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Theory of elastic scattering of particles in a static potential field
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An approximate solution of the Dirac equation is obtained for particles scattering in arbitrary static poten-
tials. Both short-range and long-range potentials are conside3&850-29476)02210-X]

PACS numbd(s): 34.10+x, 11.80—m, 03.80+r

. INTRODUCTION {[e=U(N)]yo+ 7 V—m}W(F)=0, (6h)

The elastic scattering of charged particles, when the ex- . .
ternal field can be considered as a perturbation, has be eremis Fhe massg thf e”EVQVU(F) thg potential energy
studied in detail in Born and eikonal approximatideee, for ~ Of the particle, andy,, y the Dirac matrices. Introducing a
example[1]). It is known that the wave function in the ei- Dispinor functiond(r) that is related tol () by the relation
konal approximation describes the particle state only in a
specific range of potentials and the eikonal solution is not
valid at distanceg>a, wherez is the coordinate along the
direction of particle initial momenturg anda is the range of
the interaction region. The wave function of the Born ap-turns(1) into the quadratic equation
proximation, in contrast to the eikonal wave function, de-
scribes the particle state at arbitrary points, particularly at {[s—U(F)]2+A—m2+L707-§U(F)}®(F):O. (3)
large distances. However, within the potential range where
both approximations are applicable, these wave functions deye seek the solution of3) in the form of
scribe the scattering by different accuracies: the Born wave
function is valid when|U|<f#iv/a and the eikonal wave () ="f(F)eSP (4
function when|U|<puv, whereU is the potential energy and '

v the initial velocity of the particleof course, fast particles \\here expi§()] is the solution of Klein-Gordon equation
are consideredpa>#, where the eikonal approximation is for a charged particle in a static field

generally valid. Therefore the common region where both
approximations under consideration are valid is very re-
stricted. One can find a correspondence between them by
expanding the eikonal wave function into a series over the - I .
Born parametetJa/fiv<<1 and the Born wave function into andf(r) Isa b'Sp'nor function. . Q

a series over the impact parametgi?/2p-G<1 (q is the Substltutlng(4) into (3) we get for f(f) and S(r) the
transfer momentuip and keeping terms to first order [n  System of equations

1 -
W(N=5-le=UMlyvoty-VEme(r) (2

{[e—U(M)2+A-mZesSN=0 (5)

[2]. -

The main purpose of this paper is to derive an alternative tAS+[e—U(F)]?>—(VS)2—m?=0, (6)
approximate solution of the Dirac equation for a charged
particle scattering in a static potential, a solution that in- LAf—Zﬁs-ﬁf—yo[?-€U(F)]f=O (7)

cludes the well-known Born and eikonal wave functions as

limiting cases. The organization of the paper is as follows. INvhere (6) is the Klein-Gordon equatioficf. with (5)] that

Sec. |l we shall present the generalized eikonal approXiMaya g cribes the scattering of a charged particle without spin,

tion (GEA) for particle scattering in short-range potentials ; ; ;
and discuss its relationship to the Born and eikonal approxi\—'\’here"’ls Eq(7) describes the spinor part of the scattering.

mations. In Sec. IIl we shall apply the GEA to the scatteringwe solve this system by assuming that the scattering field is

in a long-range Coulomb field. We shall also discuss theVéak and we seek a solution of the form
well-known Born conditions for the Coulomb field and dem- NN B HP) —us (T
onstrate the relationship of the obtained GEA wave function S(A=p-F+S,(M), f(N)=u+fy(P),

to Born, eikonal, and Farry-Sommerfeld-Maue wave func- . . . .
tions. In Sec. IV, using the GEA wave functions, we shallWhereu is the Dirac bispinor for the free particle. As a result

calculate the elastic scattering cross section and compare §dS:(6) and(7) turn into a new system of equations for the
with the Born and eikonal approximation cross sections. ~ Scalar functionS;(f) and bispinor functiorf(r),

