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We show that the problem of the net absorption of one photon from a strong laser pulse in a bound-to-
continuum transition can be recast as a single integral equation. For a certain class of absorption spectra, this
integral equation can be converted to a second-order Schro¨dinger-like differential equation, which can be
accurately solved in an essentially closed form using the semiclassical uniform approximation. With the aid of
the integral equation and the uniform solutions we find that for strong short pulses, irreversible transitions to
a perfectly absorbing continuum in the weak-field regime become reversible. In particular, continuum levels
may execute Rabi oscillations with the precursor bound state. These oscillations occur at different frequencies,
depending on the continuum energy. As a result, spectral migrations and formations of transparent lines may
occur. Field-induced interferences between neighboring lines is also investigated.@S1050-2947~96!10010-X#

PACS number~s!: 32.80.Rm, 42.50.Vk

I. INTRODUCTION

Calculations of molecular photodissociation have been
confined in the past to a large extent to the weak-field regime
@1–9#. The methodology used in these calculations consti-
tutes a hybrid of exact propagation methods to deal with the
~strong! molecular interactions and perturbative approaches
to deal with the~assumed weak! field-matter interactions.
The situation has changed in the last few years with the
desire of theorists to treat with greater precision molecular
dissociation and~atomic! ionization processes induced by
strong laser pulses. Thus, theories which treat the photodis-
sociation of simple molecules@10–20# and ionization of at-
oms@21–27# in a nonperturbative way have been developed.

The excitation of continuum-state resonances has been
discussed for a sharply turned-on constant amplitude field
@6,10,28,29#. However, the cw field problem is different
from the smooth pulse problem to be treated here. Not only
the is mathematical treatment more complicated in the latter
case, the physical outcome of smooth pulse excitation are
quite different.

Most of the methods based on the above photodissocia-
tion and ionization theories are purely numerical. They es-
sentially constitute the brute-force solution of the time-
dependent or time-independent field-matter Schro¨dinger
equation. As such, they do not make use of the availability of
weak-field methods and the abundance of material matrix
elements generated in weak-field calculations. Recently
@30,31#, we have shown that by invoking the ‘‘flat’’ or
‘‘slowly varying’’ continuum approximation~SVCA! we can
utilize weak-field matrix elements to obtain the strong-field
one-photon ionization or dissociation rates. Of particular im-
portance is that the method is capable of yielding the
product-state distribution of fragments resulting from the dis-
sociation of molecules. In this way one can obtain the strong-
field photodissociation yields at the cost of the weak-field
calculations.

While it was anticipated that for intermediate-to-strong
fields the SVCA method is quite accurate, its range of valid-

ity has not been established. In the present paper we examine
this point by developing an exact theory of the one-photon
dissociation and ionization problem. As in the SVCA, our
theory builds on the same material matrix elements used in
the weak-field theories while making no approximation be-
yond the rotating-wave approximation. This is done by re-
casting the problem as an integral equation in one temporal
dimension, whose numerical solution can be attained with
very modest computational efforts. We then show that for a
certain class of absorption spectra, this integral equation can
be converted to a second-order differential equation that is
homomorphic to the one spatial-dimension time-independent
Schrödinger equation. Using the arsenal of methods avail-
able for solving such equations, and in particular the uniform
technique@32,33#, this equation can be readily solved in an
essentially analytic manner. With the aid of the integral
equation and the uniform solutions we investigate the vari-
ous factors affecting strong pulse-induced one-photon transi-
tions to multiple continua.

II. THEORY OF PULSED ONE-PHOTON TRANSITIONS
TO A CONTINUUM

We consider a molecule breaking apart, or being ionized
as a result of the action of a laser pulse of electric field

«W 5«Ŵ «8~ t !cos~vLt !. ~1!

The total Hamiltonian is

H tot5HM2mW •«W ~ t !, ~2!

whereHM is the radiation free material Hamiltonian andmW is
the transition dipole operator.

