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Recent experiments with trapped cooled atoms have produced evidence for Bose-Einstein condensation
~BEC!. Among the atoms used are7Li, with attractive low-energy interaction. A potential barrier separating
the condensed part from the collapse is studied and stability limits are established. The lifetime due to
tunneling is estimated and is found to be very small. We further argue that BEC should have significant angular
momentumL/N;1\ and thus both states with angular momentuml z50,1 should be ‘‘macroscopically’’
populated. Eventually, as rotation is slowed down, collapse and strong reheating should occur, in amusing
resemblance to a supernova explosion.@S1050-2947~96!10409-1#

PACS number~s!: 03.75.Fi

Bose-Einstein condensation~BEC! is a generic quantum
phase transition discussed in most textbooks on quantum sta-
tistical mechanics. Recently several experiments@1,2# with
atoms trapped in magnetic traps and cooled to temperatures
as low asT;100 nK have enabled this to be observed. Un-
like liquid He, this condensate is in the low density domain.
Since different atoms are used, we may learn more about the
effects of the interaction.

In this paper we specifically discuss one experiment, per-
formed by Bradleyet al. @2# with 7Li atoms. Li was chosen
because of thenegative sign of the scattering length of
these atoms in the corresponding spin state,
a5227.360.8a0 @3# (a0 is the Bohr radius!. As a result of
classic papers on the interacting Bose gas~e.g., @4#!, it is
known that a macroscopic system of bosons with attraction is
unstable against collapse. However, it was repeatedly argued
that the situation may be different for af inite number of
atomsN trapped in af inite volume for f inite time. In this
paper we discuss the conditions under which a
metastableBose-condensed state exists.

We start with theT50 case, in which all atoms are in the
same quantum state, and present a simple argument why it
may exist, based on a simple variational approach. Let
c(x) be the ground-state wave function@normalized by
*dDxuc(x)u251#. In the low-energy approximation one can
describe interatomic interaction by the well-known Gross-
Pitaevskii ~or the nonlinear Schrödinger! equation @5#,
which follows from the Hamiltonian

H5NE dDxF \2

2m
u]xc~x!u21V~x!uc~x!u2

1NU0uc~x!u4/2G , ~1!

whereV(x) is the trapping potential whileU054p\2a/m is
the Fermi ‘‘pseudopotential’’ for pointlike interactions.

If atoms are in a state with a wave function which has size
R, c5 f (r /R), their kinetic energy isO(R22), the potential
energy isO(R2), while the interaction term isO(R2D). So,
for the one-dimensionalcase (D51! the kinetic energy
dominates at smallR, always allowing for a stable solution.
However, it is no longer so for higher dimensions. In the

two-dimensional case kinetic and nonlinear terms may bal-
ance each other. For theD53 case the interaction term takes
over at small sizes, and if it is negative, collapse is inevi-
table. Nevertheless, the effective potential~which is obtained
by the substitution of the trial function into the Hamiltonian!

Veff~R!5^H&5C1 /R
21C2R

22C3 /R
3 ~2!

may have a minimum, providedC3 ~proportional to the num-
ber of atoms! is not too large.

However, in order to confirm its existence, one should
show that the barrier separating it exists in all directions in a
functional space of possible quantum states. That was the
first problem we studied. Let us assume~for simplicity! that
the trap is the three-dimensional isotropic oscillator, and in-
troduce the dimensionless coordinatesr5x(mv/\)1/2, mea-
suring time inv21 units, etc. This leads to

H/~\vN!5E dDr @ u] rc~r !u2/21~r 2/2!uc~r !u2

2~N/N0!uc~r !u4/2#, ~3!

whereN05(\/mv)1/2/(2puau) is some characteristic num-
ber of atoms. The experimental trap has an oscillator unit
about 3mm, which is much larger than the scattering length,
so a large numberN0@1 appears. The corresponding equa-
tions, both static and time-dependent, were studied in some
detail in @6,7#. Although these authors were mostly con-
cerned with repulsive interactions, they obtained a very im-
portant result for the attractive case, namely that these equa-
tions allow for a solution in the attractive case below the
critical pointN,Ncrit'3.6N0.

A solution of the Schro¨dinger equation is an extremum of
the Hamiltonian: but it may be either an unstable one~a
saddle point! or a local minimum. Extensive variational stud-
ies of the nearby wave functions~trial functions of various
shapes such as the sum of several Gaussians with variable
amplitudes and widths! have led to the conclusion that the
latter is the case. We have minimized the expectation value
of H by steepest descent, and determined the ‘‘basin of at-
traction’’ to this minimum.~Such a ‘‘relaxation’’ approach
has obvious advantages over studies of the time-dependent
Schrödinger equation@6#, which conserves energy and thus

