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The energy spectrum of a neutral atom bound in the magnetic field created by a straight line direct current
is given by the Rydberg formula for particles with spin less than3

2. An adiabatic representation leads to a
natural understanding of this spectrum and provides a good approximation to the bound state energy levels. A
more accurate finite element method is applied to directly solve the time-independent Schro¨dinger equation for
neutral particles with arbitrary spin. A combination of the finite element method with multichannel quantum
defect theory provides a more efficient method to calculate the bound state energies. In addition, new spectral
features arise for particles with spin greater than 1.@S1050-2947~96!00110-2#

PACS number~s!: 32.80.Pj

I. INTRODUCTION

Schmiedmayer recently demonstrated that cold neutral at-
oms can be trapped and guided along a straight wire carrying
a constant current@1#. The atomic magnetic moment inter-
acts with the static magnetic field created by the current,
trapping the atoms in Kepler-like orbits around the wire.
This technique has the advantage of trapping the atoms in
their high-field-seeking state@1,2#. The high-field seeking
state is the ground state of the particle-field system and
therefore does not suffer from spin exchange@3#, which is a
common loss mechanism in other types of neutral atom
traps.

Pron’ko and Stroganov@4# proposed this type of magnetic
trap some 20 years ago, and several authors@5–7# have in-
vestigated it theoretically since. Surprisingly, the energy
spectrum for a spin-12 particle ~and for the lowest angular
momentum state of a spin-1 particle! obeys an exact hydro-
genic Rydberg formula@4–7#. The proof of these analytical
results assumes an infinitely thin wire; numerical calcula-
tions for wires of finite size@5# show that the bound states
remain and that the energy spectrum still obeys a Rydberg
formula with the inclusion of a quantum defect. Since the
finite size of the wire does not qualitatively alter the spec-
trum, we treat only infinitely thin wires in this work.

The paper is organized in the following manner. We first
derive the coupled time-independent radial Schro¨dinger
equations for a neutral particle of arbitrary spin. A radially
adiabatic representation is then developed that provides a
simple, approximate solution whose quantitative accuracy
suffices for many applications. The long-range interaction
potential in this representation is proportional tor21, which
leads to an infinite Rydberg energy spectrum~when the co-
efficient is negative!. Section III bypasses the adiabatic rep-
resentation and solves the coupled radial Schro¨dinger equa-
tions numerically for particles with spin12, 1, and

3
2, using the

finite element method@8,9#. One disadvantage of the direct
approach is that the method can become memory intensive if
very high energy levels are desired. A means of overcoming
this problem while retaining the strengths of the finite ele-
ment method is presented in Sec. IV, which adopts multi-
channel quantum defect theory~MQDT! techniques and di-
vides configuration space into two regions. Finite elements

are used to calculate anR matrix for the inner region, while
the adiabatic representation is used to describe the outer re-
gion. Matching conditions at the region boundary then deter-
mine the bound state energies. In Sec. V, we investigate new
multichannel phenomena that arise in the energy spectrum of
a spin-32 particle. A spin-32 particle has two possible projec-
tions of the magnetic moment with a component parallel to
the local magnetic field. Thus, two channels are capable of
supporting bound states. Using a two-channel QDT model
we show how channel coupling leads to perturbations of the
energy level pattern. The feasibility of experimentally mea-
suring the multichannel spectrum is also investigated.

II. ADIABATIC REPRESENTATION

A straight wire with constant currentI flowing in the ẑ
direction produces an azimuthal magnetic field. A neutral
spin particle in the presence of this field will experience an
interaction that is given by

U int52mW •BW 52S gmB

\ DSW •BW , ~1!

whereBW 5(m0I /2pr)f̂ in SI units, g is the gyromagnetic
ratio, andmB the Bohr magneton. The interaction potential is
independent ofz. Therefore, the motion of the particle along
the wire is free, and thez dependence of the Hamiltonian can
be separated out, leaving only the transverse motion as a
nontrivial problem. We focus only on the transverse motion
here. The potential can be rewritten in terms of the spin
raising and lowering operators. In the representation where
Sz is diagonal, the interaction potential is given by the fol-
lowing expression

U int52
iG

r
~eifS22e2 ifS1! , ~2!

where the constantG5gmBm0I /4p. The final form of the
two-dimensional Schro¨dinger equation becomes
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F2
\2

2M
¹r,f
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iG

r
~eifS22e2 ifS1!GC~r,f,s!

