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We present numericalab initio calculations for a quantum system that is a one-dimensional analog of
electron-hydrogen scattering at low energies. This approach allows for an exact treatment of electron correla-
tion. The exchange probability can be computed directly from the full unsymmetrized two-electron wave
function. One can thus determine without approximation the relative importance of the direct versus the
exchange process. We find that, in this low-energy regime, the exchange probability can be quite high and can
exceed the probability of the direct process. We then take into account the exchange probability in a calculation
of the single-electron effective potential for the free electron.@S1050-2947~96!03510-X#

PACS number~s!: 34.80.2i, 31.15.Ar, 34.50.Fa

I. INTRODUCTION

When two particles are identical in terms of their dynami-
cal behavior, the identity of each particle is lost, and the two
particles can in principle exchange positions with a probabil-
ity that is given by quantum mechanics. In electron-atom
scattering, the incident electron can be captured by the atom,
and an atomic electron emitted. The exchange of the two
electrons is not a trivial effect since the particles can carry
some additional quantum numbers that will determine total
transition amplitudes to atomic final states. The physical im-
plications of the effect with respect to atomic collisions have
been reviewed extensively by many authors@1#.

The importance of exchange for electron-hydrogen scat-
tering was soon realized in early calculations of phase shifts
at low energies@2#. Experimental advances created the need
for more accurate theoretical estimates of cross sections in
later years. The underlying physical mechanism became evi-
dent: the longer range of the exchange potential compared to
the Hartree potential in Hartree-Fock theories was identified
as the cause of larger phase shifts for higher angular mo-
menta in the partial-wave expansion@3#. Corrections to scat-
tering cross sections due to the exchange effect were calcu-
lated in the low-energy regime with Hartree-Fock or
Thomas-Fermi-Dirac theory for electrons off He@3#. Signifi-
cant agreement between theory and experiment was found,
although some discrepancies still remained. The role of ex-
change has been investigated also in various atomic and mo-
lecular processes, such as low-energye-H2 collisions @4#.

The exchange effect was included up to second order in
the distorted-wave Born series calculations of Madison,
Bray, and McCarthy@5#. It was found that this effect was the
primary source of disagreement between theory and experi-
ment for intermediate energies~30–200 eV! for elastic scat-
tering, 2s and 2p excitation. Other perturbation series calcu-
lations by Byron, Joachain, and Potvliege@6# contained
approximations for higher-order exchange terms for elastic
scattering and 2s excitation, but not for 2p excitation. Fur-

ther clarification of the role of electron exchange could be
made with the recent advances in calculational methods for
the e-H scattering problem. We mention the direct, time-
independent, numerical approaches of Temkin, Poet, and
Wang and Callaway@7#, which are based on expansions in
two-electron coupled radial functions and strongly depend on
appropriate boundary conditions. Also, the recent convergent
close-coupling method of Bray and Stelbovics@8# gave very
good agreement with experiment.

If initially the incident electron has momentumk1, and
the atom is in its ground statef1~r2!, then, in the first Born
approximation, the direct scattering amplitude for collisional
excitation to atomic staten is
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where the initial and the final wave functions have the as-
ymptotic formseik1•r1f1(r2) ande

ikn•r1fn(r2), respectively.
When exchange is involved, the final wave function is taken
aseikn•r2fn(r1), and the corresponding exchange amplitude
becomes
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This is also known as the Born-Oppenheimer approximation
as it was obtained first by Oppenheimer@9#. However, in this
rather ‘‘primitive’’ description, it is not clear whether the
interaction term in Eq.~2! should have 1/r 1 or 1/r 2. More
complicated analytic expressions in the close-coupling pic-
ture are needed.

In our calculations with exact wave functions the previous
question can be resolved in a straightforward way. Other
uncertainties in formulation or interpretation of scattering
calculations, arising from approximations to the exact theory,
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can also be resolved. In this paper the probability amplitudes
for both the direct and the exchange processes are computed
ab initio, and no assumptions are made regarding the form of
the amplitudes. In such a computation, instead of using either
1/r 1 or 1/r 2, we include both terms with appropriate weights
that are time dependent as they evolve during the collision.
This picture will become clearer with the computation of the
single-electron effective potential in Sec. V. It is the advan-
tage of ourab initio approach that there is no need to write
expressions for transition amplitudes, since all probabilities
are computed directly from the total two-electron wave func-
tion.

