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We present an improved version of the wave function derived by Alt and Mukhamedzhanov@Phys. Rev. A
47, 2004~1993!# that satisfies the Schro¨dinger equation up to terms of orderO(1/ra

2) in the region where the
pair a5(b,g) remains close, while the third particlea moves to infinity (ra→`). The new wave function
contains the zeroth- and all the first-orderO(1/ra) terms, and matches smoothly Redmond’s asymptotics and
the Redmond-Merkuriev wave function when all three particles are well separated.@S1050-2947~96!08110-3#

PACS number~s!: 34.10.1x, 21.45.1v, 25.10.1s, 03.65.Nk

I. INTRODUCTION

The problem of the wave function for the scattering of
three charged particles has attracted the attention of theorists
for a long time. An asymptotic wave function, valid in the
regionV0 in which all three interparticle distances are large,
was proposed by Redmond@1# ~see Rosenberg@2#!. This
wave function, Redmond’s asymptotics, has the form of a
Coulomb-distorted three-particle plane wave. Redmond also
proposed an extended wave function in which the three pairs
of Coulomb-distorted factors are replaced by corresponding
confluent hypergeometric functions. This wave function later
considered by Merkuriev@3# has three desirable properties: it
is also an asymptotic solution to the three-Coulomb Schro¨-
dinger equation in the regionV0, satisfying it in the leading
order; the leading term in its asymptotic expansion is the
Coulomb-distorted three-particle plane wave, by design, and,
if any one of the charges is set equal to zero, the resulting
wave function becomes an exact solution to the Schro¨dinger
equation~i.e., a Coulomb wave function for the charged pair
multiplied by a plane wave for the neutral particle!. How-
ever, this wave function does not possess the correct asymp-
totic behavior in other asymptotic regions of configuration
different from the regionV0. These regions are important
when calculating cross sections for ionization processes such
as

~12!13→11213. ~1!

The ionization amplitude for this process contains the
overlap of the initial bound-state wave function for the
bound pair (12) and the three-body final state continuum
wave function. The presence of the bound-state wave func-
tion cuts off the integration in the variabler 3, the relative
coordinate between particles 1 and 2, but the integration
over the variabler3, the relative coordinate between the cen-
ter of mass of the pair (12) and particle 3 is not ‘‘protected,’’
and the region of integration extends to infinity, i.e., the in-
tegration region includes the whole of the asymptotic region
we callV3 : r 3 /r3→0, r3→`. In this region the Coulomb-
distorted three-body plane wave is not the leading asymp-
totic term, hence the Redmond-Merkuriev wave function is
not applicable. Nevertheless, this wave function has been
employed in many applications~see, for example,@4–7#!.

The asymptotic behavior of the three-body scattering wave
function for three charged particles in the regionV3 has been
found in work @8#. This wave function satisfies the asymp-
totic Schrödinger equation to leading order@up to terms
O(1/r3

2)#. But this wave function does not use up all the
terms of orderO(1/r3).

The aim of the present paper is to suggest an improved
expression for the approximate three-body continuum wave
function whose main asymptotic term in the regionV3 coin-
cides with that found in Ref.@8#, contains all the terms of
orderO(1/r3) which also satisfy the Schro¨dinger equation
up to termsO(1/r3

2), while in the regionV0 this wave
function joins smoothly with the Redmond-Merkuriev wave
function and hence its leading term inV0 is the Redmond
asymptotics.

II. ASYMPTOTIC THREE-BODY
WAVE FUNCTION IN Va

A. Nonsingular directions

Consider a system of three particles with massma and
chargeea , a51, 2, 3, in the continuum. We use the notation
for the Jacobi coordinates, kinetic energy operators, and po-
tentials employed in Ref.@8#. The Schro¨dinger equation de-
scribing this system is

~E 2 Tra 2 Tra
2 V !Cka ,qa

~1 ! ~ra ,ra! 5 0. ~2!

Before looking for the solution we would like to remind
the reader that for pure Coulombic interactions in all three
pairs, i.e.,Vn5Vn

C , n51, 2, 3, an asymptotic solution satis-
fying ~2! in the leading orderO(1/r n), n51, 2, 3, inV0 in
the nonsingular directions (k̂n• r̂ nÞ1, n51, 2, 3) is the
Redmond-Merkuriev wave function

Cka ,qa

~RM!~1 !~ra ,ra! 5ei qa•ra ei ka•ra

3 )
n51

3

NnF„2 ihn ,1;i ~kn r n2kn•r n!….

~3!

