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Reversibility of bound-to-continuum transitions induced by a strong short laser pulse
and the semiclassical uniform approximation

Einat Frishman and Moshe Shapiro
Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel
(Received 11 March 1996

We show that the problem of the net absorption of one photon from a strong laser pulse in a bound-to-
continuum transition can be recast as a single integral equation. For a certain class of absorption spectra, this
integral equation can be converted to a second-order 8iciyer-like differential equation, which can be
accurately solved in an essentially closed form using the semiclassical uniform approximation. With the aid of
the integral equation and the uniform solutions we find that for strong short pulses, irreversible transitions to
a perfectly absorbing continuum in the weak-field regime become reversible. In particular, continuum levels
may execute Rabi oscillations with the precursor bound state. These oscillations occur at different frequencies,
depending on the continuum energy. As a result, spectral migrations and formations of transparent lines may
occur. Field-induced interferences between neighboring lines is also investigai€&0-294{6)10010-X]

PACS numbd(s): 32.80.Rm, 42.50.Vk

[. INTRODUCTION ity has not been established. In the present paper we examine
this point by developing an exact theory of the one-photon
Calculations of molecular photodissociation have beerlissociation and ionization problem. As in the SVCA, our
confined in the past to a large extent to the weak-field regiméheory builds on the same material matrix elements used in
[1-9]. The methodology used in these calculations constithe weak-field theories while making no approximation be-
tutes a hybrid of exact propagation methods to deal with th¢ond the rotating-wave approximation. This is done by re-
(strong molecular interactions and perturbative approache§2sting the problem as an integral equation in one temporal
to deal with the(assumed weakfield-matter interactions. dimension, whose numerical solution can be attained with
The situation has changed in the last few years with th&/€ry modest computational efforts. We then show that for a
desire of theorists to treat with greater precision moleculal ertain class of absorption spectra, this integral equation can

dissociation andatomig ionization processes induced by e converted to a second-order differential equation that is

strong laser pulses. Thus, theories which treat the photodi;%om.(.m.mrph'C to th_e one s_patlal—dlmensmn tlme—mdependgnt
.2 . Lo chralinger equation. Using the arsenal of methods avail-
sociation of simple moleculdd0-2Q and ionization of at-

) ) able for solving such equations, and in particular the uniform
oms[21-27 in a nonperturbative way have been deveIOpEdtechnique[SZ,S?J, this equation can be readily solved in an

.The excitation of continuum-state resonances_has pee sentially analytic manner. With the aid of the integral
discussed for a sharply turned-on constant amplitude fieldg ation and the uniform solutions we investigate the vari-

[6,10,28,29. However, the cw field problem is different o g tactors affecting strong pulse-induced one-photon transi-
from the smooth pulse problem to be treated here. Not onlyjons to multiple continua.

the is mathematical treatment more complicated in the latter
case, the physical outcome of smooth pulse excitation are
quite different.

Most of the methods based on the above photodissocia-
tion and ionization theories are purely numerical. They es- We consider a molecule breaking apart, or being ionized
sentially constitute the brute-force solution of the time-as a result of the action of a laser pulse of electric field
dependent or time-independent field-matter Sdimger R
equation. As such, they do not make use of the availability of g=ge'(t)cog wt). (1)
weak-field methods and the abundance of material matrix
elements generated in weak-field calculations. Recentlfrhe total Hamiltonian is
[30,31, we have shown that by invoking the “flat” or
“slowly varying” continuum approximatiofSVCA) we can Hig=Hp— - £(1), 2
utilize weak-field matrix elements to obtain the strong-field
one-photon ionization or dissociation rates. Of particular im-whereH,, is the radiation free material Hamiltonian apds
portance is that the method is capable of yielding thethe transition dipole operator.
product-state distribution of fragments resulting from the dis- Assuming that the field is in near resonance with transi-
sociation of molecules. In this way one can obtain the strongtions from the initial bound state; to the {E,n”) con-
field photodissociation yields at the cost of the weak-fieldtinuum of states, where boily and J{E,n") are eigenstates
calculations. of Hy,

While it was anticipated that for intermediate-to-strong
fields the SVCA method is quite accurate, its range of valid- [E;—Hu]=[E—Hu]¥(E,n")=0, 3

