and the mechanical motion, the trapped ion can be
used for dynamical studies of elementary quantum interac-
tions. A vibronic Jaynes-Cummings coupling can be ob-
tained by appropriately irradiating a long-living~e.g., quad-
rupole! electronic transition of an ion localized within the
Lamb-Dicke limit @22#. Beyond the Lamb-Dicke regime,
where the spatial extension of the wave function of the vi-
brational ground state is no longer small compared to the
wavelength of the irradiating laser, there even may occur a
nonlinear multiquantum Jaynes-Cummings dynamics@23#.

This prediction has been confirmed in recent experiments
@20#. Such a strongly nonlinear dynamics allows to experi-
mentally realize interesting features of quantum mechanical
couplings.

For studying such fundamental effects of quantum me-
chanics, one important problem must be solved: An appro-
priate method for measuring the full quantum state of the
center-of-mass motion of a trapped ion is desired. For a ra-
diation mode the quantum state has been recorded by optical
homodyne tomography@24#. Moreover, the quantum me-
chanical state of a molecular vibration has been derived from
nonstationary spectra of the resonance fluorescence@25#. The
latter method, however, can hardly be applied for a trapped
ion since its vibronic coupling differs significantly from that
of a molecule.

In the present paper we give a detailed study of the
method of reconstruction of the motional quantum state pro-
posed by us in Ref.@26#. Besides the reconstruction of the
density matrix of the vibrational motion in a generalized po-
sition representation, we derive results for the direct sam-
pling of the density matrix in the number-state representation
of the harmonic oscillator. Perturbing effects due to imper-
fections in the detection scheme are studied. Moreover, we
analyze the effect of the back action of our measurement
principle on the motional quantum state to be measured. This
yields an interesting way to prepare nonclassical motional
quantum states by the measurement principle. Quantum
states obtained in this manner can be measured subsequently
by the same technique.

The paper is organized as follows. In Sec. II we describe
the measurement principle and derive the electronic dynam-
ics of the trapped ion. The quantum state reconstruction is
studied in Sec. III, where the motional density matrix is dis-
cussed in two representations, the generalized position rep-
resentation and the number-state representation. Examples
for the measured quantities are given in Sec. IV, where we
consider also the disturbing effects due to imperfections of
the measurement scheme. The back action of the measure-
ment and its applications are studied in Sec. V. A summary
and some conclusions are given in Sec. VI.
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II. MEASUREMENT PRINCIPLE

In the following we will show that the quantum mechani-
cal state of a trapped ion can be reconstructed from its elec-
tronic dynamics, provided the ion is appropriately irradiated
by two laser fields@26#. For this purpose a weak~e.g., quad-
rupole! electronic transition of the ion is driven by two laser
fields, resonant with the well resolved upper and lower vi-
brational sidebands. For appropriately chosen laser intensi-
ties this type of laser excitation results in an interaction
Hamiltonian being a product of the electronic transition op-
erators and a generalized position operatorx̂w , which de-
pends on the difference phasew of the two lasers. By mea-
suring the Rabi oscillations of the electronic levels via
probing for resonance fluorescence of a second strong tran-
sition, one therefore gets information on the generalized spa-
tial distribution for one chosen phasew. Doing this for all
phases, the complete information on the quantum mechanical
state of the trapped ion is obtained.

A. Hamiltonian

The excitation scheme of the trapped ion is shown in Fig.
1. The weak transitionu1&⇔u2& is irradiated on its well re-
solved upper and lower first vibrational sidebands by two
laser fields of frequenciesvb5v211n andv r5v212n, re-
spectively, wherev215v22v1 is the electronic resonance
frequency. The trap in which the ion is bound can be de-
scribed to a good approximation by a harmonic trap potential
@10# of vibrational frequencyn. The Hamiltonian for the
electronic and vibrational degrees of freedom consists of two
parts describing the free evolutionĤ0 and the interaction of
the ion with the two lasersĤL driving its weak transition,

Ĥ5Ĥ01ĤL , ~1!

Ĥ05\nâ†â1\v1Â111\v2Â22, ~2!

ĤL5lE~2 !~ x̂,t !Â121H.c. ~3!

Here â and â† are the annihilation and creation operators of
vibrational quanta, respectively, andÂab5ua&^bu is the elec-
tronic flip operator, for the weak transitionua&⇔ub&
(a,b51,2). The parameterl determines the coupling
strength of the transition with the laser fields, which are reso-
nant to the upper and lower vibrational sidebands of the tran-
sition u1&⇔u2&,

E~2 !~ x̂,t !5Ebe
i [ ~v211n!t2kbx̂]1Ere

i [ ~v212n!t2kr x̂] . ~4!

Eb andEr are the complex amplitudes of the laser fields with
phaseswb andw r , respectively. The wave vectors of the two
lasers,kb andkr , determine the corresponding Lamb-Dicke
parameters of the vibrational sideband transitions,

kbx̂5hb~ â
†1â!, kr x̂5h r~ â

†1â!, ~5!

which characterize the localization of the trapped ion with
respect to the corresponding laser wavelengths. Note that
ĤL already contains the optical rotating wave approximation,
neglecting all terms oscillating in time with the optical fre-
quencyv21. Expanding this Hamiltonian up to first order in
the Lamb-Dicke parametershb andh r , which are assumed
to be sufficiently small, in the vibrational rotating wave ap-
proximation ~vibrational frequencyn) the resulting interac-
tion Hamiltonian in the interaction picture reads as

Ĥ int52 il~hbEbâ1h rEr â
†!Â121H.c. ~6!