We note that
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r n52enara2
mn

mbg
ra , rn52

mn

mg
ra1ena

mn

Ma
ra ,

~4!

where n5b, g, ena52ean is the antisymmetric symbol,
with ena51 for (na) being a cyclic permutation of
(1, 2, 3), andeaa50; ma5mbmg /mbg , mbg5mb1mg ,
Ma5mambg /(m11m21m3). The confluent hypergeomet-
ric functionFn( i zn)[F(2 ihn , 1; i zn) is the solution for

S 1

2mn
D rn

1 i
1

mn
kn•¹rn

2Vn
CD Fn~ i zn!50, ~5!

where

ha5
ebegma

ka
, Na5e2~pha/2!G~11 iha!,

za5kar a2ka•ra. ~6!

We use the system of units such that\5c51. Taking into
account that@9#

NnF~2 ihn,1 ;i zn!5Fn
~1!~ i zn!1Fn

~2!~ i zn!, ~7!

Fn
~1!~ i zn!5e~phn/2! ~ i zn!2~1/2!e~ i zn/2!Wihn11/2, 0~ i zn!,

Fn
~2!~ i zn!52 i

G~11 ihn!

G~2 ihn!
e~phn/2!~ i zn!2~1/2!

3e~ i zn/2! W2 ihn2 1/2 , 0~2 i zn!, ~8!

and asymptotic behavior of the Whittaker function at
zn→`,

Wl, 0~ i zn!5~ i zn!le~2 i zn/2!F12
~l2 1

2 !2

i zn
1OS 1

i zn
2D G ,

~9!

we derive the well known asymptotic behavior

Fn
~1!~ i zn! 5

zn→`

ei hn lnznF11OS 1zn
D G , ~10!

Fn
~2!~ i zn! 5

zn→`

f n
C ei zn

r n
e2 ihn ln~2knr n! F11OS 1zn

D G . ~11!

Correspondingly

NnF~2 ihn,1 ;i zn! 5

zn→`

ei hn lnznF11OS 1zn
D G

1 f n
C ei zn

r n
e2 ihn ln~2knr n!

3F11OS 1zn
D G , ~12!

wheref n
C is the Coulomb scattering amplitude of particles of

the pair n. The leading term of the Redmond-Merkuriev
wave functionCka ,qa

(0)1 (ra ,ra) in V0 also satisfying~2! in the

leading order is the three-particle Coulomb-distorted plane
wave ~Redmond’s asymptotics!:

Cka ,qa

~0! ~ra ,ra!5ei qa•ra ei ka•ra )
n51

3

eihn ln~kn r n2kn•rn!.

~13!

Also note that the leading asymptotic term of the three-
body wave function inVa satisfying the Schro¨dinger equa-
tion in the leading orderO(1/ra) is given by@8#

Cka ,qa

~as!~1 !~ra ,ra!5ei qa•ra ei ka•ra Fb
~1!~ i zb!Fg

~1!~ i zg!

3wa~ra , ra! ~14!

5ei qa•ra cka~ra!
~1 ! ~ra!

3 )
n5b,g

eihn ln~kn ra2kn•ra!1OS 1ra
D ,
~15!

where

cka~ra!
~1 ! ~ra!5eika~ra!•ra wa~ra , ra! ~16!

is the continuum solution of the two-body Schro¨dinger equa-
tion

@Ea~ra!2Tra2Va~ra!#cka~ra!
~1 ! ~ra!]50, ~17!

with the corresponding equation forwa(ra , ra),

F 1

2ma
D ra

1 i
1

ma
ka~ra!•¹ra

2Va~ra!Gwa~ra , ra!50.

~18!

Equation~17! @or equivalently Eq.~18!# describes the rela-
tive motion of particlesb andg, with relative kinetic energy
Ea(ra)5ka

2(ra)/2ma , interacting via the potential given by
the sum of the Coulomb and short-range potentials
Va5Va

C1Va
S The relative ‘‘local momentum’’ka(ra) of

particlesb andg in the Coulomb field of the third particle
a at r a /ra!1, introduced in@8#, is given by

ka~ra!5ka1 (
n5b,g

mn

mbg
hn

k̂n2 r̂ n

12 k̂n• r̂ n

1

r n
~19!