In Sec. II we present our model and the method of calcu-
lation of the exchange probability. In Sec. III we show a
simple classical example. The energy dependence of the ex-
change effect is discussed in Sec. IV. In Sec. V we show
how exchange can be taken into account for the calculation
of single-electron effective potentials. We summarize our re-
sults in Sec. VI.

II. TWO-ELECTRON MODEL AND QUANTITATIVE
MEASURE OF EXCHANGE

Our two-electron quantum system@10# consists of two
electrons whose spatial coordinates arex1 andx2, allowed to
move only in one dimension, along thex axis, in the neigh-
borhood of a nucleus of unit positive charge fixed at the
origin. It is the one-dimensional analog of the negative hy-
drogen ion, and by increasing the nuclear charge to 2,3,4,...
we would obtain the one-dimensional analogs of He,
Li1,Be21,..., etc. In atomic units (\5me5e51) the two-
electron Hamiltonian is

H5 1
2p1

21 1
2p2

21V~x1!1V~x2!2V~x12x2!, ~3!

where both the electron-nucleus attraction and the electron-
electron repulsion are described by the nonsingular, soft-
core, and asymptotically Coulombic potential:

V~x![2
1

Ax211
. ~4!

Each electron can move anywhere along thex axis, making
the total potential symmetric and parity a good quantum
number. The total potential in Eq.~3! and the HamiltonianH
are symmetric under exchange of the spatial coordinates of
the two electrons. This property allows for wave functions
that are either symmetric or antisymmetric with respect to
exchange. The Hamiltonian is also symmetric under spatial
reflection of both space coordinates, a property that corre-
sponds to definite parity—the one-dimensional reminder of
angular momentum.

It is clear that the two-electron potential retains, in one
space dimension, important characteristics of real atomic po-
tentials. Even the soft core of the interaction potential in our
model has a ‘‘fundamental’’ explanation in the sense that, in
a real three-dimensional atom, the two electrons have enough
available space to bypass each other.

The hydrogen atom of the target in our two-electron
model has been studied extensively in the past. Javanainen,
Eberly, and Su@11# introduced the same model potential of

Eq. ~4! for a single electron and a fixed nucleus in order to
study the response of the model hydrogen atom to strong
laser fields. The properties of the bare atom, with respect to
energy eigenstates and eigenvalues, symmetries, and dipole
moments, have been tabulated by Su and Eberly@11#. The
ground state is at20.6703 a.u., the first excited state at
20.2754 a.u., and there is a Rydberg-level scaling rule
En521/n2 for the quantum numbern and the energy eigen-
valueEn that is closely followed for highern’s.

For the purpose of solving the Schro¨dinger equation nu-
merically, the two-electron wave function is represented in
space on a two-dimensional grid where each electron’s coor-
dinate is discretized asxi5(2N/21 i2 1

2 )Dx, with
i51,2,3,...,N. Here, Dx5L/N is the grid spacing,L the
length of the quantization box andN the total number of grid
points in the interval@2L/2,L/2#. Depending on accuracy
requirementsL was varied between 100 and 1000 a.u., while
Dx was taken in the range 0.10–0.98 a.u. The highest accu-
racy results have been obtained forN51024 grid points, cor-
responding to a two-electron wave function of 102431024
components.

Given an initial wave functionF(x1 ,x2), its time evolu-
tion is affected by the unitary operator
U(t2t0)5exp@2iH (t2t0)# which, for a small time incre-
mentDt, can be decomposed into three operators by ‘‘split-
ting’’ the kinetic energy termT5p 1

2/21p 2
2/2, i.e.,

U~Dt !5exp@2 i ~T1V!Dt#

5exp@2 iTDt/2#exp@2 iVDt#exp@2 iTDt/2#

1O~Dt3!. ~5!

This symmetric split decomposition is quite advantageous
@12#. The action of the kinetic energy operator on the wave
function can be performed easily in Fourier space. It is im-
portant to note that in contrast to the usual approximations of
the second derivative by three- or five-point formulas, the
action of the kinetic-energy operator on the spatial grid can
be performed exactly here. This allows for much larger spac-
ing Dx than that used in other methods. The middle part of
the evolution operator describes the action of the potential
energy alone and corresponds to a simple multiplication of
the wave function in coordinate space.