5EC~r,f,s!, ~3!

where¹r,f
2 5]2/]r21(1/r)]/]r1(1/r2)]2/]f2 and where

s denotes the spin degrees of freedom. The operator
Jz5Lz1Sz commutes with the Hamiltonian and the eigen-
valuesnz of Jz are constants of the motion. Following the
derivation of Blümel and Dietrich, we expand thef depen-
dence ands dependence in a complete orthonormal set. For
a givennz , this expansion reads

C~r,f,s!5(
m

Vm~f,s!Fm~r!, ~4!

whereVm5 i S2mei (nz2m)fsm , S is the total spin of the par-
ticle, and the summation is over the eigenvaluesm of Sz .
Inserting this expansion into Eq.~3! leads to a set of
(2S11) coupled radial equations. In the next section these
coupled equations are solved directly with a finite element
radial basis set, but it is first instructive to develop a radially
adiabatic representation. We develop it for a spin-1

2 particle,
but the equations are readily generalized to particles with
higher spin.

The coupled equations for a spin-1
2 particle are

F2
\2

2M S d2

dr2
1
1

r

d

dr D1
\2~nz21/2!2

2Mr2 GF12
G

r
F25EF1 ,

F2
\2

2M S d2

dr2
1
1

r

d

dr D1
\2~nz11/2!2

2Mr2 GF22
G

r
F15EF2 .

~5!

Choosingr as the adiabatic coordinate, the Hamiltonian can
be separated into two termsH5Tr1Had, where the kinetic

energy operatorTr contains all the derivative terms with
respect tor. The adiabatic HamiltonianHad is given in ma-
trix notation by

Had5S \2~nz21/2!2

2Mr2
2
G

r

2
G

r

\2~nz11/2!2

2Mr2
D . ~6!

Adiabatic eigenfunctionsxg and eigenvalues~adiabatic po-
tentials! Ug of Had are calculated at each value ofr. The
wave function can then be written in terms of the adiabatic
eigenfunctions@13,14#

C5(
g

Fg~f,s;r!Mg~r!, ~7!

whereMg(r)5(m8xgm8
Á Fm8 andFg(f,s;r)5(mVmxmg .

Substituting this expansion back into the Hamiltonian gives
the following representation for the coupled radial equations:

F S II ddr
1PI D 211

r S II ddr
1PI D1

2M

\2 ~ IIE2UI !GMW 50. ~8!

All of the coupling ~or nonadiabatic! effects are now con-
tained in the derivative coupling matrixPI (r) given by

Pgg85 K FgU ddr
Fg8L . ~9!

The Born-Oppenheimer approximation amounts to total
neglect of thePI matrix. In the limit PI→0, the adiabatic
approximation becomes an exact formulation. Some methods
treat the full vector adiabatically, in contrast to the present
scheme which treats onlyr adiabatically. Examples of the
PI matrix elements are shown in Fig. 1 for the lowest angular
momentum states of a particle with spin12, 1, or

3
2. The

graphs show that channel coupling primarily affects the
short-range physics and becomes negligible asr becomes

FIG. 1. Derivative coupling matrix elements
for the lowest angular momentum statenz of a
spin-12, -1, and -32 particle given in units of
Rw /G5MG/\2. Coupling between the lowest
channel and all other channels shown. The radius
is given in units ofG/Rw5\2/MG.
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large. The adiabatic approximation thus provides a good de-
scription of the long-range physics; consequently the motion
of a trapped particle can be described by the equivalent mo-
tion of a particle bound in a one-dimensional adiabatic po-
tential curve. Adiabatic potentials for the lowest angular mo-
mentum states are shown in Fig. 2. Focusing on the attractive
potentials, it can be seen that the asymptotic behavior is
Ug(r)→2cgr21, where the constantcg depends on both
the spin quantum numberS and the channel indexg. The
motion of a particle in an adiabatic potential is analogous to
electron motion in a modified Coulomb potential, for which
the energy spectrum is given by a Rydberg formula with a
nonzero quantum defectm @11,12#. The adiabatic approxima-
tion improves for higher angular momentum states owing to
the stronger centrifugal barrier. The short-range coupling ef-
fects occur predominantly in the classically forbidden region
‘‘underneath’’ the centrifugal barrier, whereby the nonadia-
batic effects are largely ‘‘hidden’’ from the particle. This can
be seen in Fig. 3, which shows the adiabatic potentials and
derivative coupling elementP12(r) for a spin-

1
2 particle with

nz5
11
2 .