5ka1
1

ra
(

n5b,g

mn

mbg
hn

k̂n2eanr̂a

12eank̂n•r̂a

1OS 1ra
2 D , ~20!

wherek̂5 k/k. Since the Coulomb interaction between par-
ticles a andn, n5b,g, falls off only as the inverse of the
distance between them, the distortion of the motion of par-
ticles b andg caused by the third particlea cannot be ne-
glected even ifr b , r g→`, which is equivalent tora→` in
the regionVa . This distortion causes the modification of the
momentum of particlesb andg, which is represented in the
local momentum of Eq.~20!.
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If the potentialVa is pure Coulombic,Va5Va
C , then

wa(ra , ra) is given by

wa~ra , ra!5Na~ra! F„2 iha~ra!, 1; i za~ra!…, ~21!

where

ha~ra!5
ebegma

ka~ra!
,

Na~ra!5e2pha~ra!/2 G„11 iha~ra!…,

za~ra!5ka~ra! r a2ka~ra!•ra . ~22!

We note that Eq.~15! is valid in the nonsingular directions
( k̂n•r̂aÞ1, n5b, g).

Our aim now is to find an extension ofCka ,qa

(as)(1)(ra ,ra)

satisfying the Schro¨dinger equation inVa in the leading or-
derO(1/ra) and containing not only the main term given by
~14! but also all the terms of orderO(1/ra). The derived
wave function is the asymptotic term@up to order of
O(1/ra

2)# of the exact three-body wave function inVa which
should match smoothly with the leading asymptotics of the
exact three-body wave function in the asymptotic region
V0.

We start our consideration from the Redmond-Merkuriev
wave function~3!. This wave function is an asymptotic so-
lution to the Schro¨dinger equation inV0 because in that
region allzn→`, n51, 2, 3, and, as follows from~7!,

u¹n Fn~ i zn!u 5

zn→`

OS 1zn
D . ~23!

However, inVa r a , a priori, is limited ~more strictly, it is
allowed to grow, but slower thanra), which is why Eq.~23!
does not hold forn5a in Va and the Schro¨dinger equation
cannot be satisfied inVa by ~3! even in the leading order.
Hence a proper modification of the Redmond-Merkuriev
function should be done to get an asymptotic solution in
Va . To find it let us rewrite~3! in the form

Cka ,qa

~RM!~1 !~ra ,ra! 5ei qa•ra ei ka•ra @Fb
~1!~ i zb!

3Fg
~1!~ i zg!NaFa~ i za!1Fb

~2!~ i zb!

3Fg
~1!~ i zg!NaFa~ i za!1Fb

~1!~ i zb!

3Fg
~2!~ i zg!NaFa~ i za!1Fb

~2!~ i zb!

3Fg
~2!~ i zg!NaFa~ i za!#. ~24!

Compare the first term of~24! and~14!. Taking into account
that for the pure Coulombic interaction in the paira , func-
tion wa(ra , ra) is given by ~21!, one sees that the wave
function of Alt and Mukhamedzhanov,Cka ,qa

(as)(1)(ra ,ra), Eq.

~14!, can be derived from the first term of~24! by substitut-
ing Na(ra) F„2 iha(ra), 1; i za(ra)… for NaFa( i za). It
was the main result of work@8#. Since the first term in~24! is
the leading term~of the zeroth order! of the Redmond-
Merkuriev wave function we may conclude that the wave
function Cka ,qa

(as) (ra ,ra) is the leading term of the asymp-

totic wave function inVa satisfying Eq.~2! up to terms of
orderO(1/ra

2). But there are three more terms in~24!, which
are of the next order. A proper modification of these terms in
Va provides the terms of orderO(1/ra) of the asymptotic
wave function satisfying Eq.~2! up to the termsO(1/ra

2)
in Va . Our educated guess based on the results of@8#
allows us to conclude that the asymptotic wave function in
Va can be derived from~24! by properly changing
Na Fa( i za). We will show, however, that the modification
of Na Fa( i za) in ~24! depends on the preceding factors
F b

(n)( i zb)F g
(m)( i zg), n,m51,2, i.e., for each term in~24!

the modification is different. That is why we are looking for
the solution satisfying Eq.~2! in Va in the leading order in
the form

Cka ,qa

~as!~1 !8~ra ,ra! 5ei qa•ra ei ka•ra @Fb
~1!~ i zb!Fg

~1!~ i zg!

3wa
~11!~ra , ra!1Fb

~2!~ i zb!Fg
~1!~ i zg!

3wa
~21!~ra , ra!1Fb

~1!~ i zb!Fg
~2!~ i zg!

3wa
~12!~ra , ra!1Fb

~2!~ i zb!Fg
~2!~ i zg!

3wa
~22!~ra , ra!#. ~25!