Assuming that the field is in near resonance with transi-
tions from the initial bound statec1 to the c~E,n2! con-
tinuum of states, where bothc1 andc~E,n2! are eigenstates
of HM ,

@E12HM#c15@E2HM#c~E,n2!50, ~3!
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we expand the full time-dependent wave function as
@2,34,35#,

C~ t !5b1~ t !c1exp~2 iE1t/\!

1(
n
E dEbE,n~ t !c~E,n2!exp~2 iEt/\!. ~4!

Insertion of Eq. ~4! into the time-dependent Schro¨dinger
equation,

i\]C/]t5H totC~ t !, ~5!

and use of the orthogonality of the eigenfunctions ofHM ,
results in a set of first-order integrodifferential equations for
theb1 andbE,n coefficients,

i\
db1
dt

52E dE(
n

m~1uE,n!«~ t !bE,n~ t !

3exp@2 i ~vE,12vL!t#, ~6!

bE,n~ t !5
21

i\
m~E,nu1!E

2`

t

dt8«~ t8!b1~ t8!

3exp@ i ~vE,12vL!t8#. ~7!

In the above, m(E,nu1)[^c(E,n2!umuc1&, vE,1
[(E2E1)/\. Only the ‘‘rotating wave’’ terms have been
retained.

We can solve the above set of integrodifferential equa-
tions by first substituting Eq.~7! in Eq. ~6!, resulting in an
equation involving theb1(t) coefficient only,

db1
dt

5
21

\2 E dE(
n

um~E,nu1!u2«~ t !E
2`

t

dt8«~ t8!

3exp@2 i ~vE,12vL!~ t2t8!#b1~ t8!. ~8!

The integrodifferential equation inb1 can be simplified by
first calculatingF(t2t8), the Fourier transform of the ab-
sorption spectrum

F~ t2t8!5E dEA~E!exp@2 ivE,1~ t2t8!#, ~9!

whereA(E), the absorption spectrum, is given as

A~E![(
n

um~E,nu1!u2. ~10!

Knowledge ofF(t2t8), which may be termed the ‘‘spectral
autocorrelation function’’@30,31,35,36#, allows us to rewrite
Eq. ~8! as

db1
dt

5
21

\2 «~ t !E
2`

t

dt8«~ t8!F~ t2t8!

3exp@ ivL~ t2t8!#b1~ t8!. ~11!

There are a number of spectral shapes for whichF(t2t8)
is separable. For example if the spectrum has a Lorentzian
shape,

A~E!5Gs /@~E2Es!21Gs
2/4#, ~12!

and using the fact thatt.t8, we have that

exp@ ivL~ t2t8!#F~ t2t8!5 f s
1~ t ! f s

2~ t8!, ~13!

where

f s
6~ t !5A2pexp@7 ixst#, ~14!

andxs[Ds2 i (Gs/2\), whereDs[~Es2E1!/\2vL is the de-
tuning of the laser central frequency relative toEs .

Under these circumstances Eq.~11! transforms into two
coupled first-order differential equations,

db1
dt

5
i

\
«~ t ! f s

1~ t !Bs~ t !,

dBs
dt

5
i

\
«~ t ! f s

2~ t !b1~ t !, ~15!

which can be solved in a routine way@although care must be
taken to renormalize the exponentially growingf s

2(t) func-
tion#.

In general,F(t2t8) is not separable but it is possible to
transform Eq.~8! to a discrete set of differential equations by
some variant of the Laplace transform method. Our variant
starts by expressing the dipole moment matrix elements
m~1uE,n! as a sum of~overlapping or isolated! resonances,

m~1uE,n!5(
s51

N
imsnGs/2

E2Es1 iGs/2
, ~16!

wheremsn are derived by fitting Eq.~16! to a given spec-
trum. The spectrum now becomes

A~E!5(
n

um~1uE,n!u2

5(
s8s

ms8s
2 GsGs8/4

~E2Es1 iGs/2!~E2Es82 iGs8/2!
, ~17!

where ms8s
2 [(nmsnms8n

* . If we only keep the diagonal
~s5s8! termsA(E) becomes a sum of Lorentzians. The off-
diagonal terms allow for interferences between overlapping
resonances; hence the form of Eq.~17! is quite general.