IIl. THE WAVE FUNCTION OF PARTICLE ELASTIC WAS,—2p-VS,=2sU(F)—UA(F)+(VS)?, (8
SCATTERING IN THE GENERALIZED

EIKONAL APPROXIMATION LAfl—Zﬁ-€f1= y0?~€U(F)u+2€Sl~€f1

Our starting point is the Dirac equation for a charged .
particle in an external static field with=c=1 +y0y- VU(P)f,. (9
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Within the assumption of potential weakness the last two ra 1 1 1\2
terms on the right-hand sides of Ed8) and (9) are small U|<e, [U|<2pv| =—=+:= \\—=+T=| -
compared to the first one and can be neglected. So instead of Vp?+z? 2p Vp© 2
(8) and(9) we can write the system of equations (18
S . Here the initial momentum of the particle is directed along
tAS;—2p- VS =2eU(N), (10 the z axis andz,p are, respectively, the longitudinal and
L s transverse dimensions of the domain that give the main con-
WAf1=2p- V= y,y-VU(N)U. (1) tribution to the integral defining,(F) in (13) and where the
interaction of the particle with the potential is the most ef-

This system can be solved by carrying out a Fourier transf ctive.
formation in(10) and(11) and taking into account that for a

short-range potential the following boundary conditions are ngé’:]ngas(l?’)’ the approximate solution of E¢3) may be
true:
Si(A)=0, VSi()=0; fy(F)=0, Vfy(F)=0, o(r)=e1— 1 Vemn Y5 g
(12 2e V2
whenp-r<O0, |F]—o. As a result, the solutions ¢1.0) and  Inserting the expression fab(r) into (2) and keeping terms
(1) may be written as to first order of the potential, after simple but long calcula-
@ G tions we obtain the solution of the Dirac equation in the
. u(qg)e’ applied approximation
Sl(f)— j mdq, )
. y- . Ug
5§ V(=BT 1- LT e JTL (20
(=22~ Si(Fu, (13 °

The wave functior(20) is normalized for one particle in the
where U(§)=/ U(f)e *9""dr is the Fourier transform of unit volume anduzus=2m, whereuﬁzugyo. Comparing
the potential energy is an imaginary infinitesimal, and the (19) and (20), one can see tha¥ ()= (). Thus, within
path around the pole in the integral is chosen according tthe approximation of(14), which we call the generalized
boundary condition§12). eikonal approximation, the solutiof20) of the Dirac equa-

During the derivation of13) we replaced the exact equa- tion (1) coincides with the solution(19) of the quadratic
tions (8) and(9) by the approximate equatiois0) and(11). equation(3).

Such an approximation is valid if Now let us clarify the relation of the obtained wave func-
. tion (20) with the Born and the eikonal approximation wave
UA(F)<2&|U(F)], (VS))2<2e|U(T)| (14)  functions, respectively. IfS,(F)|<1, then expanding the ex-
ponent in(20) into the series and keeping only terms to first
and order inU, we obtain
|2V S, Vi|<|yoy-VU(P)U], - 1 2+ y07-4 oGP s
) . (15 ‘I’B(”‘[l 2m? | q7+2p- -0 D (DT
lv0y- VU(P) 1| <[yoy- VU(P)ul.
Putting the explicit expression fdr () from the right-hand X\/Tp—s e, (21)
side of (13) into (15), it becomes obvious thdfl5) follows
from (14). Using the first expression iL3) for S,(f), the  j e the wave function of the Born approximation.
second condition irf14) can be written as The criterion for the conditioS,(F)|<1 can be found
“U(G)edd T . 12 using (13) and evaluating the integral in a similar way, as
qu(gye dq ‘ <|U()]. (16) done above. As a result we get
G2+2p-G— 0 (27)3|
1 l 1 1 1
To the integral in(16), because of the oscillations of the |U|<Pv +3 (o2 EW : (22)
factor %" the main contribution gives the region where
g-f=1. Therefore(16) can be written as This criterion generalizes the well-known Born criterion for

