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Computation of exchange probability in one-dimensional electron-hydrogen scattering
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We present numericadb initio calculations for a quantum system that is a one-dimensional analog of
electron-hydrogen scattering at low energies. This approach allows for an exact treatment of electron correla-
tion. The exchange probability can be computed directly from the full unsymmetrized two-electron wave
function. One can thus determine without approximation the relative importance of the direct versus the
exchange process. We find that, in this low-energy regime, the exchange probability can be quite high and can
exceed the probability of the direct process. We then take into account the exchange probability in a calculation
of the single-electron effective potential for the free electf@1050-2947®6)03510-X|

PACS numbgs): 34.80—i, 31.15.Ar, 34.50.Fa

[. INTRODUCTION ther clarification of the role of electron exchange could be
made with the recent advances in calculational methods for

When two particles are identical in terms of their dynami-the e-H scattering problem. We mention the direct, time-
cal behavior, the identity of each particle is lost, and the twdndependent, numerical approaches of Temkin, Poet, and
particles can in principle exchange positions with a probabil\Wang and Callaway7], which are based on expansions in
ity that is given by quantum mechanics. In electron-atomiwo-electron coupled radial functions and strongly depend on
scattering, the incident electron can be captured by the ator@ppropriate boundary conditions. Also, the recent convergent
and an atomic electron emitted. The exchange of the tw&lose-coupling method of Bray and Stelbovjég gave very
electrons is not a trivial effect since the particles can carr@0od agreement with experiment.
some additional quantum numbers that will determine total If initially the incident electron has momentuky, and
transition amplitudes to atomic final states. The physical imthe atom is in its ground staig,(r,), then, in the first Born
plications of the effect with respect to atomic collisions haveapproximation, the direct scattering amplitude for collisional
been reviewed extensively by many authfis excitation to atomic stata Is

The importance of exchange for electron-hydrogen scat-
tering was soon realized in early calculations of phase shifts
at low energie$2]. Experimental advances created the need
for more accurate theoretical estimates of cross sections in
later years. The underlying physical mechanism became evi- x(i— -
dent: the longer range of the exchange potential compared to o rq
the Hartree potential in Hartree-Fock theories was identified
as the cause of larger phase shifts for higher angular mavhere the initia] and the final wave functions have the as-
menta in the partial-wave expansif8]. Corrections to scat- ymptotic formse'*1 "1¢,(r,) ande’n"1¢,(r,), respectively.
tering cross sections due to the exchange effect were calciWhen exchange is involved, the final wave function is taken
lated in the low-energy regime with Hartree-Fock or ase'*n"2¢ (r,), and the corresponding exchange amplitude
Thomas-Fermi-Dirac theory for electrons off 8. Signifi- becomes
cant agreement between theory and experiment was found,
although some discrepancies still remained. The role of ex- 1 3 3 %
change has been investigated also in various atomic and mo- 91n( 0, h) =~ 27 f d rlf SUETACEY
lecular processes, such as low-eneeghl, collisions[4].

The exchange effect was included up to second order in
the distorted-wave Born series calculations of Madison,
Bray, and McCarthy5]. It was found that this effect was the
primary source of disagreement between theory and experiFhis is also known as the Born-Oppenheimer approximation
ment for intermediate energi¢30—200 eV for elastic scat- as it was obtained first by Oppenheinigf. However, in this
tering, 2 and 2p excitation. Other perturbation series calcu- rather “primitive” description, it is not clear whether the
lations by Byron, Joachain, and Potvliedi6] contained interaction term in Eq(2) should have ¥} or 1f,. More
approximations for higher-order exchange terms for elasticomplicated analytic expressions in the close-coupling pic-
scattering and & excitation, but not for p excitation. Fur- ture are needed.