The Fourier transform ofA(E) @remembering that in Eq.
~11! t.t8# now becomes

exp@ ivL~ t2t8!#F~ t2t8!52p(
s

asexp@2 ixs~ t2t8!#

5(
s

asf s
1~ t ! f s

2~ t8!, ~18!

where

as[(
s8

2 ims8s
2 GsGs8/4

Es2Es82 i ~Gs1Gs8!/2
, ~19!

and f s
6 are defined in Eq.~14!.
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With Eq. ~18! we can transform Eq.~8! into a discrete set
of coupled differential equations,

db1
dt

5
i

\ (
s

as«~ t ! f s
1~ t !Bs~ t !, ~20!

dBs
dt

5
i

\
«~ t ! f s

2~ t !b1~ t !, s51, . . . ,N. ~21!

These equations can be solved in a routine way using a va-
riety of propagation methods of first-order differential equa-
tions. Having obtainedb1(t), the continuum coefficient
bE,n can be computed as a straightforward quadrature ac-
cording to Eq.~7!.

III. THE UNIFORM AND WKB APPROXIMATIONS

When the features in the continuum are not much sharper
than the laser bandwidth, or the separation between the reso-
nances is larger than the laser bandwidth, the above set of
coupled equations@Eqs. ~20! and ~21!# can be reduced to a
single second-order equation. By differentiating Eq.~20! we
obtain that

d2b1~ t !

dt2
5
d ln«~ t !

dt

db1~ t !

dt
2
2p«2~ t !

\2 (
s

asb1~ t !

2
«~ t !

\ (
s

asxsf s
1~ t !Bs~ t !, ~22!

where we have used the explicit form off s
1 @Eq. ~14!#. We

now definex(t) as,

(
s

asxsf s
1~ t !Bs~ t !5x~ t !(

s
asf s

1Bs~ t ! , ~23!

using which, we obtain from Eqs.~20! and ~22!, that

d2b1
dt2

5S d ln«~ t !

dt
2 ix~ t ! D db1

dt
2
2p

\2 «2~ t !ab1 , ~24!

wherea5(sas .
This second-order differential equation in time is homo-

morphic to a one-dimensional time-independent Schro¨dinger
equation in a spatial variable. This can be easily seen by
denoting

g1~ t !52
d ln«~ t !

dt
1 ix~ t !, ~25!

g0~ t !5
2p

\2 «2~ t !a, ~26!

writing Eq. ~24! as

d2b1
dt2

1g1~ t !
db1
dt

1g0~ t !b150, ~27!

and transformingb1(t), according to

c~ t !5expS 1
2 E t

g1~ t8!dt8Db1~ t !
5«~ t !21/2expS i2 E t

x~ t8!dt8Db1~ t !. ~28!

We obtain a Schro¨dinger-like equation inc(t),

S d2dt22W~ t ! D c~ t !50, ~29!

where

W~ t !5 1
2g18~ t !1 1

4g1
2~ t !2g0~ t !

52
d«~ t !

2dt

d2ln«~ t !

dt2
1
1

4 S d ln«~ t !

dt
2 ix~ t ! D 2

2
2p

\2 «2~ t !a. ~30!

The ‘‘time-dependent potential,’’W(t), is analogous to
minus the local momentum squared,2p2(x), of the time-
independent Schro¨dinger equation. W(t) can be complex,
with the imaginary part depending onD~5(sasDsf s

1Bs! the
average detuning of the laser’s center frequencyvL with re-
spect to the various resonances that contribute to continuum.

For a single resonance Eq.~23! is an identity, and we of
course know what the~time-independent! x function is.
When there are more resonances,x(t) cannot be determined
without knowingb1(t), since by Eq.~21!,

x~ t !5
(sasxsf s

1* tdt8«~ t8! f s
2~ t8!b1~ t8!

