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I. INTRODUCTION

The elastic scattering of charged particles, when the ex-
ternal field can be considered as a perturbation, has been
studied in detail in Born and eikonal approximations~see, for
example,@1#!. It is known that the wave function in the ei-
konal approximation describes the particle state only in a
specific range of potentials and the eikonal solution is not
valid at distancesz.a, wherez is the coordinate along the
direction of particle initial momentumpW anda is the range of
the interaction region. The wave function of the Born ap-
proximation, in contrast to the eikonal wave function, de-
scribes the particle state at arbitrary points, particularly at
large distances. However, within the potential range where
both approximations are applicable, these wave functions de-
scribe the scattering by different accuracies: the Born wave
function is valid whenuUu!\v/a and the eikonal wave
function whenuUu!pv, whereU is the potential energy and
v the initial velocity of the particle~of course, fast particles
are considered,pa@\, where the eikonal approximation is
generally valid. Therefore the common region where both
approximations under consideration are valid is very re-
stricted. One can find a correspondence between them by
expanding the eikonal wave function into a series over the
Born parameterUa/\v!1 and the Born wave function into
a series over the impact parameterhqW 2/2pW •qW !1 ~qW is the
transfer momentum!, and keeping terms to first order inU
@2#.

The main purpose of this paper is to derive an alternative
approximate solution of the Dirac equation for a charged
particle scattering in a static potential, a solution that in-
cludes the well-known Born and eikonal wave functions as
limiting cases. The organization of the paper is as follows. In
Sec. II we shall present the generalized eikonal approxima-
tion ~GEA! for particle scattering in short-range potentials
and discuss its relationship to the Born and eikonal approxi-
mations. In Sec. III we shall apply the GEA to the scattering
in a long-range Coulomb field. We shall also discuss the
well-known Born conditions for the Coulomb field and dem-
onstrate the relationship of the obtained GEA wave function
to Born, eikonal, and Farry-Sommerfeld-Maue wave func-
tions. In Sec. IV, using the GEA wave functions, we shall
calculate the elastic scattering cross section and compare it
with the Born and eikonal approximation cross sections.

II. THE WAVE FUNCTION OF PARTICLE ELASTIC
SCATTERING IN THE GENERALIZED

EIKONAL APPROXIMATION

Our starting point is the Dirac equation for a charged
particle in an external static field with\5c51

$@«2U~rW !#g01igW •¹W 2m%C~rW !50, ~1!

wherem is the mass,« the energy,U(rW) the potential energy
of the particle, andg0, gW the Dirac matrices. Introducing a
bispinor functionF(rW) that is related toC(rW) by the relation

C~rW !5
1

2m
$@«2U~rW !#g01igW •¹W 1m%F~rW ! ~2!

turns ~1! into the quadratic equation

$@«2U~rW !#21D2m21ig0gW •¹W U~rW !%F~rW !50. ~3!

We seek the solution of~3! in the form of

F~rW !5 f ~rW !eiS~rW !, ~4!

where exp@iS(rW)# is the solution of Klein-Gordon equation
for a charged particle in a static field

$@«2U~rW !#21D2m2%eiS~rW !50 ~5!

and f (rW) is a bispinor function.
Substituting~4! into ~3! we get for f (rW) and S(rW) the

system of equations

iDS1@«2U~rW !#22~¹W S!22m250, ~6!

iD f22¹W S•¹W f2g0@gW •¹W U~rW !# f50, ~7!

where ~6! is the Klein-Gordon equation@cf. with ~5!# that
describes the scattering of a charged particle without spin,
whereas Eq.~7! describes the spinor part of the scattering.
We solve this system by assuming that the scattering field is
weak and we seek a solution of the form

S~rW !5pW •rW1S1~rW !, f ~rW !5u1 f 1~rW !,

whereu is the Dirac bispinor for the free particle. As a result
Eqs.~6! and ~7! turn into a new system of equations for the
scalar functionS1(rW) and bispinor functionf 1(rW),

iDS122pW •¹W S152«U~rW !2U2~rW !1~¹W S1!
2, ~8!

iD f 122pW •¹W f 15g0gW •¹W U~rW !u12¹W S1•¹W f 1

1g0gW •¹W U~rW ! f 1 . ~9!

PHYSICAL REVIEW A OCTOBER 1996VOLUME 54, NUMBER 4

541050-2947/96/54~4!/3036~6!/$10.00 3036 © 1996 The American Physical Society



Within the assumption of potential weakness the last two
terms on the right-hand sides of Eqs.~8! and ~9! are small
compared to the first one and can be neglected. So instead of
~8! and ~9! we can write the system of equations

iDS122pW •¹W S152«U~rW !, ~10!

iD f 122pW •¹W f 15g0gW •¹W U~rW !u. ~11!

