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Multichannel spectrum of neutral particles trapped by a wire
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The energy spectrum of a neutral atom bound in the magnetic field created by a straight line direct current
is given by the Rydberg formula for particles with spin less t@aﬂ\n adiabatic representation leads to a
natural understanding of this spectrum and provides a good approximation to the bound state energy levels. A
more accurate finite element method is applied to directly solve the time-independerdiSgar@quation for
neutral particles with arbitrary spin. A combination of the finite element method with multichannel quantum
defect theory provides a more efficient method to calculate the bound state energies. In addition, new spectral
features arise for particles with spin greater thafSIL050-294{©6)00110-3

PACS numbds): 32.80.Pj

[. INTRODUCTION are used to calculate @ matrix for the inner region, while
the adiabatic representation is used to describe the outer re-
Schmiedmayer recently demonstrated that cold neutral agion. Matching conditions at the region boundary then deter-
oms can be trapped and guided along a straight wire carryingiine the bound state energies. In Sec. V, we investigate new
a constant currertl]. The atomic magnetic moment inter- multichannel phenomena that arise in the energy spectrum of
acts with the static magnetic field created by the currentd Spin3 particle. A spin3 particle has two possible projec-
trapping the atoms in Kepler-like orbits around the wire.tions of the magnetic moment with a component parallel to
This technique has the advantage of trapping the atoms ithe local magnetic field. Thus, two channels are capable of
their high-field-seeking statg1,2]. The high-field seeking supporting bound states. Using a two-channel QDT model
state is the ground state of the particle-field system andwe show how channel coupling leads to perturbations of the
therefore does not suffer from spin exchafi@g which is a  energy level pattern. The feasibility of experimentally mea-
common loss mechanism in other types of neutral aton$uring the multichannel spectrum is also investigated.
traps.
Pron’ko and Stroganop] proposed this type of magnetic
trap some 20 years ago, and several auth®] have in- Il. ADIABATIC REPRESENTATION

vestigated it theoretically since. Surprisingly, the energy p straight wire with constant current flowing in the 2

spectrum for a spif- particle (and for the lowest angular girection produces an azimuthal magnetic field. A neutral
momentum state of a spin-1 partitlebeys an exact hydro- gnin particle in the presence of this field will experience an
genic Rydberg formul§4—7]. The proof of these analytical nieraction that is given by

results assumes an infinitely thin wire; numerical calcula-
tions for wires of finite siz¢5] show that the bound states
remain and that the energy spectrum still obeys a Rydberg - o o

formula with the inclusion of a quantum defect. Since the Uine=—n-B= _(T)S' B, @
finite size of the wire does not qualitatively alter the spec-

trum, we treat only infinitely thin wires in this work.

The paper is organized in the following manner. We firstyhere B= (u,l/2mp) ¢ in S| units, g is the gyromagnetic
derive the coupled time-independent radial Sdimger ratio, andug the Bohr magneton. The interaction potential is
equations for a neutral particle of arbitrary spin. A radially independent of. Therefore, the motion of the particle along
adiabatic representation is then developed that provides @e wire is free, and the dependence of the Hamiltonian can
simple, approximate solution whose quantitative accuracye separated out, leaving only the transverse motion as a
suffices for many applications. The long-range interactiomontrivial problem. We focus only on the transverse motion
potential in this representation is proportionalpo®, which  here. The potential can be rewritten in terms of the spin
leads to an infinite Rydberg energy spectramhen the co-  rajsing and lowering operators. In the representation where

efficient is negative Section Il bypasses the adiabatic rep- g, is diagonal, the interaction potential is given by the fol-
resentation and solves the coupled radial Sdimger equa- lowing expression

tions numerically for particles with spif 1, ands, using the
finite element method8,9]. One disadvantage of the direct
approach is that the method can become memory intensive if
very high energy levels are desired. A means of overcoming
this problem while retaining the strengths of the finite ele-
ment method is presented in Sec. IV, which adopts multi-
channel quantum defect theofWlQDT) techniques and di- where the constan®=gugugl/47. The final form of the
vides configuration space into two regions. Finite elementéwo-dimensional Schdinger equation becomes

iG _
Uine=— 7(6"’537—6""’&) : @
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00 10 20 30 40 50 00 10 20 30 40 50 for the lowest angular momentum statg of a
p(G/R,) p(G/R,) spin4, -1, and 3 particle given in units of
R,/G=MG/#%?. Coupling between the lowest
6.0 ‘ ‘ ‘ . channel and all other channels shown. The radius
is given in units ofG/R,=#%%/MG.
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%2 ) iG _ energy operatoil, contains all the derivative terms with
“om Voo~ —(e'’s_—e7'’s,)|¥(p,¢,0) respect top. The adiabatic Hamiltoniahl® is given in ma-
P trix notation by
= E,\I, ’ ’ 1 3
(P ¢ 0-) ( ) ﬁz(VZ_ 1/2)2 G
—_— _—
where V2 ,= %/ ap2+ (1lp) 3l ap+ (Lp?) 3 9¢* and where Hao_ 2Mp P _ ®
o denotes the spin degrees of freedom. The operator G h2(v,+1/2)2
J,=L,+S, commutes with the Hamiltonian and the eigen- _; 2Mp7

valuesv, of J, are constants of the motion. Following the

derivation of Blimel and Dietrich, we expand theé depen-  Adiabatic eigenfunctions, and eigenvaluegadiabatic po-

dence andr dependence in a complete orthonormal set. Fofentialy U, of H*' are calculated at each value pf The

a givenv,, this expansion reads wave function can then be written in terms of the adiabatic
eigenfunctiong 13,14