In our calculations with exact wave functions the previous

guestion can be resolved in a straightforward way. Other

*Present address: Optics Section, Blackett Laboratory, Imperialincertainties in formulation or interpretation of scattering
College and London SW7 2BZ, United Kingdom. calculations, arising from approximations to the exact theory,
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can also be resolved. In this paper the probability amplitudeg&g. (4) for a single electron and a fixed nucleus in order to
for both the direct and the exchange processes are computstudy the response of the model hydrogen atom to strong
ab initio, and no assumptions are made regarding the form dfser fields. The properties of the bare atom, with respect to
the amplitudes. In such a computation, instead of using eitheznergy eigenstates and eigenvalues, symmetries, and dipole
1/rq or 1k,, we include both terms with appropriate weights moments, have been tabulated by Su and EHdrly. The
that are time dependent as they evolve during the collisionground state is at-0.6703 a.u., the first excited state at
This picture will become clearer with the computation of the —0.2754 a.u., and there is a Rydberg-level scaling rule
single-electron effective potential in Sec. V. It is the advan-E,= — 1/n? for the quantum numbert and the energy eigen-
tage of ourab initio approach that there is no need to write value E, that is closely followed for highen’s.
expressions for transition amplitudes, since all probabilities For the purpose of solving the Scklinger equation nu-
are computed directly from the total two-electron wave func-merically, the two-electron wave function is represented in
tion. space on a two-dimensional grid where each electron’s coor-
In Sec. Il we present our model and the method of calcudinate is discretized asx;=(—N/2+i—3)Ax, with
lation of the exchange probability. In Sec. Ill we show ai=1,2,3...,N. Here, Ax=L/N is the grid spacingL the
simple classical example. The energy dependence of the elength of the quantization box amdithe total number of grid
change effect is discussed in Sec. IV. In Sec. V we showpoints in the interval—L/2,L/2]. Depending on accuracy
how exchange can be taken into account for the calculatiorequirementd. was varied between 100 and 1000 a.u., while
of single-electron effective potentials. We summarize our reAx was taken in the range 0.10-0.98 a.u. The highest accu-

sults in Sec. VI. racy results have been obtained fb+=1024 grid points, cor-
responding to a two-electron wave function of 162424

Il. TWO-ELECTRON MODEL AND QUANTITATIVE components. _ o
MEASURE OF EXCHANGE Given an initial wave functiorb(x, ,X;), its time evolu-

tion is  affected by the unitary  operator
Our two-electron quantum systefi0] consists of two U(t—to)=exd —iH (t—t,)] which, for a small time incre-
electrons whose spatial coordinates @f@ndx,, allowed to  mentAt, can be decomposed into three operators by “split-
move only in one dimension, along theaxis, in the neigh-  ting” the kinetic energy ternT = p§/2+ p§/2, ie.,
borhood of a nucleus of unit positive charge fixed at the
origin. It is the one-dimensional analog of the negative hy- U(At)=exd —i(T+V)At]
drogen ion, and by increasing the nuclear charge to 2,3,4,... . . .
we would obtain the one-dimensional analogs of He, =exd —iTAt/Z]ex —iVAt]exd —iTAt/2]
Li*,B€,..., etc. In atomic units#{(=m,=e=1) the two- +O(AL3). (5)
electron Hamiltonian is
Lo 12 This symmetric split decomposition is quite advantageous
H=3p1+3zp3+V(X1) +V(X2) = V(X1 —Xy), (3 [12]. The action of the kinetic energy operator on the wave
function can be performed easily in Fourier space. It is im-
where both the electron-nucleus attraction and the E|eCtr0rportant to note that in contrast to the usual approxima’[ions of
electron repulsion are described by the nonsingular, softhe second derivative by three- or five-point formulas, the

core, and asymptotically Coulombic potential: action of the kinetic-energy operator on the spatial grid can
be performed exactly here. This allows for much larger spac-

_ 1 ing Ax than that used in other methods. The middle part of

V(x)=-— 1 4) the evolution operator describes the action of the potential

energy alone and corresponds to a simple multiplication of

Each electron can move anywhere along xhaxis, making the wave functlon in coordmate space. .

the total potential symmetric and parity a good quantum In th‘? time do_mam, a time step dft=Q.2 a.u. or bigger
number. The total potential in E63) and the Hamiltoniam 'S Sufficient. Typical program runs consist of up to 40 000
are symmetric under exchange of the spatial coordinates &pr_]secutlve Fourier transforr_natlon's'for the time evolution,
the two electrons. This property allows for wave functionsWNich can be performed quite efficiently on a supercom-
that are either symmetric or antisymmetric with respect tgputer. We have mainly used a Cray-Y MP/C-90 that can

exchange. The Hamiltonian is also symmetric under spatiarl’erform a fast Fourier transforiii-FT) in about 0.56 CPU

reflection of both space coordinates, a property that correSC0Nds for a 10241024 complex matrix, using very effi-

sponds to definite parity—the one-dimensional reminder of €Nt vectorized library routines. .
angular momentum. In the case of electron-hydrogen scattering we suppose