This system can be solved by carrying out a Fourier trans-
formation in~10! and~11! and taking into account that for a
short-range potential the following boundary conditions are
true:

S1~rW !50, ¹W S1~rW !50W ; f 1~rW !50, ¹W f 1~rW !50W ,
~12!

whenpW •rW,0, urWu→`. As a result, the solutions of~10! and
~11! may be written as

S1~rW !5
i«

4p3 E U~qW !eiqW •rW

qW 212pW •qW 2i0
dqW ,

f 1~rW !5
g0gW •¹W

2«
S1~rW !u, ~13!

whereU(qW )5* U(rW)e2iqW •rWdrW is the Fourier transform of
the potential energy,i0 is an imaginary infinitesimal, and the
path around the pole in the integral is chosen according to
boundary conditions~12!.

During the derivation of~13! we replaced the exact equa-
tions ~8! and~9! by the approximate equations~10! and~11!.
Such an approximation is valid if

U2~rW !!2«uU~rW !u, ~¹W S1!
2!2«uU~rW !u ~14!

and

u2¹W S1•¹W f 1u!ug0gW •¹W U~rW !uu,
~15!

ug0gW •¹W U~rW ! f 1u!ug0gW •¹W U~rW !uu.

Putting the explicit expression forf 1(rW) from the right-hand
side of ~13! into ~15!, it becomes obvious that~15! follows
from ~14!. Using the first expression in~13! for S1(rW), the
second condition in~14! can be written as

2«U E qWU~qW !eiqW •rW

qW 212pW •qW 2i0

dqW

~2p!3
U2!uU~rW !u. ~16!

To the integral in~16!, because of the oscillations of the
factor eiqW •rW the main contribution gives the region where
qW •rW>1. Therefore~16! can be written as

2«
qW e f
2

~qW e f
2 12pW •qW e f!

2 U
2~rW !!uU~rW !u. ~17!

Finally, definingqef,z51/z̄, uqW e fu'51/r̄, we can write the
condition ~14! of the replacement of the exact system of
equations by the approximate equations~10! and ~11! in the
form

uUu!«, uUu!2pvS r̄

Ar̄ 21 z̄ 2
1

1

2p
A 1

r̄ 2 1
1

z̄ 2D 2.
~18!

Here the initial momentum of the particle is directed along
the z axis and z̄,r̄ are, respectively, the longitudinal and
transverse dimensions of the domain that give the main con-
tribution to the integral definingS1(rW) in ~13! and where the
interaction of the particle with the potential is the most ef-
fective.

Using ~13!, the approximate solution of Eq.~3! may be
written as

F~rW !5eipW •rWF12i
g0gW •¹W

2«
GeiS1~rW !

upW

A2«
. ~19!

Inserting the expression forF(rW) into ~2! and keeping terms
to first order of the potential, after simple but long calcula-
tions we obtain the solution of the Dirac equation in the
applied approximation

C~rW !5eipW •rWF12i
g0gW •¹W

2«
GeiS1~rW !

upW

A2«
. ~20!

The wave function~20! is normalized for one particle in the
unit volume andūpWupW52m, where ūpW5upW

1g0 . Comparing
~19! and ~20!, one can see thatC(rW)5F(rW). Thus, within
the approximation of~14!, which we call the generalized
eikonal approximation, the solution~20! of the Dirac equa-
tion ~1! coincides with the solution~19! of the quadratic
equation~3!.

Now let us clarify the relation of the obtained wave func-
tion ~20! with the Born and the eikonal approximation wave
functions, respectively. IfuS1(rW)u!1, then expanding the ex-
ponent in~20! into the series and keeping only terms to first
order inU, we obtain

CB~rW !5F12
1

~2p!3
E 2«1g0gW •qW

qW 212pW •qW 2i0
U~qW !eiqW •rWdqW G

3
upW

A2«
eipW •rW, ~21!

i.e., the wave function of the Born approximation.
The criterion for the conditionuS1(rW)u!1 can be found

using ~13! and evaluating the integral in a similar way, as
done above. As a result we get

uUu!pvF 1pz̄1
1

2

1

~pz̄!2
1
1

2

1

~pr̄ !2G . ~22!

This criterion generalizes the well-known Born criterion for
elastic scattering. It includes both weak (uUu!v/ z̄) and
strong~uUu!1/2«a2, wherea5max$z̄,r̄%! conditions of the
Born approximation for fast~pz̄@1 and pr̄@1! and slow
(pa<1) particles, respectively.