V(p,¢,0)= 2 Ol 4,0)Fm(p), (4) V= O (4,a:p)M(p), (7)
Y

where(),, =S Mel ("™ Sis the total spin of the par- WhereM (p) ==/ x . Fry and @ (,05p) = = QmXmy -
ticle, and the summation is over the eigenvaluesf S,. Substituting this expansi_on back into the Hami_ltonian g_ives
Inserting this expansion into Eq3) leads to a set of the following representation for the coupled radial equations:
(25+1) coupled radial equations. In the next section these 2
coupled equations are solved directly with a finite element (l_—+|_D +-—
radial basis set, but it is first instructive to develop a radially p p

adiabatic representation. We deVeIOp it for a S%)-mﬁrticle, All of the Coup“ng (Or nonadiabaﬁp effects are now con-

Eyththe equations are readily generalized to particles withained in the derivative coupling matri(p) given by
igher spin.

|—+P

I3 M=0. (8

2M
+?(1E—U)

; i d
The coupled equations for a spjrparticle are Pw’:<¢7 $®y,>_ 9)
PR L) AR 12 Sk _er The Born-Oppenhei imati ts to total
“amla?trap) T amr P, F-—EF e Born-Oppenheimer approximation amounts to tota

neglect of theP matrix. In the limit P—0, the adiabatic
) ) 5 ) approximation becomes an exact formulation. Some methods
B ﬁ_( e 1 i) A U7 G treat the full vector adiabatically, in contrast to the present
2M \dp? " p dp 2M p? - op T scheme which treats only adiabatically. Examples of the
(5) P matrix elements are shown in Fig. 1 for the lowest angular
momentum states of a particle with spin 1, or 3. The
Choosingp as the adiabatic coordinate, the Hamiltonian cangraphs show that channel coupling primarily affects the
be separated into two ternks=T,+ Had where the kinetic  short-range physics and becomes negligiblepalsecomes
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large. The adiabatic approximation thus provides a good debasis to represent spin eigenstates that stay aligned parallel
scription of the long-range physics; consequently the motioror antiparallel with the magnetic field.

of a trapped particle can be described by the equivalent mo- The effectiveness of this adiabatic representation can be
tion of a particle bound in a one-dimensional adiabatic po-gauged through the accuracy of the bound state energies pre-
tential curve. Adiabatic potentials for the lowest angular mo-dicted by the adiabatic approximation. For low angular mo-
mentum states are shown in Fig. 2. Focusing on the attractiveientum states, it is necessary to include some of the diago-
potentials, it can be seen that the asymptotic behavior isal short-range nonadiabatic corrections. We have done this
Uy(p)—>—cyp*1, where the constant, depends on both in the manner of Klar and Far{d3,14 by adding diagonal

the spin quantum numbe$ and the channel indey. The corrections to the Born-Oppenheimer type potentials,
motion of a particle in an adiabatic potential is analogous to

electron motion in a modified Coulomb potential, for which

the energy spectrum is given by a Rydberg formula with a 02
nonzero quantum defegt[11,12. The adiabatic approxima-
tion improves for higher angular momentum states owing to
the stronger centrifugal barrier. The short-range coupling ef-
fects occur predominantly in the classically forbidden region
“underneath” the centrifugal barrier, whereby the nonadia-
batic effects are largely “hidden” from the particle. This can
be seen in Fig. 3, which shows the adiabatic potentials and
derivlfi\tive coupling elemer®,,(p) for a spins particle with 0.0 200 700 00 200 100.0
V=72 p(G/R,)

We can gain further physical insight into the adiabatic

approximation by examining thgp dependence of th&§, 0.04
operator in the adiabatic representation. Figure 4 shows that

