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Low-speed limit of Bohr’'s stopping-power formula

Peter Sigmund
Physics Department, Odense University, DK-5230 Odense M, Denmark
(Received 18 March 1996

Bohr’'s classical(nonrelativisti¢ model of charged-particle stopping is evaluated explicitly for arbitrary
values of projectile charge and speed. This removes the logarithmic cutoff from the original expression and
generates a stopping formula which can be utilized also to extend the range of practical applicability of Bloch’s
theory. As expected such a formulation appears to be a better starting point than the Born approximation for
estimating stopping powers of heavy ions at velocitiesZ,e?/%. [S1050-29476)07508-1

PACS numbeps): 34.50.Bw; 61.85+p; 52.40.Mj; 79.20.Rf

I. INTRODUCTION while the Bethe logarithm remains positive fom2?/1>1.
Sincex>1 in the range of validity of Bohr’s theory, E{qL)

In a classic paper “On the Theory of the Decrease ofis inapplicable as it stands over a significantly wider velocity
Velocity of Moving Electrified Particles on Passing Through range than the uncorrected Bethe formula. It is, in fact, inap-
Matter,” Bohr [1] derived an expression for the stopping plicable in the regime where on physical grounds it would be
cross section per target electr@charge—e, massm) of a  a most useful replacement for the Bethe formula.
material, This limitation of Bohr’s formula originates in the appli-

cation of an asymptotic expansion which could easily have
4wZ§e4 Crmu’ been avoided if the need had been obvious at the time: Eq.
= C=1.1229 (1) (1) was originally derived for swiftr particles where Eq.3)
was no serious limitation. The present paper serves the pur-
pose to eliminate this handicap and thus to present a formu-
for a swift ion (point-chargeZ, e) in uniform motion(speed  |ation of Bohr's theory which reflects its physical input. The
v) interacting with a harmonically bound classical electronlimitations of the physical model will be mentioned briefly.
(resonance frequencyw). Bethe’s quantum theory of  The Bloch formuld3] shows likewise a rather high lower
charged-particle stopping2] resulted in a formally very cutoff velocity because of the use of an asymptotic expan-
similar expression where the main difference was the resjon. The present treatment can be utilized to modify also the
placement of the logarithm by In(@?2/1). Herel is the  low-speed limit of the Bloch formula at least for large values
mean excitation energy which reducesite in case of one of k.
dominating resonance.

Bloch’s extension of Bethe's theof] contains the two Il. BOHR'S THEORY
results as limiting cases. Bloch’s formula reduces to Bethe's
for projectiles of low charge, especially protons and deuter- Bohr’'s theory considers close and distant interactions
ons, while Bohr's result is approached in the limit of separately. Close collisions are treated as free-Coulomb in-
teractions, resulting in the following dependence of the en-
ergy transfefT versus impact parameter

= n ,
mo 2 Z.€%0

ZZlvO
k= ——31, 2)
v 272¢* 1

Telose= mU2p2 1+ (b/2p)2 )

4
vo=e?/% being the Bohr velocity. A recent rederivatipf]
has confirmed and extended the theoretical basis of the Blo%herebzzzlezlmuz is the collision diameter(This rela-

formula. o _tion follows directly from Rutherford’s law tart{2)=b/2p

It was noted long agg5] that for projectiles of suffi-  5nqT—2my2sir2g2, ¢ denoting the center-of-mass scatter-
ciently high charge at not too high speed, Bohr’s formulaing angle)
must be a better starting point for theoretical predictions of “ginqing of target electrons is taken into account in distant
stopping powers than Bethe's. Despite this, it is Bethe'§yeractions and enters through a classical resonance fre-
theory that has served universally as a basis for computatloQﬁJencyw; the electric field of the projectile is taken in the

and compilations of stopping powers, regardless of the magginqe limit, i.e., its spatial variation across the diameter of
nitude of the projectile chargg6—9]. Although this may ihe atom is ignored. This yields