It is clear that the two-electron potential retains, in onethat the initial total wave function of the two-electron system

space dimension, important characteristics of real atomic pd§ a product of the projectile wave pad@t(l(xl) and the
tentials. Even the soft core of the interaction potential in ourdtomic ground stateb;(x,). We start with an incident elec-
model has a “fundamental” explanation in the sense that, irfron represented by a Gaussian wave packet, initially cen-
a real three-dimensional atom, the two electrons have enoudRred at a distance of 100 a.u. on the left of the scattering
available space to bypass each other. center, and subsequently propagating to the right, i.e.,

The hydrogen atom of the target in our two-electron )
model has been studied extensively in the past. Javanainen, 1 F{ (x+100

Eberly, and Sy11] introduced the same model potential of Phine = 2nad) PR T T2 explikinx),  (6)
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whereq is the spatial width of the Gaussian, taken here to béng one moves with the velocity that the incident one had
30 a.u. The target atom is centered at the origin, and thbefore the collision. This is due to the conservation of both
initial position of the incident wave packet ensures that therenomentum and kinetic energy. Although the two conserva-
is no overlap with the atom before the collision takes placetion laws give two solutions of the problem, one with com-
Our target hydrogen atom is initially in its ground state with plete exchange and one with no effect at all, only the former
n=1. As the incident wave packet distorts the atom, passingne is physically acceptable in the case of hard spheres.
through the origin, the atomic electron can be excited tqGjyen zero impact parameter, the spheres must interact and
higher atomic eigenstates. The final state of the atom, defineghnnot avoid each other, so that only full exchange can oc-
at times after the incident wave packet no longer overlapg,,r f the spheres are not assumed to be “hard” so that they

W.Ith Fhe atom, can be desprlbgd, in general, as a Imear COMan pass through each othbut we still have a purely elastic
bination of the bare atomic eigenstates. If the projectile ki-

. . . o ﬁ:ollision with conservation of kinetic energythen both so-
netic energy is less than the first excitation threshold to IeveIutions are acceptable in the framework of the conservation
n=2, the atom returns to its ground state. The scattering i?aws P

purely elastic. When the projectile energy is high enough to In. quantum mechanics one can simulate classical colli-

excite the atom to states with=2,3,4,..., not only the atom . . .
is left excited after the collision, but the energy of the pro_S|ons with the scattering of wave packets that represent par-

jectile has changed as well. Since the total energy of thdCles: The quantum-mechanical packets should behave clas-
system is conserveghere is no explicit time dependence in Sically if they have negligible probability of passing through
the Hamiltoniap, the projectile’s energy spectrum reflects €ach other, and one can make their mutual potential barriers
the state of the target atom. much higher than their kinetic energies to ensure this. In that
The time-dependent populations in our case, where twéase, complete exchange of the two packets is expected to
electrons are involved, are actually the same quantities as tH@ppen. In Fig. @a) we show the joint two-electron probabil-
probabilities P, that at least one electron is in the bareity distributions in the form of contour plots in four time
atomic eigenstata. Since the two electrons cannot both be frames during the collision of the two free electrons.
bound in the atom at the same time, we can write The time sequence is from top to bottom. The plots are
5 made in the two-dimensional plane of the two-electron coor-
J' dxq % (Xq) (Xq Xg:1)] . @) dlnates);l (ver'tlcal) andx, (horlzpntg). I.n the figure we see
a two-dimensional Gaussian distribution that moves in the

The factor of 2 is due to symmetrization of the initial wave positivex, direction towards the center, and then turns right
function [10] towards the positiver, axis. The probability distribution for

For the purpose of detecting excharidé] the time evo- eIec'Fronxz, initially ce_n_tered a_lt the origin of_tr_ue2 axis_, is
lution is calculated without any initial symmetrization of the MOVing along the positive, axis after the collision, while at
total wave function, so that the identity of eaistinguish- ~ the same time the probability distribution for electrap,
able electron can be monitored during the collision. Let initially moving in the positivex, direction, remains centered
(X1, %,:t) be the totalunsymmetrizeflwave function at a  at the origin of thex, axis. This is exactly the quantum
time t sufficiently long after the collision. Ik, is the coor- ~ realization of classical hard-sphere exchange scattering.
dinate of the incident electron ang the coordinate of the If the kinetic energies of the two wave packets are higher
initially bound one, the probability that the two electrons than their mutual potential barriers, then they both become
have exchanged states is simply transparent with finite probabilities of reflection and trans-