We assumed in~25! that the interaction potentials in pairs
b andg are pure Coulombic. Our idea is to single out ex-
plicitly the functions describing asymptotically@up to order
O(1/r n

2), n5b, g# the relative motion of the pairs
b5(g a) and g5(b, a), respectively, and then to derive
equations for the functionswa

(nm)(ra , ra) describing the
relative motion of particles of the paira5(b, g) distorted
by the presence of the third particlea. Then we will find
asymptotic solutions to these equations inVa which satisfy
these equations in the first orderO(1/ra).

When substituting Eq.~25! into ~2! we assume that each
term of the sum in~25! satisfies this equation. Then we de-
rive four independent equations. For the first term in~25! we
arrive at the equation

F b
~1!~ i zb!F g

~1!~ i zg!S 1

2ma
D ra

1
1

2Ma
Dra

1 i
1

ma
ka•¹ra

1 i
1

Ma
qa•¹ra

1
1

ma
(

n5b,g
¹ra

lnF n
~1!~ i zn!•¹ra

1
1

Ma
(

n5b,g
¹ra

lnF n
~1!~ i zn!•¹ra

2Va~ra!

1
1

ma
¹ra

lnF b
~1!~ i zb!•¹ra

lnF g
~1!~ i zg!

1
1

Ma
¹ra

lnF b
~1!~ i zb!•¹ra

lnF g
~1!~ i zg! D

3wa
~11!~ra , ra!50. ~26!

When deriving~26! we took into account that Eq.~5! is
satisfied byF n

(1)( i zn) in the leading orderO(1/zn). It can be
easily checked by the direct substitution of exp(ihnlnzn) into
Eq. ~5!. It is important to stress that we are looking for the
asymptotic behavior of the three-body wave function inVa

in the nonsingular directions (k̂n • r̂ n Þ 1, n5b, g; in Va
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r̂ n can be replaced byr̂a). Taking into account the asymp-
totic behavior of F n

(1)( i zn) we can write up to terms
O(1/r n

2)

¹ra
lnF n

~1!~ i zn!5 ihn

mn

mbg

1

r n

k̂n2 r̂ n

12 k̂n• r̂ n

1OS 1r n
2D ~27!

5 ihn

mn

mbg

1

ra

k̂n2eanr̂a

12eank̂n•r̂a

1OS 1ra
2 D ,

~28!

and

¹ra
lnF n

~1!~ i zn!5 ihn

1

r n
ena

k̂n2 r̂ n

12 k̂n• r̂ n

1OS 1r n
2D ~29!

5 ihn ena

1

ra

k̂n2eanr̂a

12eank̂n•r̂a

1OS 1ra
2 D .

~30!

Equations~28! and ~30! are valid only inVa , where both
gradients are of orderO(1/r n)5 O(1/ra), while Eqs.~27!
and ~29! are valid both inV0 andVa .

Since we are seeking the solution of Eq.~26! which is
valid up to termsO(1/ra

2), we may drop the last two terms in
Eq. ~26! and rewrite it in the form

S 1

2ma
D ra

1
1

2Ma
Dra

1 i
1

ma
ka•¹ra

1 i
1

Ma
qa•¹ra

1
1

ma
(

n5b,g
¹ ra

lnF n
~1!~ i zn!•¹ra

1
1

Ma
(

n5b,g
¹ra

lnF n
~1!~ i zn!•¹ra

2Va~ra! D
3wa

~11!~ra , ra!50. ~31!

This equation can be further simplified. According to
~28! and~30! the coefficients in this equation actually depend
on 1/ra . Hence the solutionwa

(11)(ra , ra) will also depend
on 1/ra and we may drop the second, fourth, and sixth terms,
because their contribution will be only of orderO(1/ra

2).
Besides, since we are interested only in solutions satisfy-
ing Eq. ~31! in the leading orderO(1/ra), the function
F n

(1)( i zn) can be approximated by its leading term
exp(ihnlnzn) at zn→`. Nevertheless we saveF n

(1)( i zn),
keeping in mind that we need to take into account its leading
term. We thus arrive at the final equation

S 1

2ma
D ra

1 i
1

ma
ka•¹ra

1
1

ma
(

n5b,g
¹ ra

lnF n
~1!~ i zn!•¹ra

2Va~ra!Dwa
~11!~ra , ra!50, ~32!

which can be written more compactly if we introduce the
local momentum of the relative motion of particlesb and
g in the Coulomb field of the third particlea:

ka
~11!~ra!5ka2 i (

n5b,g
¹ ra

lnF n
~1!~ i zn!. ~33!