Spin 1/2

v=11/2
0.1 |

Derivative Coupling (R,/G)

the expectation values &, for the adiabatic eigenstates <

converge to*+ 3 asp increases. The adiabatic basis therefore é 002

describes spin eigenstates that are aligned either parallel or 2

antiparallel with the magnetic field at large In this regime, £ 000
<

the adiabatic frame is equivalent to a frame rotating with the

particle. However, the expectation valuesyfdecrease dra-

matically asp becomes small. The breakdown of the adia- -0.02 ' ‘ : :
. e ) : 0.0 20.0 40.0 60.0 80.0 100.0

batic approximation at smafl is the result of neglecting the 0 (G/R)

radial kinetic energy operator. In a classical sense, a particle

in an ellipitical orbit with a minimum radius very near the  F|G. 3. Adiabatic potentials and derivative coupling matrix el-

wire experiences a sudden change in its radial kinetic energyment for a spirg particle withv,= 3. The potentials with diagonal

as it “whips” around the wire. This nonadiabatic effect is corrections are also plotted but cannot be distinguished on this

manifested in thé® matrix elements. Th® matrix elements  scale. Energies are in units Bf,= MG?/#2 and the radius is given

are therefore in a sense describing the ability of the adiabatio units of G/IR,=%4%/MG.
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representation(in units of #). Radius is given in units of

unit of energy given byr,,= M G?/42. The adiabatic predic-

0o tions differ in quantum defect from the exact results by ap-
03| , 1 proximatelyA x=—0.016. The adiabatic approximation im-
Spin 1/2 . .
proves dramatically for higher angular momentum states, as
& 01 v.=1/2 1 evidenced by the tabulated energies for the: ¥ state(see
Vo o ’ Table Il), which are very close to the exact energibsth
with and without diagonal correctiopsThe adiabatic repre-
-03 | ] sentation thus provides a good first-order approximation to
the energy levels and a simple qualitative picture for the
05,5 05 10 15 20 quantum mechanical motion of the neutral particle.
p (G/R,)
ll. FINITE ELEMENT METHOD
05 We now turn to a more accurate quantitative description
' of the spectrum. The @+ 1) coupled radial equations are
03} ) ] solved numerically using a finite element method. The finite
Spin 1/2 element method truncates the domain of the radial variable
A 010 v.=11/2 . p to O=p=p, and divides the truncated domain into sectors
@ : (or elements The cutoff radiusp,. is chosen large enough to
o1y 1 permit neglect of the wave function at larger distances, and
~0.3 the boundary conditiof (p.) =0 is imposed. For the present
problem, we have chosen the sector boundaries to conform
-0.5 . : to a square root grigh=i?, which produces a roughly con-

0.0 5.0 10.0 15.0 20.0

0 (G/IR)) stant number of sectors per oscillation of the wave function.

The radial wave functior,(p) in channelm is written
as a sum over the sectar®f functions defined only in that

FIG. 4. Expectation values of th®; operator in the adiabatic
sector

G/R,=#%/IMG.

shown in Fig. 2. In Table |, adiabatic energy level predic-
tions obtained with the corrected potentials are compared t
the analytical results for a spihparticle. The energy levels

energy levels calculated using an adiabatic potential with diagon
corrections, for a spig-particle withv,= 3. The discrepancy u is

Fm<p>=2i fim(X))- (11)

U$=U,—(#%/2M)(P?),,. The corrected potentials are also

B|ere, X; is defined over the interval —1,1], which is
mapped to the physical sectos; ,p; 1] using the transfor-

are given by mation
R p=aixitt,
Eny,=— —, (10)
2(n+[vy|—p—3) Pi+1Pi
a=—"
with n=1 and reduce to the analytical resi#t-6] when the
guantum defecu=0. R, is defined to be a characteristic Pir1tpi 12
= T
2

TABLE |. Comparison of exact energie€ (= —1/2n?) with
3he functionf;, is then expanded in terms of a local basis as

the quantum defect associated with the adiabatic calculation. Ener- 6
. L ; AT . .
gies are given in units oR,=MG<“/%*. Numbers in brackets de- fin(X)= E Clkmuk(xi)- (13
note powers of 10. k=1
n Exact Adiabatic A The local basis functions, are fifth-order Hermite interpo-
lating polynomials, which satisfy the following conditions:
1 —0.50000 —0.48923 —-1.09[—-2]
2 —0.12500 —0.12320 —1.46[-2] U —1)=61, U(0)=33, U(1)=3s,
3 —0.05556 —0.05499 —1.53[—-2]
4 —0.03125 —0.03101 —1.56[—2] u{(( —1)= 6y, u{((O) = S4x» u{((l) =0e. (14
5 —0.02000 —0.01987 —1.57[ 2]
6 —0.01389 —0.01382 —1.58[—-2] Note thatu,(x;) is nonzero only in théth sector and the
7 —0.01020 —0.01016 —1.58[—2] uk(x;) functions are nonorthogonal in that sector. We further
8 —0.00781 —0.00778 —1.58[-2] require the wave function and its first derivative to be con-
9 —0.00617 —0.00615 —1.59[-2] tinuous across each sector boundary, which imposes the fol-
10 —0.00500 —0.00498 —1.59[—2] lowing constraints on the coefficients of the local basis func-

tions[15]:
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TABLE Il. Comparison of exact energies with energy levels calculated using adiabatic potgmitals
and without diagonal correctiof®C)] for a spin% particle withv,= 151 The discrepancy u is the quantum
defect determined by the adiabatic calculations. Energies are given in uritg=oM G2/#2. Numbers in
brackets denote powers of 10.