The application of the vibrational rotating wave approxima-
tion requires well resolved sidebands of the weak transition.

It is important that the Lamb-Dicke approximation used
here is not a serious restriction. It does not exclude the study
of motional quantum states containing signatures of nonlin-
earities in the vibronic coupling beyond the Lamb-Dicke re-
gime @23#. One may get the same interaction Hamiltonian by
using Raman-like excitation of the two sidebands
@13,16,20,27#. In this case the effective Lamb-Dicke param-
eters depend on the difference of the wave vectors of the
lasers driving each Raman transition. This allows to alter the
values of the effective Lamb-Dicke parameters in a wide
range, by changing the propagation geometry of the lasers.
Therefore, schemes for the preparation of nonclassical quan-
tum mechanical states beyond the Lamb-Dicke regime@18–
21# can be used for quantum state preparation using Raman
excitations with counterpropagating laser beams. The mea-
surement of these states can be done in the Lamb-Dicke re-
gime by using copropagating beams or an intermediate
propagation configuration. In this manner, in Be1 experi-
ments the Lamb-Dicke parameter can be changed by 6–7
orders of magnitude, values ofh50.2 realized in Ref.@20#
could be reduced up toh51027. Moreover, in Ba1 Lamb-
Dicke parameters ofh51024 . . . 1025 have been realized
@28#, which could also be enlarged in the above described
manner. Therefore, the Lamb-Dicke approximation made in
Eq. ~6! is not a serious limitation of the method for funda-
mental applications in the nonlinear domain beyond the
Lamb-Dicke regime@29#.

Defining complex-valued, effective Rabi frequencies by

FIG. 1. Scheme of the trapped ion with a weak electronic tran-
sition u1&⇔u2& and a strong electronic transitionu1&⇔u3&. Two
incident lasers of frequenciesvb5v211n andv r5v212n are de-
tuned from the electronic transition by the vibrational frequencyn
to the blue and red, respectively. The laser driving the strong tran-
sition is used for testing the ground-state occupation probabilities
s11(t) by means of probing for resonance fluorescence.
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V5
l

2\
~h r uEr u1hbuEbu!ei ~wb1wr2p!/2, ~7!

dV5
l

2\
~h r uEr u2hbuEbu!ei ~wb1wr !/2, ~8!

Eq. ~6! can be rewritten as

Ĥ int5\~VÂ121V* Â21!x̂w1\~dVÂ121dV* Â21!x̂w1p/2 .
~9!

Here we have introduced the generalized, phase dependent
position operator of the center-of-mass motion,

x̂w5âeiw1â†e2 iw. ~10!

In the Schro¨dinger picture this operator is the well known
phase dependent quadrature operator,

x̂w~ t !5âei ~w1nt !1â†e2 i ~w1nt !. ~11!

The phase

w5~wb2w r !/2, ~12!

can be externally controlled by the phase difference of the
two incident laser fields. Since the laser fields can be derived
from a single laser by means of acousto-optical modulation,
this phase difference is highly stable. The sum phases occur-
ring in the effective Rabi frequencies~7! and ~8! in general
undergo phase diffusion, so that lasers of small line widths
are needed. By using the above mentioned Raman-excitation
scheme these phase-diffusion effects are also reduced due to
the high level of stability of the phase differences between
the Raman beams.

For our method it is important to eliminate the operator
x̂w1p/2 from the interaction Hamiltonian~9!. This is done, by
fulfilling the condition

hbuEbu5h r uEr u, ~13!

wheredV vanishes and the interaction Hamiltonian is sim-
plified to

Ĥ int5\~VÂ121V* Â21!x̂w . ~14!

In generalized position representation~for the phase value
w), this Hamiltonian corresponds to a classically driven two-
level system with effective Rabi frequencyVx. The depen-
dence of this effective Rabi-frequency on the generalized
position couples in a very simple way the vibrational motion
of the ion with its electronic dynamics.

Due to the simple form of this interaction Hamiltonian,
the solution of the eigenvalue problem is given by

ux;w;6&5ux;w&u6&, ~15!

Ĥ intux;w;6&56\uVuxux;w;6&, ~16!

where the statesux;w& are the eigenstates of the generalized
position operator@30#,

x̂wux;w&5xux;w&, ~17!

ux;w&5 (
n50

`
1

A4 2p

e2 inw

An!2n
HnS x

A2D e2x2/4un&, ~18!

with Hn(x) being the Hermite polynomials and the number
statesun& being the energy eigenstates of the harmonic trap
potential. The electronic eigenstatesu6& read as

~VÂ121V* Â21!u6&56uVuu6&, ~19!

u6&5
1

A2
~ u1&6

V*

uVu
u2&). ~20!

The unitary time evolution due to the interaction with the
two lasers is now easily calculated to be

Û int~ t !5E dxux;w&^x;wu@e2 i uVuxtu1&^1u1ei uVuxtu2&^2u#.

~21!

This time evolution in the interaction picture supplemented
by the free time evolution,

Û0~ t !5Ûel~ t !Ûvib~ t !, ~22!

with

Ûel~ t !5exp@2 i ~v1Â111v2Â22!t#, ~23!

Ûvib~ t !5exp~2 inâ†ât !, ~24!

determines the whole dynamics, provided the laser intensi-
ties are adjusted to fulfil condition~13!. The full time evolu-
tion operator of the systemÛ(t) is then given by

Û~ t !5Ûel~ t !Ûvib~ t !Û int~ t !. ~25!

