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We present an improved version of the wave function derived by Alt and Mukhamedzffaimgs. Rev. A
47, 2004(1993] that satisfies the Schiinger equation up to terms of ord@(1/p,?) in the region where the
pair «=(8,v) remains close, while the third particte moves to infinity p,—0). The new wave function
contains the zeroth- and all the first-ord¢1/p,) terms, and matches smoothly Redmond’s asymptotics and
the Redmond-Merkuriev wave function when all three particles are well sepafate2b0-294{@6)08110-3

PACS numbgs): 34.10:+x, 21.45+v, 25.10+s, 03.65.Nk

[. INTRODUCTION The asymptotic behavior of the three-body scattering wave
function for three charged particles in the regidg has been
The problem of the wave function for the scattering of found in work[8]. This wave function satisfies the asymp-
three charged particles has attracted the attention of theoriststic Schralinger equation to leading ordgup to terms
for a long time. An asymptotic wave function, valid in the O(1/p3%)]. But this wave function does not use up all the
region(), in which all three interparticle distances are large,terms of ordeiO(1/p3).
was proposed by Redmorid] (see Rosenber{?]). This The aim of the present paper is to suggest an improved
wave function, Redmond’s asymptotics, has the form of aexpression for the approximate three-body continuum wave
Coulomb-distorted three-particle plane wave. Redmond alséunction whose main asymptotic term in the regidg coin-
proposed an extended wave function in which the three pairsides with that found in Ref.8], contains all the terms of
of Coulomb-distorted factors are replaced by correspondingrder O(1/p3) which also satisfy the Schdinger equation
confluent hypergeometric functions. This wave function laterup to termsO(1/p32), while in the region{), this wave
considered by Merkurief3] has three desirable properties: it function joins smoothly with the Redmond-Merkuriev wave
is also an asymptotic solution to the three-Coulomb Schrofunction and hence its leading term {d, is the Redmond
dinger equation in the regiofl,, satisfying it in the leading asymptotics.
order; the leading term in its asymptotic expansion is the
Coulomb-distorted three-particle plane wave, by design, and,
if any one of the charges is set equal to zero, the resulting
wave function becomes an exact solution to the Sdinger
equation(i.e., a Coulomb wave function for the charged pair A. Nonsingular directions

m”'“p”?d by a plang wave for the neutral particléiow- Consider a system of three particles with mass and
ever, this wave function does not possess the correct asymehargee w=1.2 3. in the continuum. We use the notation
a 1 1 L .

totic behavior in other asymptotic regions of configuration]cor the Jacobi coordinates, kinetic energy operators, and po-

d|Lferent|fro|m_the reglorﬂo: Thefse.regmr.ns are important ékebntials employed in Ref8]. The Schrdinger equation de-
when calculating cross sections for ionization processes su ribing this system is

as

II. ASYMPTOTIC THREE-BODY
WAVE FUNCTION IN Q,,

(E=Tr, = Tp, = VIV (rep) =0 (2

(12)+3—-1+2+3. (1)

The ionization amplitude for this process contains the Before looking for the solution we would_hke to remind
overlap of the initial bound-state wave function for the th? regder that éor pure Coulombic Interactions in all three
bound pair (12) and the three-body final state continuun@rs: i-e.V,=V;, »=1,2, 3, an asymptotic solution satis-
wave function. The presence of the bound-state wave fund¥ind (2) in the leading ordeQ(1fr,), »=1,2, 3, in{g in
tion cuts off the integration in the variable, the relative the nonsingular directionsk(-r,#1,v=1,2, 3) is the
coordinate between particles 1 and 2, but the integratiolRedmond-Merkuriev wave function
over the variablg s, the relative coordinate between the cen-
ter of mass of the pair (12) and particle 3 is not “protected,” W™ *)(r,,,p,) =€’ %a'Pa & Ka'Ta
and the region of integration extends to infinity, i.e., the in-

tegration region includes the whole of the asymptotic region 3

we callQ3: r3/p3—0, ps—o°. In this region the Coulomb- XVHl N,F(=in,,Li(k,r,—k,r,)).
distorted three-body plane wave is not the leading asymp-
totic term, hence the Redmond-Merkuriev wave function is ()]

not applicable. Nevertheless, this wave function has been
employed in many applicationsee, for example[4—7]).  We note that
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(4)

where v=_8, vy, €,,= —€,, 1S the antisymmetric symbol,
with €,,=1 for (va) being a cyclic permutation of