Taking into account~28! we arrive at the conclusion that in
the leading orderka

(11)(ra)5ka(ra), i.e., ka
(11)(ra) is noth-

ing but the local momentum~20! introduced in@8#. Then Eq.
~32! reduces to~18!, i.e.,

wa
~11!~ra , ra!5wa~ra , ra!, ~34!

wherewa(ra , ra) is the solution to Eq.~18!. We note that
~19! follows from ~33! both inVa and inV0 @when deriving
Eq. ~19! from ~33! we did not use the condition
r a /ra→0#. Hence we may considerwa(ra , ra) even in
V0.

The second term of~25! satisfies the equation

F b
~2!~ i zb!F g

~1!~ i zg!S 1

2ma
D ra1

1
2Ma

Dra
1 i

1

ma
ka•¹ra

1 i
1

Ma
qa•¹ra

1
1

ma
@¹ra

lnF b
~2!~ i zb!

1¹ra
lnF g

~1!~ i zg!#•¹ra
1

1

Ma
@¹ra

lnF b
~2!~ i zb!

1¹ra
lnF g

~1!~ i zg!#•¹ra
2Va~ra!

1
1

ma
¹ra

lnF b
~2!~ i zb!•¹ra

lnF g
~1!~ i zg!

1
1

Ma
¹ra

lnF b
~2!~ i zb!•¹ra

lnF g
~1!~ i zg! D

3wa
~21!~ra , ra!50. ~35!

When deriving this equation we took into account that
F n

(2)( i zn) satisfies Eq.~5! in the leading orderO(1/zn) at
zn→` @up to termsO(1/zn

2)#:

S 1

2mn
D rn

1 i
1

mn
kn•¹rn

2Vn
CD F n

~2!~ i zn!

' f n
C 1

r n
e2 ihn ln~2knr n!S 1

2mn
Drn

1 i
1

mn
kn•¹rnDei zn

5OS 1r n
2D . ~36!

We note that inVa O(1/r n
2)5O(1/ra

2), nÞa. According to
~11! F b

(2)( i zb)5O(1/ra) at ra→` in Va . Hence it is
enough to satisfy the equation forwa

(21)(ra , ra) in the lead-
ing orderO(1/ra). Besides, it follows from~11! that up to
termsO(1/r n) we have

¹ra
lnF n

~2!~ i zn!'
mn

mbg
¹ ra

zn5 i
mn

mbg
~2kn r̂ n1 kn! ~37!

' i
mn

mbg
~enaknr̂a1 kn!, n5b,g

~38!
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and

¹ra
lnF n

~2!~ i zn!' i¹ra
zn5 i ena~2kn r̂ n1 kn! ~39!

' i ~knr̂a1ena kn!, n5b,g. ~40!

Equations~38! and ~40! are valid only inVa . Since in
Va F n

(2)( i zn)5O(1/ra), to satisfy Eq.~35! up to terms of
order O(1/ra

2) we are seeking the solutionwa
(21)(ra , ra)

which is valid in the leading orderO(1/ra). Hence, we may
drop all the terms in Eq.~35! containing¹ra

lnF g
(1)( i zg) and

¹ra
lnF g

(1)( i zg) because they are of orderO(1/ra). Taking
into account~37! and~39! gives the equation@up to terms of
orderO(1/ra)#

S 1

2ma
D ra

1
1

2Ma
Dra

1 i
1

ma
ka•¹ra

1 i
1

Ma
qa•¹ra

1 i
1

ma

mb

mbg
~ebakbr̂a1kb!•¹ra

1 i
1

Ma

3~kbr̂a1ebakb!•¹ra
2Va~ra! Dwa

~21!~ra , ra!50.

~41!

The coefficients of this equation depend onr̂a . From
¹ra

•r̂a5O(1/ra) it follows that u¹ra
wa
(21)(ra , ra)u

5O(1/ra). Hence when looking for the solution of Eq.~41!
up to orderO(1/ra) the second, fourth, and sixth terms con-
taining derivatives overra can be dropped. We can intro-
duce a new local momentum

ka
~21!~ra!5ka2 ix~ra,ra!¹ ra

lnFb
~2!~ i zb!

5 ka1x~ra , ra!
mb

mbg
~ebakbr̂a1 kb!. ~42!

From

ka5eba

mb

Ma
qb2

mb

mbg
kb ~43!

it follows that inVa

ka
~21!~ra!5eba

mb

Ma
qb2

mb

mbg
eabkbr̂a , ra , raPVa .

~44!

To stress that the approximation~40! and correspondingly
the definitions of the local momentum~42! and~44! are valid
only inVa we introduced the cutoff functionx(ra , ra) such
that x(ra , ra)51 in Va and x(ra , ra)50 out of Va .
Comparison of~43! and ~44! shows that inVa , ka

(21)(ra)
can be derived fromka by the replacement in~43! of kb by
eabkbr̂a . Then the equation forwa

(21)(ra , ra) reduces to
Eq. ~18! with ka

(21)(ra) instead of ka(ra). The solution of
this equation,

wa
~21!~ra , ra!5e2 ika

~21!
~ra!•rack

a
~21!~ra!