n Exact Adiabatic(DC) Ap Adiabatic (no DC) Ap

1 —0.01388889 —0.01388879 —-2.2[—-5] —0.01388976 1.88—4]

2 —0.01020408 —0.01020396 —-4.3[-5] —0.01020463 1.87—4]

3 —0.00781250 —0.00781239 —-5.7[-5] —0.00781286 1.87—4]

4 —0.00617284 —0.00617275 —6.6[—5] —0.00617310 1.86—4]

5 —0.00500000 —0.00499993 -7.2[-5] —0.00500019 1.86—4]

6 —0.00413223 —0.00413217 —-7.7[-5] —0.00413237 1.86—4]

7 —0.00347222 —0.00347218 —-8.1[—5] —0.00347233 1.86—4]

8 —0.00295858 —0.00295854 —8.4[-5] —0.00295866 1.85—4]

9 —0.00255102 —0.00255099 —8.6[—5] —0.00255109 1.85—4]

10 —0.00222222 —0.00222220 -8.8[—5] —0.00222228 1.85—4]

. i The dimension of the system is equalNg(4Ns+ 1), where
cg'=cyt M, C'fsm:a__c'z+1’m- (15 N, is the number of channels amd, is the number of sec-
il tors. Standar@&ISPACK routines[16] were used to solve Eq.
We can now define local Hamiltonian and overlap block(18)'

Finite element results for the lowest total angular momen-
tum state for a spin- particle are compared to the exact
results in Table Ill. These results were obtained with a cutoff
Yadius pc=130 in units of#2/MG and a 31 sector mesh
[roughly 4 sectors between consecutive wave-function
nodes; 10 sectors were added betweer=(.& 0.6 to handle
L the In(p) indicial behavior of one component of the total
Himm :J' U™ HulMay (ayx; ) dx, (16) :Nave function. Finite element methotFEM) _results for the_
- owest angular momentum states of a spin-1 and a $pin-
particle are presented in Table IV. These results were ob-
and tained with the same cutoff radius and sector grid. In addi-
tion, we present a comparisdsee Table Y between our
- o FEM results for higher angular momentum states of a spin-1
- :5m,m’J ue U May (@it dx . (17)  particle with previous numerical calculations presented in
-1 Ref.[7]. Good agreement between the two different calcula-
tions is seen except for the,=1 angular momentum case.

matricesH' and S' for each sectoii. For anN, channel
problem, the local matrices are divided it blocks. The
diagonal blocks contain channel specific contributions an
off-diagonal blocks contain any channel coupling contribu
tions. The matrix elements are given by

imm’

The notationH,;"" refers to the matrix element in row,
columnl of blockmm’. The local matrices are combing@]]

including the sector boundary conditiofigg. (15)] to form IV. COMBINED FEM-MQDT TREATMENT

the global matrice¢i and S, which are banded, symmetric, | very high Rydberg states are needed, the direct solution
and sparse. The Schfinger equation5) is transformed into  of Eq. (18) can become quite memory intensive. Multichan-
the generalized eigenvalue equation nel quantum defect theory provides a method for obtaining

) R these states while retaining the accuracy of the finite element
Hc=E&c. (18
TABLE IV. Finite element bound state energy results for a
TABLE Ill. Comparison of exact energies with energy levels spin-1 particle withv,=0 and a spin% particle with v,= % The
obtained from a numerical finite element calculation for a é)in- discrepancyA . is the quantum defect associated with the FEM
particle with v,= % The discrepancyA i is the quantum defect calculation for the spin-1 case. The exact solution for this case is
associated with the finite element calculation. Energies are given iprovided in Ref[7]. Energies are given in units &, =MG?/#42.
units of R,,=MG?/#2. Numbers in brackets denote powers of 10. Numbers in brackets denote powers of 10.

n Exact Finite elements Au n Spinl Au Spin 3/2

1 —0.5000000000 —0.4999999699 —3.0[—8] 1 —1.99999950 —-1.25[-7] —3.67346791
2 —0.1250000000 —0.1249999963 —3.0[—8] 2 —0.49999993 —-1.42[-7] —1.00461454
3 —0.0555555556  —0.0555555544  —3.0[—8] 3 —0.22222220 —-151[-7] —0.46255162
4 —0.0312500000 —0.0312499995 —3.0[—8] 4 —0.12499999 —-1.59[-7] —0.26509196
5 —0.0200000000  —0.0199999997 —3.1[—8] 5 —0.07999999 —-1.66[—7] —0.17162858
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TABLE V. Comparison of the FEM bound state energies with energy solutions published in7Réivhich will be referred to as
BSBGH) for a spin-1 particle. Energies are given in units &,22MG?/#2 andN=n+]|v,|—1.

v,=1 v,=2 v,=3 v,=4

FEM BSBGH FEM BSBGH FEM BSBGH FEM BSBGH

—0.0543 —0.0527 —0.052080 —0.052079 —0.0512134 —0.0512134 —0.05076228 —0.05076227
—0.0922 —-0.0891 —0.087435 —0.087435  —0.08555613 —0.08555612