(sasf s
1* tdt8«~ t8! f s

2~ t8!b1~ t8!
. ~31!

In practical applications we find that we can approximate
x(t) as

x~ t !'x0~ t !5
(sasxsf s

1* tdt8«~ t8! f s
2~ t8!

(sasf s
1* tdt8«~ t8! f s

2~ t8!
. ~32!

Thus, for a Gaussian pulse envelope centered aboutt0,

«~ t !5«LexpF2S t2t0
2d D 2G , ~33!

we can calculatex0 via the identity@35#,

E t

dt8«~ t8! f s
2~ t8!5p&«Ld exp~2d2xs

2!

3$11erf~ t/2d2 idxs!%. ~34!

The time-dependent potential assumes the form

W~ t !5
2~ t2t0!

8d4
«L expF2S t2t0

2d D 2G2
2p

\2 a«L

3expF22S t2t0
2d D 2G2

1

4 S t2t0
d2

2 ix0~ t ! D 2.
~35!
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In complete analogy to the case of the time-independent
Schrödinger equation, we call time points satisfying the
W(t* )50 equation, ‘‘turning points.’’ If there is only one
turning point, the solutions of Schro¨dinger-like equation@Eq.
~29!# can be written to an excellent approximation in terms
of the uniform regular and irregular Airy functions Ai(T)
and Bi(T) @37#,

cuni~ t !5S T~ t !

2W~ t ! D
1/4

$CaAi „2T~ t !…1CbBi„2T~ t !…%,

~36!

where the complex argumentT is defined as

T~ t !5S 32 E
t*

t
A2W~ t8!dt8D 2/3, ~37!

andCa andCb are constants determined by the initial con-
ditions,bs~2`!51 andbs8(2`)50. If there are no turning
points on the real time-axis we choose the complex turning
point which is closest to the relevant time range.

The uniform approximation is the exact solution of the
equation

S d2dt22W~ t !2h~ t ! D cuni~ t !50, ~38!

where

h~ t !5@T8~ t !#1/2
d2

dt2
@T8~ t !#21/2. ~39!

It is an excellent approximation to Eq.~29!, because usually
uh(t)u!uW(t)u. If there is more than one turning point, the
Airy functions can still be used~provided the turning points
do not coalesce!, by by writing the solutions of Eq.~36! for
each time-interval containing a turning point and matching
these solutions and their derivatives across the time-
intervals. Usually no more than two turning points exist.

It is also of interest to use a number of simpler approxi-
mations: The first constitutes the~zero-order! WKB approxi-
mation,

b1~ t !5expF2 1
2 E t

g1~ t8!dt8G HCaexpF E
t*

t

@W~ t8!#1/2dt8G
1CbexpF2E

t*

t

@W~ t8!#1/2dt8G J , ~40!

and the second being slowly varying continuum approxima-
tion ~SVCA! @30#. The SVCA can be invoked whenGs is
large relative to the effective bandwidth of the laser pulse.
For many direct dissociations the absorption spectrum ex-
tends over thousands of wave numbers@38# and it is justifi-
able to approximateF(t2t8) of Eq. ~18! by letting Gs→`.
In order to increase all theGs widths at a uniform rate we
parametrizeGs as

Gs5Ggs , ~41!

and letG→`. We obtain that

F~ t2t8!52p(
s

asexp@~2 iEs2Gs/2!~ t2t8!/\#

→
G→`

2p\m̄2d~ t2t8!, ~42!

where, using Eqs.~41! and ~19!,

m̄25(
s8s

2ms8s
2 gs8

gs1gs8
. ~43!

FIG. 1. Temporal evolution of the continuum coefficientbE,n
for different pulse intensities at the center of the absorption spec-
trum. The spectral width~Gs! is fixed at 2000 cm

21, the laser band-
width is fixed at 120 cm21, and the dipole strength~as! is fixed at
2.831023. ~a! Peak-height50.01 a.u.,~b! peak height50.1 a.u.,~c!
peak height50.5 a.u.
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The SVCA approximation of Eq.~42! greatly simplifies
Eq. ~11!, which now becomes

db1
dt

52
p

\
m̄2«2~ t !b1~ t !, ~44!

i.e.,

b1~ t !5b1~2`!expS 2
p

\
m̄2E

2`

t

«2~ t8!dt8D . ~45!