~1 !
~ra!, ~45!

whereck
a
(21)(ra)
(1)

(ra) is the scattering wave function describ-

ing the relative motion of particlesb andg, with the relative
kinetic energy Ea(ra)5ka

(21)2(ra)/2ma , interacting via
the potential Va . Similarly for the wave function
wa
(12)(ra , ra) we derive Eq.~18! with the local momentum
ka
(12)(ra) instead of ka(ra), where ka

(12)(ra) is given by

ka
~12!~ra!5ka2 ix~ra ,ra!“ra

ln F g
~2!~ i jg!

5ka1x~ra , ra!
mg

mbg
~egakgr̂a1 kg! ~46!

5ega

mg

Ma
qg2

mg

mbg
eagkgr̂a , ra , raPVa .

~47!

The fourth equation derived when substituting the last
term of ~25! into ~2! is satisfied automatically up to terms
O(1/ra

2) in Va , because the productF b
(2)( i zb)F g

(2)( i zg)
5O(1/ra

2). Since we are looking for the asymptotics of the
exact three-body wave function inVa containing the terms
up to orderO(1/ra

2) @i.e., terms not exceedingO(1/ra)# the
last term of ~25!, containingwa

(22)(ra , ra), can be disre-
garded. Nevertheless we will keep that term also to provide
the matching of the asymptotic wave function
Cka ,qa

(as)(1)8(ra ,ra) with the Redmond-Merkuriev wave func-

tion Cka ,qa

(RM) (ra ,ra) in V0. The fourth term in~25! gives rise

to an equation forwa
(22)(ra , ra):

S 1

2ma
D ra

1
1

2Ma
Dra

1 i
1

ma
ka•¹ra

1 i
1

Ma
qa•¹ra

1 i
1

ma
(

n5b,g

mn

mbg
~enaknr̂a1kn!•¹ra

1 i
1

Ma
(

n5b,g
~knr̂a1enakn!•¹ra

2Va~ra! D
3wa

~22!~ra , ra!50. ~48!

Using the same arguments we have used to simplify~41! we
may drop all the terms containing derivatives overra when
looking for the solution of this equation in the leading order.
We can introduce now a new local momentum

ka
~22!~ra!5 ka1x~ra , ra! (

n5b,g

mn

mbg
~enaknr̂a1 kn!.

~49!

Then the equation forwa
(22)(ra , ra) reduces to~18! with

ka
(22)(ra) instead of ka(ra).
Thus we have found all the unknown functions

wa
(nm)(ra , ra) in ~25!. Hence we have shown that the as-

ymptotic solution to the Schro¨dinger equation~2! in Va ,
satisfying it up to orderO(1/ra

2) and containing the zeroth-
and all first-order termsO(1/ra), can be written in the form
~25!, where eachF n

( j )( i zn) is given by its leading term in
Va , Eqs. ~10! and ~11!. Functionswa

(nm)(ra , ra) are the
solutions of Eq.~18! with the local momentaka

(nm)(ra) in-
stead of ka(ra). Equation~25! is our main result.

The other convenient forms can be derived from it. Equa-
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tion ~25! is valid for pure Coulombic interactions in the
pairsb andg, while the interaction in the paira may contain
a short-range term. Suppose now thatVa5Va

C , i.e., there is
the pure Coulombic interaction between particles of the pair

a. Then functionswa
(nm)(ra , ra) are given by~21! with

ka
(nm)(ra) instead of ka(ra) in ~22! and the asymptotics of

the three-body wave function satisfying the Schro¨dinger
equation in the leading orderO(1/ra) takes the form

Cka ,qa

~as!~1 !8~ra ,ra! 5ei qa•ra ei ka•ra @F b
~1!~ i zb! F g

~1!~ i zg!Na
~11!~ra! F„2 iha

~11!~ra!, 1; i za
~11!~ra!…

1F b
~2!~ i zb! F g

~1!~ i zg! Na
~21!~ra! F~2 iha

~21!~ra!, 1;i za
~21!~ra!!

1F b
~1!~ i zb! F g

~2!~ i zg! Na
~12!~ra! F„2 iha

~12!~ra!, 1; i za
~12!~ra!…

1F b
~2!~ i zb! F g

~2!~ i zg! Na
~22!~ra! F„2 iha

~22!~ra!, 1; i za
~22!~ra!…# ~50!