mission through each other. This effect is clearly shown in
* ) 2 Fig. 1(b). We see that the wave packet initially incident to-
Pe’&t)_; f dxz f X () 9xa X030 - (8) ward the positivex; direction continues to travel in the same
direction after the collision, although some small part of it is
We sum over all bound statesin order to include all the  exchanged and moves in the positigdirection. The two
possible inelastic channels, except for ionization. We shalkjectrons have almost completely passed through each other

see in the following thaP., depends on the energy of the 54 the exchange scattering appears to be a “small” effect.
incident electron. In general, the exchange probability be- |, oy studies here, the kinetic energy of the incident elec-

comes negligible for energies high enough that the BOMiron is always less than the potential barrier of the other

Oppenheimer approximation of E(P) is valid [1]. electron. For the soft-core Coulombic potential of Ed),
the maximum height of the barrier is 1 a.u. of energy, which
is higher than the ionization potential of 0.67 a.u. that serves
as the upper bound of the energy range of the projectile in
our studies. The two electrons, therefore, can completely ex-
Before we proceed with the quantum-mechanical exchange states during the collision, if no potential from the
change effect it would be useful to explore a classical analogatomic nucleus is present. However, it is exactly the presence
namely, a zero impact-parameter collision between two idenef the nucleus that lowers the total “effective” potential bar-
tical hard spheres. We know that when one of the twarier that the incoming electron experiences during its colli-
spheres is incident upon another, which is initially at rest insion with the atomic electron, allowing for finite direct and
some laboratory frame, the incident sphere takes the place ekchange probabilities. In Sec. IV we will see how these
the standing one after the collision, while the initially stand-probabilities depend on the incident electron energy.

Pn(t)=2f dx,

Ill. EXAMPLE WITH FREE ELECTRONS
AND THE CLASSICAL PICTURE
OF EXCHANGE
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FIG. 1. (a) The joint two-electron probability distributiog{x; ,x,) |* in four subsequent time framé®p to bottom during the collision.
The two electrons are free particles. One of them is initially at rest with its probability distribution centered at the origin atongxise
(horizonta). The other electron is incident toward the positiseaxis (vertica). The kinetic energy in the rest frame is 0.3 a.u. After the
collision the two electrons are fully exchangél) Same aga), but with kinetic energy slightly higher than 1, the maximum height of the
mutual potential barriers. There is only a very small amount of exchange probability after the collision.

IV. ENERGY DEPENDENCE However, since there is no reliable approximation of the
AND THRESHOLD BEHAVIOR scattering amplitudes in the low-energy regime, one cannot

The most interesting feature of the exchange probabilitfsnmate, the importance of thg exchange effect in that regime
P, of Eq.(8) is its energy dependence. It is well known that " @ Straightforward way. In this work we compute the prob-
it decreases rapidly with increasing energy, since in th@bility of exchan_g_e for a range ofenergles._ln Fig. 2 we show
Born-Oppenheimer formulé) the exponential function os- the_total prqbabll|ty of exchange asa function of energy. We
cillates very rapidly for high energies so that the net effect offotice a quite broad and high maximum of 0.57 at an energy
the interference between the atomic and the free-electrofif 0.14 a.u. It becomes, therefore, higher than the probability
wave function is zerg14]. This interference effect does not Of the direct process-10.57=0.43. The exchange probabil-
occur in the direct amplitude of formuld) since the posi- ity tends to zero for very low energies, since the reflection
tion variables in the atomic and the free-electron wave funccoefficient approaches 1 for attractive potentials when the
tions are integrated separately. This conclusion for high enincident energy tends to zero. On the right-hand side of the
ergies is valid since formul@?) is also valid in the high- maximum the exchange probability decreases with energy,
energy regime. and eventually it should tend to zero as expected from the
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FIG. 2. The total probability of exchange after the collision as a 0.8 d

function of the incident electron energy. The quantity that is plotted
is the value ofP,, of Eq. (5) at sufficiently long timeg after the
collision.

Born-Oppenheimer approximation for the behavior of the ex-
change scattering amplitude at high enerdie§. The only
interruption of the monotonic decrease comes from the
atomic excitation resonance at 0.39 a.u., between the ground
and the first excited state. Also, the resonance at 0.52 a.u. for
the n=3 excited state is clearly visible. No other resonances

transmission coefficient

02 03 04
energy (in a.u.)