We can gain further physical insight into the adiabatic
approximation by examining ther dependence of theSf
operator in the adiabatic representation. Figure 4 shows that
the expectation values ofSf for the adiabatic eigenstates
converge to6 1

2 asr increases. The adiabatic basis therefore
describes spin eigenstates that are aligned either parallel or
antiparallel with the magnetic field at larger. In this regime,
the adiabatic frame is equivalent to a frame rotating with the
particle. However, the expectation values ofSf decrease dra-
matically asr becomes small. The breakdown of the adia-
batic approximation at smallr is the result of neglecting the
radial kinetic energy operator. In a classical sense, a particle
in an ellipitical orbit with a minimum radius very near the
wire experiences a sudden change in its radial kinetic energy
as it ‘‘whips’’ around the wire. This nonadiabatic effect is
manifested in thePI matrix elements. ThePI matrix elements
are therefore in a sense describing the ability of the adiabatic

basis to represent spin eigenstates that stay aligned parallel
or antiparallel with the magnetic field.

The effectiveness of this adiabatic representation can be
gauged through the accuracy of the bound state energies pre-
dicted by the adiabatic approximation. For low angular mo-
mentum states, it is necessary to include some of the diago-
nal short-range nonadiabatic corrections. We have done this
in the manner of Klar and Fano@13,14# by adding diagonal
corrections to the Born-Oppenheimer type potentials,

FIG. 2. Adiabatic potentials for the lowest an-
gular momentum state of a spin-1

2, -1, and -
3
2 par-

ticle. Dashed lines indicate the potentials with di-
agonal corrections. Energies are in units of
Rw5 MG2/\2 and the radius is given in units of
G/Rw5\2/MG.

FIG. 3. Adiabatic potentials and derivative coupling matrix el-
ement for a spin-12 particle withnz5

11
2 . The potentials with diagonal

corrections are also plotted but cannot be distinguished on this
scale. Energies are in units ofRw5MG2/\2 and the radius is given
in units ofG/Rw5\2/MG.
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Ug
c5Ug2(\2/2M )(PI 2)gg . The corrected potentials are also

shown in Fig. 2. In Table I, adiabatic energy level predic-
tions obtained with the corrected potentials are compared to
the analytical results for a spin-1

2 particle. The energy levels
are given by

En,nz
52

Rw

2(n1unzu2m2 1
2 )

2
, ~10!

with n>1 and reduce to the analytical result@4–6# when the
quantum defectm50. Rw is defined to be a characteristic

unit of energy given byRw5MG2/\2. The adiabatic predic-
tions differ in quantum defect from the exact results by ap-
proximatelyDm520.016. The adiabatic approximation im-
proves dramatically for higher angular momentum states, as
evidenced by the tabulated energies for thenz5

11
2 state~see

Table II!, which are very close to the exact energies~both
with and without diagonal corrections!. The adiabatic repre-
sentation thus provides a good first-order approximation to
the energy levels and a simple qualitative picture for the
quantum mechanical motion of the neutral particle.

III. FINITE ELEMENT METHOD

We now turn to a more accurate quantitative description
of the spectrum. The (2S11) coupled radial equations are
solved numerically using a finite element method. The finite
element method truncates the domain of the radial variable
r to 0<r<rc and divides the truncated domain into sectors
~or elements!. The cutoff radiusrc is chosen large enough to
permit neglect of the wave function at larger distances, and
the boundary conditionF(rc)50 is imposed. For the present
problem, we have chosen the sector boundaries to conform
to a square root gridr i} i

2, which produces a roughly con-
stant number of sectors per oscillation of the wave function.

The radial wave functionFm(r) in channelm is written
as a sum over the sectorsi of functions defined only in that
sector

Fm~r!5(
i
f im~xi !. ~11!

Here, xi is defined over the interval@21,1#, which is
mapped to the physical sector@r i ,r i11# using the transfor-
mation

r5aixi1t i ,

ai5
r i112r i

2
,

t i5
r i111r i

2
. ~12!

The functionf im is then expanded in terms of a local basis as

f im~xi !5 (
k51

6

ck
imuk~xi !. ~13!

The local basis functionsuk are fifth-order Hermite interpo-
lating polynomials, which satisfy the following conditions:

uk~21!5d1k , uk~0!5d3k , uk~1!5d5k ,

uk8~21!5d2k , uk8~0!5d4k , uk8~1!5d6k . ~14!

Note thatuk(xi) is nonzero only in thei th sector and the
uk(xi) functions are nonorthogonal in that sector. We further
require the wave function and its first derivative to be con-
tinuous across each sector boundary, which imposes the fol-
lowing constraints on the coefficients of the local basis func-
tions @15#:

FIG. 4. Expectation values of theSf̂ operator in the adiabatic
representation~in units of \). Radius is given in units of
G/Rw5\2/MG.

