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Stationary states and their stability for a mixture of molecular gases
under velocity-selective excitation
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We consider a mixture of resonant two-level molecules under velocity-selective excitation and a buffer gas.
The corresponding kinetic equations are augmented by a strong-collision model with free parameters. We
obtain the equilibrium velocity distribution functions of the resonant and buffer components. We then use the
Boltzmann kinetic equations to derive thktheorem analog for this mixtur@alid for arbitrary values of the
collision ratesv and the spontaneous decay rateand discuss the implications for the stability of the
stationary solutiond.S1050-294{@6)07010-2

PACS numbd(ps): 34.50.Rk

[. INTRODUCTION provide a basis and a test for any approximate and qualitative
o . . .derivations.

For more than a decad_e, kmeyc .phenomena arising in Light-induced kinetic phenomena are very sensitive to the
gases under velocity-selective excitation have been the suly, ;e in the collisional cross sections and can therefore be
ject of many studiegsee, in particular, Ref$1-10)). When  ;seqtg study the effect of external fields on the molecular
the momentum relaxation rateg for the excited andy for  cojjisions. Also, recently it has been demonstrated that light-
the ground-state molecules are different, the macroscopig,duced kinetic effects can play a significant role in astro-
state of the gas changes entirely. Macroscopic gas flows cashysical processefl4], where gravitation is important. In
arise, as well as pressure and temperature anisotropy afmese situations, external fields could affect the resulting spa-
spatial temperature and density nonuniformity. Recently, theial distributions of particles. Thus it is important to take into
possibility of the existence of nonstationary regimes and theiccount also the possible acceleration of molecules in an
oscillatory dynamics in these conditions has been discusseskternal field. In order to further broaden the applicability of
[11,12. These studies make the problem of the stability ofour results, we take into consideration the quenching colli-
the stationary solutions obtained under velocity-selective exsions and collisions in which molecules are promoted into
citation quite important. This problem has been partially re-the excited state, in addition to the elastic collisions.
solved for a single-component resonant gas in the case when The organization of the paper is as follows. In Sec. Il we
the rate of spontaneous relaxatigris much higher than the introduce the Boltzmann kinetic equations and the collision
frequency v of velocity-changing collisionsy >v. In this ~ Model and then we obtain the equilibrium velocity distribu-
situation, it is possible to shof4,5] that a relation similar to  tion functions of the resonant and buffer components. In Sec.
the usuaH theorem{13] holds, which provides a criterion of !l we use the above kinetic equations to derive the
stability. However, for the casg <w, the problem remains H-theorem analog for the case<» and discuss the impli-

unsolved. Meanwhile, the latter situation is most typical forcations for the stability of the stationary solutions. In Sec. IV

molecular vibrotational transitions where many of the experi-We give a brief conclusion.

ments on the velocity-selective excitation are being done.

The main purpose of the present work is to provide a con- II. KINETIC EQUATIONS AND THE MODEL
sistent description of the stationary state of a mixture of a OF STRONG COLLISIONS
resonant molecular gas and a buffer gas and derive a crite- WITH FREE PARAMETERS

rion for its stability. .
Many different approaches have been used to model the In the present work we use the FPSC mdde$]. In this
collision kernel in the Boltzmann kinetic equations to de-model, it is assumed that collisions shape the velocity distri-

scribe the kinetic effects occurring due to velocity-selectivePutions fe(v) of excited molecules anély(v) of nonexcited
excitation. Besides the strong-collision mog8], those in- resonant molecules towards a nonequilibrium Maxwellian

clude, in particular, the Keilson-Storer modél] and the
Bhatnagar-Gross-Krook modg®]. In the present study we 3/2

use the model of strong collisions with free parametéts W(v) = (?) exd —a'(v—V')?]. (13
FPSC model[4,5]. A particular reason why, in spite of the

availability of results obtained in more sophisticated models

[7,9], the FPSC model seems to be worth examining is itsSimilarly, the velocity distributiorf,(v) of the buffer gas is
physical simplicity. Thus results obtained in this model canshaped towards another nonequilibrium Maxwellian