Il. THEORY OF PULSED ONE-PHOTON TRANSITIONS
TO A CONTINUUM
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we expand the full time-dependent wave function as A(E)=FS/[(E—SS)2+F§/4], (12
[2,34,35,

_ and using the fact that>t’, we have that
W (t)=by(t) yrexp —iEqt/h)

exdio (t—t)F(t—t")=fl(t)f (1), (13
+§n) JdEbE,n(t)z//(E,n*)exp(—iEt/h). (4)

where
Insertion of Eq.(4) into the time-dependent Schtinger f2(t)=V2mexd Fixd], (14)
equation,
andy;=A.—i(I'g¢/2), whereA ,=(,— E))/h—w,_ is the de-
ihoW/gt=HW(t), (5  tuning of the laser central frequency relative&a
. . ] Under these circumstances E41) transforms into two
and use of the orthogonality of the eigenfunctionsHyfi,  coupled first-order differential equations,

results in a set of first-order integrodifferential equations for

the b; andbg , coefficients, db; i
’ ot = 7 £ (DB(D),

., dby
i G-~ [ dES walEmenbe 0 |
dt n ' dBg i B
Xexd —i(wg1— o )t], (6)
1 . which can be solved in a routine wglthough care must be
be n(t)= & ,u(E,n|l)£ dt’e(t")by(t") ';ie(\)kn?n to renormalize the exponentially growihg(t) func-
. , In general F(t—t") is not separable but it is possible to
Xexfli(wg 1~ @ )t']. @) transform Eq(8) to a discrete set of differential equations by
In the above, w(E.n1)=(HE.n)|uln), w1 some variant of the Laplace transform method. Our variant

starts by expressing the dipole moment matrix elements

=(E—E,)/h. Only the “rotati e” terms have bee : )
( 1) y rotating wav fms hav n w(1|E,n) as a sum ofoverlapping or isolatedresonances,

retained.
We can solve the above set of integrodifferential equa- N T2

tions by first substituting Eq(7) in Eq. (6), resulting in an w(lEn=3 Msn” s ' (16)
equation involving théb,(t) coefficient only, &1 E-E+ily2

db;, -1 5 t where ug, are derived by fitting Eq(16) to a given spec-

rran f dE; |w(E,n[1)| S(I)Jlmdt's(t') trum. The spectrum now becomes

Xexd —i(wg 1~ o) (t=t")]by(t"). (8 AE)=> |w(1|E,n)|?
n

The integrodifferential equation ibh; can be simplified by 5
first calculatingF(t—t'), the Fourier transform of the ab- .S pg LTl

sorption spectrum (E=&+iT2)(E-Ey—iTg/2)"

17

s's

F(t—t’)=f dEAE)exd —iwg 1(t—t")], (99  Where ,u,i,SEEn,LLsn,u,:,n. If we only keep the diagonal
(s=s') termsA(E) becomes a sum of Lorentzians. The off-
diagonal terms allow for interferences between overlapping
resonances; hence the form of Ef7) is quite general.
The Fourier transform ofA(E) [remembering that in Eq.
A(E)=2, |u(E,n|1)[2. (100  (11) t>t'] now becomes
n

whereA(E), the absorption spectrum, is given as

Knowledge ofF(t—t"), which may be termed the “spectral exfio (t—t)]F(t—t")=27>, aexd —ixst—t")]

autocorrelation function’[30,31,35,3§ allows us to rewrite s

Eq. (8) as

=2 af (DS (t), (18)

db, -1 s(t)ft dt’s(t')F(t—t') )

dt — #° - where

Xexgio (t—t")]b(t"). (1)) s _mi,srsrs/m
There are a number of spectral shapes for wii¢ch-t') %= v & &~ (It Tg)/2

is separable. For example if the spectrum has a Lorentzian

shape, andf ; are defined in Eq(14).