elastic scattering. It includes both weakU(<v/z) and

Gz 9, R strong(|U| <1/2sa?, wherea=maxz,p}) conditions of the
2e (qu+2p Ger)? z VAN <|U(P)]. 17 Born approximation for fastpz>1 andpp>1) and slow
L L (pa<1) particles, respectively.
Finally, definingges,=1/z, [Gef . =1/p, we can write the Comparing(18) and(22), we see that for the scattering of

condition (14) of the replacement of the exact system ofslow particles, wherpz<1+z%/p?, the conditions of the
equations by the approximate equati¢f) and(11) in the ~ GEA and Born approximations become the same. However,
form in the case of fast particles scattering, whezs 1+ z%/p?
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the GEA cond|t|on(18) can be written agU|<buv/z, where  form S;(&,7)=S,(€)+S, (), the variables in(25) can be
b=2pz/(1+Z%/p?), and as far ab>1 the condition of the separated and fd8(£),S, () we obtain the equations
rather than the Born approximation. For fast particles the

GEA becomes weaker than the weak condition of the Born
J J Jd
L3287 TPl é gg
wave function(16) tends to its quasiclassic limit: to the ei-

approximation|U|<v/z. Thus the GEA is applicable to
stronger potentials in the case of fast particle scattering S(é)=a, (26)
konal wave function. To demonstrate this we expand the {L ai ( 7 i)+p( ﬂaiﬂsu(ﬂ):b: a+b=as,

expression forS;(r) in (13) over the small parametertl/ an
and keep the term to the lowest order: (27)
1 [z wherea and b are arbitrary constants. Recalling that the
sEr)=—= f U(p,z')dZ. (23 particle wave function in the Coulomb field before the scat-

tering shall describe particle plane states, we look for such a
solution of (25) that is infinitely small before the scattering,
when z<0 and |F|—<, compared With the phase of the
oco(Lpz). In
parabolic coordinates this condltlon turns 18,(&,7)

Afterward, using the expansion, from the GEA wave func-
tion (20) we obtain the wave function of the eikonal approxi-
mation

-G «O(tp(é—7n)) when p—o and for all finite values of,
\I,(E)(r»):ebﬁf 1—, Yo?V: whereO means “of the same order as.” This requirement
2¢ can be fulfilled only if S/(§=const=0 and

S, (p—)xO(7). Noting thatS,(£§)=const, then from26)
1 z Ugs i = =
XeXP( 3 f U(ﬁ,z’)dz,> 5 (20 it follows thata=0 andb=as, we solve(27), and get for

e S,(F) the expression
As far as the eikonal approximation describes scattering Crm_ & B B
under small angles, whehp,<Ap, (i.e.,z>p), the condi- Si(r)= {E'[bp(r 2)]=Inp(r -2}, (28

tionb>1, which we have used for deviation (#4) from the

GEA wave function, is equivalent to the conditiapp”.  where Eif) is the integral exponential function.

Taking into account the latter, the GEA conditi¢tB) turns Using (4) and (28) and recalling that in the applied ap-
to (U/pv)(z/p)?<1, i.e., to the well-known conditions of proximation W (F)=®(F), S(F)=p-F+SS(F), and f(F)

the eikonal approximation. =u+1,(F), wherefy(F) is again defines througB(F) in

_ Thus the obtained GEA wave functio®0) in both  5.cordance withi13), we obtain the particle wave function in
limits—scattering of slow particles under large angles and, ~quiomb field

fast particles under small angles—turns to the wave func-
tions of the Born and eikonal approximations, respectively.

