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Bohr’s classical~nonrelativistic! model of charged-particle stopping is evaluated explicitly for arbitrary
values of projectile charge and speed. This removes the logarithmic cutoff from the original expression and
generates a stopping formula which can be utilized also to extend the range of practical applicability of Bloch’s
theory. As expected such a formulation appears to be a better starting point than the Born approximation for
estimating stopping powers of heavy ions at velocitiesv,Z1e

2/\. @S1050-2947~96!07508-7#

PACS number~s!: 34.50.Bw; 61.85.1p; 52.40.Mj; 79.20.Rf

I. INTRODUCTION

In a classic paper ‘‘On the Theory of the Decrease of
Velocity of Moving Electrified Particles on Passing Through
Matter,’’ Bohr @1# derived an expression for the stopping
cross section per target electron~charge2e, massm) of a
material,
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for a swift ion ~point-chargeZ1e) in uniform motion~speed
v) interacting with a harmonically bound classical electron
~resonance frequencyv). Bethe’s quantum theory of
charged-particle stopping@2# resulted in a formally very
similar expression where the main difference was the re-
placement of the logarithm by ln(2mv2/I ). Here I is the
mean excitation energy which reduces to\v in case of one
dominating resonance.

Bloch’s extension of Bethe’s theory@3# contains the two
results as limiting cases. Bloch’s formula reduces to Bethe’s
for projectiles of low charge, especially protons and deuter-
ons, while Bohr’s result is approached in the limit of
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v05e2/\ being the Bohr velocity. A recent rederivation@4#
has confirmed and extended the theoretical basis of the Bloch
formula.

It was noted long ago@5# that for projectiles of suffi-
ciently high charge at not too high speed, Bohr’s formula
must be a better starting point for theoretical predictions of
stopping powers than Bethe’s. Despite this, it is Bethe’s
theory that has served universally as a basis for computations
and compilations of stopping powers, regardless of the mag-
nitude of the projectile charge@6–9#. Although this may
seem peculiar at first sight there is at least one plausible
reason for the neglect of Bohr’s formula: Eq.~1! makes
sense only as long as the logarithm is positive, i.e., for
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while the Bethe logarithm remains positive for 2mv2/I.1.
Sincek.1 in the range of validity of Bohr’s theory, Eq.~1!
is inapplicable as it stands over a significantly wider velocity
range than the uncorrected Bethe formula. It is, in fact, inap-
plicable in the regime where on physical grounds it would be
a most useful replacement for the Bethe formula.

This limitation of Bohr’s formula originates in the appli-
cation of an asymptotic expansion which could easily have
been avoided if the need had been obvious at the time: Eq.
~1! was originally derived for swifta particles where Eq.~3!
was no serious limitation. The present paper serves the pur-
pose to eliminate this handicap and thus to present a formu-
lation of Bohr’s theory which reflects its physical input. The
limitations of the physical model will be mentioned briefly.

The Bloch formula@3# shows likewise a rather high lower
cutoff velocity because of the use of an asymptotic expan-
sion. The present treatment can be utilized to modify also the
low-speed limit of the Bloch formula at least for large values
of k.

II. BOHR’S THEORY

Bohr’s theory considers close and distant interactions
separately. Close collisions are treated as free-Coulomb in-
teractions, resulting in the following dependence of the en-
ergy transferT versus impact parameterp:

Tclose5
2Z1

2e4

mv2p2
1

11~b/2p!2
, ~4!

whereb52Z1e
2/mv2 is the collision diameter.~This rela-

tion follows directly from Rutherford’s law tan(u/2)5b/2p
andT52mv2sin2u/2, u denoting the center-of-mass scatter-
ing angle.!

Binding of target electrons is taken into account in distant
interactions and enters through a classical resonance fre-
quencyv; the electric field of the projectile is taken in the
dipole limit, i.e., its spatial variation across the diameter of
the atom is ignored. This yields
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whereK0 andK1 are modified Bessel functions in standard
notation@10#. The stopping cross section is then given by
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wherep0 is a critical impact parameter separating close from
distant interactions.

The two integrations can be carried out and lead to
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Bohr’s evaluation is based on the recognition that, at high
speed whereb!v/v, a value ofp0 may be found such that
b!p0!v/v. If so, the Bessel functions may be represented
by their expansions for small arguments,

zK0~z!K1~z!; ln~2/z!2g1O~z2!, ~9!

whereg50.5772 is Euler’s constant, and Eqs.~7! and ~8!
simplify to
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Summation leads to Eq.~1! with C52 exp(2g).
Note that the limiting impact parameterp0 drops out since

within the same approximation,Tclose(p0).Tdist(p0)
.2Z1

2e4/mv2p0
2 for b!p0!v/v.