PHYSICAL REVIEW A OCTOBER 1996VOLUME 54, NUMBER 4

541050-2947/96/54~4!/3151~4!/$10.00 3151 © 1996 The American Physical Society



makes it difficult to penetrate into local minima.! We have
also studied what happens near the critical point. The wave
function found in @6# is shown in Fig. 1~a!: note that, al-
though the density at the origin grows by a significant factor,
it is not singular. Nothing in the wave function itself suggests
that, as one approaches the critical point, a qualitative change
should occur. Those changes, however, are well seen when
one looks at the instability threshold, or the barrier around
the metastable state. Consider, for example, a wave function
of the form of the metastable onecms plus a perturbation of
f inite magnitude; e.g.,

c~x!;@cms1C exp~2x2/R2!#, ~4!

whereC,R are variable parameters~a common multiplier is
determined by normalization to 1!. A typical result for
N53N0 is shown in Fig. 1~b!: it displays energy versus
C(0) for variable sizeR. The barrier is observed in all cases.
Furthermore, we have found that at the critical point~4! the

simplest ‘‘opening of the pocket’’ scenario takes place: for
largerN the system may roll downclassically into a col-
lapse.

The next issue is al i f etime of the metastable state. We
have seen that a finite increase in density at the origin leads
to an instability. Such perturbation may appear spontane-
ously, as a result of quantum fluctuation.

Usually one solves such problems semiclassically, by
finding a solution of the time-dependent Schro¨dinger equa-
tion with inverted potential. This solution should start~and
end! with the minimumcms, and describe a ‘‘bounce’’ from
the statecoutside on the outside part of the barrier, with the
energy identical to the original one. The penetration prob-
ability is then obtained in terms of the action for that solution
;exp(2S@c#). Such an approach is known in many similar
cases; see, e.g., Coleman’s solution for ‘‘the fate of a false
vacuum’’ @8# of the f4 relativistic field theory. Unfortu-
nately, in the present nonrelativistic problem there is no sym-
metry between the time and space coordinates, which sim-
plify it so that an analytic solution becomes possible.

Instead of looking for a numerical solution, we propose an
estimate of the collapse rate based onpro jection of the
wave functions in question,cms(x), onto the state at the
other end of the tunnel,coutside(x):

Pcollapse/v; z^coutsideucms& z2N. ~5!

We do not know whichcoutside(x) is connected with
cms(x) by the classical path~of minimal action!, but in fact
the transition may happen along any path, and in Eq.~5! one
should sum over them. We have evaluated the projection
probability for a number ofcoutside(x), which can be found
for any direction in the functional space@e.g., for any curve
shown in Fig. 1~b!#. Fortunately, the projection is in fact
rather insensitive to the details of the density fluctuation,
such as its sizeR and shape. Typical results are shown in
Fig. 1~c!: they can then be translated into an estimate
Pcollapse/v;exp@20.573(Ncrit2N)#. Although for a few at-
oms it would not be an improbable fluctuation, for the con-
densate made ofN;1000 particles the tunneling is strongly
suppressed. In such experimental conditions the tunneling is
very improbable~except maybe very close to the critical
point!.

Now we proceed to the nonzero temperature case. Al-
though the temperatureT is not reliably measured in the
experiment under consideration, it is suggested to be about
T;150 nK by the observed size. AsT@\v;5 nK, one can
use a very simple classical approximation for the nonconden-
sate particles. Ignoring self-interaction and setting the chemi-
cal potential to zero~thus looking for themaximalnoncon-
densate particle density! one gets

rnc~x!5E S dp

2p\ D D 1

exp~p2/2mT1V/T!21
. ~6!

The total number of noncondensate particles
Nnc5(T/\v)3z(3) is about;23104 atoms for the tem-

FIG. 1. ~a! The wave functionc(x) of the metastable state, in
oscillator units, defined in the text. Different curves correspond to
four values of the number of atomsN given in the figure~from
upper to lower one, atx50!. ~b! Average energy for different trial
functions ~4!, plotted as a function of the wave function at the
origin c(0). All curves are forN/N053, for different spatial size
of the perturbation: 1/R2510,5,4,3 for open squares, closed
squares, dots, and triangles. All of them show the existence of a
barrier, separating the metastable state.~c! The projection of the
statecoutside(x) @which is outside the boundary of stability but has
the same energy as the the metastable statecms(x)# versus the
number of atomsN. At the critical point, the barrier disappears and
here the projection becomes 1.~d! The condensate consisting of
N( l50) and N( l51) atoms in states with orbital momentum
l50,1 is ~meta!stable inside the domain shown by the dashed line.
Out of a few dozen places where the wave functions were actually
calculated, we show a few: closed squares indicate collapse and
open ones correspond to stable solutions.
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perature mentioned above, and it is consistent with the total
number of particles actually observed. Furthermore, the non-
condensate particles cannot significantly affect the stability
condition for the spherically symmetric condensate derived
above for T50 because their density at the origin
rnc(0)5(mT/2p\2)3/2z(3/2) is small compared to
rc5Nucms(0)u2. So, in theequil ibrium state of the experi-
mental trap the fraction of the atoms in BEC cannot exceed
several percent, and this conclusion seems to contradict the
observations.