B. Electronic dynamics

To read out the information on the quantum state of mo-
tion in our measurement scheme, the ground-state occupa-
tion probabilitys11(t) is observed. To measure this quantity,
the two lasers resonant on the sidebands are switched off at
time t and a third laser, exciting a strong dipole transition
from the ground stateu1& to a third levelu3&, is used to probe
for resonance fluorescence; see Fig. 1. The probabilities for
detecting resonance fluorescence, recorded as a function of
the interaction time of the two lasers on the weak transition,
give the needed ground-state occupation probabilities
s11(t). This kind of quantum measurement exhibits a very
high quantum efficiency, so that efficiency problems, as
known from optical homodyne tomography@24# and from
quantum state measurements of molecular vibrations@25#, do
not occur.

The initial state of the ion%̂(0) is assumed to be a de-
correlated one of the form

%̂~0!5 r̂~0! ^ ŝ~0!, ~26!

where the electronic density operatorŝ(0) is given by
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ŝ~0!5 (
a,b51,2

sab~0!ua&^bu, ~27!

s11(0) being the initial ground-state occupation ands12(0)
being the initial electronic coherence. The quantum mechani-
cal state of the vibrational motion of the trapped ion is de-
scribed by the initial density operatorr̂(0). With the help of
Eqs.~21!–~25!, the ground-state occupation probability after
an interaction timet reads as

s11~ t !5Tr@ u1&^1u%̂~ t !#

5Tr@ u1&^1uÛ int~ t !%̂~0!Û int
† ~ t !#, ~28!

where the symbol Tr denotes the trace over both the vibra-
tional and the electronic degrees of freedom. After some
straightforward calculation one finally obtains

s11~t;w!2
1

2
5E dx eixtH Fs11~0!2

1

2Gps~x;w!

1 iRe@s12~0!e2 i ~wb1wr !/2#pa~x;w!J ,
~29!

wheret is the dimensionless time,

t52uVut. ~30!

Note thats11 depends on the chosen phase valuew ~charac-
terizing the representation used! as a parameter. For conve-
nience we have introduced the symmetrized and antisymme-
trized spatial probability densities,

ps~x;w!5
1

2
@p~x;w!1p~2x;w!#, ~31!

pa~x;w!5
1

2
@p~x;w!2p~2x;w!#, ~32!

with

p~x;w!5^x;wur̂~0!ux;w&, ~33!

being the probability to find the ion at the generalized posi-
tion x for the chosen phase valuew. While the first integrand
in Eq. ~29! is insensitive to coherences of the initial elec-
tronic state of the ion, the second integrand in Eq.~29! gives
contributions solely due to a coherent electronic preparation
of the ion.

III. QUANTUM STATE RECONSTRUCTION

In the preceding section we have shown that the ground-
state occupation probabilitiess11(t;w) of a bichromatically
driven trapped ion contains the full information on the prob-
ability distributionp(x;w) for the generalized positionx at a
given phasew. This information is recorded, with a very
high quantum efficiency, by probing a strong electronic tran-
sition of the ion for resonance fluorescence. In this section
these results will be used to reconstruct the motional density
matrix of the trapped ion.

A. Generalized position representation

The ground-state occupation probabilities~29! are deter-
mined by the initial, phase dependent spatial distributions of
the trapped ion. This allows to reconstruct the quantum me-
chanical state of the trapped ion in a generalized position
representation. To reconstruct the spatial distribution
p(x;w) from the measured ground-state occupation prob-
abilities s11(t;w) we can separate the contributions
ps(x;w) andpa(x;w) in Eq. ~29! by two independent mea-
surements ofs11(t;w), with incoherently and coherently
prepared initial electronic states. The latter can be achieved
by prepumping the ion with a laser tuned to the pure elec-
tronic resonance of the weak transition.

An incoherent measurementwith an initial preparation of
the ion in its electronic ground-state,

s11~0!51, ~34!

yields the symmetrized spatial distributionps(x;w),

s11
~ inc!~t;w!2

1

2
5
1

2E dx eixtps~x;w!. ~35!

Performing an additionalcoherent measurement, for ex-
ample, with the electronic preparation@31#

s11~0!5us12~0!u5
1

2
, arg@s12~0!#5

wb1w r

2
6p,

~36!

allows one to derive the antisymmetrized spatial distribution
pa(x;w),

s11
~coh!~t;w!2

1

2
52

i

2E dx eixtpa~x;w!. ~37!

Combining both results we can relate the characteristic func-
tion C(t;w) of the generalized spatial distribution,

C~t;w!5E dx eixtp~x;w!, ~38!

directly to the measured fluorescence signal, via

C~t;w!52Fs11
~ inc!~t;w!2

1

2G12i Fs11
~coh!~t;w!2

1

2G .
~39!

This function, known for an interval of the phasew of size
p, provides the full information on the quantum mechanical
state of the ionic center-of-mass motion.

Applying results for the reconstruction of the density ma-
trix of a radiation mode in a field-strength basis@32#, we may
relate the density matrix in generalized position representa-
tion to a twofold Fourier transform of the spatial distribution
as follows:
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^x1dx;wur̂~0!ux2dx;w&

5
1

2pE ds e2 ixsE dx8eix8
As21dx2pS x8;w1

p

2

2arg~ is2dx! D . ~40!