(19
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With Eqg. (18) we can transform Eq8) into a discrete set L[t
of coupled differential equations, c(t)=ex;{ zf gl(tl)dt,)bl(t)
db; i it
d_t1: 7 23: ass(t)f;(t)BS(t), (20 =s(t)_1/2ex[(§ J X(t’)dt’)bl(t). (28
dB, | We obtain a Schudinger-like equation ire(t),
G =7 eOfc(ObyD), s=1,...N. (@D -
W—W(t) c(t)=0, (29

These equations can be solved in a routine way using a va-
riety of propagation methods of first-order differential equa-,,
tions. Having obtainedb,(t), the continuum coefficient
be,, can be computed as a straightforward quadrature ac-  \y(t)=1g!(t)+ 2g2(t) — go(t)
cording to Eq.(7).

here

de(t) d?Ine(t) . 1 (d Ine(t) . ) )2
=— — —i
Ill. THE UNIFORM AND WKB APPROXIMATIONS 2dt dt? 4 dt X
When the features in the continuum are not much sharper 27,
than the laser bandwidth, or the separation between the reso- TR2® (Da. (30)

nances is larger than the laser bandwidth, the above set of

coupled equationfEgs. (20) and (21)] can be reduced to a The “time-dependent potential,W(t), is analogous to

single second-order equation. By differentiating E2)) we  minus the local momentum squaredp?(x), of the time-

obtain that independent Schdinger equation. W(t) can be complex,
with the imaginary part depending (== aAf JBy) the

d?by(t)  d Ing(t) db,(t) 2med(t) average detuning of the laser’s center frequengcywith re-

dt® dt dt #2 E ashy (1) spect to the various resonances that contribute to continuum.

S
For a single resonance E@3) is an identity, and we of

&(t) N course know what thetime-independent y function is.
h 4 asxsfs (1)Bs(D), (22 When there are more resonancel) cannot be determined
without knowingb,(t), since by Eq(21),
where we have used the explicit form bf [Eq. (14)]. We s e )
now definex(t) as, ()= Seasxsfs [ldt e (t')fg (1)by(t") @31
Ssasfs Jldt'e(t)fg (1)by(t')

Es as)(sf;(t)Bs(t):X(t)zs asf{By(1). (23 | practical applications we find that we can approximate
x(t) as
using which, we obtain from Eq$20) and (22), that

d2b, (dlns(t) _ )) db,
= ——I —_—

EsasXsf;ftdt,s(t,)fs_(t,)
Ssagfd [tdte(t)f ()

x(O)=~x°(t)= (32)

2 )
— 7€ (t)ab,, (29

dt? dt dt .
Thus, for a Gaussian pulse envelope centered afgout
wherea=3 . )2
This second-order differential equation in time is homo- = — 0
; . . >S4 . s(t)=¢ ex ; (33
morphic to a one-dimensional time-independent Sdimger 26
equation in a spatial variable. This can be easily seen by 0. . .
denoting we can calculatg” via the identity[ 35],
d Ine(t ‘ - 2.2
gu(t)=— 28( )+iX(t) 25) f dt'e(t’)fo (t")=7v2e 5 exp(— 6°xs)
t 7
xX{1+erf(t/l25—idxs)}. (34
2
Go(t)= 2= e’ (t)a, (26)  The time-dependent potential assumes the form
. —(t—tp) t—to\?] 27
writing Eq. (24) as W(t)= —g5 e eR | 55| |~z en
d2b1 dbl 2 2
it} — t—t 1/t—ty,
4@ T 910 5 T 9o(D)b1=0, 27) Xexp[—z(z—;) }_2(70_,)(0(0) _

and transformind,(t), according to (35
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In complete analogy to the case of the time-independent
Schralinger equation, we call time points satisfying the
W(t*)=0 equation, “turning points.” If there is only one
turning point, the solutions of Schidimger-like equatiofEq.

(29)] can be written to an excellent approximation in terms =
of the uniform regular and irregular Airy functions Aif 5 20
and Bi(T) [37],

T(H) \** . .
T(t)) 1CLAI(—T(1))+ CpBi(—T(1))}, 500"

(36)

(a)

Cuni() = (

where the complex argumefftis defined as
3 [t 23
T(t)z(E f \/—W(t’)dt’) , (37)
t*

andC, andC, are constants determined by the initial con- _
ditions, bg(—%)=1 andb/(—«)=0. If there are no turning 5
points on the real time-axis we choose the complex turning
point which is closest to the relevant time range.