seem peculiar at first sight there is at least one plausible

reason for the neglect of Bohr's formula: Efl) makes 27%e* ([wp wp\ 12 [wp wp\]?
sense only as long as the logarithm is positive, i.e., for Tdistzm( TKO(T) + TK1<T) ] (5)
2mv2>£ 3) whereK, andK; are modified Bessel functions in standard
hw = C’ notation[10]. The stopping cross section is then given by
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FIG. 1. Energy-loss function$ g and T, VS impact param-
eter p. In the chosen unitd 4 is a universal curve, whilf ;e
depends on projectile speed through the Bohr paramet
&=mv3/Z,e%w. Curves refer to values of 0<1£<10. The cross-
over is taken as the limiting impact paramepgyr which likewise
depends orF (Fig. 2.

FIG. 2. Variation with projectile spee@xpressed by Bohr pa-
Slameteré=mv3/Z,62w) of the limiting impact parametep, (ex-
pressed in multiples of the adiabatic radiwR’») separating close
from distant collisions.

Po % always a crossover poity where T osd Po) = Tgisd Po) and
S= Scioset Sdist:J 27pd pTc|os&D)+J 2mpdpTysdP),  thatS must be positive for all values &f. Figure 2 shows
0 Po ©) this crossover as a function @& determined algebraically
from the inverse relatiort=§(wpg/v). This relation, to-
wherepy is a critical impact parameter separating close fromgether withS=S(wpo/v) [Egs. (7) and (8)], defines a pa-
distant interactions. rameter representation of the dependence of the stopping

The two integrations can be carried out and lead to cross-sectiorié) on the Bohr parameted. The result may be
expressed in a universal form via the stopping number

2p,\ 2 defined b
1+(%> } 7) y

2mwZ2e*
——>— 1IN
close mu 2

and (11)

4nZ%e* [ my3
 mw )

2 Zlez(,!)

v

v
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mu v

L is shown in Fig. 3 together with Bohr’'s asymptotic expres-
, o N _ sion(1). The two curves are parallel and almost coincident at
Bohr's evaluation is based on the recognition that, at highhigh projectile speed but differ significantly f@r<3. For

speed wherd<u/w, a value ofpy may be found such that qyalitative orientation the contributions from close and dis-
b<py<v/w. If so, the Bessel functions may be represented

by their expansions for small arguments,

4
{Ko(DK (L) ~In(210) — y+0(L?), 9 L otal
where y=0.5772 is Euler's constant, and Ed¥) and (8) 5 T cciligtsa:ant
simplify to logarithm
AmZie*  2ve? AnZie*  2p,
ist™ Mo 2 In @Po C|05e:m—v2 n o 2 .
(10)
Summation leads to Eql) with C=2 exp(-1y). N Pt
Note that the limiting impact parametgg drops out since
within the same approximation, Tgosd Po)=TaisPo) | o eerronni A
0 EE=fris i 11

ZZZie‘vang for b<py<v/o.

IIl. STRAIGHT EVALUATION mv®/Z,e?w
Figure 1 showsT 4 and Tpse VEIsus impact parameter
p for several projectile speeds, expressed by the Bohr param- FiG. 3.  Stopping number L vs Bohr parameter
eter £=mv®/Z,e°» ranging from the high-speed regime ¢=my3z,e?w. Thick solid line: Straight evaluation of Ed6);
(¢£=10) down to¢=0.1, i.e., an order of magnitude below contributions from close and distant collisions included separately
the threshold expressed by HS). It is evident that there is [Egs.(7) and(8)]; thin line: Bohr formula Eq(1).
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FIG. 4. Stopping cross-sectioB [expressed by (£)/¢%°] vs
Bohr parametet=mv3/Z,e?w found by replotting data from Fig. FIG. 5. Stopping power of aluminium estimated for bare oxygen
3. The stipled part§<1) of the curve reflects the need for various ion with | =Aw=166 eV [11]. Solid line: Present result; dotted
corrections to the Bohr theorigee text in Sec. 1Y line: Bohr formula Eq(1); dot-dashed line: Bethe formula without