Since the first Fourier integral with respect tox8 in Eq. ~40!
can be identified as the characteristic functionC(t;w),

CFAs21dx2;w1
p

2
2arg~ is2dx!G

5E dx8eix8
As21dx2pS x8;w1

p

2
2arg~ is2dx! D , ~41!

the density matrix in generalized position representation can
be obtained by a simple Fourier transform of the measured
characteristic function given in Eq.~39!,

^x1dx;wur̂~0!ux2dx;w&

5
1

2pE2`

1`

ds e2 ixsC@t~s,dx!;w~s,dx!#, ~42!

where the parameterized time and phase are

t~s,dx!5As21dx2, ~43!

w~s,dx!5w1
p

2
2arg~ is2dx!. ~44!

Whereas in optical homodyne tomographyp(x;w) corre-
sponds to the measured quantity@24#, in our scheme we
record the first Fourier transform in Eq.~40!, that is, the
characteristic functionC(t;w). This simplifies the recon-
struction procedure of the density matrix to only a single
Fourier transform of the measured data.

Another possibility to construct the characteristic function
C(t;w) out of measured data is to use only one kind of
electronic preparation and to measure with this initial prepa-
ration at the two different phases. To see this one can calcu-
late the following observables:

s11
~1 !~t;w!5

1

2
@s11~t;w1p!1s11~t;w!#, ~45!

s11
~2 !~t;w!5

1

2
@s11~t;w1p!2s11~t;w!#, ~46!

which are derived from the ground-state occupation prob-
abilities measured at the two phasesw andw1p, with iden-
tical values ofs11(0) and Re@s12(0)e

2 i (wb1wr )/2)] for both
measurements.

These measured quantities can be related, following Eq.
~29!, to the symmetrized and antisymmetrized spatial prob-
ability densities by

s11
~1 !~t;w!2

1

2
5Fs11~0!2

1

2G E dx eixtps~x;w!, ~47!

s11
~2 !~t;w!2

1

2

52 iRe@s12~0!e2 i ~wb1wr !/2#E dx eixtpa~x;w!, ~48!

provided the initial electronic preparation is appropriately
chosen so that the prefactors on the right-hand sides of Eqs.
~47! and ~48! do not vanish.

Following Eqs~35!, ~37!, ~47!, and~48!, the relations be-
tween the two kinds of measuring the ground-state occupa-
tion probabilities read as

s11
~ inc!~t;w!2

1

2
5

1

2Fs11~0!2
1

2G Fs11
~1 !~t;w!2

1

2G ,
~49!

s11
~coh!~t;w!2

1

2

5
1

2Re@s12~0!e2 i ~wb1wr !/2#
Fs11

~2 !~t;w!2
1

2G , ~50!

so that in Eq.~39! and in the following,s11
(inc/coh)(t;w) could

be replaced bys11
(6)(t;w).

B. Number-state representation

An alternative approach to reconstruct the density matrix
is the use of the number-state basis. In this representation, a
direct sampling procedure of the density matrix of light from
optical homodyne tomography has been developed in a se-
ries of papers@33#. In our scheme the outcome of each prob-
ing for resonance fluorescence can be also directly mapped
into the density matrix. For this purpose one may apply Eq.
~18! to get the following expressions for the symmetrized
and antisymmetrized spatial probability densities

ps~x;w!5e2x2/2(
n,k

e2 i2kw

2n1k1
1
2Apn! ~n12k!!

3HnS x

A2DHn12kS x

A2D rn,n12k , ~51!

pa~x;w!5e2x2/2(
n,k

e2 i ~2k11!w

2n1k11Apn! ~n12k11!!

3HnS x

A2DHn12k11S x

A2D rn,n12k11 , ~52!

where we have used the motional density matrix in number-
state representation,

rm,n5^mur̂~0!un&. ~53!

Inserting Eqs.~51! and ~52! in Eqs. ~35! and ~37! we may
relate the measurable ground-state occupation probabilities
to the density matrix in number-state representation,
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s11
~ inc!~t;w!2

1

2
52e2t2/2(

n,k
A n!

~n12k!!
~22!k21

3e2 i2kwS t

A2D
2k

Ln
~2k!~t2!rn,n12k ,

~54!

s11
~coh!~t;w!2

1

2
5e2t2/2(

n,k
A n!

~n12k11!!
~22!k

3e2 i ~2k11!wS t

A2D
2k11

Ln
~2k11!~t2!

3rn,n12k11 , ~55!

with Ln
(k)(x) being the Laguerre polynomials. By Fourier in-

tegrating over the phasew and using the orthogonality rela-
tion of the Laguerre polynomials@34# one finally obtains

rn,n1k5E
0

p

dw eikwE
0

`

dt Sn~k!~t !

3H s11
~ inc!~t,w!2

1

2
for k>0, k even

s11
~coh!~t,w!2

1

2
for k>0, k odd.

~56!

The elements of the density matrix fork,0 are obtained
from the symmetry relation

rn1k,n5rn,n1k* . ~57!

The sampling functionsSn(k)(t) are explicitly given by

Sn~k!~t !5
4

p
A 2n!

~n1k!! S t

A2D
k11

Ln
~k!~t2!e2t2/2

3H ~22!k/2 for k>0, k even

~22!~k21!/2 for k>0, k odd.
~58!

These sampling functions can be easily calculated using the
recursion relation with respect ton,

An~n1k!Sn~k!~t !5~2n1k2t221!Sn21
~k! ~t !

2A~n21!~n1k21!Sn22
~k! ~t !,

~59!

and a recursion relation with respect tok (k>0),

S0~k!~t !52
t2

Ak~k21!
S0~k22!~t !, ~60!

with the special values forn50 andk50,1 being

S0~0!~t !5
4t

p
e2t2/2, ~61!

S0~1!~t !5
4t2

pA2
e2t2/2. ~62!