A ‘‘slowly varying’’ continuum acts as a perfect absorber,
since in this approximationb1(t) decreases monotonically
with time. When the structures in the continuum are nar-
rower than the effective bandwidth of the pulse~which de-
pends on its frequency profileand its intensity!, we expect
the SVCA approximation to break down and Rabi oscilla-
tions to emerge.

IV. COMPUTATIONS

A. Transition probabilities to a continuum

We first present studies of the effect of the pulse intensity
on the transition probabilities to a slowly varying continuum.
We consider a continuum composed of single broad Lorent-
zian of widthGs52000 cm21, excited by a 120-cm21-wide
pulse ~i.e., a pulse of;80 fsec duration!. The center fre-
quency of the pulse is tuned to the center of the continuum
~Ds50!.

In Figs. 1~a!–1~c! we present theubE,n(t)u continuum co-
efficients as a function of time, at different intensities. The

FIG. 2. ~a! Real and~b! imaginary parts of thebE,n continuum
coefficients. The spectral and pulse parameters are as in Fig. 1~c!.

FIG. 3. Temporal evolution of the continuum coefficients at the
center of the absorption spectrum for a narrow absorption band,
Gs550 cm21. Other parameters are pulse’s bandwidth5120 cm21,
pulse’s peak height50.05 a.u., transition dipole strength
~as!55.731025.

FIG. 4. Bound-state coefficient~b1! and center-line continuum
coefficient (bE,n! for a pulse whose bandwidth is 250 cm21. Other
parameters are as in Fig. 3. The laser center frequency is in reso-
nance with the spectral line center, hence,b1 is real andbE,n is
imaginary.
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onset of off-resonance processes is typified by a nonmono-
tonic behavior: At off-pulse-center energies, the continuum
coefficients rise and fall with the pulse, with the effect be-
coming more pronounced the further away from the line cen-
ter the continuum energy levels are. In the far wings of the
pulse the continuum coefficients are zero at the end of the

pulse, giving rise to a pure transient, otherwise known as a
‘‘virtual’’ state.

As we increase the field strength, the continuum line
shapes@given asubE,n(t5`)u# broaden. This broadening is
due to saturation of the continuum population, which is
greater for continuum states near the pulse center than at the

FIG. 5. Temporal evolution of the continuum populations for a
bound-free spectrum comprised of two Lorentzians, withm1,n

5m2,n51, G15G2520 cm21, D15240 cm21, D2540 cm21. The
pulse bandwidth is 100 cm21. ~a! The weak-field absorption spec-
trum; ~b! ubE,nz

2 as a function oft andE, for «L5531023 a.u.;~c!
The same as in~b!, for «L5531022 a.u.

FIG. 6. Temporal evolution of the continuum populations for a
bound-free spectrum comprised of two overlapping resonances.~a!
The weak-field absorption spectrum;~b! ubE,nu

2 as a function oft
and E, for «L5531023 a.u.; ~c! The same as in~b!, for
«L5531022 a.u.
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pulse wings. For example, for the relatively weak pulse of
peak height of 0.01 a.u., shown in Fig. 1~a! the continuum
linewidth is;100 cm21, i.e., roughly that of the pulse itself.
As we increase the pulse field to the peak value of 0.1 a.u.,
the continuum lines broaden beyond the pulse linewidth, as-
suming the width of;200 cm21. At peak-heights of 0.5 a.u.
the continuum linewidth is already;300 cm21.

The slowly varying continuum is almost a perfect ab-
sorber. Therefore, as we increase the pulse intensity we
empty the initial state~c1! faster and the dissociation or ion-
ization is over before any recurrence can occur. For example,
in the 0.01 a.u. peak-height case, the continuum levels reach
their final population by the time the pulse peaks~at t5t0!.
This time gets successively shorter as we increase the field
strength. This shortening of the lifetime of the initial state,
which causes the pulse to be effectively shorter, also contrib-
utes to the power broadening of the continuum lineshapes.