!
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1\ 312 My
Wy(v)=|—| exd—an(v—V")?]. (1b) f v?2 (fg+fe)+ﬁ fo|d3v=N(3v3+V?)
Here the mo’mer)tary val/ues of the velocity '_shn‘t and energy L ® Nb(3ng+ Vﬁ),
parameters/’, «', and «;, should be determined assuming m
particle-number, momentum, and translational energy con- (30)

servation(neglecting the momentum and energy transferred
from the radiation fieldd In this model, the Boltzmann ki-
netic equations are of the form

f fdeV: Nb' (3d)
df of of of
Here N and N,, V and V,, and v;=(2a) Y2 and
Y TN i N2 vrp=(2ayp) Y2 are the number densities, macroscopic ve-
=(vg,eNg et vqNg 1) . € locities, and mean thermal velocities of the resonant mol-
ecules and the buffer-gas molecules, correspondingly aand
—[vget v1qt Yget QW) 1fge anda, are the parameters of the Maxwell distributions of the
g, a7V, g b
v ¢ 2 resonant and buffer gases before the laser was switched on.
[veqt QMV)Ifeg (2a In addition to the conditions Eqs3a—(3d), parameters
Ng.eb andNg + must satisfy the conditions of conservation
dfb ﬁfb &fb afb 1 ! . . .. .
="y 245 — of number of particles in collisions:
dt ot ar v
= pN{ (e m) ¥V i f . (2b)
f Vg,;,e,b[Né,e,bW(V)_fg,e,b]dgvz 0, (43)

Herea=F/m is the acceleration of a molecule in the external
field, indicese andg correspond to the excited and the non-
excited resonant molecules, respectively, while the index
co_rresponds to the buf_fer-gas_molecules_. Equatian con- f v IND SW(V) — fo o ]d3v=0. (4b)
tains a velocity-selective optical pumping term, with the a.ma 9

velocity-dependent excitation rate

Thus, foreight free parameteréNg ., Ng1, V', @', and
af) we have a system dfine self-consistency equatior(8)
and(4), which might therefore seem incompatible. However,
[whereB is the Einstein coefficient (w) is the laser spec- jf we add together the right-hand side and left-hand side of

tral intensity distribution,o, and I' are the resonance fre- Eqs. (2a), integrate over velocities, and use the continuity
quency and homogeneous absorption linewidth, ansithe  equation, we obtain the equality

radiation frequencl and the relaxation terms, wherg, o(v)

are the rates of velocity-changing collisions that proceed

without the change in the internal state of the molecules,

v4(v) is the rate of quenching velocity-changing collisions,__z f v [N/ W(v)—f;]d%
vr(v) is the rate of velocity-changing collisions in which '~ °

molecules are promoted to the excited sta{gyv) is the rate

of decay of the excited state resulting from spontaneous

Q(V)EJ BM(w){T'?/[T?+(w—wo—k-V)?]}dw

emission and other processes that are not accompanied by + o> J v/ [N;W(v)— f,]d3v
the change in the molecular velocifguch as resonant en- i=eg; j=q,T =

ergy transferand yé(v) is the rate of molecular excitation in dN

the latter processes. Equatitib) for the buffer gas has only =

the collision term on its right-hand side. dt

Distribution functionsf,, fy, andf, must satisfy the fol-
lowing conditions resulting from the laws of conservation of
number of particles, momentum, and energy:

=0. (5)

According to Eq.(5), Egs.(4a and(4b) are linearly depen-
f (fg+fe)d3V:N, (3a) dent and thus the system of Eq8) and (4) is compatible
(the number of linearly independent equations is equal to the
number of unknowns
Equation (2a) yields the stationary, spatially homoge-
neous solution

mp

dv= N-I—EN,))V; (3b)

[ v

My
(fgtfot T
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¢ ( Véng(;’T'F Q) Vé'eN

gl;,e+ ( 7é,g+ Q)( V',I',qN',I',q+ Vé,gNé,g) + ( Vé,g_’_ Vé],T+ 7é,g+ Q) V(;,TN(;,T
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In the case when

!