However, experiments deal with finite time and thus one
has to look more carefully at the dynamics of the condensate
formation and possible deviation from equilibrium. We pro-
pose that axial symmetry of the trap is very important here
because~similar to the birth of stars from nebulas! the BEC
follows a compression of an atomic cloud: as a result of
angular-momentum conservation it should significantly spin
up. A typical angular momentum~in \ units! of an atom is
l;T/\v. So arandomsum forN atoms should result in the
total angular momentum per atomL/N;T/(\vAN). For
largeN ~which is the case in some other Bose-condensation
experiments!, L/N is small, and the adequate picture is simi-
lar to that in macroscopic systems~e.g., rotating liquid he-
lium!: a ~nonrotating! condensate is formed, with a relatively
small density of vortices@10#. However, ifN is only about a
few thousand atoms, separate vortices cannot actually exist.
Furthermore, due to a play of numbers,L/N estimated above
happens to be of the order of 1\. This implies that BEC
starts with a spinning condensate, eventually going into a
‘‘dual’’ state in which bothl50 and l51 collective states
are ‘‘macroscopically’’populated. The energy functional~1!
should then be rewritten, with two wave functions
c l50(x),c l51(x) to be optimized, andN5Nl501Nl51. The
initial value ofN1 is fixed by the total angular momentum at
the formation stage.

We have performed the corresponding calculations for ar-
bitraryNl50 ,Nl51, for the axially symmetric trap used in the
Rice experiment. The resulting~meta!stability domain is
shown in Fig. 1~d!. Our results for those states occupied
separatelyagree very well with those in@9#. If both states
are populated together, the stability line is about linear, keep-
ing the largest number of atoms in the condensate at about
4000.~This happens because two functions have very differ-
ent shape,c0 has a maximum at the origin, whilec1 has
zero there.! This total number roughly matches the typical
expectedL evaluated above, so the system should form pre-
dominantly the l51 condensate first. Certainly, thel51
condensate has a different spatial distribution~including a
hole going along the symmetry axis!, so one can test this
proposal by direct observation of BEC shape.

This dual condensate is still a nonequilibrium state: for
how long may it exist? The relevant processes are scattering

on noncondensate particles, in which an atom originating in
the l51 component ends up in thel50 one. The total col-
lision rate of a condensate particle with the noncondensate
ones can easily be estimated from densities, velocities, and
the cross sections5pa2: it is of the order of 1 Hz. There-
fore, the angular-momentum transfer reaction~which in-
cludes some suppression factors such as small spatial overlap
of c0 andc1, special kinematic required, etc.! should take
time at least on the order of minutes. Only then is the stabil-
ity boundary@the dashed line in Fig. 1~d!# crossed, and col-
lapse should take place.

We do not study the collapse in this work, which is a
formidable task in itself. Let us only add a few comments
about it. First of all, it certainly is there in the low-energy
approximation only, in which the interaction is assumed to
be represented by the scattering length. The next term in the
Hamiltonian;(]c)2(c2) ~and others indicated repulsion of
atoms at small distances! should stop the collapse and result
in a condensed ground state, solid or liquid. The collapse is
related to many other phenomena in physics, from sonolumi-
nescence to supernovas, which are also not yet well under-
stood. The energy per particle released in the collapse is very
small in absolute units, but it is still many orders of magni-
tude higher than the intial temperature, so strong reheating of
the system is expected. For Li atoms used in experiment@2#,
the binary potential in the appropriate state is deep enough to
cause reheating up to temperatures of the order of degrees K
~compared with 150 nK at the beginning!. A ‘‘minisuper-
nova’’ event would include a tiny cluster~which is no longer
a Bose condensate, but an ordinary liquid!, which would
blow up the noncondensate cloud~in a few seconds!.

In summary, we have established thatN trapped atoms
with attractive interaction have a metastable state, sur-
rounded by a barrier. We have obtained the stability condi-
tions and studied the barrier when it exists. We have esti-
mated the tunneling probability: it is very unlikely that
tunneling could occur in experiment, but it can be studied in
future ones. We then argue that in an equilibrium ensemble
with the observed temperature most particles cannot be in the
Bose condensate, but the kinetics of its formation favor for-
mation of a ‘‘dual’’ condensate, starting with a rapidly rotat-
ing l51 state. Stability of such a dual system was found to
occur forN, 4000 atoms, but, as friction eventually stops
rotation of the system, it leaves the stability domain and
collapses. Finally, we speculate that collapse should lead to
strong reheating of the small drop of ordinary liquid and
evaporation of noncondensate atoms.
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my interest in the problem, T. Bergeman and C.N. Yang for
discussion, and J. Marburger for an explanation of some re-
gimes in the two-dimensional case known in laser physics.
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