TABLE I. Comparison of exact energies (En521/2n2) with
energy levels calculated using an adiabatic potential with diagonal
corrections, for a spin-12 particle withnz5

1
2. The discrepancyDm is

the quantum defect associated with the adiabatic calculation. Ener-
gies are given in units ofRw5MG2/\2. Numbers in brackets de-
note powers of 10.

n Exact Adiabatic Dm

1 20.50000 20.48923 21.09 @22#

2 20.12500 20.12320 21.46 @22#

3 20.05556 20.05499 21.53 @22#

4 20.03125 20.03101 21.56 @22#

5 20.02000 20.01987 21.57 @22#

6 20.01389 20.01382 21.58 @22#

7 20.01020 20.01016 21.58 @22#

8 20.00781 20.00778 21.58 @22#

9 20.00617 20.00615 21.59 @22#

10 20.00500 20.00498 21.59 @22#
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c5
im5c1

i11,m, c6
im5

ai
ai11

c2
i11,m. ~15!

We can now define local Hamiltonian and overlap block
matricesHI i and SI i for each sectori . For anNc channel
problem, the local matrices are divided intoNc

2 blocks. The
diagonal blocks contain channel specific contributions and
off-diagonal blocks contain any channel coupling contribu-
tions. The matrix elements are given by

Hkl
imm85E

21

1

uk
im8Hul

imai~aixi1t i !dxi ~16!

and

Skl
imm85dm,m8E

21

1

uk
im8ul

imai~aixi1t i !dxi . ~17!

The notationHkl
imm8 refers to the matrix element in rowk,

columnl of blockmm8. The local matrices are combined@9#
including the sector boundary conditions@Eq. ~15!# to form
the global matricesHI andSI , which are banded, symmetric,
and sparse. The Schro¨dinger equation~5! is transformed into
the generalized eigenvalue equation

HI cW5ESI cW . ~18!

The dimension of the system is equal toNc(4Ns11), where
Nc is the number of channels andNs is the number of sec-
tors. StandardEISPACK routines@16# were used to solve Eq.
~18!.

Finite element results for the lowest total angular momen-
tum state for a spin-12 particle are compared to the exact
results in Table III. These results were obtained with a cutoff
radius rc5130 in units of\2/MG and a 31 sector mesh
@roughly 4 sectors between consecutive wave-function
nodes; 10 sectors were added between 0.0<r<0.6 to handle
the ln(r) indicial behavior of one component of the total
wave function#. Finite element method~FEM! results for the
lowest angular momentum states of a spin-1 and a spin-3

2

particle are presented in Table IV. These results were ob-
tained with the same cutoff radius and sector grid. In addi-
tion, we present a comparison~see Table V! between our
FEM results for higher angular momentum states of a spin-1
particle with previous numerical calculations presented in
Ref. @7#. Good agreement between the two different calcula-
tions is seen except for thenz51 angular momentum case.

IV. COMBINED FEM-MQDT TREATMENT

If very high Rydberg states are needed, the direct solution
of Eq. ~18! can become quite memory intensive. Multichan-
nel quantum defect theory provides a method for obtaining
these states while retaining the accuracy of the finite element

TABLE II. Comparison of exact energies with energy levels calculated using adiabatic potentials@with
and without diagonal corrections~DC!# for a spin-12 particle withnz5

11
2 . The discrepancyDm is the quantum

defect determined by the adiabatic calculations. Energies are given in units ofRw5MG2/\2. Numbers in
brackets denote powers of 10.

n Exact Adiabatic~DC! Dm Adiabatic ~no DC! Dm

1 20.01388889 20.01388879 22.2 @25# 20.01388976 1.88@24#

2 20.01020408 20.01020396 24.3 @25# 20.01020463 1.87@24#

3 20.00781250 20.00781239 25.7 @25# 20.00781286 1.87@24#

4 20.00617284 20.00617275 26.6 @25# 20.00617310 1.86@24#

5 20.00500000 20.00499993 27.2 @25# 20.00500019 1.86@24#

6 20.00413223 20.00413217 27.7 @25# 20.00413237 1.86@24#

7 20.00347222 20.00347218 28.1 @25# 20.00347233 1.86@24#

8 20.00295858 20.00295854 28.4 @25# 20.00295866 1.85@24#

9 20.00255102 20.00255099 28.6 @25# 20.00255109 1.85@24#

10 20.00222222 20.00222220 28.8 @25# 20.00222228 1.85@24#

TABLE III. Comparison of exact energies with energy levels
obtained from a numerical finite element calculation for a spin-1