In view of the fact that one measures directly the character-
istic function C(t;w) and not the spatial distribution
p(x;w), the sampling functions~58! are much simpler than
in the case of optical homodyne tomography@33,35#. By
multiplying the sampling functionseikwSn(k)(t) with the out-
come of each probing for resonance fluorescence~on⇔ off!
at various timest and phasesw and mapping these contri-
butions into the density matrix elementsrn,n1k , the recon-
struction has been done after the processing of a sufficient
large number of events.

If one is only interested in the motional number statistics,
Pn5rn,n , Eq. ~56! is reduced to

Pn5
2

pE0
p

dwE
0

`

dt2e2t2/2Ln~t2!Fs11
~ inc!~t;w!2

1

2G .
~63!

This result is valid for any quantum state of the vibrational
motion of the trapped ion. It can be further simplified for
completely incoherent superpositions of number states, that
is, for situations where the full information on the motional
quantum state is contained in its number statisticsPn ,

r̂~0!5 (
n50

`

Pnun&^nu. ~64!

In such casess11
(coh)(t;w)21/2 vanishes ands11

(inc)(t;w) is
phase independent. This situation is expected to appear in
standard laser-cooling experiments. From Eqs.~63! and~64!
we find

Pn52E
0

`

dt2e2t2/2Ln~t2!Fs11
~ inc!~t !2

1

2G . ~65!

In the particular case where the state is a thermal one, the
statistics reads as

Pn5~12e2b!e2bn, ~66!

with b5\n/kBT, T being the temperature of the motional
degree of freedom andkB being the Boltzmann constant. Our
detection scheme renders is possible to rigorously check
whether the motional state fulfills the conditions~64! and
~66!. If it does, the temperatureT can be easily determined.
To show this we insert the thermal statistics~66! in Eq. ~54!
and obtain

s11
~ inc!~t !2

1

2
5
1

2
expF2

t2

2~12e2b!G . ~67!

From this we readily obtain the relation between the expo-
nential decay timete , defining the exponential decay of the
quantitys11

(inc)(t)21/2, and the temperatureT,

T5
\n

kB
F lnS 21te

2

22te
2D G21

. ~68!
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The temperatureT of the ionic center-of-mass motion is re-
lated to the mean thermal number of vibrational quanta,
nth , as follows:

nth5FexpS \n

kBT
D21G21

. ~69!

In terms of the decay timete it is given by

nth5
22te

2

2te
2 . ~70!

IV. FLUORESCENCE SIGNAL
FOR PARTICULAR QUANTUM STATES

Let us now consider some examples for the resonance
fluorescence signal which can be recorded in experiments,
reflecting the different initial quantum states of the center-of-
mass motion of the ion. In Sec. IV A we will consider some
examples for the situation of our measurement scheme when
the Hamiltonian~14! applies. The case when the matching of
the laser fields according to Eq.~13! is imperfect, so that the
full Hamiltonian ~9! must be used, is studied in Sec. IV B.

A. Perfect scheme

First of all let us deal with the dynamics of the fluores-
cence signal for thermal states. In Fig. 2~a! the symmetrized
spatial distributions are shown for the vibrational ground
state and for thermal states withnth51 andnth54. Since the
dynamics of the electronic ground-state occupation probabil-
ity s11(t;w) is related by Fourier transform to the general-
ized position distributionp(x;w), the widths of these distri-
butions determine the decay times of the measured signal;
see Fig. 2~b!. Therefore the decays of the resonance fluores-
cence signal become the faster the larger the temperatures
are, as described by Eq.~68!. Due to the larger widths of
their spatial distributions, for any thermal state the fluores-
cence signals decay faster than for the vibrational ground
state.

For coherent states the widths of the spatial distributions
are equal to that of the vibrational ground state; see Fig. 3~a!.
In these particular cases the decay times are always the same
and the fluorescence signals oscillate with frequencies deter-
mined by the amplitudes of the coherent states; see Fig. 3~b!.
The decay for the vibrational ground state given in Fig. 3~b!
represents an envelope, containing all states for which the
widths of their spatial structures are equal or larger than that
of the ground state. Since nonclassical states usually exhibit
structures in their distributionp(x;w) which are narrower
than the spatial ground-state distribution, the vibrational
ground-state decay may be regarded as a boundary between
classical and nonclassical behavior of the motional quantum
states of the trapped ion. Any quantum state which exhibits
in our detection scheme a fluorescence signal with a dynam-
ics beyond this boundary has some spatial structures nar-
rower than that of the vibrational ground state, and may be
considered as a nonclassical motional quantum state of the
ion. To determine this boundary between classical and quan-
tum mechanics one has to measure the fluorescence signals
of a laser-cooled ion, which may represent to a very good

approximation an ion in the vibrational ground state@12#.
Figure 4 shows the fluorescence signal for a coherent vibra-
tional state in dependence on the phasew. At the phase value
w5p/2 the ground-state decay can be seen. For this phase
the spatial distribution corresponds to that of the ground
state, since the coherent state is chosen to have a real-valued
amplitude.