(1,2, 3), ande,,=0; pw,=mgm,/mg,, Mg, =mg+m,,

M,=m,mg, /(m;+m,+mg). The confluent hypergeomet-

ric functionF (i, )=F(—in,, 1;i¢,) is the solution for
1A+'1kV VE| F(i¢,)=0 5
2/*4‘11 r, I/“LV v Vr, v V(Igv)_ ’ ()

where

ese
na=ﬁk—w“, N,=e ("1 (1+i7y,),
o
ga:kara_

We use the system of units such tiiat c=1. Taking into
account thaf9]

Ky T (6)

NF(—in,1:i¢,)=FYic,)+F2iL), @
FP(ig,)=em2) (ig,)"MPelePw, L, (iL,),

T'(1+in,)
! F(_l 7711)
xeWD W i _yp =i, (8)

FAL)=-

e(ﬂ'rr],,/2)( i gv) —(1/2)

and asymptotic behavior of the Whittaker function at

{,—»,

. A= 3)?
Wx,o(i§V)=(iéy)”e<"4v’2){1—( ) +o(.—12”,

i, il
€)
we derive the well known asymptotic behavior
L=
FVig,) = € mif1+0 all (10
{,—® eigv . 1
FRL,) = {5 ——eTiminer) 1+o(§—”. (1)
Correspondingly
gv_’m . 1
N,F(=in,1:ig,) = € 7" 1+0 g_”
i,
+ fC i efinyln(zkvr,,)
14 rV
1
X|1+0 g—)}, (12
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leading order is the three-particle Coulomb-distorted plane
wave (Redmond’s asymptoti¢s

3
\P&O)q (ra,pa):ei Yo Po @i Ka'Ta H el mink, r,=k,r,)
ata v=1
(13

Also note that the leading asymptotic term of the three-
body wave function in}, satisfying the Schidinger equa-
tion in the leading orde©(1/p,) is given by[8]

W1, pa) =€ doPe @ Kate FR)(ig ) FD(I L)

X@ollar Pa) (14)

i . +
:e' qa Py lpf(a()pa)(ra)

< 11

ei nvln(k” pa—k,,‘ﬂa) + O( i) 1
=By

Pa
(15
where
Uy (T =€XalP) To o (1, p,) (16)
is the continuum solution of the two-body ScHilmger equa-
tion

[Ealpa) = Tr, = Valr) T (o) ()] =0, (17)

with the corresponding equation fer,(r,, p,),

1 1
2_,L,LaAr‘Y+I Z ka(pa)'vra_va(ra) @a(rav pa)_o'
(18

Equation(17) [or equivalently Eq.(18)] describes the rela-
tive motion of particleg3 andy, with relative kinetic energy
E.(p.) =k3(p.)/2u, , interacting via the potential given by
the sum of the Coulomb and short-range potentials
V,=VS¢+VS The relative “local momentum”k,(p,) of
particlesg and y in the Coulomb field of the third particle

a atr,/p,<1, introduced in 8], is given by

k,—F, 1
— (19

m
ka a :ka+ — V"—Ij\
(Pa) > R T

v=B.y Mgy

m, kll_ €avPa

P i~
Pa vEBy Mpy "1—e€,,K, Pa

il
pa)’
wherek= k/k. Since the Coulomb interaction between par-
ticles @ and v, v=,v, falls off only as the inverse of the

distance between them, the distortion of the motion of par-

ticles 8 and y caused by the third particle cannot be ne-
glected even if 5, r,—, which is equivalent tg ,— in