—0.1903 -—0.1815 —0.1762889 —0.1762887

—0.600 —0.555

P NWN|[Z2

method. The MQDT approach divides configuration spaceion of themth channel wave function onto th&th solution

into two regions. The division is chosen such that the chanat the boundaryp,. This is the inverse of the ‘“usual”

nel coupling can be neglected in the outer region, whichR-matrix definition given in Ref[17]. In the finite element

makes the solutions simpler there. For our purposes, this iepresentation, the projection is simply given by the coeffi-

accomplished by choosing a radipg such that the deriva- cientc’glgm of the us basis function in the last sector for each

tive coupling matrixP(p) is negligible forp>po. A finite.  channel and each independent solution

elementR-matrix approach is used for the inner region solu-

tion, while the adiabatic approximation is used in the outer cNsm

region. A determinantal matching condition, involving the Zmﬁzlfl—ﬁ, (23

inner and outer solutions at the boundary, determines B

\év:srtg;é .a physically valid solution exists at any parncularwhereNB: \/W The R matrix is then transformed
The variationalR-matrix method[17] requires the solu- Using the adiabatic eigenvectors

tion of the following generalized eigenvalue equation at a
given energyE: R*=x " (po)R(po) x(po)- (24)

Té=bAd (19) A bound state at enerdy occurs if a linear combination
' of the independent solutions can be found that matches, at

whereb is the eigenchannel logarithmic derivative. TRe the boundaryp,, a wave function that asymptotically be-
matrix in the finite element representation is given locally byhaves as a decaying exponential. This condition can be stated
as

o, 2M (1 .
W =77 j_lu{(m (E—H)ua;(aix; + ;) dx; ~ EBZE%dB _ Wy(po) 29
2pZypbsds  Wi(po)

Po
_Ziéistam’m’5k55'6' 20 \yhere Z;‘%zEmX;mZmﬁ, d, are constant coefficients, and

W, (po) represents the value of the outer region wave func-
The integrals are independent &f and only need to be tion in the adiabatic channel at the boundary. The match-
evaluated once. The local matrices are combined together iag condition can be rewritten in the form of a determinantal
form a single global matri{’. The A matrix elements are equation
surface integrals, which in the finite element representation
are nonzero only in the last sector so that defR®+B1|=0, (26)

AE|Smm,:PO5m,m’5k55l5- (21  Where B*? is a diagonal matrix, each of whose diagonal

elements is given by the inverse of the right-hand side of Eq.

The matrices are again banded, symmetric, sparse, and sm&db)-

enough for theEisPACK routines to solve Eq19) efficiently. In the approximation used here, the outer region wave

The generalized eigensystem is solved using open boundunctionW,(p) obeys the Schrodinger equation

ary conditions such that the wave function is allowed to be oM

nonzero at the outer boundapy. The R matrix is formed " _ _

from the nontrivial eigenvalues and corresponding eigenvec- Wilp)+ ?[E Uy(p)IW(p) =0, @7

tors according to

whereU (p) is the adiabatic potential for channel It is

convenient to define a “phase function$ such that

Rmm/:% ZenghSZ 5 (22)
[ Wi(p) o8
where the logarithmic derivative$) has been rescaled to #,(p)=cot W,(p)) (28)

remove first-order radial derivative contributions to the ki-
netic energy operator. Herg distinguishes the linearly in- becausep, obeys a simple first-order nonlinear differential
dependent solutionZ s is given by the normalized projec- equation[18]:
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TABLE VI. Comparison of the combine®-matrix and FEM approach with a direct finite element
calculation for the bound state energies of a spparticle with »,= 3. A matching radiug, = 20.0 in units

of #2/MG was used. The quantum defegts are associated with channel 1 and are given modulo unity.

Energies are given in units &, =M G?/42.

Finite element R matrix

n Energy Quantum defeciu(;) Energy Quantum defeciu(;)
7 —0.08307431 —0.359917 —0.08307455 —0.359906

8 —0.07900489 0.452914 —0.07900460 0.452901

9 —0.06160194 0.453091 —0.06160159 0.453067
10 —0.04937224 0.453046 —0.04937166 0.452989
11 —0.04194325 —0.357984 —0.04194306 —0.358008
12 —0.04044738 0.452220 —0.04044884 0.452411
13 —0.03374812 0.452673 —0.03374814 0.452677
14 —0.02858350 0.452750 —0.02858329 0.452703
15 —0.02522217 —0.357188 —0.02522145 —0.357379