It is also of interest to look separately at the real and
imaginary parts ofbE,n(t), shown in Figs. 2~a! and 2~b! for

Ds50. We see that at off-resonance center frequencies the
real and imaginary parts oscillate with a frequency of
;(vE,12vL). This result follows Eq.~7! if we neglect the
decay ofb1(t8) with time.

We conclude that while a slowly varying continuum leads
to a truly irreversible process, in the sense that the ground
state decays monotonically in time@see Eq.~45!#, the con-
tinuum states do not evolve monotonically in time: As we
move away from the pulse center, the continuum coefficients
tend to increasingly overshoot their final values during the
first part of the pulse, resulting in their more and more com-
plete depletion during the second part of the pulse. This trend
culminates in the completely off-resonance levels, which rise
and fall back to zero as the pulse progresses, forming pure
transients. The main difference between the response of a
slowly varying continuum to weak pulses relative to strong-
pulses is that for strong pulses the above processes are com-
pleted sooner in the history of the pulse. Basicallyb1 may be
completely zero a long time before the end of the pulse, after

FIG. 7. Comparison ofb1(t), the bound-state coefficient, obtained numerically and by the single Schro¨dinger-like equation for different
pulse amplitudes. Exact results, full line; single Schro¨dinger-like equation results, dotted line. The pulse bandwidth is 50 cm21. The spectrum
is composed of three resonances with,m1n5m2n5m3n51, G15G25G3520 cm21, D150 cm21, D25260 cm21, D3560 cm21 ~a!
«L5131023 a.u. ~b! «L5531023 a.u. ~c! «L5831023 a.u.
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which point, as follows from Eq.~7!, no further dynamics is
possible.

The situation is quite different for astructuredcontinuum.
Figure 3, where the strong-pulse-induced transition to a nar-
row continuum~Gs550 cm21!, is displayed, exhibits an in-
termediate behavior between a ‘‘flat’’ continuum and a dis-
crete set of levels. We see that ‘‘center line’’,vE,12vL'0,
levels display recurrences, or Rabi oscillations, similar,
though not identical, to those of discrete two-level systems.
In contrast, levels at the pulse wings rise and fall smoothly

with the pulse, as in the slowly varying continuum case.
The ground-state~b1! coefficient undergoes oscillations as

population is being shunted between the ground state and the
continuum states. Theb1 coefficient is plotted together with
the center-linebE,n coefficients in Fig. 4. We see that both
the center-line continuum levels and the ground state do not
complete even a single Rabi cycle during the pulse duration.
In common with discrete two-level systems, the oscillation in
each center linebE,n is in p/2 phase lag with respect to the
oscillation inb1.

FIG. 8. Time-dependent potentialW(t), andb1(t), the bound-state coefficient. Exact results, full line; uniform approximation, dotted
lines. The pulse bandwidth is 20 cm21 andms8s

2
51. ~a! Pulse amplitude«L50.005 a.u., spectral widthGs5100 cm21, distance from the

absorption centerDs50; ~b! «L50.01 a.u.Gs550 cm21, Ds50; ~c! «L50.01 a.u.,Gs520 cm21, Ds510 cm21; ~d! «L50.005 a.u.,Gs520
cm21, Ds50.
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We now extend the study of narrow-band continua by
looking at a continuum composed oftwodistinct diffuse fea-
tures. In particular, we concern ourselves with the way a
strong pulse may alter the line shapes of neighboring reso-
nances. In Figs. 5~a!–5~c! we study pulse absorption by a
sum of two Lorentzians. Because this case is obtained by
retaining only thes5s8 terms in Eq. ~17!, the bound-
continuum transition-dipole matrix elements, shown in Fig.
5~a! by themselves show no interference. However, as shown
in Figs. 5~b! and 5~c! as we switch on the pulse, the two
initially separated lines begin to merge. For moderate laser
powers@Fig. 5~b!#, this merging is a signature of saturation:
the levels at the center of the absorption lines cease to rise
while the population of levels between the line centers con-
tinues to increase. At higher laser intensities@Fig. 5~c!#, we
see the effect of the Rabi cycling: Levels at the line centers
oscillate at a higher frequency than levels at the wings of the
lines. It may happen, as shown in Fig. 5~c!, that the line-