(20

wheref® is the Coulomb scattering amplitude of particles of the region(2, . This distortion causes the modification of the
the pair v. The leading term of the Redmond-Merkuriev momentum of particleg and y, which is represented in the

+

wave functiord (0,

(r.,po) in Qg also satisfying?) in the

local momentum of Eq(20).
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If the potentialV, is pure Coqumbic,Va=V2, then totic wave function inQ), satisfying Eq.(2) up to terms of

0w, Pg) IS given by orderO(1/p2). But there are three more terms(¥), which
are of the next order. A proper modification of these terms in
®allas Po)=No(pa) F(—in4(pa), 1;14(pr), 21  Q, provides the terms of orded(1/p,) of the asymptotic
wave function satisfying Eq(2) up to the termsO(1/p2)
where in Q,. Our educated guess based on the resultg8pf
allows us to conclude that the asymptotic wave function in
(p)= €yt Q, can be derived from(24) by properly changing
o\ Pa K,(py) ' N, F,(iZ,). We will show, however, that the modification
of N, F,(i£,) in (24) depends on the preceding factors
N,(p,) =€ "7PI2 T (1+in,(p,)), FPigpFUV(ig,), nm=1.2, ie., for each term if24)
the modification is different. That is why we are looking for
LaP)=Ka(Pa) Tu—Ku(Po) Ta. (22) tEe fsolution satisfying Eq2) in Q, in the leading order in
the form

We note that Eq(15) is valid in the nonsingular directions

(Kyr Pot 1, v=5, 7). Vi, (rape) =€ ebe el ket [FD( 09 71,

i i i i (as)(+) _ _
Our aim now 8 to find an extension i, q, (e ) XedMra, po)+ FP1LR FYiL,)
satisfying the Schidinger equation i}, in the leading or- ’1 0 .
derO(1/p,) and containing not only the main term given by X @1y, p) +FF (L) FOIL,)
(14) but also all the terms of orde®(1/p,). The derived (12) 2),: 2),:
wave function is the asymptotic terrfup to order of X QU1 4, po) +F (L) FPL,)
O(1/p?)] of the exact three-body wave functiongh, which xe?(r,, po)]- (25)

should match smoothly with the leading asymptotics of the
exact three-body wave function in the asymptotic regionWe assumed ir{25) that the interaction potentials in pairs
Q. B and vy are pure Coulombic. Our idea is to single out ex-
We start our consideration from the Redmond-Merkurievplicitly the functions describing asymptoticallyp to order
wave function(3). This wave function is an asymptotic so- O(l/ri), v=0, y] the relative motion of the pairs
lution to the Schrdinger equation inQ}y because in that B=(y «) and y=(B, «a), respectively, and then to derive
region all{,—, v=1,2,3, and, as follows frori), equations for the functiong"™(r,, p,) describing the
P relative motion of particles of the paix=(8, y) distorted
VL] '~ O(i) 23 by the presence of the third particte Then we will find
viovisy Z, asymptotic solutions to these equationdlp which satisfy
these equations in the first orde(1/p,).
However, inQ, r,, a priori, is limited (more strictly, it is When substituting Eq25) into (2) we assume that each
allowed to grow, but slower tham,), which is why Eq.(23)  term of the sum in25) satisfies this equation. Then we de-
does not hold for=a in Q, and the Schidinger equation rive four independent equations. For the first terni2f) we
cannot be satisfied i), by (3) even in the leading order. arrive at the equation
Hence a proper modification of the Redmond-Merkuriev