0.5

0.6

are seen as the total exchange probability decreases drasti-

cally to very low values near the ionization threshold. FIG. 3. (a) Reflection coefficient due to direcRg) and ex
In Figs. 3a) and 3b) we show the portion of exchange e A
gs. 33 3b) P 9 change processRg) as a function of energyb) Transmission co-

probability in the reflection and transmission prObablhtleS’ef‘ficient due to directTp) and exchange procesE) as a func-

respectively. The total reflection and transmission coeffi-tion of incident energ
cients are shown in Fig. 4. We see that, qualitatively, they V-

are not very different from the corresponding coefficients for o ] o
an attractive square well potential. with the initially atomic one(b) The incident electron en-

In Fig. 3b) the probability of exchange in transmission counters the nucleus first and is reflected with probabifity

seems to be higher than the probability of the direct procesI_he finally reflected electron is the same as the initially in-
in the low-energy regime of 0.05-0.25 a.u. A maximum of€ident one. _ o
the exchange and a minimum of the direct probability can be We have assumed that the atomic electron’s probability
observed at the atomic excitation resonance of 0.39 a.u. Félistribution is not significantly affected by the polarization
higher energies, beyond the atomic resonances, the diregffécts induced to the atom by the incident electron. How-
process dominates. ever, for very low ene_rgleéhere, below 0.04 a.)JpoIarlza-
Finally, we notice the remarkable effect that can be seeffon effects become important, and the atomic electron’s
clearly in Fig. 3a), namely, for reflection the direct and the probability distribution is significantly moved to one side of
exchange processes are almost equally probable for a wide
range of energies above 0.05 a.u. In order to understand
gualitatively why this occurs, let us picture the hydrogen
atom in one dimension as consisting of a nucleus fixed at the
origin and an electron standing “at rest” with equal prob-
abilities on either side of the nucleus. When an incident elec-
tron coming from the left is scattered by this system, it can
be exchanged with the atomic electron and partially reflected
by the nucleus. No reflection from the collision with the
standing electron can occur because of the conservation of
momentum and kinetic energy in analogy to the classical
problem discussed in Sec. lll. Twequally probablepro-
cesses contribute to reflection(a) The incident electron en- ‘
counters the atomic electron first, before the nucleus, and it 0 0.1
completely exchanges positions with it. The outgoing elec-
tron can now be reflected by the potential of the nucleus with
probability R. In this process the finally reflected electron is  FIG. 4. Total reflectionR) and transmissionT) coefficients as
not the same as the initially incident one, but it is exchangedunctions of the incident electron energy.

transmission & reflection coefficient

02 03 04 05
energy (in a.u.)

0.6
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the nucleus, opposite to the side of the approaching incident
electron. In that case, procefls) can happen with higher 02 ' ' ' 0.2 ' ' '
probability than proces@), leading to lower exchange prob- 01 01
ability in total reflection. This is evidently in agreement with ] 02
Fig. 3(@) for energies below 0.04 a.u. ]
-0.4 -0.4
V. ELECTRON EXCHANGE AND SINGLE-ELECTRON 0.6 -0.6
EFFECTIVE POTENTIALS 0.8 b .08 L
1 @t ®)
The total potential energy that a system of two electrons -t ' ' : -1200 RS
with coordinatesx; and x, experiences in the field of a 20 “mposm;’n(m‘u‘,’? w 7 position (in a.x)
nucleus is
0.2 . : 02 ' = .
Viot(X1,X2) = V(X1) +V(X2) = V(X1 = Xy), ) o] o
whereV(x,) andV(x,) are the attractive potentials from the 4] 02]
nucleus, and-V(x;—X,) is the repulsive electron-electron ] ]
. . . L -0.4 1 -0.4 4
interaction potential. The expectation value of the force that ] ]
the electron with coordinate, experiences i$13] 061 06 3
-0.8 + E -0.8 L
Fix. ot d v - ©F 1 @F
Xy;t))y={ —— Xq,X -1 . . ™ -1 , , ,
(Fxa51) Xy tol X1, X2) 200 400 0 100 200 20 4100 0 100 200
position (in a.u.) position (in a.u.)