III. STRAIGHT EVALUATION
Figure 1 showsTdist and Tclose versus impact parameter

p for several projectile speeds, expressed by the Bohr param-
eter j5mv3/Z1e

2v ranging from the high-speed regime
(j510) down toj50.1, i.e., an order of magnitude below
the threshold expressed by Eq.~3!. It is evident that there is

always a crossover pointp0 whereTclose(p0)5Tdist(p0) and
that S must be positive for all values ofj. Figure 2 shows
this crossover as a function ofj, determined algebraically
from the inverse relationj5j(vp0 /v). This relation, to-
gether withS5S(vp0 /v) @Eqs. ~7! and ~8!#, defines a pa-
rameter representation of the dependence of the stopping
cross-section~6! on the Bohr parameterj. The result may be
expressed in a universal form via the stopping numberL
defined by
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L is shown in Fig. 3 together with Bohr’s asymptotic expres-
sion~1!. The two curves are parallel and almost coincident at
high projectile speed but differ significantly forj,3. For
qualitative orientation the contributions from close and dis-

FIG. 1. Energy-loss functionsTdist andTclose vs impact param-
eter p. In the chosen unitsTdist is a universal curve, whileTclose
depends on projectile speed through the Bohr parameter
j5mv3/Z1e

2v. Curves refer to values of 0.1,j,10. The cross-
over is taken as the limiting impact parameterp0 which likewise
depends onj ~Fig. 2!.

FIG. 2. Variation with projectile speed~expressed by Bohr pa-
rameterj5mv3/Z1e

2v) of the limiting impact parameterp0 ~ex-
pressed in multiples of the adiabatic radiusv/v) separating close
from distant collisions.

FIG. 3. Stopping number L vs Bohr parameter
j5mv3/Z1e

2v. Thick solid line: Straight evaluation of Eq.~6!;
contributions from close and distant collisions included separately
@Eqs.~7! and ~8!#; thin line: Bohr formula Eq.~1!.
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tant interactions have also been included separately. It is seen
that close interactions dominate at all projectile speeds, in
particular so at low values ofj wherep0 increases mono-
tonically according to Fig. 2.

Surprisingly, the high-speed behavior does not reflect the
commonly accepted equipartition between close and distant
contributions to the stopping cross section. This feature is
related to the overshoot of the distant contribution at small
values ofvp/v in Fig. 1 which results in a nonvanishing
asymptotic value ofp0 at highj as seen in Fig. 2. It is most
likely an artifact which also causes the minute difference
between the two curves in Fig. 3 at highj and which could
be avoided by a smoother interpolation procedure. The point
is not followed up here since Fig. 1 indicates that the detailed
interpolation procedure is not crucial in the determination of
the total stopping cross section.

Figure 4 shows the functionL(j)/j2/3 which represents a
universal plot of the stopping cross section itself. Also in-
cluded is Bohr’s expression Eq.~1!. The double-logarithmic
plot emphasizes close agreement at high speed and drasti-
cally different behavior at low speed. The powerlike behav-
ior at low speed can be approximated by the relation

L

j2/3
;5.45j1.114 for j,0.01 ~12!

which is equvivalent with a stopping cross section}v3.3.

IV. DISCUSSION
Bohr’s original evaluation was geared toward large values

of the Bohr parameterj5mv3/Z1e
2v, for which there is a

range of impact parameters where the assumptions of free-
Coulomb scattering~close collisions! and dipole approxima-
tion for the electric field~distant collisions! are fulfilled si-
multaneously. In that limit the value chosen for the critical
impact parameterp0 is immaterial as long as it falls within
the bounds given above. Figure 1 shows that this picture is
valid approximately forj*10, depending on the desired ac-
curacy. Forj,10 the value ofp0 matters, but ifp0 is de-
fined as the crossover, the physical picture should remain
basically correct.

Figure 5 shows a comparison of literature values of stop-

ping powers for oxygen in aluminium@12# with the uncor-
rected Bethe formula, the uncorrected Bohr formula and the
modified Bohr formula. It is seen that the mere removal of
the cutoff generates a stopping formula which predicts the
trend of the experimental data. No correction has been ap-
plied to account for the screening of the projectile charge.
Figure 5 indicates that at least for this system, an effective-
charge correction necessary to fit experimental data would
have to be much smaller than in the familiar situation where
the Bethe formula has been used as a theoretical basis. An
effective-charge correction is significant mainly for distant
collisions. According to Fig. 3, the contribution from distant
interactions is less than that from close interactions. There-
fore, starting at Bohr’s formulation deaccentuates the need
for an effective-charge correction. This is an important
physical distinction but also a significant simplification from
the point of view of tabulating stopping powers.

The use of a single resonance frequency is an oversimpli-
fication, in particular, at the low-velocity end in Fig. 5 where
the theoretical curve drops below the experimental points.
This restriction needs to be removed in a detailed compari-
son with experimental data@13#.