we(ry=ebi1—, 7YY
IIl. THE CASE OF THE COULOMB FIELD 2e
The wave functior{20) obtained above describes the par- a Ug
ticle scattering in a short-range potential, where the boundary xexpg —e o [Ei(ep(r—2))—Inp(r—2)] 25
conditions(12) are valid. For a long-range potential, gener-
ally, conditions(12) break down and, as a result, the states of (29

a particle at infinity cannot strictly be described by a plane
wave. Particularly, in the case of the Coulomb potential theéNote that this approximate solution of the Dirac equation is
particle wave function at infinity contains the well-known valid if the following condition of the GEA holds:
logarithmic divergent phase, which cannot be obtained from
(20). Therefore, we separately consider the scattering in a @
Coulomb potential. - <p(r=2)=pr(1-cos), (30

For a Coulomb potentidll (r) = «/r it is more convenient
to solve EQ.(10) written in the parabolic coordinates=r
-z, é=r+2z, andp=arctanf/x),

a( a) d
e\ ST

-P

where 6 is the angle between the directions of observation

and the particle’s initial momentum. Let us clarify the rela-

5 tion of the obtained wave function with the wave functions

( 7 i) L (EJF l) iz of the Born, Farry-Sommerfeld-Maul&SM) and eikonal ap-
an) 41& 7 proximations for a particle in the Coulomb field.

J 0
Fra 5”81(5, 7,¢)—ea=0. (25 A. Relation between the GEA and the Born approximation

Solving the Dirac equatioil) by the perturbation theory
Due to an axial symmetr$; does not depend op (as above over Coulomb potential in parabolic coordinates, we obtain
the O Z axis is directed alon@). So seeking a solution of the the particle wave function in the first Born approximation
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o Yo~ v perturbation for slow particles, then it could be done for fast
xpg(r):ebp-f 11— 02 particles tog. In the domain wherg(r—z)~1 the GEA
€ wave function describes the particle scattering of the same

N Ue yelocities and fields as the Born wave function. Cpnyersely,
% [ 1—¢ — {Ei[¢p(r —2)]— Inp(r —z)}] p in the domain wher@(r —2z)>1 there is an essenpal differ-
v J2e ence between the GEA and the Born approximation. As seen
31) from (33), in this domain the condition of the Born approxi-
mation is very strict(the values of the parameter/v are
and the conditions when this solution is valid strongly depressggwhereas according to the conditi30),
the above obtained GEA wave function describes the particle
a ., a scattering in a wider enough region afv values. In this
> |Ei(ep(r—2))—~Inp(r —2)| <1, T<e. (32 case p(r—2)>1] the wave function(29) goes to the quasi-
classic limit, coinciding with the eikonal wave function of
As seen from(32), the first one of these conditions differs the Coulomb field
from the well-known condition of the Born approximation
for the Coulomb fielda/v<1. At first sight this difference Com i
may be viewed with suspicion. However, it is noteworthy Ve(r)=e®
that the traditional derivation of the Born condition for the
Coulomb field is based on the model of the short-range po-
tential; therefore the Born condition does not contain spatial B- Relation between the GEA and the FSM approximation
restrictions and seems as if it allows the description of the | et us compare the wave functio29) with the well-
particle states at arbitrary distances. Conversely, for a field otnown wave function of a relativistic particle in the Cou-
long-range action such a restriction exists, just as conditiofomp field in the FSM approximation, which is valid when

(32) indicates. In particular, whep(r —z)>1 the Born ap-  42/pp<1 (approximation of large momentavherep is the
proximation condition for the Coulomb wave function takesimpact parametefrl]:

. Yoy-V

U-
- 4 glalvinpr-2) P (3q

2¢

the form of
- P Y0¥V
o% FSM/ 7\ — Tal2v | apr _
Sinp(r-z)<L 33) PN = T L et Im e
As follows from (32) the well-known Born condition for <El =, a 1— Lp(r—z)) Up . 37)
Coulomb field v’ J2e
a HereI'(t) is the Gamma function ané(v,1;t) is the hyper-
N <1 (34) geometric function.