center levels execute a 2p cycle and are empty at the end of
the pulse, whereas levels away from the line centers execute
only ap cycling and are highly populated. Thus, under the
action of the strong laser pulse the lines are reversed: the
absorption is strongest between the lines and is effectively
zero at the resonance~Es) positions.

As shown in Figs. 6~a!–6~c!, the interference is even
more dramatic if we allow the resonances to interfere in the
weak-field limit by retaining thesÞs8 terms in Eq.~17!. We
see that as the field becomes strong, the optically induced
interference between the lines causes them to cancel the ab-
sorption at the end of the pulse for levels midway between
the two line centers. As a result, we see three holes in the
continuum populations: Two transparent lines at the center
of the resonances due to 2p cycling of these levels, accom-
panied by a third transparent line residing midway between
the resonances, due to destructive interference between the
resonances.

FIG. 9. Left-hand side: The exactb1 coefficient~full line! and the zero-order WKB approximation~dotted lines!. Right-hand side: the
‘‘time-dependent potential’’W(t) and uW8(t)/[W(t)] 3/2u when the laser is tuned to the center of the absorption spectrum. Pulse amplitude
50.01 a.u., pulse bandwidth550 cm21. ~a! Gs5500 cm21, ~b! Gs5100 cm21, ~c! Gs550 cm21.
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B. The Schrödinger equation, uniform, WKB, and slowly
varying continuum approximations

In this subsection we examine how the single Schro¨dinger
equation approximation@Eq. ~29!# and other approximations
derived from it, in particular the Uniform approximation,
compare with the solution of the exact set of equations@Eqs.
~20! and~21!#. In addition, we compare the uniform method
to the simpler but more approximate zero-order WKB and
SVCA methods.

We first study the reduction of the exact set of first-order
differential equations@Eqs. ~20! and ~21!# to the single
‘‘Schrödinger-like’’ second-order equation, for an absorption
band comprised of several resonances. As shown in Fig. 7, if
the field is low to moderately high, so thatb1 does not decay
too much, the ‘‘Schro¨dinger-like’’ equation works extremely

well. At very high fields, when the ground state begins to
undergo Rabi oscillations, the approximation begins to break
down.

For a single resonance the ‘‘Schro¨dinger-like’’ equation is
exact and we can use it to study further approximations
based on it. In Fig. 8~a! we demonstrate the goodness of the
uniform approximation at the center of the absorption line
~D!. This is a case in which there is only one effective real-
axis turning point. Although the time-dependent potential,
W(t), shown in Fig. 8~a! possesses two turning points, one at
t*'20.5 psec and one att*'0.5 psec, thet*'0.5 psec
turning point is not expressed because at that time theb1
coefficient is essentially 0. Therefore, the problem maps to a
single turning point uniform approximation, which, as shown
in Fig. 8~a!, faithfully reproduces the numerical solution of
Eq. ~15!. As we increase the field intensity, a case shown in
Fig. 8~b! the c1 population begins to show an oscillatory
behavior. As shown in Fig. 8~b!, this is still a single real-axis
turning point case and the uniform approximation reproduces
perfectly the oscillatory pattern.

In Fig. 8~c! we display a case with relatively smallGs and
a D detuning, for whichW(t) possess only complex turning
points. In the case shown in Fig. 8~c! the turning point occurs
at t*521.096720.1083i . Here, too, we obtain excellent
agreement between the uniform approximation and the exact
numerical solutions.