shell correction; experimental data for equilibrium charge states

tant interactions have also been included separately. It is seeampiled in[12].
that close interactions dominate at all projectile speeds, in
particular so at low values of where p, increases mono- Ping powers for oxygen in aluminiurf.2] with the uncor-
tonically according to Fig. 2. rected Bethe formula, the uncorrected Bohr formula and the
Surprising|y, the high_speed behavior does not reflect thénOdlfled Bohr formula. It is seen that the mere removal of
commonly accepted equipartition between close and distarife cutoff generates a stopping formula which predicts the
contributions to the stopping cross section. This feature idrend of the experimental data. No correction has been ap-
related to the overshoot of the distant contribution at smalPlied to account for the screening of the projectile charge.
values ofwp/v in Fig. 1 which results in a nonvanishing Figure 5 indicates that at least for this system, an effective-
asymptotic value op, at high¢ as seen in Fig. 2. It is most charge correction necessary to fit experimental data would
likely an artifact which also causes the minute differencehave to be much smaller than in the familiar situation where
between the two curves in Fig. 3 at highand which could the Bethe formula has been used as a theoretical basis. An
be avoided by a smoother interpolation procedure. The poirfffective-charge correction is significant mainly for distant
is not followed up here since Fig. 1 indicates that the detaile@Ollisions. According to Fig. 3, the contribution from distant
interpolation procedure is not crucial in the determination ofinteractions is less than that from close interactions. There-
the total stopping cross section. fore, starting at Bohr's formulatl_on deat_:ce_ntuates_ the need
Figure 4 shows the function(&)/&%3 which represents a for an effective-charge correction. This is an important
universal plot of the stopping cross section itself. Also in_physmgl dlst|r)ct|on but alsq a S|gn|f|9ant simplification from
cluded is Bohr's expression E€l). The double-logarithmic the point of view of tabulating stopping powers. o
plot emphasizes close agreement at high speed and drasti- The use of a single resonance frequency is an oversimpli-

cally different behavior at low speed. The powerlike behav-fication, in particular, at the low-velocity end in Fig. 5 where
ior at low speed can be approximated by the relation the theoretical curve drops below the experimental points.
This restriction needs to be removed in a detailed compari-
L son with experimental dafd 3].
—n~5.451114 for ¢<0.01 (12 Despite the apparent success of the description—
¢ considering the lack of a charge-state correction—several
obvious limitations need to be mentioned. Most of all, the
validity of the dipole approximation is limited to large im-
pact parameters. Now, this approximation is applied for
IV. DISCUSSION p>p,, and sincep, increases with decreasirg(Fig. 2) the
Bohr’s original evaluation was geared toward large valuesrror might be tolerable. For a rough estimate we may con-
of the Bohr paramete¢=mv>/Z,e’w, for which there is a  sider the ratiqp,/a, wherea=a,Z, > is the Thomas-Fermi
range of impact parameters where the assumptions of fregadius of a target atom. Withw=2Z,e?/2a, one finds
Coulomb scatteringclose collisiong and dipole approxima-
tion for the electric field(distant collision$ are fulfilled si- Po
multaneously. In that limit the value chosen for the critical a
impact parametep, is immaterial as long as it falls within
the bounds given above. Figure 1 shows that this picture isvhere the dependence aipy/v on ¢ is given by Fig. 2.
valid approximately for£= 10, depending on the desired ac- Here the factog*wpy/v equals 1 ag=1 and varies very
curacy. Foré<10 the value ofp, matters, but ifpy is de-  slowly for £<1. It is thus the factor (Z,/Z,) that deter-
fined as the crossover, the physical picture should remaimines the quality of the dipole approximation.
basically correct. Quantitatively, deviations from the dipole approximation

Figure 5 shows a comparison of literature values of stopenter via target polarization in Bohr's thedr¥4]. The per-

which is equvivalent with a stopping cross section®?