Vé'(v)zconst v)
ve(V) " vg(V)

=const (7)

one can see that =
yields

Né and Né=Né. In this case Eq(6)

C(1+ 6+ k)Ng+ B(1+ k)Ng
fg= 1+6+BB,+(1+B)k

W(v), (8a)

. _(By+ K)Ng+(BB,+ 0+ Br)Ng
e 1+6+BB,+(1+B)k

W(v), (8b)

where

= Q(v) . = E, _ Yy

VelT V2

Vg7Ye

VgVq™

Vg7e

T_ Vgle™

B Ye 7Ye Ve

— ! ! — !
Vge=Vget VTgr Yeg= ')’g et VT q: VYTq= V149"

Subsequent analysis in this section will be performed for the

case when
Vg.eT,q(V)=const. 9

If the conditions of Eq(9) are met, Eqs(4) yield

NN—N'—NszfM&w (10

whereNg . are the total number densities of the ground-state
and excited moIecuIes Thus, in order to determine the con-

stantsNé ¢ for the determination of , . from Eqgs.(8a)
and (8b), it is suff|C|ent to find their rat|cn Ne/Ng. From
Eq. (6) we find

f (7e+Q)Ne_(7’g+Q)Ng

W(v)d3v
Vg( Yet Q)+ ve( Yot Q)+ VgVe™ Vg¥Yq~ VelT W)

=0. (11

Equation(11) yields

f (B0-BBINHIL 0By o
)

NS

12

From Eq.(12),

ge” (Ve v (vt o) + (vt 1) (75 + Q)+ (v T 1) (72t Q)

W(v). (6)

By
Ay W(V) ,
1+6- 8 :f 1ror g, 4V
B=0-Bp T T 1tpr——
(13
Therefore,
1+ 6+
B41+B+——T?EEZ+{1+0—BQ§
n= 0 . (19
1+60+B8,
1+p+ P +(BB,+0-B)¢

where thex axis is collinear to the laser beam direction,

Qo fw (') M2« 0x= Vi) dy,

2
Ye VgYet Veygt Vv
Vgt vet —Q(v )
X
_ ¢ .
= =)
VgVet Veygt V
,,g+ye+u
Qo

’ _\v'\2
@ (vx VX) dUXr

vo+Av/2
ng Va'lme™
v

o—Av/2

whereuq is the center of the excited velocity interval avd

is its width. Using the results of Eq$8) and (14), we can
derive the following expression for the velocity distribution
function of the resonant gdsv)=f.+f:

=Ned 1— (V) IW(V),

(B-1)(1-5,)
1+60+88,
Ko

d(v)=
(1+B,)| 1+ B+ +26¢

1+ 6+
11 g OB,
Ko

X . (15
14 g LEOTEBy

K(vy)

HereN is a constant to be found from the self-consistency
conditions(3).

Meanwhile, Eq.(2b) yields the following expression for
the buffer-gas velocity distributiohy :

, ap 3 —al (v=V')2
fo=Nj = e “ . (16)

In the case whem,(v)=const, Eqs(3d) and(16) yield



Nk’)szEJ fodiv. (17

Substituting the result of Eq15) into the self-consistency
conditions(3), we arrive at the equations

=N, (183

Nef

- f VWV A3(v)

my ’ 3
Nef+m Np |V —=Ngi | vV d(VIW(V)d®V

B INERLLIVRLY 18b
- +F b ] ( )

3 12
+—Nb 2—b+V

3 12
Nef 2 5 7 +V

- NefJ’ v? G(VW(V)d3(v)

3 2
=N| 5 +V (180

my 3 2
+E Nb(2—b+V

According to Eqs(18),

My

N+~ Np | +NefV.

Nef=

1-€’

my
Nest ™ Np

m
N+ —
m

2 3 1 ,
&~ 3 (NertNp) "2 5 (N+Np) —+ Np |V

m

—[ Nggt — Nb)V’2+ Nefui}.
m

Here

eEJ d(V)W(v)d3v

is the relative area of the collision-induced “dip” in the

velocity distribution functionf (v);

VEEJ v d(V)W(v)d3y,

vizf v2p(V)W(Vv)d3v.

In the case when the excitation is nearly monochromatic and

homogeneous broadening is small, so that<v; and the
light-induced effects are smalk <1),

Neg=(1+€)N; V'=
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wherev is the center of the excited velocity interval.

For spectroscopic applications, the valuefgf-f, that
determines the profile of the absorption can be important.
From Egs.(8a) and(8b) we find

N(a//ﬂ.):’»/Ze—a (v—=V

/)2

fy—fom
(B=1)(B,—1)+26
1+8,+
Y 1+ _1+(9:,3,3),
0
1+8
x| 1 : (20
1+6+
1+ﬂ+TBﬁy

Monitoring the absorption profile can provide an alternative
way of searching for nonstationary regimes.