The uniform approximation is the exact solution of the

equation

d2
W—W(t)— n(t))cum(t)=0, (38)
where
d2
n(t)=[T’(t)]1’Zaz[T’(t)]‘l’z- (39

()

It is an excellent approximation to E(R9), because usually
| 7(t)|<|W(t)|. If there is more than one turning point, the
Airy functions can still be use¢provided the turning points
do not coalesode by by writing the solutions of Eq.36) for
each time-interval containing a turning point and matching
these solutions and their derivatives across the time-
intervals. Usually no more than two turning points exist. 0
It is also of interest to use a number of simpler approxi-
mations: The first constitutes tlizero-ordey WKB approxi-

Ib
En

< /c/b ~7
J =500 _p¢

mation time (5520
t t FIG. 1. Temporal evolution of the continuum coefficidnt ,
bl(t)=exr{ —%J gl(t’)dt’“Caexp{f [W(t’)]l/zdt’} for different pulse intensities at the center of the absorption spec-
t trum. The spectral widtkl',) is fixed at 2000 cm?, the laser band-

width is fixed at 120 cri?, and the dipole strengtfi) is fixed at

t
+Cbexp{ — f [W(t’)]lfzdt’} ], (40) 2.8x1073. (a) Peak-height0.01 a.u.(b) peak height0.1 a.u.,(c)
t* peak height0.5 a.u.

and the second being slowly varying continuum approxima-

tion (SVCA) [30]. The SVCA can be invoked whek is Fit—t) =272, aex(—i&—T2)(t—t")/#]
large relative to the effective bandwidth of the laser pulse. s

For many direct dissociations the absorption spectrum ex-

tends over thousands of wave numbfg8] and it is justifi- I—o
able to approximaté& (t—t’) of Eq. (18) by letting I's—oe. — 2mhplS(t—t'), (42
In order to increase all thE widths at a uniform rate we
parametrizd’ as where, using Eq941) and (19),
I=Tys, (41 212
MgrsVs!
;222 —Ts'sTS (43)

and letl’'—~. We obtain that os YsT Vs
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FIG. 2. (a) Real and(b) imaginary parts of thég , continuum
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The SVCA approximation of Eq42) greatly simplifies
Eg. (11), which now becomes

(44)
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FIG. 4. Bound-state coefficierib;) and center-line continuum
coefficient pg ;) for a pulse whose bandwidth is 250 th Other
parameters are as in Fig. 3. The laser center frequency is in reso-
nance with the spectral line center, henbe,is real andbg |, is
imaginary.

i.e.,
bl(t)=b1(—so)eX[{ - % ﬁzﬁ sz(t’)dt’) . (45

A “slowly varying” continuum acts as a perfect absorber,
since in this approximatiom,(t) decreases monotonically
with time. When the structures in the continuum are nar-
rower than the effective bandwidth of the pulaehich de-
pends on its frequency profilend its intensity, we expect
the SVCA approximation to break down and Rabi oscilla-
tions to emerge.

IV. COMPUTATIONS
A. Transition probabilities to a continuum

We first present studies of the effect of the pulse intensity
on the transition probabilities to a slowly varying continuum.
We consider a continuum composed of single broad Lorent-
zian of widthT'¢=2000 cnm?, excited by a 120-cm-wide

FIG. 3. Temporal evolution of the continuum coefficients at thePulse (i.e., a pulse of~80 fsec duration The center fre-
center of the absorption spectrum for a narrow absorption bandjuency of the pulse is tuned to the center of the continuum

;=50 cmi L. Other parameters are pulse’s bandwidi20 cm %,
pulse’'s peak height0.05 a.u., transition dipole strength
(ag)=5.7x107"5,

(ASZO).
In Figs. I@)—1(c) we present thébe (t)| continuum co-
efficients as a function of time, at different intensities. The
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onset of off-resonance processes is typified by a nonmongulse, giving rise to a pure transient, otherwise known as a
tonic behavior: At off-pulse-center energies, the continuumi‘virtual” state.

coefficients rise and fall with the pulse, with the effect be-

As we increase the field strength, the continuum line

coming more pronounced the further away from the line censhapedgiven as|bg ,(t=)|] broaden. This broadening is
ter the continuum energy levels are. In the far wings of thedue to saturation of the continuum population, which is
pulse the continuum coefficients are zero at the end of thgreater for continuum states near the pulse center than at the
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FIG. 7. Comparison of,(t), the bound-state coefficient, obtained numerically and by the single @nges-like equation for different
pulse amplitudes. Exact results, full line; single Sctinger-like equation results, dotted line. The pulse bandwidth is 50-cfihe spectrum
is composed of three resonances Wiy, = ton=an=1, T1=I,=T'3=20 cm !, A;=0 cm%, A,=—60 cm!, A;=60 cm ! (a)
g .=1x10"% a.u.(b) £ =5%107% a.u.(c) & =8%10"° a.u.