g . A 1 1 1
function should be done to get an asymptotic solution in  £(1j s y £ A 4—A 4+ —k..V
Q,. To find it let us rewrite(3) in the form p (1L 75708) 2ug e 2M TP, T e
(RM)(+) Uy Pa ol Ko To T HD (i o1 1 .
WG g o) =€ P @l KaTa [FR(iLp) i G Vo o > V. InFN(iz,)-v,
a o a V=ﬂ,)’ (23 (23
XFPLINGF (i L)+ FD(iLp) L
. . . i D; . _
XFDNGFoli0)+ 7 9) "3 25, Ve 16V, Vil
XFP AL INGF o(i0)+ F(12p) 1
. _ g Y, INFR( )V, nF i)
XFP(LINGF (i8] (24) oo
Compare the first term c(12_4) gnd(14)_. Ta_king into_account +Mi Vpalnffgl)(iZg)'Vpaln]:(yl)(iZy)
that for the pure Coulombic interaction in the pair, func- a

tion ¢,(r,, p,) IS given by (21), one sees that the wave
function of Alt and Mukhamedzhanow(kas?é”(ra P, EQ.

(14), can be derived from the first term 24) by substitut- When deriving(26) we took into account that Eq5) is
ing N,(p,) F(—=i7.(p), 1:il.(p,) for NF(i¢,). It  satisfied byF{1)(i¢,) in the leading orde®(1/¢,). It can be
was the main result of worl8]. Since the first term ii24) is  easily checked by the direct substitution of éxpln¢,) into
the leading term(of the zeroth orderof the Redmond- Eg. (5). It is important to stress that we are looking for the
Merkuriev wave function we may conclude that the waveasymptotic behavior of the three-body wave functior{lp

function ‘I’(kis,)qa(fa,l)a) is the leading term of the asymp- in the nonsingular directionsk( -7, # 1, »=28, y; in Q,

X @ (r . pa)=0. (26)
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r, can be replaced bp,). Taking into account the asymp-
totic behavior of #(I(iz,) we can write up to terms
O(1/r%)

VI]—‘() m, 1 k- ”+ol) (27)
n i, =j —_— — —
T Mgy My 1— k r ry
om 1 ke—ewba 1)
=in, — ,
nmﬁypal_f k P I?_a
(28
and
%, 02— e o X (29
P[,n v (Igv)_lnvryeya 1—AV~FV r]2}
1 lzv_eav’\a 1
:inveva_—"p,\_‘—o(_Z)-
Pa 1_€avkvlpa Pa
(30

Equations(28) and (30) are valid only in{,, where both
gradients are of orde®(1/r,)= O(1/p,), while Egs.(27)
and(29) are valid both inQy and(,, .

Since we are seeking the solution of E@6) which is
valid up to terms’)(llpi), we may drop the last two terms in
Eq. (26) and rewrite it in the form

! A A ! k,-V P \Y%
2y e am, e K Ve T g GV
1 e
+— 2 V. InFNig,) Y,
/_La V=ﬁ,7 a o
e > YV, InFN(ig,)V, =V, (r,)
MaV:ﬁr}’ P, v v P, a\' a

X @M(r,, pa)=0. (3D

This equation can be further simplified. According to
(28) and(30) the coefficients in this equation actually depend
on 1p,, . Hence the solutiop*)(r,,, p,) will also depend

on 1jp, and we may drop the second, fourth, and sixth terms,

because their contribution will be only of ordé)(l/pi).

Besides, since we are interested only in solutions satisfy-

ing Eg. (31) in the leading orderO(1/p,), the function
FM(iz,) can be approximated by its leading term
expin,nZ,) at {,—=. Nevertheless we sav& 1(iz,),
keeping in mind that we need to take into account its leadin
term. We thus arrive at the final equation
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K(pa)=ke—i 2 V. InFMig,). (33
v=By ¢

Taking into account28) we arrive at the conclusion that in

the leading ordek!(p,) =k.(p.), i.e., kV(p,) is noth-

ing but the local momentur{20) introduced in8]. Then Eq.

(32) reduces td198), i.e.,

eM(r (34)

a pa) (Pa(ra! pa)
where ¢, (r,, p,) is the solution to Eq(18). We note that
(19) follows from (33) both in(}, and inQ, [when deriving
Eq. (19 from (33) we did not use the condition
r./p,—0]. Hence we may considep,(r,, p,) €ven in
Q.