Examples for nonclassical quantum states with structures
narrower than those of the ground-state are considered in
Figs. 5 and 6, where the fluorescence signal shows a dynam-
ics beyond the ground-state envelope. This is illustrated in
Fig. 5 for a number state and for an even coherent state
~Schrödinger-cat state!. Figure 6 shows the phase-dependent
incoherent ground-state occupation probability for even and
odd coherent states of atomic motion@18,21#. One observes
signatures for a nonclassical behavior around the phase value
w5p/2, where even and odd coherent states can be easily
distinguished by their long-time dynamics. These long-time
structures ins11

(inc)(t;w) are a direct reflection of the quan-
tum interference fringes of the states inp(x;w), which ex-
hibit structures narrower than the ground-state distribution.
In our scheme these effects can be easily recorded without

FIG. 2. Symmetrized spatial distributions~a! and incoherent
ground-state occupation probabilities~b! for thermal states with
nth51 ~solid!, nth54 ~dashed!, and for the vibrational ground state
~dotted!. The temperature of the vibrational motion determines the
decay time of the fluorescence signal.
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requirements of high resolution: The sharper the fringes are,
the slower is the dynamics.

For the quantum states under consideration, the coher-
ently prepared measurements yield for all phases and times a
probability of 1/2 to observe a fluorescence signal. This is
due to the fact that the number states and the even and odd
coherent states have a symmetric spatial distribution
(x⇔2x). In other words, their density matrix elements
rn,n1k are zero for oddk. In more general cases, the deter-
mination of the antisymmetric distributions must be per-
formed to get the full information on the quantum state to be
measured.

B. Mismatch of the laser intensities

An important assumption of our measurement principle is
that the intensities of the lasers fulfill condition~13!. If this is
not the case one gets a mismatch leading to nonvanishing
values ofdV in the Hamiltonian~9!. The additional term in
the Hamiltonian includes the momentumlike operator
x̂w1p/2 in the dynamics of the system. Due to this contribu-
tion one gets a modification of the measured ground-state

probabilities depending on the relative strength of the mis-
matchdV/V and on the quantum state under study.

The temporal behavior of the fluorescence signal for an
ion prepared in the vibrational ground state depends crucially
on the intensity mismatch; see Fig. 7. In an experiment this
sensitivity enables one to accurately calibrate the two laser
intensities to fulfill condition~13! by measuring the reso-
nance fluorescence probabilities of a known motional quan-
tum state. By laser cooling the ion, one can presently reach
the vibrational ground stateu0& with a probability of about
98% @12#. An ion prepared in this manner can be used as a
reference state and the dynamics of the corresponding fluo-
rescence signal can be compared with the expected result for
dV50. Varying the ratio of the laser strengths to get an
agreement of the measured values with the calculated ones
for a rather long time scale, one can precisely calibrate the
measurement apparatus to fulfill Eq.~13!. In Fig. 8 the modi-
fications of the fluorescence signal due to intensity mismatch
are shown for an even coherent state. Obviously, the magni-
tude of the mismatch effects is seen to depend on the quan-
tum state to be measured. It appears that a relative accuracy
of matching the intensities of 1023 already gives suitable
results. Note that the fields can be derived by acousto-optical

FIG. 3. Symmetrized spatial distributions~a! and incoherent
ground-state occupation probabilities~b! for coherent states with
amplitudesa51 ~solid!, a52 ~dashed!, and for the vibrational
ground state corresponding toa50 ~dotted!, considered for the
phasew50. Due to the same spatial widths the decay times are
equal.

FIG. 4. Phase-dependent incoherent~a! and coherent~b!
ground-state occupation probabilities for a coherent state of ampli-
tudea52.
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modulation from a single laser, which allows a high preci-
sion of matching.

V. BACK ACTION OF THE MEASUREMENT

In the previous sections we have shown that the proposed
measurement scheme is able to obtain the complete informa-
tion on the quantum mechanical state of the trapped ion. The
measurement allows one to determine an initially prepared
ionic vibrational quantum state, which evolves due to the
interaction with the two lasers into a new quantum state. By
probing for resonance fluorescence at timet this state will be
further modified. To see this back action of the measurement,
let us consider the electronic matrix elements^auÛ int(t)ub&
of the time evolution operator~interaction part!, which are
still operators in the motional degree of freedom. Based on
Eq. ~14! it reads as

^auÛ int~ t !ub&5^auexp@2 i ~VÂ121V* Â21!x̂wt#ub&,
~71!

with a,b51,2. For equal electronic states (a5b) this opera-
tor reads as

^auÛ int~ t !ua&5 (
n50

`

~2 i !n
~ x̂wt !

n

n!
^au~VÂ121V* Â21!

nua&

5
1

2
~e2 i x̂wt/21eix̂wt/2!, ~72!

wheret is given in Eq.~30!. For different electronic levels
(aÞb) one gets in the same manner

^1uÛ int~ t !u2&5
V

2uVu ~e2 i x̂wt/22eix̂wt/2!, ~73!

^2uÛ int~ t !u1&5
V*

2uVu ~e2 i x̂wt/22eix̂wt/2!. ~74!

Since the coherent displacement operator of the vibrational
motion is defined as

D̂~a!5exp~aâ†2a* â!, ~75!

FIG. 5. Symmetrized spatial distributions~a! and incoherent
ground-state occupation probabilities~b! for nonclassical states in
comparison with the vibrational ground state~dotted!: even coher-
ent state~Schrödinger-cat state! with a52 ~solid! and number state
with n54 ~dashed!. The nonclassical properties are seen in the
long-time dynamics of the fluorescence signal beyond that of the
vibrational ground-state envelope.

FIG. 6. Phase-dependent incoherent ground-state occupation
probabilities for even~a! and odd~b! coherent states witha52. A
signature for the nonclassical properties of these states are the long-
time dynamics around the phase-valuew5p/2.
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the exponential operators occurring in Eqs.~72!–~74! can be
rewritten as

eix̂wt/25D̂~ i te2 iw/2!. ~76!