pulse wings. For example, for the relatively weak pulse ofA;=0. We see that at off-resonance center frequencies the
peak height of 0.01 a.u., shown in Fig@althe continuum real and imaginary parts oscillate with a frequency of
linewidth is ~100 cm'%, i.e., roughly that of the pulse itself. ~(wg,1— ). This result follows Eq(7) if we neglect the

As we increase the pulse field to the peak value of 0.1 a.udecay ofb,(t") with time.

the continuum lines broaden beyond the pulse linewidth, as- We conclude that while a slowly varying continuum leads
suming the width of~200 cri %, At peak-heights of 0.5 a.u. to a truly irreversible process, in the sense that the ground
the continuum linewidth is already300 cm 2. state decays monotonically in tinjeee Eq.(45)], the con-

The slowly varying continuum is almost a perfect ab-tinuum states do not evolve monotonically in time: As we
sorber. Therefore, as we increase the pulse intensity wemove away from the pulse center, the continuum coefficients
empty the initial statéy,) faster and the dissociation or ion- tend to increasingly overshoot their final values during the
ization is over before any recurrence can occur. For exampldirst part of the pulse, resulting in their more and more com-
in the 0.01 a.u. peak-height case, the continuum levels reagtiete depletion during the second part of the pulse. This trend
their final population by the time the pulse pedlst=t). culminates in the completely off-resonance levels, which rise
This time gets successively shorter as we increase the fielahd fall back to zero as the pulse progresses, forming pure
strength. This shortening of the lifetime of the initial state,transients. The main difference between the response of a
which causes the pulse to be effectively shorter, also contribslowly varying continuum to weak pulses relative to strong-
utes to the power broadening of the continuum lineshapes.pulses is that for strong pulses the above processes are com-

It is also of interest to look separately at the real andpleted sooner in the history of the pulse. Basicaljymay be
imaginary parts obg (t), shown in Figs. 22 and 2b) for ~ completely zero a long time before the end of the pulse, after
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FIG. 8. Time-dependent potenti#/(t), andb4(t), the bound-state coefficient. Exact results, full line; uniform approximation, dotted
lines. The pulse bandwidth is 20 ¢thand ,ui,sz 1. (a) Pulse amplitudes, =0.005 a.u., spectral widtig=100 cni’?, distance from the
absorption centeA;=0; (b) &, =0.01 a.ul'sx=50 cm !, A;=0; (c) & =0.01 a.u.l's==20 cm %, A;==10 cm %; (d) & =0.005 a.u.I's=20

~1
cm =, A;=0.

which point, as follows from Eq(.7), no further dynamics is with the pulse, as in the slowly varying continuum case.
possible. The ground-statéh,) coefficient undergoes oscillations as
The situation is quite different for structuredcontinuum.  population is being shunted between the ground state and the
Figure 3, where the strong-pulse-induced transition to a nareontinuum states. Thie; coefficient is plotted together with
row continuum(I's=50 cm %), is displayed, exhibits an in- the center-linebg , coefficients in Fig. 4. We see that both
termediate behavior between a “flat” continuum and a dis-the center-line continuum levels and the ground state do not
crete set of levels. We see that “center linedg ;— w ~0,  complete even a single Rabi cycle during the pulse duration.
levels display recurrences, or Rabi oscillations, similarin common with discrete two-level systems, the oscillation in
though not identical, to those of discrete two-level systemseach center lindg , is in 7/2 phase lag with respect to the
In contrast, levels at the pulse wings rise and fall smoothlyoscillation inb;.



3318 EINAT FRISHMAN AND MOSHE SHAPIRO 54

1.2 L N
(o]
(a) =
™
S
A T
- )
»
- =
o~ \
- E g
~
=
=
) > , -10 : . L 0
~10 -0.6 -0.2 0.2 0.6 10 -06  -02 0.2 06

20

-7 4

—33

W(t) 10

-60

W(t) 0™

X T v T T T T T .
-1.0 -0.6 -0.2 0.2 0.6 -1.0 -0.6 -0.2 0.2 0.6

time (psec) time (psec)

FIG. 9. Left-hand side: The exab coefficient(full line) and the zero-order WKB approximatigdotted line$. Right-hand side: the
“time-dependent potential’'W(t) and \W’(t)/[W(t)]3’2| when the laser is tuned to the center of the absorption spectrum. Pulse amplitude
=0.01 a.u., pulse bandwidtB0 cmi 2. (@) I's=500 cm'?, (b) [',<=100 cm?, (c) ['x=50 cm L.