In the quasiclassic limit, wher@(r —z)>1, using the
is valid in the spatial region, wheng(r —z)<1. However, asymptote formula of the hypergeometric function
whenp(r—z)<1 one also has to consider the second con¥(—:a,1;wy) for y>1,
dition in (32), which has a relativistic origin. Then the con-

dition of validity of the Born approximation becomes F(—1a1y)= ema? e@ny 110 }
LA WL Py v/
o c?
;<pr 02 (39 \e obtain from(37) the Coulomb wave function in the eiko-

nal approximation26). Thus, wherep(r —z)>1, the GEA
The conditionpr<(v/c)? is stricter thane/v<1. Note that and FSM wave functions coincide, turning into the eikonal
p(r—2z) is just the parameter that should be confined to obwave function of a particle in the Coulomb field.
tain the wave function of the Born approximation either from  These wave functions also coincide in the region where
the exact Coulomb wave function or from the FSM wavep(r —z)<1, if a/v<1 too. In fact, in this limit, using the
function in the relativistic domain by expanding them overasymptotic formula for the hypergeometric function
the small parametet/v. .

Now let us compare the Coulomb wave functiof29) _ a y«
and (31) in the GEA and the Born approximation, respec- =1- v Kzl P
tively. When the conditiong32) hold, one can obtain the
wave function of the first Born approximatidi3l) by ex-
panding the wave functio(R9) into series and keeping the
term of first order over the Coulomb field.

A comparison of the validity condition§80) and (32) of (C=0.577 25 ... isEuler constant we obtain from(37)
the GEA and the Born approximation shows that in the dothe Coulomb wave function in the Born approximati@1).
main wherep(r —z)<<1, the wave function of the Born ap- As in the case of the derivation from the GEA wave func-
proximation describes the scattering in the field of a heavietion, the Born wave function can be obtained from the FSM
nuclei and/or of slower particles than of the GEA wave func-wave function if only in addition to the well-known condi-
tion (indeed, if one can consider the scattering field as dion a/v<<1, the conditionp(r —z)=<1 is fulfilled too.

F

al_
Lv, Ly

=1—L§[Ei(y)—lny—C+m’]
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IV. ELASTIC SCATTERING CROSS SECTION IN THE . 1
GENERALIZED EIKONAL APPROXIMATION FAr) == 2 Upr YoUgU(B" = P), (43

The knowledge of the wave function of a charged particle o i ) ) .
in the scattering field enables one to calculate the amplitug@nich coincides with the amplitude of the elastic scattering
of the elastic scattering, and hence the differential scatterin§j} the first Born approximation. _
cross sections. When the wave function also describes the 1€ GEA wave function in the Coulomb fiel@9) de-

particle states at large distances and has an asymptote scﬁribes. the particlg stgtes at large distances too. In fa(;t, at
r—oo that is a superposition of a plane and spherical ConverI_arge dlstance., taking _mto account the asymptote of the inte-
gent waves gral exponential function

X

e’ Ei(o)~— when x>1,

V(F)~uke® +GH(r) (39)

r ’

. . . we obtain from(29) the asymptote of the wave function
the scattering amplitude can be definedsee, for example, 29 ymp

[1]) a 1 Yo
CP) ~ = Y2 (R'_R
R 1 R v~ 1+ pv r(1—cod) 2¢ 7 (P'=P)
f'u(F): om U§G+(F), (39) XuﬁeLﬁ»F+L(a/u)lnpr(lfcoss‘)

pr+u(alv)npr
T . . e ~
where Us U5 , are bispinors describing the state of a free +G*() r ' (44)

charged particle with polarizatiop and momentgd and
p’' =pr, respectively, an@* (r) is a bispinor depending on where

r=r/r. . _ _ A o i(alv)n(1—cos)
However, when the wave function describes the particle GH(f)=— — {1+ Yo 55"~ p) |us

states only in the region where the particle potential energy pv 2¢ P 1-co¥

U(r) is not zero, then it is impossible to determine the scat- (45)

tering amplitude by the asymptote of the wave function. Al-
though the scattering amplitude can be linked with such
wave function[1],

nd 6 is the scattering angle. The first term (#4) is the
alling wave with the logarithmic distortion in the phase that
occurs because of the slow decrease of the Coulomb field at
_ 1 o the distance. There is a such kind of distortion in the scat-
fu(f)=— o f ewp"r’Ug, oW (FHU(F")d3’. (400 tered spherical wave described by the second terr4n
m too. However, these deviations from the usual asymptotic
form of the wave functior{38) are not essential for the defi-

