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We consider a mixture of resonant two-level molecules under velocity-selective excitation and a buffer gas.
The corresponding kinetic equations are augmented by a strong-collision model with free parameters. We
obtain the equilibrium velocity distribution functions of the resonant and buffer components. We then use the
Boltzmann kinetic equations to derive theH-theorem analog for this mixture~valid for arbitrary values of the
collision ratesn and the spontaneous decay rateg! and discuss the implications for the stability of the
stationary solutions.@S1050-2947~96!07010-2#

PACS number~s!: 34.50.Rk

I. INTRODUCTION

For more than a decade, kinetic phenomena arising in
gases under velocity-selective excitation have been the sub-
ject of many studies~see, in particular, Refs.@1–10#!. When
the momentum relaxation ratesne for the excited andng for
the ground-state molecules are different, the macroscopic
state of the gas changes entirely. Macroscopic gas flows can
arise, as well as pressure and temperature anisotropy and
spatial temperature and density nonuniformity. Recently, the
possibility of the existence of nonstationary regimes and the
oscillatory dynamics in these conditions has been discussed
@11,12#. These studies make the problem of the stability of
the stationary solutions obtained under velocity-selective ex-
citation quite important. This problem has been partially re-
solved for a single-component resonant gas in the case when
the rate of spontaneous relaxationg is much higher than the
frequencyn of velocity-changing collisions,g @n. In this
situation, it is possible to show@4,5# that a relation similar to
the usualH theorem@13# holds, which provides a criterion of
stability. However, for the caseg <n, the problem remains
unsolved. Meanwhile, the latter situation is most typical for
molecular vibrotational transitions where many of the experi-
ments on the velocity-selective excitation are being done.
The main purpose of the present work is to provide a con-
sistent description of the stationary state of a mixture of a
resonant molecular gas and a buffer gas and derive a crite-
rion for its stability.

Many different approaches have been used to model the
collision kernel in the Boltzmann kinetic equations to de-
scribe the kinetic effects occurring due to velocity-selective
excitation. Besides the strong-collision model@3#, those in-
clude, in particular, the Keilson-Storer model@7# and the
Bhatnagar-Gross-Krook model@9#. In the present study we
use the model of strong collisions with free parameters~the
FPSC model! @4,5#. A particular reason why, in spite of the
availability of results obtained in more sophisticated models
@7,9#, the FPSC model seems to be worth examining is its
physical simplicity. Thus results obtained in this model can

provide a basis and a test for any approximate and qualitative
derivations.

Light-induced kinetic phenomena are very sensitive to the
changes in the collisional cross sections and can therefore be
used to study the effect of external fields on the molecular
collisions. Also, recently it has been demonstrated that light-
induced kinetic effects can play a significant role in astro-
physical processes@14#, where gravitation is important. In
these situations, external fields could affect the resulting spa-
tial distributions of particles. Thus it is important to take into
account also the possible acceleration of molecules in an
external field. In order to further broaden the applicability of
our results, we take into consideration the quenching colli-
sions and collisions in which molecules are promoted into
the excited state, in addition to the elastic collisions.

The organization of the paper is as follows. In Sec. II we
introduce the Boltzmann kinetic equations and the collision
model and then we obtain the equilibrium velocity distribu-
tion functions of the resonant and buffer components. In Sec.
III we use the above kinetic equations to derive the
H-theorem analog for the caseg &n and discuss the impli-
cations for the stability of the stationary solutions. In Sec. IV
we give a brief conclusion.

II. KINETIC EQUATIONS AND THE MODEL
OF STRONG COLLISIONS
WITH FREE PARAMETERS

In the present work we use the FPSC model@4,5#. In this
model, it is assumed that collisions shape the velocity distri-
butions f e~v! of excited molecules andf g~v! of nonexcited
resonant molecules towards a nonequilibrium Maxwellian

W~v!5S a8

p D 3/2exp@2a8~v2V8!2#. ~1a!

Similarly, the velocity distributionf b~v! of the buffer gas is
shaped towards another nonequilibrium Maxwellian
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Wb~v!5S ab8

p D 3/2exp@2ab8~v2V8!2#. ~1b!

Here the momentary values of the velocity shift and energy
parametersV8, a8, andab8 should be determined assuming
particle-number, momentum, and translational energy con-
servation~neglecting the momentum and energy transferred
from the radiation field!. In this model, the Boltzmann ki-
netic equations are of the form

d fg,e
dt

[
] f g,e

]t
1v•

] f g,e
]r

1a•
] f g,e
]v

5~ng,e8 Ng,e8 1nq,T8 Nq,T8 !S a8

p D 3/2e2a8~v2V8!2

2@ng,e8 1nT,q8 1gg,e8 1Q~v!# f g,e

1@ge,g8 1Q~v!# f e,g ~2a!

d fb
dt

[
] f b
]t

1v•
] f b
]r

1a•
] f b
]v

5nbNb8~ab8/p!3/2e2ab8~v2V8!22nbf b . ~2b!