2

particle with nz5
1
2. The discrepancyDm is the quantum defect

associated with the finite element calculation. Energies are given in
units ofRw5MG2/\2. Numbers in brackets denote powers of 10.

n Exact Finite elements Dm

1 20.5000000000 20.4999999699 23.0 @28#

2 20.1250000000 20.1249999963 23.0 @28#

3 20.0555555556 20.0555555544 23.0 @28#

4 20.0312500000 20.0312499995 23.0 @28#

5 20.0200000000 20.0199999997 23.1 @28#

TABLE IV. Finite element bound state energy results for a
spin-1 particle withnz50 and a spin-32 particle with nz5

1
2. The

discrepancyDm is the quantum defect associated with the FEM
calculation for the spin-1 case. The exact solution for this case is
provided in Ref.@7#. Energies are given in units ofRw5MG2/\2.
Numbers in brackets denote powers of 10.

n Spin 1 Dm Spin 3/2

1 21.99999950 21.25 @27# 23.67346791
2 20.49999993 21.42 @27# 21.00461454
3 20.22222220 21.51 @27# 20.46255162
4 20.12499999 21.59 @27# 20.26509196
5 20.07999999 21.66 @27# 20.17162858
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method. The MQDT approach divides configuration space
into two regions. The division is chosen such that the chan-
nel coupling can be neglected in the outer region, which
makes the solutions simpler there. For our purposes, this is
accomplished by choosing a radiusr0 such that the deriva-
tive coupling matrixPI (r) is negligible forr.r0. A finite
elementR-matrix approach is used for the inner region solu-
tion, while the adiabatic approximation is used in the outer
region. A determinantal matching condition, involving the
inner and outer solutions at the boundary, determines
whether a physically valid solution exists at any particular
energyE.

The variationalR-matrix method@17# requires the solu-
tion of the following generalized eigenvalue equation at a
given energyE:

GI cW5bLI cW , ~19!

whereb is the eigenchannel logarithmic derivative. TheGI
matrix in the finite element representation is given locally by

Gkl
imm85

2M

\2 E
21

1

uk
im8~E2H !ul

imai~aixi1t i !dxi

2
r0
ai

d i ,Nsdm,m8dk5d l6 . ~20!

The integrals are independent ofE and only need to be
evaluated once. The local matrices are combined together to
form a single global matrixGI . TheLI matrix elements are
surface integrals, which in the finite element representation
are nonzero only in the last sector so that

Lkl
Nsmm85r0dm,m8dk5d l5 . ~21!

The matrices are again banded, symmetric, sparse, and small
enough for theEISPACK routines to solve Eq.~19! efficiently.

The generalized eigensystem is solved using open bound-
ary conditions such that the wave function is allowed to be
nonzero at the outer boundaryr0. TheR matrix is formed
from the nontrivial eigenvalues and corresponding eigenvec-
tors according to

Rmm85(
b

Zmbbb
~s!Zbm8

Á , ~22!

where the logarithmic derivativebb
(s) has been rescaled to

remove first-order radial derivative contributions to the ki-
netic energy operator. Hereb distinguishes the linearly in-
dependent solutions.Zmb is given by the normalized projec-

tion of themth channel wave function onto thebth solution
at the boundaryr0. This is the inverse of the ‘‘usual’’
R-matrix definition given in Ref.@17#. In the finite element
representation, the projection is simply given by the coeffi-
cientc5b

Nsm of theu5 basis function in the last sector for each
channel and each independent solution

Zmb5
c5b
Nsm

Nb
, ~23!

whereNb5A(m(c5b
Nsm)2. TheR matrix is then transformed

using the adiabatic eigenvectors

RI ad5xI Á~r0!RI ~r0!xI ~r0!. ~24!

A bound state at energyE occurs if a linear combination
of the independent solutions can be found that matches, at
the boundaryr0, a wave function that asymptotically be-
haves as a decaying exponential. This condition can be stated
as

2
(bZgb

addb

(bZgb
adbbdb

5
Wg~r0!

Wg8~r0!
, ~25!

whereZgb
ad5(mxgm

Á Zmb , db are constant coefficients, and
Wg(r0) represents the value of the outer region wave func-
tion in the adiabatic channelg at the boundary. The match-
ing condition can be rewritten in the form of a determinantal
equation

detuRI ad1BI 21u50, ~26!

where BI 21 is a diagonal matrix, each of whose diagonal
elements is given by the inverse of the right-hand side of Eq.
~25!.