Despite the apparent success of the description—
considering the lack of a charge-state correction—several
obvious limitations need to be mentioned. Most of all, the
validity of the dipole approximation is limited to large im-
pact parameters. Now, this approximation is applied for
p.p0, and sincep0 increases with decreasingj ~Fig. 2! the
error might be tolerable. For a rough estimate we may con-
sider the ratiop0 /a, wherea.a0Z2

21/3 is the Thomas-Fermi
radius of a target atom. With\v.Z2e

2/2a0 one finds

p0
a

;S 4Z1Z2
j D 1/3vp0

v
, ~13!

where the dependence ofvp0 /v on j is given by Fig. 2.
Here the factorj1/3vp0 /v equals 1 atj51 and varies very
slowly for j,1. It is thus the factor (4Z1 /Z2)

1/3 that deter-
mines the quality of the dipole approximation.

Quantitatively, deviations from the dipole approximation
enter via target polarization in Bohr’s theory@14#. The per-

FIG. 4. Stopping cross-sectionS @expressed byL(j)/j2/3# vs
Bohr parameterj5mv3/Z1e

2v found by replotting data from Fig.
3. The stipled part (j,1) of the curve reflects the need for various
corrections to the Bohr theory~see text in Sec. IV!.

FIG. 5. Stopping power of aluminium estimated for bare oxygen
ion with I5\v5166 eV @11#. Solid line: Present result; dotted
line: Bohr formula Eq.~1!; dot-dashed line: Bethe formula without
shell correction; experimental data for equilibrium charge states
compiled in@12#.
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tinent parameter is the Barkas parameterZ1e
2v/mv351/j

@15#. This suggests that discrepancies can be expected when
the modified Bohr formula is applied in the range ofj,1.
Note, however, that a polarization-corrected Bohr model of
stopping still predicts a universal scaling relationL5L(j) in
the absence of a charge-state correction.

The low-velocity cutoff in the Bethe formula shown in
Fig. 5 is related to the neglect of shell corrections, i.e., the
neglect of the internal motion of target electrons. Such cor-
rections, which also cause a decrease of the stopping-power
maximum, must be presumed also to enter the Bohr theory,
although a detailed study is missing. Within the range of
validity of the classical-oscillator model they drop out in the
dipole limit, but according to kinetic theory@16# close colli-
sions provide a contribution similar to the one entering the
Bethe theory. This would predict a correction of the relative
magnitude;2ve

2/v2, whereve
2 is the mean-square velocity

of the target electron. For a Thomas-Fermi atom with atomic
numberZ2 and ve

2;Z2
4/3v0 and \v;Z2e

2/2a0 this would
suggest a ratio

~shell correction!

~Barkas factor!
;

2ve
2/v2

1/j
;2

4Z2
1/3

k
, ~14!

indicating comparable magnitudes of the two corrections but
dependent in detail on atomic numbers of projectile and tar-
get.

V. MODIFIED BLOCH FORMULA

According to Bloch@3#, the stopping cross section of an
atom is determined by the following expression for the stop-
ping number,

L5(
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wherec(x)5dlnG(x)/dx and Re denotes the real part. The
quantitiesvn0 and f 0n represent the transition frequencies
and associated dipole-oscillator strengths of a target atom~or
molecule! for the nth excitation level above ground state
with

(
n

f 0n51 and lnI5(
n

f 0nln~\vn0!, ~16!

whereI is the mean excitation energy. The first term within
the brackets of Eq.~15! represents Bethe’s result excluding
shell and relativistic corrections as well as polarization and
density effects. The second and third term taken together
represent the Bloch correction which does not contain target
parameters.

Equation~15! may be rearranged in the form
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Here the first term represents the stopping due to an en-
semble of classical Bohr oscillators with resonance frequen-
ciesvn0. The second and third term taken together do not
contain target parameters and depend only on Bohr’sk pa-

rameter defined in Eq.~2!. In the classical limit expressed by
Eq. ~2!, this term goes as@10#
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It appears tempting to replace the Bohr logarithm in the
first term in Eq.~17! by the function derived in Sec. III and
in this way to generate a modified Bloch formula which does
not turn negative at low projectile speed. This is illustrated
for the case of one dominating transition frequencyv in Fig.
6, wherek has been replaced by

k5
2a

j1/3
with a5Z1

2/3S e2/a0\v D 1/3. ~19!

Figure 6 shows that fora52, the stopping number accord-
ing to the modified Bloch formula approaches that of the
modified Bohr formula at low speed while a difference oc-
curs at high speed which, in essence, is the difference be-
tween the straight Bethe and the unmodified Bohr formula.
This difference increases with decreasinga—i.e., when the
Bloch formula approaches the Bethe limit—while it dimin-
ishes rapidly for larger values ofa. Already for a54 the
difference becomes invisible on the scale of Fig. 6.

In the opposite limit, for small values ofk, the Bloch
formula approaches Bethe’s result. This corresponds to large
values ofj in Fig. 1, where the difference between the modi-
fied and the unmodified Bohr formula becomes negligible.
Hence, the present modification does not noticeably affect
the Bethe limit of the Bloch formula.
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FIG. 6. Stopping number from modified Bloch formula com-
pared to the result from the modified Bohr formula, labeled ‘‘total’’
in Fig. 3. The parametera5(Z1

2e2/a0\v)1/3 has been set equal to
2.
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