When a second turning point exists while the laser is still
on, we need to construct the uniform Airy solutions around
each turning point and match the two solutions at some in-
termediate point. Such a case is shown in Fig. 8~d!. Com-
parison with the exact solution demonstrates that the uniform
approximation, while not perfect, works quite well even in
this case.

The uniform approximation is more complicated than the
primitive WKB method. In most situations it is the only ap-
proximation that can be used because it correctly generates
solutions across the problematic turning point region~s!. In
contrast, the zero-order WKB solutions of Eq.~40! do not
conserve flux and the first-order WKB solutions diverge at
the turning points@due to theW(t)21/4 term#. To show the
need for the uniform approximation, a series of computations
based on the zero-order WKB approximation for different
absorption band widths is displayed in Fig. 9 and compared
to the exact results. We see that the zero-order WKB method
yields inferior results as compared with the uniform approxi-
mation, although at times the zero-order WKB is a reason-
able approximation. It has an additional flaw in that it criti-
cally depends on the choice of the initial integration time.

The residual term in the zero-order WKB equation, given
as 2udW/dtu/uW3/2u, can be shown to be roughly proportional
to G s

22. Hence, the error in the zero-order WKB approxima-
tion is expected to increase with decreasingGs . Thus, choos-
ing a set of pulse intensities such that the zero-order WKB
method works well forGs.500 cm21, we see that the quality
of the approximation deteriorates asGs dips below that value,
culminating in the complete breakdown of the approximation
whenGs<200 cm21. In contrast, the uniform approximation
remains valid for values ofGs well below 200 cm21.

A different limit of the uniform approximation leads to
the SVCA. In Figs. 10~a!–10~c! examine the effect of the
spectral width, at the center of the absorption spectrum~D

FIG. 10. The SVCA at different spectral widths, forms8s
2

51,
«L50.01 a.u., pulse bandwidth550 cm21, at the center of the ab-
sorption spectrum. Exact results are shown in full lines and approxi-
mation in dotted lines.~a! Gs510 cm21, ~b! Gs550 cm21, ~c!
Gs5500 cm21.
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50!. The SVCA, which follows the exact solution faithfully
for large values ofGs , begins to fail asGs is decreased.

V. CONCLUSIONS

In this paper we have recast the problem of one net pho-
ton absorption to a continuum from a strong laser pulse as a
single integral equation. We have shown that for a certain
class of absorption spectra, this integral equation can be con-
verted to a second-order Schro¨dinger-like differential equa-
tion, which can be accurately solved in an essentially closed
form using the semiclassical uniform approximation. Using
this methodology we have shown that a transition to con-
tinuum is not irreversible if the continuum possesses features
narrower than the effective width~reflecting the pulse
strength and width! of the pulse. A smooth transition of a
given continuum from a perfectly absorbing entity to a set of
levels, each executing Rabi oscillations with a precursor
bound state, was shown to occur as we increase the pulse
strength. As a result of such oscillations, spectral migrations
and formations of transparent lines, are shown to occur. The
field-induced interferences between neighboring lines has
also been also investigated.

In the present work, the basis set of material states has
been used. The advantage of this basis set is that it tells us, at

every given instant, what is the energetic~kinetic and other-
wise! distribution of the material system under the action of
the laser field. It also tells us what the material wave packet
is doing at any instant of time, a quantity that is also the
essence of many purely numerical studies published so far,
since all material wave-packet motion is contained in the
distribution of thebE,n coefficients and the properties of the
material basis states. Knowledge of the motion of the mate-
rial wave packet allows us to predict transient quantities as-
sociated with spontaneous emission, such as fluorescence
and Raman scattering@30,35#.

This work clearly demonstrates that the reversibility or
irreversibility of a process is a clear function of the mode of
preparation of the process. A continuum which appears per-
fectly flat to a nsec pulse, giving rise to a monotonic decay of
the ground state, may appear ‘‘bumpy’’ to a fsec pulse, caus-
ing as a result transitions from the continuum levels back to
the ground precursor state. These conclusions have implica-
tions to other sources of irreversibility in nature.
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