In the time domain, a time step ofDt50.2 a.u. or bigger
is sufficient. Typical program runs consist of up to 40 000
consecutive Fourier transformations for the time evolution,
which can be performed quite efficiently on a supercom-
puter. We have mainly used a Cray-Y MP/C-90 that can
perform a fast Fourier transform~FFT! in about 0.56 CPU
seconds for a 102431024 complex matrix, using very effi-
cient vectorized library routines.

In the case of electron-hydrogen scattering we suppose
that the initial total wave function of the two-electron system
is a product of the projectile wave packetfk1

(x1) and the
atomic ground statef1~x2!. We start with an incident elec-
tron represented by a Gaussian wave packet, initially cen-
tered at a distance of 100 a.u. on the left of the scattering
center, and subsequently propagating to the right, i.e.,

fkinc
5

1

~2ps2!1/4
expF2

~x1100!2

4s2 Gexp~ ik incx!, ~6!
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wheres is the spatial width of the Gaussian, taken here to be
30 a.u. The target atom is centered at the origin, and the
initial position of the incident wave packet ensures that there
is no overlap with the atom before the collision takes place.
Our target hydrogen atom is initially in its ground state with
n51. As the incident wave packet distorts the atom, passing
through the origin, the atomic electron can be excited to
higher atomic eigenstates. The final state of the atom, defined
at times after the incident wave packet no longer overlaps
with the atom, can be described, in general, as a linear com-
bination of the bare atomic eigenstates. If the projectile ki-
netic energy is less than the first excitation threshold to level
n52, the atom returns to its ground state. The scattering is
purely elastic. When the projectile energy is high enough to
excite the atom to states withn52,3,4,..., not only the atom
is left excited after the collision, but the energy of the pro-
jectile has changed as well. Since the total energy of the
system is conserved~there is no explicit time dependence in
the Hamiltonian!, the projectile’s energy spectrum reflects
the state of the target atom.

The time-dependent populations in our case, where two
electrons are involved, are actually the same quantities as the
probabilities Pn that at least one electron is in the bare
atomic eigenstaten. Since the two electrons cannot both be
bound in the atom at the same time, we can write

Pn~ t !52E dx2U E dx1fn* ~x1!c~x1 ,x2 ;t !U2. ~7!

The factor of 2 is due to symmetrization of the initial wave
function @10#.

For the purpose of detecting exchange@13# the time evo-
lution is calculated without any initial symmetrization of the
total wave function, so that the identity of each~distinguish-
able! electron can be monitored during the collision. Let
c(x1 ,x2 ;t) be the total~unsymmetrized! wave function at a
time t sufficiently long after the collision. Ifx1 is the coor-
dinate of the incident electron andx2 the coordinate of the
initially bound one, the probability that the two electrons
have exchanged states is simply

Pex~ t !5(
n
E dx2U E dx1fn* ~x1!c~x1 ,x2 ;t !U2. ~8!

We sum over all bound statesn in order to include all the
possible inelastic channels, except for ionization. We shall
see in the following thatPex depends on the energy of the
incident electron. In general, the exchange probability be-
comes negligible for energies high enough that the Born-
Oppenheimer approximation of Eq.~2! is valid @1#.

III. EXAMPLE WITH FREE ELECTRONS
AND THE CLASSICAL PICTURE

OF EXCHANGE

Before we proceed with the quantum-mechanical ex-
change effect it would be useful to explore a classical analog,
namely, a zero impact-parameter collision between two iden-
tical hard spheres. We know that when one of the two
spheres is incident upon another, which is initially at rest in
some laboratory frame, the incident sphere takes the place of
the standing one after the collision, while the initially stand-

ing one moves with the velocity that the incident one had
before the collision. This is due to the conservation of both
momentum and kinetic energy. Although the two conserva-
tion laws give two solutions of the problem, one with com-
plete exchange and one with no effect at all, only the former
one is physically acceptable in the case of hard spheres.
Given zero impact parameter, the spheres must interact and
cannot avoid each other, so that only full exchange can oc-
cur. If the spheres are not assumed to be ‘‘hard’’ so that they
can pass through each other~but we still have a purely elastic
collision with conservation of kinetic energy!, then both so-
lutions are acceptable in the framework of the conservation
laws.