Therefore the operators~72!–~74! can be expressed as super-
positions of coherent displacements,

^1uÛ int~ t !u1&5^2uÛ int~ t !u2&5
1

2
$D̂†@a~t;w!#

1D̂@a~t;w!#%, ~77!

^1uÛ int~ t !u2&5
V

2uVu $D̂†@a~t;w!#2D̂@a~t;w!#%,

~78!

^2uÛ int~ t !u1&5
V*

2uVu $D̂†@a~t;w!#2D̂@a~t;w!#%,

~79!

where the coherent displacement amplitude is given by

a~t;w!5 i te2 iw/2. ~80!

The full time evolution~25! determines the density opera-
tor after an interaction timet, where the ion is probed for
resonance fluorescence. The probing for resonance fluores-
cence can be described by a projection on the electronic state
u1& or u2&, depending on the outcome of the probing@36,37#.
Therefore the resulting motional density operator is condi-
tioned on the outcome of the probing and reads as

r̂ ~c!~ t !5^cuÛ0~ t !Û int~ t !%̂~0!Û int
† ~ t !Û0

†~ t !uc&, ~81!

with c51 if one detects resonance fluorescence andc52 if
no fluorescence signal can be detected. Note that in the case
of c51 the motional state is disturbed by the light scattering,
for c52 this effect is absent since no resonance fluorescence
occurs. Due to the projection on the electronic levels, Eq.

~81! can be simplified by using the free time evolution of the
vibration ~24!, so that the conditioned density operator reads
as

r̂ ~c!~ t !5Ûvib~ t !^cuÛ int~ t !r̂~0!ŝ~0!Û int
† ~ t !uc&Û vib

† ~ t !.
~82!

With the initial electronic preparation~27!, Eq. ~82! can be
related to the operators~77!–~79!,

r̂ ~c!~ t !5 (
a,b51,2

sab~0!Û vib~ t !^cuÛ int~ t !ua&r̂~0!

3^buÛ int
† ~ t !uc&Ûvib

† ~ t !. ~83!

By omitting the arguments ofD̂@a(t;w)#, one obtains for
the conditioned motional quantum states the results

r̂ ~1!~ t !5Ûvib~ t !F11v
4

D̂ r̂~0!D̂†1
12v
4

D̂†r̂~0!D̂

2
w2 iu

4
D̂ r̂~0!D̂2

w1 iu

4
D̂†r̂~0!D̂†GÛvib

† ~ t !,

~84!

and

r̂ ~2!~ t !5Ûvib~ t !F11v
4

D̂ r̂~0!D̂†1
12v
4

D̂†r̂~0!D̂

1
w2 iu

4
D̂ r̂~0!D̂1

w1 iu

4
D̂†r̂~0!D̂†GÛvib

† ~ t !,

~85!

with the coefficientsw, u, andv defined by the initial elec-
tronic preparation,

w5s22~0!2s11~0!, ~86!

u52Re@s12~0!e2 i ~wb1wr !/2#, ~87!

FIG. 7. Deviations from the perfect dynamics~solid! due to
laser intensity mismatch, for the ion being prepared in the vibra-
tional ground state. Mismatch parameters:udVu/uVu560.25%
~dashed! and udVu/uVu561% ~dotted!.

FIG. 8. Deviations from the perfect dynamics~solid! due to
laser intensity mismatch for a nonclassical even coherent state
(a52). Mismatch parameters:udVu/uVu560.1% ~dashed!, and
udVu/uVu560.5% ~dotted!, for the phasew5p/2.
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v52Im@s12~0!e2 i ~wb1wr !/2#. ~88!

From Eqs.~84! and~85! it can be seen that if the probing for
resonance fluorescence is not performed, the interference
terms of the two displaced components,D̂†r̂(0)D̂† and
D̂ r̂(0)D̂, vanish and the resulting state is a statistical mix-
ture of the two components. This can be shown by taking the
electronic trace of the density operator,

r̂~ t !5Tr@%̂~ t !#5 r̂ ~1!~ t !1 r̂ ~2!~ t !

5Ûvib~ t !F11v
2

D̂ r̂~0!D̂†1
12v
2

D̂†r̂~0!D̂GÛ vib
† ~ t !.

~89!

The back action of the measurement is rather simple when
the ion is initially prepared in its electronic ground state
s11(0)51 (w521, u5v50). The conditioned density op-
erators after the probing for resonance fluorescence follow
from Eqs.~84! and ~85!,

r̂ ~1!~ t !5Ûvib~ t !F D̂†1D̂

2 G r̂~0!F D̂†1D̂

2 G†Ûvib
† ~ t !, ~90!

r̂~2!~ t !5Ûvib~ t !F D̂†2D̂

2 G r̂~0!F D̂†2D̂

2 G†Ûvib
† ~ t !. ~91!

By appropriately choosing the interaction timet, quantum
superpositions of the initial motional quantum state with it-
self can be created. For example, if the ion is initially in a
vibrational coherent stateua&, the two conditioned quantum
states read as

uc~1!~ t !&5Ûvib~ t !
1

2
@ ua1a~t;w!&1ua2a~t;w!&],

~92!

uc~2!~ t !&5Ûvib~ t !
1

2
@ ua1a~t;w!&2ua2a~t;w!&].

~93!

If a50, i.e., if the ion is initially laser-cooled to its vibra-
tional ground state, then the resulting states are the even and
odd coherent states@18#. Note that both even and odd coher-
ent quantum superpositions can be created without disturbing
effects due to light scattering by starting with the electronic
statesu2& and u1&, respectively, and observing no resonance
fluorescence signal. That is, to avoid disturbations due to
light scattering it may be advantageous to change the elec-
tronic initial preparation by applying ap pulse on the elec-
tronic resonance.