3231

V. TWO-CHANNEL QDT ANALYSIS

2M
'(p)=—=[E-U sifg,+cose,. (29
(p) ﬁZ[ AP)ISIM 2 @9 A spin- particle possesses two channels that support

bound stategFig. 5. The channels are coupled and the en-
ergy levels in the two channels can therefore perturb each
The differential equation is integrated inward from a largeother. A two-channel quantum defect analysis can help to
distance with a standard fourth-order Runge-Kutta routine tdnterpret these perturbations.
obtain the matrix elemenB ! at p,,. We start by dividing configuration space into two regions.
After R¥ is inserted into Eq(26), the bound state ener- The boundary radiup, is chosen, such that, at a given en-
gies are found through a numerical search for roots of tha€'dy E<O the two attractive channels are “locally” open;
equation. Table VI compares the results obtained by thighis means the effective radial kinetic energy-U (p) is
method with direct finite element solutions for the energyPOsitive atp,y. The outer region solution matrix can be writ-
levels of a spin} particle in the field of a linear current. The €N, after exponential decay is enforced in the upper two
FEM solutions are converged to all digits shown in the table?diabatic channels that possess no bound states, as
so we see a small loss in accuracy with BRwnatrix match-
ing method. However, this approach does provide a much
more efficient use of computer resources as compared to the
direct diagonalization of very large matrices and by increasHere the indexy denotes the channel component, while the
ing the boundary radius the accuracy of the solutions can bimdex ¢’ distinguishes the different linearly independent so-

M'yy'(p):f'y(p)g'yy'_g'y(p)K'yy" (30)

improved. lutions. The asymptotic solution matri¥ (p) contains a set
15
Spin 3/2
107 v,=3/2 ]
0.5 |
— ] FIG. 5. Adiabatic potentials with diagonal

corrections for a spir-particle with v,= 3. The
boundary radius py=10.0 in units of
G/R,=%h%/MG is marked. Energy is given in
units of R,=MG?/#2.

Adiabatic Potentials (R,)
o
o

1
I
)

0.0 5.0 10.0 15.0 20.0
p(GR,)
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of linearly independent solutions of the Sctiimger equation 05 .

that are determined by matching the inner region solution T

matrix and its radial derivative on the boundaiyto a linear 03|

combination of Coulomb functionsf(g) in the two lower

channels. Th& matrix is the usual short-range reaction ma- oot K, =0.9 ]
trix of multichannel quantum defect theory. It identifies the o1 | . ]
appropriate linear combination of reguldr,, and irregular, ' S usmpied model

g, radial Coulomb functions, which matches the outer wave 03 | ]
function smoothly to the numerically determined inner-

region solution. ThiK matrix controls the asymptotic form 05,5 3.0 20 5.0
of the solution as in standard multichannel quantum defect v

treatment§10,11]. The leading term of the asymptotic form
of the Coulomb functiongin the channels that experience an

attractivep ! behavior atp— only, and atE<0 [10]) is 0.485
given by
f,—ersinm(v,—\,) (31 0454 1
(24 X
and x
0.453 |
g,— —e“Pcosm(v,—\,). (32
Here v, is the effective quantum number in channebnd 0_45220 = =

A, is a real noninteger, channel dependent constant that de-
pends on the eigenvalue @f. The exact form of the depen-
dence of\,, on J; is not required in our final model if we

adopt a rotated version of the Coulomb functidnandg, FIG. 6. The modeK matrix parameterr versus energy. The
defined by data points were obtained from the FEM energy results=(

state referenced in Table VI. The uncoupled model energy data

\J)

( f) (COSﬁ)\y —sinw}\y) ( f'y) points were calculated using Eq87) and (38). The parameter
~={ _ . (33 was calculated with the coupling coefficiekt,=0.90. v, is the
g sinm\,  cosm\, /g, effective quantum number in channel 2. A blowup of the first plot is
. . . . also shown.
The outer region solution matrix can then be rewritten as
M=?—'§'IZ, (34) accurate levels calculated in the preceding section. In this

formulation, the “strength” of the channel interactions is
governed by the coupling parametéfs,,K;,K5 which

have been assumed to be nearly energy independent over this
'small range of interest. Accurate energies obtained from the
FEM were used as input data for the fit. These energies were

The bogndary conditions 3E<Q require the_ channel used to find approximate linear expressions for the diagonal
wave functions to decay exponentially at» . This decay reaction matrix elements ;;andK,, versusE. The couplin
is obtained through a transformation that forms a linear com- ~ L 22 " ping
bination of independent solutions for which the exponenParameteK,,was varied to determine the optimum fit to the

tially growing term in each channel disappeft8,12. The FEM Qata._ Figure 6 shows a Lu-Fano plot 3of the best fit for
most convenient procedure for our present needs is to elim@ Particle in an angular momentum statg= 3. In the limit
nate the exponential growth initially in the upper attractiveK12—0, the energy spectrum would consist of two overlap-
channel(i.e., channel 2 in Fig. )6 This leads to an energy- Ping but noninteracting Rydberg series given by
dependent single channel quantum defect in the remaining

Wheref and'g are diagonal matrices. At this point, physi-
cally valid solutions can be obtained by imposing the large
p boundary conditions. This is accomplished in two steps.