4Zl ) 1/3wp0

Y v 13
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tinent parameter is the Barkas paramelge’w/mu3=1/¢ 4
[15]. This suggests that discrepancies can be expected when L
the modified Bohr formula is applied in the range &£ 1. ——- Bloch -
Note, however, that a polarization-corrected Bohr model of s —— Bohr Aol
stopping still predicts a universal scaling relatios L (&) in A
the absence of a charge-state correction. 4
The low-velocity cutoff in the Bethe formula shown in %
Fig. 5 is related to the neglect of shell corrections, i.e., the
neglect of the internal motion of target electrons. Such cor- 1
rections, which also cause a decrease of the stopping-power
maximum, must be presumed also to enter the Bohr theory,
although a detailed study is missing. Within the range of
validity of the classical-oscillator model they drop out in the
dipole limit, but according to kinetic theofy1 6] close colli- ) .
sions provide a contribution similar to the one entering the FIG- 6. Stopping number from modified Bloch formula com-

Bethe theory. This would predict a correction of the relativepare‘j to the result from the modified Bohr formula, labeled “total”
. 5, — . . in Fig. 3. The parametex=(Z2e?/aykw)* has been set equal to
magnitude~ —vg/v <, wherevg is the mean-square velocity 5

of the target electron. For a Thomas-Fermi atom with atomic™
numberZ, and vZ~Z5"v, and fiw~Z,e%2a, this would
suggest a ratio

o0
-
-

£ 10

rameter defined in Eq2). In the classical limit expressed by
Eq. (2), this term goes aklL0]

(shell correction —v2/v? 4z »
(Barkas factor 1/¢ P (14 Z,e?

indicating comparable magnitudes of the two corrections but
dependent in detail on atomic numbers of projectile and tar-

get. It appears tempting to replace the Bohr logarithm in the

first term in Eq.(17) by the function derived in Sec. Ill and
V. MODIFIED BLOCH FORMULA in this way to generate a modified Bloch formula which does
not turn negative at low projectile speed. This is illustrated
for the case of one dominating transition frequeacin Fig.
6, wherex has been replaced by

According to Bloch[3], the stopping cross section of an
atom is determined by the following expression for the stop
ping number,

2

1428
! hv

2
+ (1)~ Rey

2mu
hwno

L=, fonlIn } (15

(19

2 .
K= gwg with a=277

where /(x) =dInI"(x)/dx and Re denotes the real part. The
quantitiesw,y and fq, represent the transition frequencies
and associated dipole-oscillator strengths of a target &om
moleculg for the nth excitation level above ground state
with

Figure 6 shows that for=2, the stopping number accord-
ing to the modified Bloch formula approaches that of the
modified Bohr formula at low speed while a difference oc-
curs at high speed which, in essence, is the difference be-
tween the straight Bethe and the unmodified Bohr formula.
Z for=1 and Inl =E fonIn(Awng), (16)  This difference increases with decreasimg-i.e., when the

n n Bloch formula approaches the Bethe limit—while it dimin-
ishes rapidly for larger values af. Already for a=4 the

wherel is the mean excitation energy. The first term within difference becomes invisible on the scale of Fig. 6.

the brackets of Eq(15) represents Bethe’s result excluding In the opposite limit, for small values of, the Bloch
shell and relativistic corrections as well as polarization andfor : '

density effects. The second and third term taken together mula approaches Bethe's result. This corresponds to large
. \{alues of¢ in Fig. 1, where the difference between the modi-

represent the Bloch correction which does not contain targefled and the unmodified Bohr formula becomes negligible.

parameters. . i
: . Hence, the present modification does not noticeably affect
Equation(15) may be rearranged in the form the Bethe limit of the Bloch formula.

L=, fonl
n

cCmu?® Z,€?

+1 R Lt
n Zlezwno n ﬁU w

2
1+i hv)

. (17
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