In quantum mechanics one can simulate classical colli-
sions with the scattering of wave packets that represent par-
ticles. The quantum-mechanical packets should behave clas-
sically if they have negligible probability of passing through
each other, and one can make their mutual potential barriers
much higher than their kinetic energies to ensure this. In that
case, complete exchange of the two packets is expected to
happen. In Fig. 1~a! we show the joint two-electron probabil-
ity distributions in the form of contour plots in four time
frames during the collision of the two free electrons.

The time sequence is from top to bottom. The plots are
made in the two-dimensional plane of the two-electron coor-
dinates,x1 ~vertical! andx2 ~horizontal!. In the figure we see
a two-dimensional Gaussian distribution that moves in the
positivex1 direction towards the center, and then turns right
towards the positivex2 axis. The probability distribution for
electronx2, initially centered at the origin of thex2 axis, is
moving along the positivex2 axis after the collision, while at
the same time the probability distribution for electronx1,
initially moving in the positivex1 direction, remains centered
at the origin of thex1 axis. This is exactly the quantum
realization of classical hard-sphere exchange scattering.

If the kinetic energies of the two wave packets are higher
than their mutual potential barriers, then they both become
transparent with finite probabilities of reflection and trans-
mission through each other. This effect is clearly shown in
Fig. 1~b!. We see that the wave packet initially incident to-
ward the positivex1 direction continues to travel in the same
direction after the collision, although some small part of it is
exchanged and moves in the positivex2 direction. The two
electrons have almost completely passed through each other
and the exchange scattering appears to be a ‘‘small’’ effect.

In our studies here, the kinetic energy of the incident elec-
tron is always less than the potential barrier of the other
electron. For the soft-core Coulombic potential of Eq.~4!,
the maximum height of the barrier is 1 a.u. of energy, which
is higher than the ionization potential of 0.67 a.u. that serves
as the upper bound of the energy range of the projectile in
our studies. The two electrons, therefore, can completely ex-
change states during the collision, if no potential from the
atomic nucleus is present. However, it is exactly the presence
of the nucleus that lowers the total ‘‘effective’’ potential bar-
rier that the incoming electron experiences during its colli-
sion with the atomic electron, allowing for finite direct and
exchange probabilities. In Sec. IV we will see how these
probabilities depend on the incident electron energy.
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IV. ENERGY DEPENDENCE
AND THRESHOLD BEHAVIOR

The most interesting feature of the exchange probability
Pex of Eq. ~8! is its energy dependence. It is well known that
it decreases rapidly with increasing energy, since in the
Born-Oppenheimer formula~2! the exponential function os-
cillates very rapidly for high energies so that the net effect of
the interference between the atomic and the free-electron
wave function is zero@14#. This interference effect does not
occur in the direct amplitude of formula~1! since the posi-
tion variables in the atomic and the free-electron wave func-
tions are integrated separately. This conclusion for high en-
ergies is valid since formula~2! is also valid in the high-
energy regime.

However, since there is no reliable approximation of the
scattering amplitudes in the low-energy regime, one cannot
estimate the importance of the exchange effect in that regime
in a straightforward way. In this work we compute the prob-
ability of exchange for a range of energies. In Fig. 2 we show
the total probability of exchange as a function of energy. We
notice a quite broad and high maximum of 0.57 at an energy
of 0.14 a.u. It becomes, therefore, higher than the probability
of the direct process 120.5750.43. The exchange probabil-
ity tends to zero for very low energies, since the reflection
coefficient approaches 1 for attractive potentials when the
incident energy tends to zero. On the right-hand side of the
maximum the exchange probability decreases with energy,
and eventually it should tend to zero as expected from the

FIG. 1. ~a! The joint two-electron probability distributionuc(x1 ,x2) u
2 in four subsequent time frames~top to bottom! during the collision.