0
The second term of25) satisfies the equation

A

r+2— p+i

1
— ke Yy,

a

Fic )f“)(lzy)

1 1 .
+i —qa +M—[Vra|nf<ﬁ>(|gﬁ)

+V, NFPL)] Ve 4 [V InFP(iLp)

pNF P L)]-V, —Valre)

1
+u_ Ve INFP(iLp)- Ve INF(iL,)

1 : :
e V, INFP(iL5) -V, INFi gﬁ)

X @ (r,, pa)=0. (35)

When deriving this equation we took into account that
F2)(iz,) satisfies Eq(5) in the leading ordeO(1/,) at
{,— [up to termsO(1/¢,)]:

&

1
V. —\© (2)(;
ZMVA +| o, kV Vrv VV) ‘7:1/ (Igv)

(A
~ fS e~ 1 mIn(2k,ry)
r,

:o(

A +i— ! k,-V, |eé
ZMV . v

1

]

2 (36)

We note that i), O(1/r2)=0(1/p2), v#a. According to
N FO(i£)=0(Up,) at po—e in Q,

Hence it is

enough to satisfy the equation fef?%(r pa) in the lead-

1 1 1

—A, k Y, +— vV, nFYigz,)-v

2, e o MwEﬁy NP 18 W,
- )soa”)( Far Po)=0, (32

which can be written more compactly if we introduce the
local momentum of the relative motion of particl@sand
v in the Coulomb field of the third particle:

(2)/ m, . m, ~
Vralnfv (Igy)mﬂvraé‘vzlm(_kvrv_l— kV)
Y Y

ing orderO(1/p,). Besides, it follows from(11) that up to
termsO(1/r,) we have

(37

m, "
%i_(evakvpa—i_ kv)r V:ﬁi'y
Mgy

(39
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and

Vo INF2(i7,)=iV, {,=i€,,(—kf,+k,) (39)
wi(kvﬁa—’_eva k]/)’ V:ﬂ”y (40)
Equations(38) and (40) are valid only in{},. Since in

Q, F@(iz,)=0(1lp,), to satisfy Eq(35) up to terms of
order O(1/p%) we are seeking the solution®Y(r,, p,)
which is valid in the leading orde®(1/p,). Hence, we may
drop all the terms in Eq35) containingV, InF(i¢,) and
v, InF{P(i¢,) because they are of ord€(1/p,). Taking

into account37) and(39) gives the equatiofup to terms of
orderO(1/p,)]

ZiMAraerApaﬂ ia Ko Vp i M—aqa-V
1
Z (eﬁakﬁpa-f—kﬁ) v, +IM_a
X (Kgpat €gakp) -V =Volr ) | @ZV(r o, pa)=0.
(41)
The coefficients of this equation depend @r. From

V. P.=0(lp,) it follows that |V, ¢*(r,, p,)|
=0(1/p,). Hence when looking for the solution of E@t1)

up to orderO(1/p,) the second, fourth, and sixth terms con-
taining derivatives ovep, can be dropped. We can intro-
duce a new local momentum

k(azl)(pa) =k, —i X(Pa:ra)vr,, |nf<32>(i §/;)

m R
= Kot X(Pa 1) €pakighart Kg). (42
By
From
M mg
k,=¢€ i q k (43
B B my, P
it follows that inQ
(21) _ Hp Mg A
ka (pa)_E'BaM_an mﬁyeaﬂkﬁpaa Mas pQEQa'
(44)

To stress that the approximatidd0) and correspondingly
the definitions of the local momentu@?2) and(44) are valid
only in 1, we introduced the cutoff functiog(p,, r,) such
that x(p,, r,)=1 in Q, and x(p,,r,)=0 out of Q,.
Comparison of(43) and (44) shows that inQ,, k®Y(p,)
can be derived fronk, by the replacement it43) of k, by