We now extend the study of narrow-band continua bycenter levels execute arxycle and are empty at the end of
looking at a continuum composed wVo distinct diffuse fea- the pulse, whereas levels away from the line centers execute
tures. In particular, we concern ourselves with the way anly a 7 cycling and are highly populated. Thus, under the
strong pulse may alter the line shapes of neighboring resaaction of the strong laser pulse the lines are reversed: the
nances. In Figs. ®-5(c) we study pulse absorption by a absorption is strongest between the lines and is effectively
sum of two Lorentzians. Because this case is obtained byero at the resonandé,) positions.
retaining only thes=s’' terms in Eq.(17), the bound- As shown in Figs. @)-6(c), the interference is even
continuum transition-dipole matrix elements, shown in Fig.more dramatic if we allow the resonances to interfere in the
5(a) by themselves show no interference. However, as showweak-field limit by retaining thes+s' terms in Eq.(17). We
in Figs. §b) and 5c) as we switch on the pulse, the two see that as the field becomes strong, the optically induced
initially separated lines begin to merge. For moderate laseinterference between the lines causes them to cancel the ab-
powers[Fig. 5b)], this merging is a signature of saturation: sorption at the end of the pulse for levels midway between
the levels at the center of the absorption lines cease to risghe two line centers. As a result, we see three holes in the
while the population of levels between the line centers coneontinuum populations: Two transparent lines at the center
tinues to increase. At higher laser intensitiesy. 5(c)], we  of the resonances due tarzycling of these levels, accom-
see the effect of the Rabi cycling: Levels at the line centerpanied by a third transparent line residing midway between
oscillate at a higher frequency than levels at the wings of théhe resonances, due to destructive interference between the
lines. It may happen, as shown in Figch that the line- resonances.
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1.0 T . I well. At very high fields, when the ground state begins to

undergo Rabi oscillations, the approximation begins to break
0.8 (a) t down.
. For a single resonance the “Schlinger-like” equation is

__ 064 r exact and we can use it to study further approximations
é ) based on it. In Fig. & we demonstrate the goodness of the
047 : i uniform approximation at the center of the absorption line

. | (A). This is a case in which there is only one effective real-

| ) axis turning point. Although the time-dependent potential,

0.0 ] . : , W(t), shown in Fig. 8a) possesses two turning points, one at

15 -1.0 05 00 05 1.0 t*~—0.5 psec and one dt~0.5 psec, the*~0.5 psec
turning point is not expressed because at that timebthe
coefficient is essentially 0. Therefore, the problem maps to a
single turning point uniform approximation, which, as shown
in Fig. 8@a), faithfully reproduces the numerical solution of

087 Eq. (15). As we increase the field intensity, a case shown in
06 Fig. 8b) the ¢, population begins to show an oscillatory
) behavior. As shown in Fig.(8), this is still a single real-axis
04 turning point case and the uniform approximation reproduces
’ perfectly the oscillatory pattern.
024 In Fig. 8(c) we display a case with relatively smal} and
a A detuning, for whichW(t) possess only complex turning
0.0 points. In the case shown in Fig(c® the turning point occurs
-15 at t*=—1.0967-0.1083. Here, too, we obtain excellent
agreement between the uniform approximation and the exact
o 1 . . . numerical solutions.

When a second turning point exists while the laser is still
084 . (c) | on, we need to construct the uniform Airy solutions around
) each turning point and match the two solutions at some in-
termediate point. Such a case is shown in Figl).8Com-

08 i parison with the exact solution demonstrates that the uniform
044 | approximation, while not perfect, works quite well even in
this case.
0.2 3 The uniform approximation is more complicated than the
primitive WKB method. In most situations it is the only ap-
0.0 . . . , proximation that can be used because it correctly generates
-5  -1.0  -05 00 0.5 1.0 solutions across the problematic turning point re¢sonin

time (psec) contrast, the zero-order WKB solutions of Eg40) do not
conserve flux and the first-order WKB solutions diverge at
the turning pointddue to theW(t) ~¥* term]. To show the