Ill. H-THEOREM ANALOG AND THE STABILITY
OF STATIONARY STATES

In this section we will analyze the stability of the station-
ary solution. We will derive the criterion of stability that is
valid not only for the systems with rapid spontaneous decay
(y>wv) and a pure resonant ggg5|, but for anyy andv and
a gas mixture. We start by introducing the analog of the gas
entropy Sqs,

e e
Sefzf f (f In —+fyln —)d3v dr,
fe fp

f=tfgtfe,

(21
where

f

fei=fyt+ Bfe=—, .

ef g :8 e w Vg

Taking the time derivative of the firdresonant-gas re-
lated term in Sy¢, we obtain

Wl

—Styieln

of f d1In
—In—+f 4
ov

W at

(V —+a

f
m d3v d°r. (22)

Here

SthreE Vg[NefW, —fetl-

The first two terms on the right-hand side of EB2) can be
transformed using the following relations:

ff v-j—:In%d3vd3r=ff[—(9— (vf Iner/)

J r:'/l}oﬁv d3r, (233

af In e—l'//)

+fv.

[[aZm; dgvdsr—f”

+f

f

I d
n T

d Iny
v

v

+fa- d3v d3r. (23b)
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The last term on the right-hand side of Eg2) can be rep-
resented as

f
Sthre In l)_k = - VqufW,(Y, - 1)|nY, + Vg[fef_ NefWef]
X{IN[Neg('Im) ¥ —a' (v=V")3},  (24)
with
fes
Y'= o 77 ;
Nef( ?> e @ (v—=V")
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For many force fields(for example, Lorentz forge
dF;/dv;=0, so that the terms in E§25) that contain(da/dv)
often vanish.

For a commonnonexcited gas there is only one potential
source for the instability of the stationary solution: entropy
flux through the walls of the cell containing the gas. When
the gas is excited in a velocity-selective fashion, then, ac-
cording to Eq.(25), the nonzero flux of entropy will arise in
a broader range of physical conditions than without the ex-
citation. In particular, without the excitation there can be no
flux through the walls that reflect the gas molecules in a
specular fashion. In contrast, according to Etp), in order
for the entropy flux in an excited gas to be zero, one needs,

The buffer-gas-related term . can be transformed in the even in the case of specular surface scattering, also the sym-
same fashion. Using the Gauss theorem and assumingetry of ¢ with respect tov,. Besides, under velocity-
particle-number, momentum, and energy conservation in thgelective excitation new sources of instability arise: spatial

collisions (3), we finally arrive at theH-theorem analog

dS dy . o JJ d
W—fffefadVdr-l- E-a

e
XIn o d3v d3r—f Ged?r,,
e

1%
+H<Wa
a 3/2 ) -
—l—ffvgN'(?) e e VVIR(Y —1)

at,) 3/2
xInY’d3v d3r+J J vbN{)(?)

x e~ V-V%y! —1)InY/d3 d,
b b

‘/’fef

e
foln = d3v d3r—J Gpd?r,,
b

(25
where

e e
Gefzf vf In — ddv, szf vfpin —d3v
fef fb
are the flows of “entropy density”d%s is an element of the

surface surrounding the gas;

fio

inhomogeneity of the radiatiofy/dr #0) and the external
force fields(ady/v+0). Thus it follows from Eq(25) that in
the case of vanishing of the flow of “entropy” through the
cell surface, the absence of external fields, d@fdt=0, the
stationary solution is stable against any perturbations. If
those conditions are not met, the problem of the stability of
the stationary solution remains open.

Although the physics of surface-induced effects arising
under velocity-selective excitatigii1,15—21] is quite differ-
ent from the physics of the “bulk” effect§1-10Q], the
former can also be described using the strong-collision
model[15]. Thus the present results can be applied also to
analyze those effects. As we see, tHetheorem analogy
derived here limits the scope of situations where the insta-
bilities can arise and therefore provides guidance for their
search.

IV. CONCLUSION

In conclusion, we have considered the use of the strong-
collision model with free parameters to describe the kinetics
of the mixture of the resonant and buffer gases excited in a
velocity-selective fashion. We have obtained the equilibrium
velocity distribution functions of the resonant and the buffer
components. We have used the Boltzmann kinetic equations
to derive theH-theorem analog for this mixture in the case
when y <v and have discussed the implications for the sta-
bility of the stationary solutions.
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