:J ﬁlj dX 0™ (Xq,X;t)

IV(X V(X=X
x[— (1)+ (X1—X3)
X, X,

FIG. 5. The time-dependent single-electron effective potential
for the bound electron of the atomic target. The energy of the inci-
dent electron is 0.44 a.u. Formulkl) has been used instead of Eq.
(8). The position in the horizontal axis is in a.u. The times for the
(@), (b), (c), and(d) figures are 4, 8, 12, and 16 cycles, respectively
[1 cycle=2#/(E,—E;) =15 a.u., for the lowest two hydrogenic en-
ergy eigenstatdsThe center of the wave packet passes the origin
after seven cycles from the moment that the packet is at the initial
position (x=—100 a.u).

w(’il 1’)\(’2 ; t) .
(10)

The single-electron effective potentiédBEEP that corre-
sponds to this force is set equal to zero at infifibe bound-
ary of our quantization box is atL/2), and we define

beyond the traditional theoretical treatment of effective po-
tentials. A brief discussion is given by Goldberger and Wat-
son[15].

In order to correct for the exchange effect we rewrite
formula (12) taking into account the probabilitieg®,,(t) of
exchange andPg(t)=1—Pg(t) of direct process. There-
fore, we write

X1
Vaait=- [ dxitFxiin),
—L/2
which finally becomes
Veff(xl;t):V(Xl)_f dXP(Xo; V(X —%,),  (11)

where we have set all terms ¥f,,(x; ,X,) in Eg.(9) equal to YT

zero at the boundary of the quantization box. We have aIS(}/eﬁ(Xl’t) [1=Pet)]
defined the time-dependent single-electron probability den-
sity as

V(x1)— f dXP(X2;t) V(X1 —X5)

+Pe(t)

V(Xq) — J dx;P(X1;t) V(X1 —X3)

(13

PGt [ Ry Xonl. G2

_ _ _ _ If one uses the notation P(X;;t)=P,(x;t) and
We derived formuld11) in a straightforward way without  p(X,;t)=P,(x;t) for the probability distributions of elec-

taking into account the exchange effect. However, we havérons 1 and 2, respectively, then H423) is simplified to
already seen that the probability of the two electrons ex-

changing their coordinates is quite high and it can even ex-
ceed the probability of the direct process. Therefore, our
computation of the single-electron effective potential is in-
complete, since each electron does not have a distinct role
(projectile or target during the total interaction time in a
collision. Corrections have to be made so that the effectivé-igure 5 shows the SEEP for the case when the incident
potential for the initially incident electron is the same as theelectron energy is 0.44 a.u., with the use of the improved
potential for the finally outgoing electron, regardless offormula(14). The asymmetries are due to the partial reflec-
whether or not exchange has occurred. This problem goe#on of the incident electron.

Ver(X1: 1) =V(Xq) — J dX[ Pgi(t)Po(x;t)

+ P (1) P1(X D) V(X1 —X). (14
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Of course, if the wave function is properly symmetrized, electron has sufficient time to “see” and perturb the state of
then P4(x;t)=P,(x;t), and formula(14) reduces to Eq. the bound electron of the target. The exchange probability
(11). Therefore, Eq(11) is correct for particles that are as- was computed directly from the two-electron wave function.
sumed to be identical. We found that, in this low-energy regime, the exchange

Finally, we mention that it has already become obviousprobability can be quite high and can even exceed the prob-
how important the time dependence is for the treatment o&bility of the direct process. We then took into account the
exchange effects. Traditional scattering theory is designed texchange probability in the calculation of the single-electron
ignore the detailed processes inside the interaction regioeffective potential for the free electron. Our one-dimensional
and considers only states at long times before and after thmodel system is evidently well suited to describe exchange,
collision, with boundary conditions playing an important and it permits a fully time-dependent treatment of scattering.
role. This is in contrast, of course, to the time-independent treat-

ment provided by the traditional scattering theories based on
VI. SUMMARY asymptotic initial and final states.

We have presented numeric initio calculations for a
one-dimensional two-electron model quantum system of
electron-hydrogen scattering. This approach has allowed for We thank M. V. Fedorov and M. Kalinski for stimulating
an exact treatment of the electron correlation. We dealt withdiscussions. This work was supported by the U.S. National
phenomena that dominate scattering in low energies, wher8cience Foundation under Grant No. PHY95-11582 and the
correlation effects become very important as the incidenPittsburgh Supercomputing Center.
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