FIG. 10. The SVCA at different spectral widths, fpﬁ,s= 1, need for the uniform approximation, a series of computations
£,=0.01 a.u., pulse bandwid#b0 cmi %, at the center of the ab- based on the zero-order WKB approximation for different
sorption spectrum. Exact results are shown in full lines and approxiabsorption band widths is displayed in Fig. 9 and compared
mation in dotted lines(a) I's=10 cni’l, (b) I's=50 cm', (c)  to the exact results. We see that the zero-order WKB method
;=500 cni’ L. yields inferior results as compared with the uniform approxi-
mation, although at times the zero-order WKB is a reason-
able approximation. It has an additional flaw in that it criti-
cally depends on the choice of the initial integration time.

In this subsection we examine how the single Sdhnger The residual term in the zero-order WKB equation, given
equation approximatiofEq. (29)] and other approximations as 2dW/dt|/|W*?, can be shown to be roughly proportional
derived from it, in particular the Uniform approximation, to I'; 2. Hence, the error in the zero-order WKB approxima-
compare with the solution of the exact set of equatidtgs.  tion is expected to increase with decreadifhg Thus, choos-
(20) and(21)]. In addition, we compare the uniform method ing a set of pulse intensities such that the zero-order WKB
to the simpler but more approximate zero-order WKB andmethod works well fol’s>500 cmi %, we see that the quality
SVCA methods. of the approximation deteriorates Bsdips below that value,

We first study the reduction of the exact set of first-orderculminating in the complete breakdown of the approximation
differential equations/Egs. (20) and (21)] to the single whenTs<200 cm . In contrast, the uniform approximation
“Schrodinger-like” second-order equation, for an absorptionremains valid for values ofs well below 200 cm'™.
band comprised of several resonances. As shown in Fig. 7, if A different limit of the uniform approximation leads to
the field is low to moderately high, so that does not decay the SVCA. In Figs. 1(8)—-10(c) examine the effect of the
too much, the “Schrdinger-like” equation works extremely spectral width, at the center of the absorption spectfiim

B. The Schradinger equation, uniform, WKB, and slowly
varying continuum approximations
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=0). The SVCA, which follows the exact solution faithfully every given instant, what is the energgtnetic and other-

for large values of’y, begins to fail ad’y is decreased. wise) distribution of the material system under the action of
the laser field. It also tells us what the material wave packet
V. CONCLUSIONS is doing at any instant of time, a quantity that is also the

, essence of many purely numerical studies published so far,
In this paper we have recast the problem of one net phosjnce all material wave-packet motion is contained in the

ton absorption to a continuum from a strong laser pulse as gistribution of theby , coefficients and the properties of the
single integral equation. We have shown that for a certainnaterial basis states. Knowledge of the motion of the mate-
class of absorption spectra, this integral equation can be cofp| wave packet allows us to predict transient quantities as-
verted to a second-order Schinger-like differential equa-  sociated with spontaneous emission, such as fluorescence
tion, which can be accurately solved in an essentially closed; g Raman scatterin@0,35.

form using the semiclassical uniform approximation. Using  This work clearly demonstrates that the reversibility or
this methodology we have shown that a transition to conjrreversibility of a process is a clear function of the mode of
tinuum is not irreversible if the continuum possesses featureﬁreparation of the process. A continuum which appears per-
narrower than the effective widthireflecting the pulse fectly flat to a nsec pulse, giving rise to a monotonic decay of
st.rength a_nd widthof the pulse. A smoqth transition of a ihe ground state, may appear “bumpy” to a fsec pulse, caus-
given continuum from a perfectly absorbing entity to a set ofihg a5 4 result transitions from the continuum levels back to

levels, each executing Rabi oscillations with @ precursOkhe ground precursor state. These conclusions have implica-
bound state, was shown to occur as we increase the pul$@ns to other sources of irreversibility in nature.

strength. As a result of such oscillations, spectral migrations
and formations of transparent lines, are shown to occur. The
field-induced in_terfergnces between neighboring lines has ACKNOWLEDGMENT
also been also investigated.
In the present work, the basis set of material states has The Israel Science Foundation of the Israel Academy is
been used. The advantage of this basis set is that it tells us, ttanked for supporting this paper.
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