As far as the wave function obtained in Secs. | and Il in_.. : : .
; . . o t f th tt litud d usi(8p) and(45
the GEA describes the particle states either within the ranggl;t(;?no e scattering amplitude and usi(@p) and(45) we

of a scattering field or at asymptotic large distances, then
both approaches can be applied to calculate the scattering N
amplitude in the GEA. At first, we shall find the asymptote fA(r)y=—
of the GEA wave functior{20) for a particle scattering in a
short-range potential. To calculate the asymptote of the func- Tne expressiort46) differs from the well-known scatter-
tion S(r) in (20), temporarily we direct th€©Z coordinate  jng amplitude of the Coulomb field in the first Born approxi-
axis alongr and change the integration variable () 0 mation only by a phase factor. So using the amplitude of the
Q=p+4. Turning to spherical coordinates, we carry out thescattering in a short-range field in the first Born approxima-
integration over the variable ca#s=Q-r by parts. As a result, tion (43) for a long-range Coulomb field gives the same scat-
atr—oo we obtain tering cross sections.
Now let us calculate the scattering amplitude by the for-
mula (40). We carry out integration by parts by substituting
r_z)- (4D the wave function(20) into (40) and using Eqs(10) and
(11). Taking into account that for a short-range potential
Using (41), we obtain from(20) an asymptote of the wave U=0, dU/da=0, and ¢°U/sa®=0 at a—=, where
function of the form(38), where a=x.,y,z, we obtain the scattering amplitude in the lowest
order of the GEA

o U’r’}/ou‘ _

p P Lu(alv)In(1-cos)
= e . 46
2p“ 1—co¥ (46)

eLpI’

+0

- LE >
SuN=5_e FTU(p'—p)

~ 1
G+(F):_—[28+707'(F3'_5)]U5U(ﬁ'_§)- 2 L U"Z/Yo e T
4 R o] [ e @ eSi-1uzap,

(47)
In addition, taking into account thatg (e yo—y-p’—m) )
=0 and E7y,—¥-p—m)u;=0, the scattering amplitude whereOZ axis is taken along+p’, Q=p’'—p is the trans-
(39) takes the form fer momentum,p is two-dimensional radius vector in the
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plane XOY, and we have denoted @1(5) the function trary static potential differs from the known results in eikonal

S,(F) at z= +, which is defined in(13). approximation. For the scattering of nonpolarized particles,
The expressior(47) defines the amplitude of an elastic after summing over the final and averaging over initial po-

scattering in the generalized eikonal approximation. From ifarization, we obtain front47) the differential cross sections

one can easily derive the elastic scattering amplitudes of th# generalized eikonal approximation

Born and eikonal approximations. In fact, when the condi-

tion (22) of the Born approximation holds, the®(p)<1 _1 w12 32

and in (47) one can expand the exponent into the series. d"_zg [F4()|*do=[f(r)[*do, (48)

Keeping terms to first order i and substituting thé&, (1)

from (13), we obtain the scattering amplitude in the first where

Born approximatior(43) If in addition to the conditior(18)

also b= 2pz/(1+z 2)>1 then instead of5,(p) its ap- L

proximate vaIueSl(p) Sl(p,Z +®©) can be substituted f(r)— 8—|5+

from (23) into (47). Doing that we obtain fronf47) the scat- &

tering amplitude in the eikonal approximation. So the ob-

tained amplitude of the electron elastic scattering in an arbianddo is the solid angle along the

B-Q

12
Pl 1+ 52 ) fe_‘Q";[e‘sl(’3>—l]d2p
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