The two electrons are free particles. One of them is initially at rest with its probability distribution centered at the origin along thex2 axis
~horizontal!. The other electron is incident toward the positivex1 axis ~vertical!. The kinetic energy in the rest frame is 0.3 a.u. After the
collision the two electrons are fully exchanged.~b! Same as~a!, but with kinetic energy slightly higher than 1, the maximum height of the
mutual potential barriers. There is only a very small amount of exchange probability after the collision.
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Born-Oppenheimer approximation for the behavior of the ex-
change scattering amplitude at high energies@14#. The only
interruption of the monotonic decrease comes from the
atomic excitation resonance at 0.39 a.u., between the ground
and the first excited state. Also, the resonance at 0.52 a.u. for
then53 excited state is clearly visible. No other resonances
are seen as the total exchange probability decreases drasti-
cally to very low values near the ionization threshold.

In Figs. 3~a! and 3~b! we show the portion of exchange
probability in the reflection and transmission probabilities,
respectively. The total reflection and transmission coeffi-
cients are shown in Fig. 4. We see that, qualitatively, they
are not very different from the corresponding coefficients for
an attractive square well potential.

In Fig. 3~b! the probability of exchange in transmission
seems to be higher than the probability of the direct process
in the low-energy regime of 0.05–0.25 a.u. A maximum of
the exchange and a minimum of the direct probability can be
observed at the atomic excitation resonance of 0.39 a.u. For
higher energies, beyond the atomic resonances, the direct
process dominates.

Finally, we notice the remarkable effect that can be seen
clearly in Fig. 3~a!, namely, for reflection the direct and the
exchange processes are almost equally probable for a wide
range of energies above 0.05 a.u. In order to understand
qualitatively why this occurs, let us picture the hydrogen
atom in one dimension as consisting of a nucleus fixed at the
origin and an electron standing ‘‘at rest’’ with equal prob-
abilities on either side of the nucleus. When an incident elec-
tron coming from the left is scattered by this system, it can
be exchanged with the atomic electron and partially reflected
by the nucleus. No reflection from the collision with the
standing electron can occur because of the conservation of
momentum and kinetic energy in analogy to the classical
problem discussed in Sec. III. Twoequally probablepro-
cesses contribute to reflection:~a! The incident electron en-
counters the atomic electron first, before the nucleus, and it
completely exchanges positions with it. The outgoing elec-
tron can now be reflected by the potential of the nucleus with
probabilityR. In this process the finally reflected electron is
not the same as the initially incident one, but it is exchanged

with the initially atomic one.~b! The incident electron en-
counters the nucleus first and is reflected with probabilityR.
The finally reflected electron is the same as the initially in-
cident one.

We have assumed that the atomic electron’s probability
distribution is not significantly affected by the polarization
effects induced to the atom by the incident electron. How-
ever, for very low energies~here, below 0.04 a.u.! polariza-
tion effects become important, and the atomic electron’s
probability distribution is significantly moved to one side of

FIG. 2. The total probability of exchange after the collision as a
function of the incident electron energy. The quantity that is plotted
is the value ofPex of Eq. ~5! at sufficiently long timest after the
collision.

FIG. 3. ~a! Reflection coefficient due to direct (RD) and ex-
change process (RE) as a function of energy.~b! Transmission co-
efficient due to direct (TD) and exchange process (TE) as a func-
tion of incident energy.

FIG. 4. Total reflection (R) and transmission (T) coefficients as
functions of the incident electron energy.
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the nucleus, opposite to the side of the approaching incident
electron. In that case, process~b! can happen with higher
probability than process~a!, leading to lower exchange prob-
ability in total reflection. This is evidently in agreement with
Fig. 3~a! for energies below 0.04 a.u.

V. ELECTRON EXCHANGE AND SINGLE-ELECTRON
EFFECTIVE POTENTIALS

The total potential energy that a system of two electrons
with coordinatesx1 and x2 experiences in the field of a
nucleus is

Vtot~x1 ,x2!5V~x1!1V~x2!2V~x12x2!, ~9!

whereV(x1) andV(x2) are the attractive potentials from the
nucleus, and2V(x12x2) is the repulsive electron-electron
interaction potential. The expectation value of the force that
the electron with coordinatex1 experiences is@13#

^F~x1 ;t !&5 K 2
]

]x1
Vtot~x1 ,x̃2!L

5E dx̃1E dx̃2c* ~ x̃1 ,x̃2 ;t !

3F2
]V~x1!

]x1
1

]V~x12 x̃2!

]x1
Gc~ x̃1 ,x̃2 ;t !.

~10!