'ei qa•ra S ei ka
~11!

~ra!•ra Na
~11!~ra! F„2 iha

~11!~ra!, 1; i za
~11!~ra!…eihb lnzba eihg lnzga

1ei ka
~21!

~ra!•ra Na
~21!~ra! F„2 iha

~21!~ra!, 1; i za
~21!~ra!… f b

C ei zba

ra
e2 ihb ln~2kbra! eihg lnzga

1ei ka
~12!

~ra!•ra Na
~12!~ra! F„2 iha

~12!~ra!, 1; i za
~12!~ra!… eihb lnzba f g

C ei zga

ra
e2 ihg ln~2kgra!

1ei ka
~22!

~ra!•ra Na
~22!~ra! F„2 iha

~22!~ra!, 1; i za
~22!~ra!… f b

C ei zba

ra

3e2 ihb ln~2kbra! f g
C ei zga

ra
e2 ihg ln~2kgra!D . ~51!

HereNa
(nm)(ra), ha

(nm), andza
(nm) are given by~22! with ka

(nm)(ra) instead ofka(ra). When deriving~51! we approximated
F n

( j )( i zn) by their leading terms, Eqs.~10! and ~11!, and expressedzn in terms ofzna :

zn5zna1ena

mn

mbg
kn ra•r̂a1

mn

mbg
kn• ra1OS 1ra

D , zna5knra2ean kn•ra . ~52!

This approximation is valid inVa . If the interactions in all three pairs are given by the sum of the short-range and Coulombic
potentials,Vn5Vn

C1Vn
S , n51, 2, 3, then by replacing in Eq.~51! the Coulomb scattering amplitudesf n

C of particles of the
pairs n5b,g by the scattering amplitudesf n of these particles interacting via potentialVn we derive the asymptotic wave
function

Cka ,qa

~as!~1 !8~ra ,ra! 5ei qa•ra S ck
a
~11!~ra!

~1 !
~ra! eihb lnzba ei hg lnzga1ck

a
~21!~ra!

~1 !
~ra! f b

ei zba

ra
e2 ihb ln~2kbra! ei hg lnzga

1ck
a
~12!~ra!

~1 !
~ra! ei hb lnzba f g

ei zga

ra
e2 ihg ln~2kgra!1ck

a
~22!~ra!

~1 !

3~ra! f b

ei zba

ra
e2 ihb ln~2kbra! f g

ei zga

ra
e2 ihg ln~2kgra!D . ~53!

B. Matching with the Redmond-Merkuriev
wave function in V0

Let us discuss the problem of matching the wave function
~50! with the Redmond-Merkuriev wave function~3! in
V0. From the derivation of~50! it is clear that it defines the
asymptotic solution to the Schro¨dinger equation~2! up to
termsO(1/ra

2) only in the asymptotic domainVa and is not

valid in V0. The first term of~50! can be extrapolated in
V0 where its leading part joins smoothly with the leading
part of the Redmond-Merkuriev wave function@three-
particle Coulomb-distorted wave~13!# due to the disappear-
ance of the addend toka in ~33!. But it is not the case for the
second, third, and fourth terms of~50!. To see it consider, for
example, Eq.~41!. This equation is valid only inVa : when
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deriving it we used Eqs.~38! and ~40! valid in Va . In V0,
instead of~41!, we derive using~37! and ~39!

S 1

2ma
D ra

1
1

2Ma
Dra

1 i
1

ma
ka•¹ra

1 i
1

Ma
qa•¹ra

1 i
1

ma

mb

mbg
~2kb r̂b1kb!•¹ra

1 i
1

Ma
eba

3~2kb r̂b1kb!•¹ra
2Va~ra! Dwa

~21!~ra , ra!50.

~54!

This equation in contrast to~41! is valid both inVa and
V0. But now coefficients in this equation depend onrb , and
not on ra as in ~41!. That is why we cannot integrate
over ra assuming coefficients to be constants. However, we
recall thatF b

(2)( i zb)5O(1/r n), hence to satisfy Eq.~2! up to
terms of the second orderO„1/(r ar b)… in V0 it is enough to
find a solution to~54! satisfying it up to termsO(1/r a).
In the domain V0 , u¹ra

wa
(0)(ra , ra)u5O(1/r a), where

wa
(0)(ra , ra) is the solution of Eq.~18! with the asymptotic

momentumka . Hence it is evident thatwa
(0)(ra , ra) satis-

fies ~54! up to termsO(1/r a), just what we need to satisfy
~2! in the second order@up to termsO„1/„r nr a)…#. That is
why to provide a smooth matching ofwa