In the approximation used here, the outer region wave
functionWg(r) obeys the Schrodinger equation

Wg9~r!1
2M

\2 @E2Ug~r!#Wg~r!50, ~27!

whereUg(r) is the adiabatic potential for channelg. It is
convenient to define a ‘‘phase function’’f such that

fg~r!5cot21SWg8~r!

Wg~r!
D , ~28!

becausefg obeys a simple first-order nonlinear differential
equation@18#:

TABLE V. Comparison of the FEM bound state energies with energy solutions published in Ref.@7# ~which will be referred to as
BSBGH! for a spin-1 particle. Energies are given in units of 2Rw52MG2/\2 andN5n1unzu21.

nz51 nz52 nz53 nz54
N FEM BSBGH FEM BSBGH FEM BSBGH FEM BSBGH

4 20.0543 20.0527 20.052080 20.052079 20.0512134 20.0512134 20.05076228 20.05076227
3 20.0922 20.0891 20.087435 20.087435 20.08555613 20.08555612
2 20.1903 20.1815 20.1762889 20.1762887
1 20.600 20.555
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fg8~r!5
2M

\2 @E2Ug~r!#sin2fg1cos2fg . ~29!

The differential equation is integrated inward from a large
distance with a standard fourth-order Runge-Kutta routine to
obtain the matrix elementsBI 21 at r0.

After RI ad is inserted into Eq.~26!, the bound state ener-
gies are found through a numerical search for roots of that
equation. Table VI compares the results obtained by this
method with direct finite element solutions for the energy
levels of a spin-32 particle in the field of a linear current. The
FEM solutions are converged to all digits shown in the table
so we see a small loss in accuracy with theR-matrix match-
ing method. However, this approach does provide a much
more efficient use of computer resources as compared to the
direct diagonalization of very large matrices and by increas-
ing the boundary radius the accuracy of the solutions can be
improved.

V. TWO-CHANNEL QDT ANALYSIS

A spin-32 particle possesses two channels that support
bound states~Fig. 5!. The channels are coupled and the en-
ergy levels in the two channels can therefore perturb each
other. A two-channel quantum defect analysis can help to
interpret these perturbations.

We start by dividing configuration space into two regions.
The boundary radiusr0 is chosen, such that, at a given en-
ergy E,0 the two attractive channels are ‘‘locally’’ open;
this means the effective radial kinetic energyE2Ug(r) is
positive atr0. The outer region solution matrix can be writ-
ten, after exponential decay is enforced in the upper two
adiabatic channels that possess no bound states, as

Mgg8~r!5 f g~r!dgg82gg~r!Kgg8. ~30!

Here the indexg denotes the channel component, while the
indexg8 distinguishes the different linearly independent so-
lutions. The asymptotic solution matrixMI (r) contains a set

TABLE VI. Comparison of the combinedR-matrix and FEM approach with a direct finite element
calculation for the bound state energies of a spin-3

2 particle withnz5
3
2. A matching radiusr0 5 20.0 in units

of \2/MG was used. The quantum defectsm1 are associated with channel 1 and are given modulo unity.
Energies are given in units ofRw5MG2/\2.

Finite element R matrix
n Energy Quantum defect (m1) Energy Quantum defect (m1)

7 20.08307431 20.359917 20.08307455 20.359906
8 20.07900489 0.452914 20.07900460 0.452901
9 20.06160194 0.453091 20.06160159 0.453067
10 20.04937224 0.453046 20.04937166 0.452989
11 20.04194325 20.357984 20.04194306 20.358008
12 20.04044738 0.452220 20.04044884 0.452411
13 20.03374812 0.452673 20.03374814 0.452677
14 20.02858350 0.452750 20.02858329 0.452703
15 20.02522217 20.357188 20.02522145 20.357379

FIG. 5. Adiabatic potentials with diagonal
corrections for a spin-32 particle withnz5

3
2. The

boundary radius r0510.0 in units of
G/Rw5\2/MG is marked. Energy is given in
units ofRw5MG2/\2.
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of linearly independent solutions of the Schro¨dinger equation
that are determined by matching the inner region solution
matrix and its radial derivative on the boundaryr0 to a linear
combination of Coulomb functions (f ,g) in the two lower
channels. TheKI matrix is the usual short-range reaction ma-
trix of multichannel quantum defect theory. It identifies the
appropriate linear combination of regular,f g , and irregular,
gg , radial Coulomb functions, which matches the outer wave
function smoothly to the numerically determined inner-
region solution. ThisKI matrix controls the asymptotic form
of the solution as in standard multichannel quantum defect
treatments@10,11#. The leading term of the asymptotic form
of the Coulomb functions~in the channels that experience an
attractiver21 behavior atr→` only, and atE,0 @10#! is
given by

f g→ekrsinp~ng2lg! ~31!

and

gg→2ekrcosp~ng2lg!. ~32!