€.pKgP,. Then the equation fop™(r,, p,) reduces to
Eq. (18) with k{?Y(p,) instead ofk,(p,). The solution of
this equation,

k@D oy
(P(azl( [, p)=e€ Ko (Po) ralpf((z)l)(pa)(ra), (45

A. M. MUKHAMEDZHANOV AND M. LIEBER
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where w(k?—?):L)(pa)(ra) is the scattering wave function describ-

ing the relative motion of particle8 andy, with the relative
kinetic energy E.(p.) =k@(p,)/2u,, interacting via
the potential V,. Similarly for the wave function
o2(r .., p.) we “derive Eq.(18) with the local momentum
kf}z)(pa) instead of k (p,), where k{!?(p,) is given by

K32 (p) =Ko ix(pat ) Ve IN FO(iE))

m “
:ka+X(pa1 ra)m_‘[:y(e‘yakypa_F k'y) (46)
Ky m, ~
:Ea_q__eakpai raipae‘Q’a'
Y MD[ Y mBy Yy
(47)

The fourth equation derived when substituting the last
term of (25) into (2) is satisfied automatically up to terms
O(1/p? ) in Q,, because the producE(izz) 7 iz,)
—O(llp ). Since we are looking for the asymptotics of the
exact three- body wave function @, containing the terms
up to orderO(l/p ) [i.e., terms not exceedir@(llpa)] the
last term of (25), contalnmgqo I(r,., p.), can be disre-
garded. Nevertheless we will keep that term also to provide
the matching of the asymptotic wave function
\P(as)(” (r,.p.) With the Redmond-Merkuriev wave func-
tion \I’(R“f')a(ra .P.) In Q. The fourth term in(25) gives rise

to an equation for?2(r,, p,):

! A+ 1 A, + ! k, -V, +i ! \Y
2u, e 2M, " Pa IMa a Vg 'Maqa' Py
1 m
11— z _V(euakvi’a—’_ku)'v
Ko vy Mgy f
+i ! > (Kp,te,k,) YV, —V
| M_al/:ﬂ,‘y ( o L v) “Vp, a(ra)
X @22(r,, po)=0. (49)

Using the same arguments we have used to simplity we
may drop all the terms containing derivatives ogerwhen
looking for the solution of this equation in the leading order.
We can introduce now a new local momentum

k(22

22(p)= Kot X(Par Ta) 2

m € o Vth v/
‘E Y :B)

(49

Then the equation for??(r,,, p,) reduces to(18) with
k9(p,) instead ofk,(p,).

Thus we have found all the unknown functions

o"(r,, p,) in (25). Hence we have shown that the as-
ymptotic solution to the Schdinger equation(2) in Q,,
satisfying it up to ordeO(llpi) and containing the zeroth-
and all first-order term®(1/p,), can be written in the form
(25), where eachr{)(i¢,) is given by its leading term in
Q,, Egs.(10) and (11). Functionse"™(r,, p,) are the
solutions of Eq.(18) with the local momentak{"™(p,) in-
stead of k,(p,). Equation(25) is our main result.

The other convenient forms can be derived from it. Equa-
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tion (25) is valid for pure Coulombic interactions in the a. Then functionse"™(r,, p,) are given by(21) with
pairsg andy, while the interaction in the pair may contain k(" p ) instead ofk,(p,) in (22) and the asymptotics of
a short-range term. Suppose now that=V<, i.e., there is the three-body wave function satisfying the Sclinger

the pure Coulombic interaction between particles of the paiequation in the leading ord€(1/p,) takes the form

WL (14,p,) =€ Gk el KaTa [FR(iL5) FRLINT (o) F(=i73 P (o), 11200 (pa))

TFGNL) FUE) NP (po) F(=im M (pa), 1L (pa)

TFRigp) P18, NP (po) F(=im,%(pa), 131807 (pa)

+FPLp) FPAL) NP (po) F(=17(po), 11127 (pa)] (50)
~el Gope | @ K0 Ta NI () F(—i 7Y (p,), 13 1289 (py)el 7eMsa € 7N

i K@ p ) n(2D) L (21 L (2D ceigﬁ“
+e'fa WP Ta N7 (p,) F(=im,7(pa), 1187 (pa) T3 p

o

e—i "7,B|n(2kﬁpa) ei nylngya

a

i{ya
€ e*i 777|n(2kypa)