Herea[F/m is the acceleration of a molecule in the external
field, indicese andg correspond to the excited and the non-
excited resonant molecules, respectively, while the indexb
corresponds to the buffer-gas molecules. Equation~2a! con-
tains a velocity-selective optical pumping term, with the
velocity-dependent excitation rate

Q~v![E BM~v!$G2/@G21~v2v02k•v!2#%dv

@whereB is the Einstein coefficient,M ~v! is the laser spec-
tral intensity distribution,v0 and G are the resonance fre-
quency and homogeneous absorption linewidth, andv is the
radiation frequency#, and the relaxation terms, wheren8g,e~v!
are the rates of velocity-changing collisions that proceed
without the change in the internal state of the molecules,
nq8(v) is the rate of quenching velocity-changing collisions,
nT8(v) is the rate of velocity-changing collisions in which
molecules are promoted to the excited state;ge8(v) is the rate
of decay of the excited state resulting from spontaneous
emission and other processes that are not accompanied by
the change in the molecular velocity~such as resonant en-
ergy transfer! andgg8(v) is the rate of molecular excitation in
the latter processes. Equation~2b! for the buffer gas has only
the collision term on its right-hand side.

Distribution functionsf e , f g , and f b must satisfy the fol-
lowing conditions resulting from the laws of conservation of
number of particles, momentum, and energy:

E ~ f g1 f e!d
3v5N , ~3a!

E vF ~ f g1 f e!1
mb

m
f bGd3v5SN1

mb

m
NbDV; ~3b!

E v2F ~ f g1 f e!1
mb

m
f bGd3v5N~3vT

21V2!

1
mb

m
Nb~3vbT

2 1Vb
2!,

~3c!

E f bd
3v5Nb . ~3d!

Here N and Nb , V and Vb , and vT[~2a!21/2 and
vTb[(2ab)

21/2 are the number densities, macroscopic ve-
locities, and mean thermal velocities of the resonant mol-
ecules and the buffer-gas molecules, correspondingly, anda
andab are the parameters of the Maxwell distributions of the
resonant and buffer gases before the laser was switched on.
In addition to the conditions Eqs.~3a!–~3d!, parameters
Ng,e,b8 andNq,T must satisfy the conditions of conservation
of number of particles in collisions:

E ng,e,b8 @Ng,e,b8 W~v!2 f g,e,b#d
3v50, ~4a!

E nq,T8 @Nq,T8 W~v!2 f e,g#d
3v50. ~4b!

Thus, for eight free parameters~Ng,e,b8 , Nq,T , V8, a8, and
ab8! we have a system ofnine self-consistency equations~3!
and~4!, which might therefore seem incompatible. However,
if we add together the right-hand side and left-hand side of
Eqs. ~2a!, integrate over velocities, and use the continuity
equation, we obtain the equality

(
i5e,g

E n i8@Ni8W~v!2 f i #d
3v

1 (
i5e,g; j5q,T

E n j8@NjW~v!2 f i #d
3v

5
dN

dt

50. ~5!

According to Eq.~5!, Eqs.~4a! and ~4b! are linearly depen-
dent and thus the system of Eqs.~3! and ~4! is compatible
~the number of linearly independent equations is equal to the
number of unknowns!.

Equation ~2a! yields the stationary, spatially homoge-
neous solution
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f g,e5
~ne,g8 nq,T8 1Q!ng,e8 Ng,e8 1~ge,g8 1Q!~nT,q8 NT,q8 1ne,g8 Ne,g8 !1~ne,g8 1nq,T8 1ge,g8 1Q!nq,T8 Nq,T8

~ne81nq8!~ng81nT8 !1~ne81nq8!~gg81Q!1~ng81nT8 !~ge81Q!
W~v!. ~6!

In the case when

nq8~v!

ne8~v!
5const,

nT8~v!

ng8~v!
5const ~7!

one can see thatNT85Ng8 andNg85Ne8 . In this case Eq.~6!
yields

f g5
~11u1k!Ng81b~11k!Ne8

11u1bbg1~11b!k
W~v!, ~8a!

f e5
~bg1k!Ng81~bbg1u1bk!Ne8

11u1bbg1~11b!k
W~v!, ~8b!

where

k[
Q~v!

ge
, b[

ne
ng
, bg[

gg

ge
,

u[
ne
ge

2
ng
ge

2b
nT
ne

[
ngne2ngnq2nenT

ngge
[

n2

ngge

ng,e[ng,e8 1nT,g8 , ge,g[gg,e8 1nT,q8 , nT,q[nT,q8 .