attractive channel: £ 9IMG? -
1= 75224 2
~ ~ ~ ~ 24 —
tan’TTT(E):Kll_ Klitan?TVZ‘F Kzz.lilKZl. (35) (nl Ml)
Application of the final largep boundary condition in chan- and
nel 1 requiresr to satisfy the bound state quantization con-
dition M GZ ( )
Ey=— 57—, 38
T=n—v,. (36) 2h5(Ng— po)

Exact calculations of th& matrix are somewhat compli- wheremzarctan'(zn)/w and ,uzzarctan’(zzz)/fr are single
cated numerically, in general. Rather than perform the comehannel quantum defects. The deviationsritbetween the
plete ab initio calculation this way, we have analyzed the coupled and uncoupled models are seen to be the largest for
spectrum using this procedure by fitting tiematrix to the  the energies at whick; andE, nearly coincide. The chan-
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state is followed by three channel-1 states and the pattern

0.20 . . : . . . :
remains constant over the entire region. At energies where
the states in the two channels are nearly degenerate, they

o5 . mutually perturb each other, as can be seen in the Lu-Fano

plot.

The possibility of experimentally measuring the multi-
channel spectrum can be investigated using the supercon-
ducting wire configuration proposed by Bhel and Dietrich
[5]. They found that neutrons captured on a 45-nm-diameter

18,,° (%)
o
=)

0.05 |
superconducting wire should be detectable by rf absorption
spectroscopy. We look into the feasibility of this type of

0-090'08 T0.06 o4 o002 0.00 experiment for a spin-2 particle trapped on a 0.1-

um-diameter superconducting wire. A rubidiu#Rb atom
was chosen for the calculations.

FIG. 7. The absolute value squared of the scattering matrix el- A Practical experiment requires the particle to be kept
ementS,, vs energy. Thes matrix was calculated from the model aWay from the surface of the finite size wire to prevent ab-

K matrix with the coupling coefficier ;,=0.90. Energy is given SOrPtion. Approximate formulas can be derived from the
in units of R, =MG¥#42. adiabatic potentials that relate the radial center of the

ground-state wave functiop,,,x and the half-width of the

nel coupling creating these perturbations can be further chafvave functions to the particle’s orbital angular momentum
acterized using the short-range scattering magyiwhich is | and the current passing through the wire. These equations

Energy (R,)

given by read
1+'E 27Tﬁ2|2 (40)
i =
s==—, (39) Pma gl oM
1-iK
and
where 1is the identity matrix. The elemer|8,,? is the 2mh?(21)32
probability that a particle in channel 2 could scatter into - (41)
channel 1, in the course of a single collision for this value of | gl moMI

ﬂé‘n;e'?grep\; zzg\r'vs tgi?it ﬁgfnC:fa?hrIeEIF%ohl/:pélglit;znzn}g" E(;J_Ll'hese are used to find the lowest angular momentum state
. L gy diag . X PO g given current, which ensures the ground-state radial
vided In Fig. 8. The spectrum has an Interesting qualitativ ave function resides outside the radius of the wire. Bound
feature in the Rydberg series overlap region. Each channel- ate energies for these states can then be calculated once the
atomic magnetic momenﬁz(ge,uBélh)+(gN,uNr/ﬁ) is
Spin 3/2 v,=3/2 known. Neglecting spin-spin interactions, an effective gyro-
0.00 — magnetic ratiag for the atom can be calculated by coupling
the nuclead and electronicS spins and is given for thE=2
state by

1 m
-0.10 | 1 i °
92=5 ( 1 4.1268m—p). (42
In this expressionm, andm, are the masses of the electron
and proton, respectively. The magnetic moment for the atom
] is then given by

I
]

-0.20 +

Energy (R,)

-

(43

Jomp) =
e

—0.30 r 1 where F is now the total spin operator. ThE=2 and
F=1 manifolds are uncoupled, therefore we can neglect the
F=1 states in our bound state energy calculations. Inserting
the definition for the atomic magnetic momditiq. (43)]
~0.40 into the interaction potentidEq. (1)] leads to the same form
of the two-dimensional Schdinger equationEq. (3)] as
FIG. 8. Energy-level diagram for a spkparticle with v,= 3. derived earlier. FEM bound state energies for a range of
The level diagram on the left indicates the bound state energiegurrents are provided in Table VII. The energy difference
associated with channel 1. The interleaved channel 2 bound statéetween the ground and first excited state ranges from 87
are shown on the right. The ground and first excited states are ndHz to 12 MHz. rf probing of these states certainly seems
shown. Energies are given in units &f,=MG?/#2. feasible. The multichannel nature of the spectrum can be

I
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TABLE VII. ®Rb captured on a 50.0-nm radius superconduct-

ing wire. Eq is the ground state energy atE represents the en- 0.50 “Rb =) :
ergy difference between the ground and first excited statethe
lowest angular momentum state for which the ground-state wave 025 |
function does not penetrate the wire. 3
| (MA) | Eq (H2) AE (H2) { 0.00 N —
0.1 19 8.894 10° 8.672<10" £ _oos
1.0 46 1.51% 10 6.388x< 10° £
10.0 128 1.96810° 3.027x 1¢° < _os0 | 1
100.0 378 2.24%10° 1.184x 10’
-0.75 ‘ .
0 250 500 750 1000
investigated for the 100-mA case using the adiabatic poten- p (nm)

tials (see Fig. 9. The angular momentum has been increased

in order to move the centrifugal barrier outside the radius of FIG. 9. Adiabatic potentials fof’Rb in a », = 493 angular

the wire for all energie€<0. The first bound state associ- m_omentum s_tate. A. 10_O-mA current was used. The radius of the

ated with channel 2 has a binding energy of roughly 360Vire (50 nm is also indicated on the graph.