A more complex situation for the preparation of quantum
superposition states is shown in Fig. 9. The ion is initially
prepared in a thermal state of motion of a mean thermal
excitation nth51. The superposition of this initial, com-
pletely incoherent state with itself gives rise to quantum in-
terferences, which are clearly seen in the Wigner function. In
Fig. 10 we show the Wigner function for a superposition of
displaced number states. It displays the features of the
Wigner function of each displaced number state, attaining
already negative values, and of the quantum superposition

with its pronounced interference fringes between the dis-
placed number states. To produce states of this type, recent
methods of preparing motional number states@20# could be
readily combined with the measurement scheme under study.
That is, besides the feasibility of measuring arbitrary quan-
tum states of motion, our scheme is suited to create interest-
ing quantum superpositions of the states to be measured.
Subsequently, the created states could be measured by the
same technique. Clearly, this procedure could be repeated
several times in order to create a variety of complex quantum
superposition states.

VI. SUMMARY AND CONCLUSIONS

In conclusion, we have shown that the full information on
the quantum mechanical state of a trapped ion can be ob-
tained from the dynamics of the ground-state occupation
probability of a long-living electronic transition. To achieve
this, the transition is irradiated by two lasers, tuned to the

FIG. 9. Quantum superposition of two thermal states of
n th51 and coherent displacements ofa564. Although the initial
state is completely incoherent, the quantum superposition of the
displaced components clearly exhibits interferences in the Wigner
function, which are signatures of a nonclassical behavior.

FIG. 10. Quantum superposition of two number statesu1& with
coherent displacements ofa564. The quantum superposition of
the displaced components clearly exhibits interferences in the
Wigner function, which are signatures of a nonclassical behavior.
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well resolved upper and lower vibrational sidebands. The
intensities of the two laser fields are matched in such a man-
ner that the couplings of both transitions~described by the
vibronic Rabi frequencies! are equal. In this case, the inter-
action Hamiltonian describing the coupling between the
moving ion and the two lasers corresponds to the coupling
between a two-level system and a classical light field, mul-
tiplied by the phase-dependent, generalized position operator
of the ionic center-of-mass motion. This interaction trans-
forms the full information on the motional quantum state into
the occupation dynamics of the electronic ground state,
which directly yields the characteristic function of the phase-
dependent, generalized spatial distribution.

The occupation of the electronic ground state is readily
observed by switching on a laser, driving a second, strong
transition of the ion. Only when the ion is in its electronic
ground state does this lead to the onset of resonance fluores-
cence. The ground-state occupations, measured as a function
of the interaction time of the two lasers driving the weak
transition, allow to determine the desired information on the
motional quantum state. Explicit results have been derived,
relating the time-dependent fluorescence signals to the den-
sity matrices in both a generalized position representation
and a number-state representation. Since the test for fluores-
cence on a strong transition is highly efficient, the method is
almost free of the limitations due to nonideal detection
known from other methods of measuring quantum states.

Our method allows one to record a well defined, ultimate
classical noise level for the motion of the ion. A reference
measurement of the fluorescence signal of an ion laser-
cooled to its vibrational ground state may serve as a bound-
ary between classical and nonclassical behavior of the quan-
tum state under study. Typical nonclassical quantum states,
such as number states or quantum superposition states, show
a fluorescence dynamics on a time scale that is longer than
the corresponding dynamics of the laser-cooled ion. That is,
nonclassical effects are easily measured as a slowly decaying
long-time dynamics, instead of giving rise to sharp structures
in measured distributions that are easily smoothed out. This
is an advantage due to the fact that the method allows to
directly observe the characteristic functions rather than the
corresponding spatial distributions. We have considered the

effects of imperfect matching of the intensities of the lasers
irradiating the weak transition. These effects modify the
long-time dynamics and can be used to calibrate the match-
ing of the laser intensities, by using a laser-cooled ion and
adjusting the intensities in order to suppress the long-time
dynamics of the fluorescence signal.

Moreover, we have studied the back action of the mea-
surement procedure on the motional quantum state. The sim-
plicity of the interaction Hamiltonian allows one to exactly
solve this problem. It turns out that the interaction dynamics
on the weak transition effectively leads to a simultaneous
displacement of the state to be measured into two opposite
directions in phase space. The probing for resonance fluores-
cence disentangles the vibronic quantum state, thereby re-
ducing the motional quantum state to a quantum superposi-
tion of two displaced replica of the motional state to be
measured. Thus, our measurement scheme allows one to cre-
ate Schro¨dinger-cat-like quantum superpositions of the initial
state, displaced in two opposite directions in phase space.
Thereby, interesting quantum interferences can be produced
from completely incoherent states. For example, quantum
superpositions of thermal states and of number states are
considered. Our scheme allows one to produce and detect
such interesting quantum states by the same technique. Re-
peating this procedure allows one to create a variety of mo-
tional quantum states exhibiting rich structures in phase
space, connected with strong quantum interference effects.

Note added in proof:After submission of this paper we
became aware of some other contributions concerning the
measurement of motional quantum states of trapped ions; cf.
C. D’Helon and G. J. Milburn, Phys. Rev. A54, R25~1996!;
P. J. Bardroff, C. Leichtle, G. Schrade, and W. P. Schleich,
Phys. Rev. Lett.77, 2198 ~1996!; D. Leibfried, D. M.
Meekhof, B. E. King, C. Monroe, W. M. Itano, and D. J.
Wineland~unpublished!.
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