Subsequent analysis in this section will be performed for the
case when

ng,e,T,q~v!5const. ~9!

If the conditions of Eq.~9! are met, Eqs.~4! yield

NT,q8 5Ng,e8 5Ng,e[E f g,ed
3v, ~10!

whereNg,e are the total number densities of the ground-state
and excited molecules. Thus, in order to determine the con-
stantsNg,e8 5Ng,e for the determination off g,e from Eqs.~8a!
and ~8b!, it is sufficient to find their ration[Ne/Ng . From
Eq. ~6! we find

E ~ge1Q!Ne2~gg1Q!Ng

ng~ge1Q!1ne~gg1Q!1ngne2nggq2nenT
W~v!d3v

50. ~11!

Equation~11! yields

E ~b2u2bbg!n111u2bg

11b1
11u1bbg

k

W~v!d3v5n2bg .

~12!

From Eq.~12!,

11
bg

n

b2u2bbg1
11u2bg

n

5E W~v!

11b1
11u1bbg

k

d3v.

~13!

Therefore,

n5

bgS 11b1
11u1bbg

k0
D1~11u2bg!z

11b1
11u1bbg

k0
1~bbg1u2b!z

, ~14!

where thex axis is collinear to the laser beam direction,

k0[
Q0

ge
, E

2`

` ~a8/p!1/2e2a8~vx2Vx8!2dvx

ng1ne1
ngge1negg1n2

Q~vx!

[
z

ng1ne1
ngge1negg1n2

Q0

;

z[E
v02Dv/2

v01Dv/2
Aa8/pe2a8~vx2Vx8!2dvx8

wherev0 is the center of the excited velocity interval andDv
is its width. Using the results of Eqs.~8! and ~14!, we can
derive the following expression for the velocity distribution
function of the resonant gasf ~v![f e1 f g :

f5Nef@12f~v!#W~v!,

f~v![
~b21!~12bg!

~11bg!S 11b1
11u1bbg

k0
D12uz

3

11b1
11u1bbg

k0

11b1
11u1bbg

k~vx!

. ~15!

HereNef is a constant to be found from the self-consistency
conditions~3!.

Meanwhile, Eq.~2b! yields the following expression for
the buffer-gas velocity distributionf g :

f b5Nb8S ab8

p D 3/2e2ab8~v2V8!2. ~16!

In the case whennb~v!5const, Eqs.~3d! and ~16! yield
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Nb85Nb[E f bd
3v. ~17!

Substituting the result of Eq.~15! into the self-consistency
conditions~3!, we arrive at the equations

NefS 12E f~v!W~v!d3~v! D5N, ~18a!

SNef1
mb

m
NbDV82NefE v f~v!W~v!d3v

5SN1
mb

m
NbDV, ~18b!

NefS 3

2a8
1V82D 1

mb

m
NbS 3

2ab8
1V82D

2NefE v2 f~v!W~v!d3~v!

5NS 3

2a
1V2D 1

mb

m
NbS 3

2ab
1V2D . ~18c!

According to Eqs.~18!,

Nef5
N

12e
, V85

VSN1
mb

m
NbD1NefVe

Nef1
mb

m
Nb

1

a8
5
2

3
~Nef1Nb!

21F32 ~N1Nb!
1

a
1SN1

mb

m
NbDV2

2SNef1
mb

m
NbDV821Nefve

2G .
Here

e[E f~v!W~v!d3v

is the relative area of the collision-induced ‘‘dip’’ in the
velocity distribution functionf ~v!;

Ve[E v f~v!W~v!d3v,

ve
2[E v2f~v!W~v!d3v.

In the case when the excitation is nearly monochromatic and
homogeneous broadening is small, so thatDv!vT and the
light-induced effects are small~e !1!,

Neff5~11e!N; V85
N

N1
mb

m
Nb

ev0 ;

a8215a211
2

3
e

N

N1Nb
S v022 3

2a D . ~19!

wherev0 is the center of the excited velocity interval.
For spectroscopic applications, the value off g2 f e that

determines the profile of the absorption can be important.
From Eqs.~8a! and ~8b! we find

f g2 f e5
N~a8/p!3/2e2a8~v2V8!2

11bg1
~b21!~bg21!12u

11b2
11u1bbg

k0

z

3F 12
11b

11b1
11u1bbg

k~v!
G . ~20!

Monitoring the absorption profile can provide an alternative
way of searching for nonstationary regimes.