; ) . . i
el ke T NI () F(=i702(p,), 1;1212(p,)) €7sa 1S

a
a

i k2 (py)r, N(22 i (22) i 722 c et
+e' “a Pa “Na (pa) F(_”] (pa)vl;lga (pa)) f,B P

a

[e3

, el
X e—l nﬂln(Zkﬂpa)fg p_ e_l 77y|n<2k'ypa)) . (51)
(23

HereN("(p,), "™, and ("™ are given by(22) with k{"™(p,) instead ofk,(p,). When deriving(51) we approximated

a

FU(iz,) by their leading terms, Eq$10) and (11), and expressed, in terms of{,, :

gva:kvpa_eav kv'pa' (52)

mV ~ mV
gvzgva—’—evam kvra'pa+m kv' ra+o

By By Pa

This approximation is valid i), . If the interactions in all three pairs are given by the sum of the short-range and Coulombic
potentials,VV=VS+Vf, v=1, 2, 3, then by replacing in E¢51) the Coulomb scattering amplitudé§ of particles of the
pairs v= B,y by the scattering amplitudefs, of these particles interacting via potentid) we derive the asymptotic wave
function

i1{ga
e°s e*inﬁln(ZkBpa) ei nylngw

' i aypy | () | | (+)
\y(ké?gz) (T, p,) =€ GaPa wk(j”(pa)(r“) el 7ppa g 1NEya ‘/’kfl)(pa)(rw) fg

a

i

. e ra .
+ _ +
+ wf((l)Z)(pa)(ra) g 78 pa f, e imIn(2Kkyp,) 4 l’0|<((2)2)(pa)

o

e'¢pa . e'ye .
X(r,) f e 1mpN(2kep,) £ e~ 1mIN(2kyp,) | (53
P e 7 pa
|
B. Matching with the Redmond-Merkuriev valid in Qg. The first term of(50) can be extrapolated in
wave function in £, Qg where its leading part joins smoothly with the leading

Let us discuss the problem of matching the wave functiorpart of the Redmond-Merkuriev wave functiofthree-
(50) with the Redmond-Merkuriev wave functio(8) in  particle Coulomb-distorted wavd 3)] due to the disappear-
Q,. From the derivation of50) it is clear that it defines the ance of the addend tk,, in (33). But it is not the case for the
asymptotic solution to the Schiimger equation(2) up to  second, third, and fourth terms Q). To see it consider, for
termsO(llpi) only in the asymptotic domaife, and is not example, Eq(41). This equation is valid only if},: when



3084 A. M. MUKHAMEDZHANOV AND M. LIEBER 54

deriving it we used Eqg(38) and (40) valid in Q. In Q,, Surely the procedure of the redefinition &9(p,) in
instead of(41), we derive using37) and(39) (33) is not unique and we consider here two possible ways it
could be done.
L A 1 A : i K.V +i 1 Q.- (1) Let us introduce

— A F5—— A, +i : —
2 '« 2M "~ Pa @ e M
e “ e “ K (p)=k,~i > w,(r)V, nFP(ig,). (56)

v=B,y
+i i m_( kﬂ ptkp) -V, +| N? €pa Due to the presence of the characteristic function&8 in
el @ the vicinity of the singular direction k T,—1,

0, (1,)V, INFO(i7,)—0. I kg Tp—1 andk ,-f,—1 si-
multaneously, then all the “local momenta’ kfy“m)(pa)
— k, [it is clear from (37) that in that casek?Y(p,),
(54 k{py), kFApo) =K.

(2) One can introduce another local momentum

X(=KgfptKg) YV =Valre) | (T, pa)=0.