Hereng is the effective quantum number in channelg and
lg is a real noninteger, channel dependent constant that de-
pends on the eigenvalue ofJz . The exact form of the depen-
dence oflg on Jz is not required in our final model if we
adopt a rotated version of the Coulomb functionsf̃ and g̃,
defined by

S f̃
g̃
D 5S cosplg 2sinplg

sinplg cosplg
D S f g

gg
D . ~33!

The outer region solution matrix can then be rewritten as

MI 5 f̃I2g̃I K̃I , ~34!

where f̃I and g̃I are diagonal matrices. At this point, physi-
cally valid solutions can be obtained by imposing the large-
r boundary conditions. This is accomplished in two steps.

The boundary conditions atE,0 require the channel
wave functions to decay exponentially atr→`. This decay
is obtained through a transformation that forms a linear com-
bination of independent solutions for which the exponen-
tially growing term in each channel disappears@10,12#. The
most convenient procedure for our present needs is to elimi-
nate the exponential growth initially in the upper attractive
channel~i.e., channel 2 in Fig. 5!. This leads to an energy-
dependent single channel quantum defect in the remaining
attractive channel:

tanpt~E!5K̃112K̃12@ tanpn21K̃22#
21K̃21. ~35!

Application of the final larger boundary condition in chan-
nel 1 requirest to satisfy the bound state quantization con-
dition

t5n2n1 . ~36!

Exact calculations of theK̃I matrix are somewhat compli-
cated numerically, in general. Rather than perform the com-
plete ab initio calculation this way, we have analyzed the
spectrum using this procedure by fitting theK̃I matrix to the

accurate levels calculated in the preceding section. In this
formulation, the ‘‘strength’’ of the channel interactions is
governed by the coupling parametersK̃12,K̃11,K̃22 which
have been assumed to be nearly energy independent over this
small range of interest. Accurate energies obtained from the
FEM were used as input data for the fit. These energies were
used to find approximate linear expressions for the diagonal
reaction matrix elementsK̃11andK̃22 versusE. The coupling
parameterK̃12 was varied to determine the optimum fit to the
FEM data. Figure 6 shows a Lu-Fano plot of the best fit for
a particle in an angular momentum statenz5

3
2. In the limit

K̃12→0, the energy spectrum would consist of two overlap-
ping but noninteracting Rydberg series given by

E152
9MG2

2\2~n12m1!
2 ~37!

and

E252
MG2

2\2~n22m2!
2 , ~38!

wherem15arctan(K̃11)/p andm25arctan(K̃22)/p are single
channel quantum defects. The deviations int between the
coupled and uncoupled models are seen to be the largest for
the energies at whichE1 andE2 nearly coincide. The chan-

FIG. 6. The modelK̃I matrix parametert versus energy. The
data points were obtained from the FEM energy results (nz5

3
2

state! referenced in Table VI. The uncoupled model energy data
points were calculated using Eqs.~37! and ~38!. The parametert
was calculated with the coupling coefficientK̃1250.90. n2 is the
effective quantum number in channel 2. A blowup of the first plot is
also shown.
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nel coupling creating these perturbations can be further char-
acterized using the short-range scattering matrixSI , which is
given by

SI 5
1I 1 iK̃I

1I 2 iK̃
, ~39!

where 1I is the identity matrix. The elementuS12u2 is the
probability that a particle in channel 2 could scatter into
channel 1, in the course of a single collision for this value of
Jz . Figure 7 shows that the channel coupling is small but
nonzero. An energy diagram of the FEM solutions is pro-
vided in Fig. 8. The spectrum has an interesting qualitative
feature in the Rydberg series overlap region. Each channel-2

state is followed by three channel-1 states and the pattern
remains constant over the entire region. At energies where
the states in the two channels are nearly degenerate, they
mutually perturb each other, as can be seen in the Lu-Fano
plot.

The possibility of experimentally measuring the multi-
channel spectrum can be investigated using the supercon-
ducting wire configuration proposed by Blu¨mel and Dietrich
@5#. They found that neutrons captured on a 45-nm-diameter
superconducting wire should be detectable by rf absorption
spectroscopy. We look into the feasibility of this type of
experiment for a spin-2 particle trapped on a 0.1-
mm-diameter superconducting wire. A rubidium87Rb atom
was chosen for the calculations.