III. H -THEOREM ANALOG AND THE STABILITY
OF STATIONARY STATES

In this section we will analyze the stability of the station-
ary solution. We will derive the criterion of stability that is
valid not only for the systems with rapid spontaneous decay
~g@n! and a pure resonant gas@4,5#, but for anyg andn and
a gas mixture. We start by introducing the analog of the gas
entropySef ,

Sef5E E S f ln e

f e f
1 f bln

e

f b
Dd3v d3r , ~21!

where

f[ f g1 f e , f e f[ f g1b f e[
f

c
, b[

ne
ng
.

Taking the time derivative of the first~resonant-gas re-
lated! term inSef , we obtain

dSef
dt

5E E F S v• ] f

]r
1a•

] f

]vD ln f

c
1 f

] lnc

]t

2Stg1eln
f

c Gd3v d3r . ~22!

Here

Stg1e[ng@NefW82 f e f#.

The first two terms on the right-hand side of Eq.~22! can be
transformed using the following relations:

E E v•
] f

]r
ln

f

c
d3v d3r5E E F2

]

]r
•S vf ln ec

f D
1 fv•

] lnc

]r Gd3v d3r , ~23a!

E E a•
] f

]v
ln

f

c
d3v d3r5E E F2

]

]v
•S af ln ec

f D
1 f S ln ec

f D ]a

]v

1 fa•
] lnc

]v Gd3v d3r . ~23b!
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The last term on the right-hand side of Eq.~22! can be rep-
resented as

Stg1e ln
f

c
52nqNefW8~Y821!lnY81ng@ f e f2NefWef#

3$ ln@Nef~a8/p!3/2#2a8~v2V8!2%, ~24!

with

Y8[
f e f

Ne fS a8

p D 3/2e2a8~v2V8!2
.

The buffer-gas-related term inSef can be transformed in the
same fashion. Using the Gauss theorem and assuming
particle-number, momentum, and energy conservation in the
collisions ~3!, we finally arrive at theH-theorem analog

dSef
dt

5E E f e f
dc

dt
d3v d3r1E E S ]

]v
•aDc f e f

3 ln
e

f e f
d3v d3r2E Ge fd

2rs

1E E S ]

]v
•aD f bln e

f b
d3v d3r2E Gbd

2rs

1E E ngN8S a8

p D 3/2e2a8~v2V8!2~Y821!

3 lnY8d3v d3r1E E nbNb8S ab8

p D 3/2
3e2ab8~v2V8!2~Yb821!lnYb8d

3v d3r , ~25!

where

Ge f[E vf ln
e

f e f
d3v, Gb[E vf bln

e

f b
d3v

are the flows of ‘‘entropy density’’;d2s is an element of the
surface surrounding the gas;

Yb8[
f b

Nb8S a8

p D 3/2e2ab8~v2V!2
.

For many force fields ~for example, Lorentz force!,
]Fi /]v i50, so that the terms in Eq.~25! that contain~]a/]v!
often vanish.

For a common~nonexcited! gas there is only one potential
source for the instability of the stationary solution: entropy
flux through the walls of the cell containing the gas. When
the gas is excited in a velocity-selective fashion, then, ac-
cording to Eq.~25!, the nonzero flux of entropy will arise in
a broader range of physical conditions than without the ex-
citation. In particular, without the excitation there can be no
flux through the walls that reflect the gas molecules in a
specular fashion. In contrast, according to Eq.~25!, in order
for the entropy flux in an excited gas to be zero, one needs,
even in the case of specular surface scattering, also the sym-
metry of c with respect tovx . Besides, under velocity-
selective excitation new sources of instability arise: spatial
inhomogeneity of the radiation~]c/]rÞ0! and the external
force fields~a]c/]vÞ0!. Thus it follows from Eq.~25! that in
the case of vanishing of the flow of ‘‘entropy’’ through the
cell surface, the absence of external fields, anddc/dt50, the
stationary solution is stable against any perturbations. If
those conditions are not met, the problem of the stability of
the stationary solution remains open.

Although the physics of surface-induced effects arising
under velocity-selective excitation@11,15–21# is quite differ-
ent from the physics of the ‘‘bulk’’ effects@1–10#, the
former can also be described using the strong-collision
model @15#. Thus the present results can be applied also to
analyze those effects. As we see, theH-theorem analogy
derived here limits the scope of situations where the insta-
bilities can arise and therefore provides guidance for their
search.

IV. CONCLUSION

In conclusion, we have considered the use of the strong-
collision model with free parameters to describe the kinetics
of the mixture of the resonant and buffer gases excited in a
velocity-selective fashion. We have obtained the equilibrium
velocity distribution functions of the resonant and the buffer
components. We have used the Boltzmann kinetic equations
to derive theH-theorem analog for this mixture in the case
wheng <n and have discussed the implications for the sta-
bility of the stationary solutions.
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