This equation in contrast t¢41) is valid both inQ, and 1 _
Q. But now coefficients in this equation depend oy, and K (o) =Ko—i >

not on p, as in (41). That is why we cannot integrate v=By

overr, assuming coefficients to be constants. However, we V, FOGZ)+[1-w,(r)]V, FP(ig,)
recall thatF (i £ ;)= O(1/r ), hence to satisfy Eq2) up to X — T

terms of the second ord€@(1/(r .1 g)) in Q it is enough to Fo (18 +[1= 0, (r)JF7(E,)

find a solution to(54) satisfying it up to termsO(1/r,). (57)

In the domain Qg , [V, ¢P(r,, p,)|=0(1r,), where Away from the singular directions, the local momentum co-
(0)(ra, p.) is the solut|on of Eq(18) with the asymptotic incides with the previous definitiof83), while in the vicinity
momentumKk, . Hence it is evident thap(f)(ra, p,) satis-  of the singular directions it is regular due (@ and regular-
fies (54) up to termsO(1/r,), just what we need to satisfy ity of V; InF(=i»,1;i{,) at{,—0. With either definition
(2) in the second ordefup to termsO(1/(r,r,))]. Thatis  of the local momentum(56) or (57), the wave function
why to provide a smooth matching af{*(r,,, p,) with \Iff(is?é:)'(ra,pa), Eq. (50), goes to the Redmond-Merkuriev

¢ (Fas Po) N Qo we introduced a cutoff function ave ‘function(3). Surely such a wave function is not an
X(Pa:Ta) 1|2n (42). Slml|al’|y,22t0 provide a Sch’Oth JoIn N asymptotic solution to the Schdimger equation i), in the
Qo of ¢A(r,, p,) and o721, p,) with (1, p,) singular directions and can be considered only as a way out
we introduced the cutoff function it46) and(49). For pure  for the practical calculations to avoid the divergence of the
Coulombic  interaction ¢*(r,, p.)=N, F(=in,, 1  |ocal momentum k?Y(p,) in the singular directions in
i(K, T o—KqT4)). Since all the functions!™(r,, p,) 90 . The question about an asymptotic solution to the Schro
to go(o)(ra, p.) in Qg, we easily see that ity due to(7) the  dinger equation in the singular directions fd, remains
wave function llf(kif)é:)'(ra,pa) given by (50) matches Open.
smoothly to the Redmond-Merkuriev wave functi@. It is . SUMMARY
evident that to provide that joining we should keep the last

term in (25), Summarizing the result obtained in this work, we have

derived the asymptotic continuum wave function for three
charged particle$Eq. (25)] which satisfies the Schdinger
equation up to terms of ord€(1/p2) in the domainQ,, in

We note that(25), (50), (51), and(53) are valid only in  the nonsingular directions. This wave function is an exten-
the nonsingular directiongﬁ({.,}ﬁ 1, v=p, v). For practi- sion of the one derived ifd]. It would be of interest, for
cal applications it is important to know how to overcome the€xample, to evaluate the so-called post-Coulomb accelera-
problem of the singular directions although a small contribution (PCA) in the atomic ionization processes and nuclear
tion to the ionization amplitude arises from the singular di-breakup reactions using our wave funcnm{f) (ras Po)-
rections, because the exact wave function is finite in the s'nThe appearance of the local momenté;‘m)(pa) in
gular directions. The most serious problem here is the (nm)
divergent of k!Y(p,) given by (33) in the singular direc- (T, po), instead of the asymptotic momentlp, is &
tions. To get rid of ?hat divergency we redefif@8) using a genume three-body effect which can be important when cal-

o ; ) i AN culating PCA at low relative kinetic energies of the final
characteristic function of the singular directidén-r,=1 particles andy. We note that the method used here can be
w,(1,), v=B, v, [3] such that applied to obtain the asymptotic wave function which satis-
_ N fies the Schrdinger equation up to terms of order
1)=0. dnu=(kor,)t <A<, O(1/p,2) in the region(),,.

C. Singular directions

w,(r,)=1 {=kr), A<N'<L (55 ACKNOWLEDGMENT
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