A practical experiment requires the particle to be kept
away from the surface of the finite size wire to prevent ab-
sorption. Approximate formulas can be derived from the
adiabatic potentials that relate the radial center of the
ground-state wave functionrmax and the half-width of the
wave functiond to the particle’s orbital angular momentum
l and the currentI passing through the wire. These equations
read

rmax5
2p\2l 2

umBum0MI
~40!

and

d5
2p\2~2l !3/2

umBum0MI
. ~41!

These are used to find the lowest angular momentum state
for a given current, which ensures the ground-state radial
wave function resides outside the radius of the wire. Bound
state energies for these states can then be calculated once the
atomic magnetic momentmW 5(gemBSW /\)1(gNmNIW/\! is
known. Neglecting spin-spin interactions, an effective gyro-
magnetic ratiogF for the atom can be calculated by coupling
the nuclearIW and electronicSW spins and is given for theF52
state by

g25
1

2 S 124.1268
me

mp
D . ~42!

In this expression,me andmp are the masses of the electron
and proton, respectively. The magnetic moment for the atom
is then given by

mW 5S g2mB

\ DFW , ~43!

where FW is now the total spin operator. TheF52 and
F51 manifolds are uncoupled, therefore we can neglect the
F51 states in our bound state energy calculations. Inserting
the definition for the atomic magnetic moment@Eq. ~43!#
into the interaction potential@Eq. ~1!# leads to the same form
of the two-dimensional Schro¨dinger equation@Eq. ~3!# as
derived earlier. FEM bound state energies for a range of
currents are provided in Table VII. The energy difference
between the ground and first excited state ranges from 87
kHz to 12 MHz. rf probing of these states certainly seems
feasible. The multichannel nature of the spectrum can be

FIG. 7. The absolute value squared of the scattering matrix el-
ementS12 vs energy. TheSI matrix was calculated from the model
K̃I matrix with the coupling coefficientK̃1250.90. Energy is given
in units ofRw5MG2/\2.

FIG. 8. Energy-level diagram for a spin-3
2 particle with nz5

3
2.

The level diagram on the left indicates the bound state energies
associated with channel 1. The interleaved channel 2 bound states
are shown on the right. The ground and first excited states are not
shown. Energies are given in units ofRw5MG2/\2.
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investigated for the 100-mA case using the adiabatic poten-
tials ~see Fig. 9!. The angular momentum has been increased
in order to move the centrifugal barrier outside the radius of
the wire for all energiesE,0. The first bound state associ-
ated with channel 2 has a binding energy of roughly 360
MHz, which is equivalent to then;476 Rydberg state in
channel 1. The energy splitting between then5476 and
n5477 states is approximately 750 kHz. Resolving the mul-
tichannel spectrum using a superconducting wire therefore
seems a plausible, although obviously quite difficult, experi-
ment.

VI. SUMMARY

We have investigated the bound state energy properties of
neutral atoms with spin up to 2 that are trapped in the two-
dimensional magnetic field associated with a straight line dc
current. An adiabatic representation provides a simple quali-
tative picture of the quantum mechanical motion of the par-
ticle as well as a good approximation to the bound state
energy levels. Two additional approaches for solving the
coupled Schro¨dinger equations were presented. The direct
FEM method provided excellent accuracy but proved to be

quite memory intensive in the numerical computation for
some cases. The combined FEM andR-matrix approach cir-
cumvented this problem with a small loss in accuracy. A
two-channel QDT model was developed for a spin-3

2 particle.
The model provides a way to calculate the strength of chan-
nel interactions that generate perturbations in the energy
spectrum, and relate such strengths to interchannel scattering
probabilities. Possibilities for experimental detection of the
multichannel spectrum of a spin-2 particle were assessed.
This analysis suggests that the spectrum could in principle be
measured using a 0.1-mm superconducting wire.
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TABLE VII. 87Rb captured on a 50.0-nm radius superconduct-
ing wire. Eg is the ground state energy andDE represents the en-
ergy difference between the ground and first excited state.l is the
lowest angular momentum state for which the ground-state wave
function does not penetrate the wire.

I ~mA! l Eg ~Hz! DE ~Hz!

0.1 19 8.8943105 8.6723104

1.0 46 1.5173107 6.3883105

10.0 128 1.9603108 3.0273106

100.0 378 2.2473109 1.1843107

FIG. 9. Adiabatic potentials for87Rb in a nz 5 493 angular
momentum state. A 100-mA current was used. The radius of the
wire ~50 nm! is also indicated on the graph.
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