(21)(ra , ra) with
wa
(0)(ra , ra) in V0 we introduced a cutoff function

x(ra ,ra) in ~42!. Similarly, to provide a smooth join in
V0 of wa

(12)(ra , ra) and wa
(22)(ra , ra) with wa

(0)(ra , ra)
we introduced the cutoff function in~46! and~49!. For pure
Coulombic interaction wa

(0)(ra , ra)5Na F„2 iha , 1;
i (ka r a2ka•ra)…. Since all the functionswa

(nm)(ra , ra) go
to wa

(0)(ra , ra) in V0, we easily see that inV0 due to~7! the

wave function Cka ,qa

(as)(1)8(ra ,ra) given by ~50! matches

smoothly to the Redmond-Merkuriev wave function~3!. It is
evident that to provide that joining we should keep the last
term in ~25!.

C. Singular directions

We note that~25!, ~50!, ~51!, and ~53! are valid only in
the nonsingular directions (k̂n•r̂aÞ1, n5b, g). For practi-
cal applications it is important to know how to overcome the
problem of the singular directions although a small contribu-
tion to the ionization amplitude arises from the singular di-
rections, because the exact wave function is finite in the sin-
gular directions. The most serious problem here is the
divergent of ka

(11)(ra) given by ~33! in the singular direc-
tions. To get rid of that divergency we redefine~33! using a
characteristic function of the singular directionk̂n• r̂ n51
vn( r n), n5b, g, @3# such that

vn~ r n!50, znu<~knr n!l, 0,l,1,

vn~ r n!51, zn>~knr n!l8, l,l8,1 ~55!

i.e., vn( r n) disappears in the vicinity of the singular direc-
tion and goes to 1 beyond it.

Surely the procedure of the redefinition ofka
(11)(ra) in

~33! is not unique and we consider here two possible ways it
could be done.

~1! Let us introduce

ka
~11!~ra!5ka2 i (

n5b,g
vn~ r n!¹ ra

lnF n
~1!~ i zn!. ~56!

Due to the presence of the characteristic functions in~56! in
the vicinity of the singular direction k̂n• r̂ n→1,
vn( r n)¹ ra

lnF n
(1)( i zn)→0. If k̂b• r̂b→1 andk̂g• r̂g→1 si-

multaneously, then all the ‘‘local momenta’’ka
(nm)(ra)

→ ka @it is clear from ~37! that in that caseka
(21)(ra),

ka
(12)(ra), ka

(22)(ra)→ka#.
~2! One can introduce another local momentum

ka
~11!~ra!5ka2 i (

n5b,g

3
¹ra
F n

~1!~ i zn!1@12vn~r n!#¹ra
F n

~2!~ i zn!

F n
~1!~ i zn!1@12vn~r n!#F n

~2!~ i zn!
.

~57!
Away from the singular directions, the local momentum co-
incides with the previous definition~33!, while in the vicinity
of the singular directions it is regular due to~7! and regular-
ity of ¹ ra

lnF(2ihn,1; i zn) at zn→0. With either definition
of the local momentum,~56! or ~57!, the wave function

Cka ,qa

(as)(1)8(ra ,ra), Eq. ~50!, goes to the Redmond-Merkuriev

wave function~3!. Surely such a wave function is not an
asymptotic solution to the Schro¨dinger equation inVa in the
singular directions and can be considered only as a way out
for the practical calculations to avoid the divergence of the
local momentum ka

(21)(ra) in the singular directions in
Va . The question about an asymptotic solution to the Schro¨-
dinger equation in the singular directions inVa remains
open.

III. SUMMARY

Summarizing the result obtained in this work, we have
derived the asymptotic continuum wave function for three
charged particles@Eq. ~25!# which satisfies the Schro¨dinger
equation up to terms of orderO(1/ra

2) in the domainVa in
the nonsingular directions. This wave function is an exten-
sion of the one derived in@8#. It would be of interest, for
example, to evaluate the so-called post-Coulomb accelera-
tion ~PCA! in the atomic ionization processes and nuclear

breakup reactions using our wave functionCkaqa

(1)8(ra , ra).

The appearance of the local momentaka
(nm)(ra) in

wa
(nm)(ra , ra), instead of the asymptotic momentumka , is a

genuine three-body effect which can be important when cal-
culating PCA at low relative kinetic energies of the final
particlesb andg. We note that the method used here can be
applied to obtain the asymptotic wave function which satis-
fies the Schro¨dinger equation up to terms of order
O(1/ra

3) in the regionVa .
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