The single-electron effective potential~SEEP! that corre-
sponds to this force is set equal to zero at infinity~the bound-
ary of our quantization box is at2L/2!, and we define

Veff~x1 ;t !52E
2L/2

x1
dx18^F~x18 ;t !&,

which finally becomes

Veff~x1 ;t !5V~x1!2E dx̃2P~ x̃2 ;t !V~x12 x̃2!, ~11!

where we have set all terms ofVtot(x1 ,x2) in Eq. ~9! equal to
zero at the boundary of the quantization box. We have also
defined the time-dependent single-electron probability den-
sity as

P~ x̃2 ;t !5E dx̃1uc~ x̃1 ,x̃2 ;t !u2. ~12!

We derived formula~11! in a straightforward way without
taking into account the exchange effect. However, we have
already seen that the probability of the two electrons ex-
changing their coordinates is quite high and it can even ex-
ceed the probability of the direct process. Therefore, our
computation of the single-electron effective potential is in-
complete, since each electron does not have a distinct role
~projectile or target! during the total interaction time in a
collision. Corrections have to be made so that the effective
potential for the initially incident electron is the same as the
potential for the finally outgoing electron, regardless of
whether or not exchange has occurred. This problem goes

beyond the traditional theoretical treatment of effective po-
tentials. A brief discussion is given by Goldberger and Wat-
son @15#.

In order to correct for the exchange effect we rewrite
formula ~11! taking into account the probabilitiesPex(t) of
exchange andPdi(t)512Pex(t) of direct process. There-
fore, we write

Veff~x1 ;t !5@12Pex~ t !#FV~x1!2E dx̃2P~ x̃2 ;t !V~x12 x̃2!G
1Pex~ t !FV~x1!2E dx̃1P~ x̃1 ;t !V~x12 x̃1!G .

~13!

If one uses the notation P( x̃1 ;t)[P1(x;t) and
P( x̃2 ;t)[P2(x;t) for the probability distributions of elec-
trons 1 and 2, respectively, then Eq.~13! is simplified to

Veff~x1 ;t !5V~x1!2E dx@Pdi~ t !P2~x;t !

1Pex~ t !P1~x;t !#V~x12x!. ~14!

Figure 5 shows the SEEP for the case when the incident
electron energy is 0.44 a.u., with the use of the improved
formula ~14!. The asymmetries are due to the partial reflec-
tion of the incident electron.

FIG. 5. The time-dependent single-electron effective potential
for the bound electron of the atomic target. The energy of the inci-
dent electron is 0.44 a.u. Formula~11! has been used instead of Eq.
~8!. The position in the horizontal axis is in a.u. The times for the
~a!, ~b!, ~c!, and~d! figures are 4, 8, 12, and 16 cycles, respectively
@1 cycle52p/(E22E1)515 a.u., for the lowest two hydrogenic en-
ergy eigenstates#. The center of the wave packet passes the origin
after seven cycles from the moment that the packet is at the initial
position ~x52100 a.u.!.
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Of course, if the wave function is properly symmetrized,
then P1(x;t)5P2(x;t), and formula ~14! reduces to Eq.
~11!. Therefore, Eq.~11! is correct for particles that are as-
sumed to be identical.

Finally, we mention that it has already become obvious
how important the time dependence is for the treatment of
exchange effects. Traditional scattering theory is designed to
ignore the detailed processes inside the interaction region
and considers only states at long times before and after the
collision, with boundary conditions playing an important
role.

VI. SUMMARY

We have presented numericalab initio calculations for a
one-dimensional two-electron model quantum system of
electron-hydrogen scattering. This approach has allowed for
an exact treatment of the electron correlation. We dealt with
phenomena that dominate scattering in low energies, where
correlation effects become very important as the incident

electron has sufficient time to ‘‘see’’ and perturb the state of
the bound electron of the target. The exchange probability
was computed directly from the two-electron wave function.
We found that, in this low-energy regime, the exchange
probability can be quite high and can even exceed the prob-
ability of the direct process. We then took into account the
exchange probability in the calculation of the single-electron
effective potential for the free electron. Our one-dimensional
model system is evidently well suited to describe exchange,
and it permits a fully time-dependent treatment of scattering.
This is in contrast, of course, to the time-independent treat-
ment provided by the traditional scattering theories based on
asymptotic initial and final states.
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