MHz, which is equivalent to the~476 Rydberg state in

Channe' 1. The energy Sp“t“ng between the476 and quite memory intensive in the numerical Computation for

n=477 states is approximately 750 kHz. Resolving the mul-SOme cases. The combined FEM drianatrix approach cir-

tichannel spectrum using a superconducting wire thereforéumvented this problem with a small loss in accuracy. A

seems a plausible, although obviously quite difficult, experi-two-channel QDT model was developed for a spiparticle.

ment. The model provides a way to calculate the strength of chan-
nel interactions that generate perturbations in the energy
spectrum, and relate such strengths to interchannel scattering

VI. SUMMARY probabilities. Possibilities for experimental detection of the

We have investigated the bound state energy properties gfultichannel spectrum of a spin-2 particle were assessed.
neutral atoms with spin up to 2 that are trapped in the two T his analy3|s_suggests that the spectrum coyld in principle be
dimensional magnetic field associated with a straight line dénéasured using a 04m superconducting wire.
current. An adiabatic representation provides a simple quali-
tgtive picture of the quantum mephanical motion of the par- ACKNOWLEDGMENTS
ticle as well as a good approximation to the bound state
energy levels. Two additional approaches for solving the We thank John Bohn, William Clark, and Kurt Meyer for
coupled Schrdinger equations were presented. The directmany enlightening discussions. This work was supported in
FEM method provided excellent accuracy but proved to bepart by the National Science Foundation.

[1] J. Schmiedmayer, Phys. Rev.5®, R13(1995. [12] M. J. Seaton, Rep. Prog. Phy6, 167 (1983.
[2] J. Schmiedmayer, Appl. Phys. &), 169 (1995. [13] H. Klar, Phys. Rev. Al5, 1452(1976.
[3] A. Lagendik, I. F. Silvera, and B. J. Verhaar, Phys. Re8®B  [14] H. Klar and U. Fano, Phys. Rev. L7, 1132(1976.
626 (1986. ) [15] K. J. Bathe Finite Element Procedures in Engineering Analy-
[4] G. P. Pron’ko and Yu. G. Stroganov, Sov. Phah. Eksp. sis (Prentice Hall, Englewood Cliffs, NJ, 19¥6K. J. Bathe
Teor. Fiz.72, 2048(1977 JETP45, 1075(1977)]. and E. WilsonNumerical Methods in Finite Element Analysis
[5] R. Blumel and K. Dietrich, Phys. Rev. A3, 22 (199]). (Prentice Hall, Englewood Cliffs, NJ, 19¥6L. R. Ram-
[6] A. 1. Voronin, Phys. Rev. A3, 29 (1991. Mohan, S. Saigal, D. Dossa, and J. Shertzer, Comput. Bhys.

[7] L. V. Hau, J. A. Golovchenko, and M. M. Burns, Phys. Rev. 50 (1990.

Lett. 75, 1426(1993; K. Berg-Seensen, M. M. Burns, J. A. [16] B. T. Smith et al, Matrix Eigensystem Routines - EISPACK

(8] \(]Soéo:chenkc; 3‘ ;./h Htau, PS?' RSV' ig ;i‘i?é(slggga Guide 2nd ed., Lecture Notes in Computer Science Vol. 6
- Dolero and . Sherlzer, Fhys. Reve ’ (Springer-Verlag, New York, 1974

[Eﬁ i/l SAher:;(rer(e:m(LJ.GE;gteean, z:(}j/SE Rf:ﬁ?{j:;fﬁlgugbéz'shea [17] C. H. GreeneFundamental Processes of Atomic Dynamics
- Aymar, . H. ! ' gnp (Plenum, New York, 1988 p. 105; C. H. Greene and L. Kim,

U. Fano and A. R. P. RauAtomic Collisions and Spectra h . q
(Academic, New York, 1986 C. H. Greene, A. R. P. Rau, and .P.ys. Rev. A38, 5053(1988; H. Le Rouzo and G. Raseev,
ibid. 29, 1214(1984.

U. Fano, Phys. Rev. &6, 2441(1982. )
[11] H. Friedrich, Theoretical Atomic Physic¢Springer-Verlag, 18] C. Greene and J. L. Dehméunpublishegt C. H. Greene,

Berlin, 1990. Phys. Rev. A20, 656 (1979.