Comparing~18! and~22!, we see that for the scattering of
slow particles, whenpz̄!11 z̄2/ r̄2, the conditions of the
GEA and Born approximations become the same. However,
in the case of fast particles scattering, whenpz̄@11 z̄2/ r̄2,
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the GEA condition~18! can be written asuUu!bv/ z̄, where
b52pz̄/(11 z̄2/ r̄2), and as far asb@1 the condition of the
GEA becomes weaker than the weak condition of the Born
approximation uUu!v/ z̄. Thus the GEA is applicable to
stronger potentials in the case of fast particle scattering
rather than the Born approximation. For fast particles the
wave function~16! tends to its quasiclassic limit: to the ei-
konal wave function. To demonstrate this we expand the
expression forS1(rW) in ~13! over the small parameter 1/b
and keep the term to the lowest order:

S1
E~rW !52

1

v E
2`

z

U~rW ,z8!dz8. ~23!

Afterward, using the expansion, from the GEA wave func-
tion ~20! we obtain the wave function of the eikonal approxi-
mation

C~E!~rW !5eipW •rWF12i
g0gW •¹W

2«
G

3expS 2
1

v E
2`

z

U~rW ,z8!dz8D upW

A2«
. ~24!

As far as the eikonal approximation describes scattering
under small angles, whenDpz!Dp' ~i.e., z̄@ r̄!, the condi-
tion b@1, which we have used for deviation of~24! from the
GEA wave function, is equivalent to the conditionz̄!pr̄2.
Taking into account the latter, the GEA condition~18! turns
to (U/pv)( z̄/ r̄)2!1, i.e., to the well-known conditions of
the eikonal approximation.

Thus the obtained GEA wave function~20! in both
limits—scattering of slow particles under large angles and
fast particles under small angles—turns to the wave func-
tions of the Born and eikonal approximations, respectively.

III. THE CASE OF THE COULOMB FIELD

The wave function~20! obtained above describes the par-
ticle scattering in a short-range potential, where the boundary
conditions~12! are valid. For a long-range potential, gener-
ally, conditions~12! break down and, as a result, the states of
a particle at infinity cannot strictly be described by a plane
wave. Particularly, in the case of the Coulomb potential the
particle wave function at infinity contains the well-known
logarithmic divergent phase, which cannot be obtained from
~20!. Therefore, we separately consider the scattering in a
Coulomb potential.

For a Coulomb potentialU(r )5a/r it is more convenient
to solve Eq.~10! written in the parabolic coordinatesh5r
2z, j5r1z, andw5arctan(y/x),

F i ]

]j S j
]

]j D1i
]

]h S h
]

]h D1
i

4 S 1j 1
1

h D ]2

]w2

2pS j
]

]j
2h

]

]h D GS1~j,h,w!2«a50. ~25!

Due to an axial symmetryS1 does not depend onw ~as above
theOZ axis is directed alongpW !. So seeking a solution of the

form S1(j,h)5SI~j!1SII~h!, the variables in~25! can be
separated and forSI~j!,SII~h! we obtain the equations

F i ]

]j S j
]

]j D2pS j
]

]j D GSI~j!5a, ~26!

F i ]

]h S h
]

]h D1pS h
]

]h D GSII~h!5b, a1b5a«,

~27!

where a and b are arbitrary constants. Recalling that the
particle wave function in the Coulomb field before the scat-
tering shall describe particle plane states, we look for such a
solution of ~25! that is infinitely small before the scattering,
when z,0 and urWu→`, compared with the phase of the
wave function of free electronS1(rW)u urWu→`

z,0 }o(ipz). In
parabolic coordinates this condition turns toS1(j,h)
}O„ip(j2h)… when h→` and for all finite values ofj,
whereO means ‘‘of the same order as.’’ This requirement
can be fulfilled only if SI~j!5const50 and
SII(h→`)}O(h). Noting thatSI~j!5const, then from~26!
it follows that a50 andb5a«, we solve~27!, and get for
S1(rW) the expression

S1
C~rW !52

a

v
$Ei@ip~r2z!#2 lnp~r2z!%, ~28!

where Ei(x) is the integral exponential function.
Using ~4! and ~28! and recalling that in the applied ap-

proximation C(rW)5F(rW), S(rW)5pW •rW1S1
C(rW), and f (rW)

5u1 f 1(rW), where f 1(rW) is again defined throughS1
C(rW) in

accordance with~13!, we obtain the particle wave function in
a Coulomb field

CC~rW !5eipW •rWF12i
g0gW •¹W

2«
G

3expH 2i
a

v
@Ei„ip~r2z!…2 lnp~r2z!#J upW

A2«
.

~29!

Note that this approximate solution of the Dirac equation is
valid if the following condition of the GEA holds:

a

v
!p~r2z!5pr~12cosu!, ~30!

whereu is the angle between the directions of observation
and the particle’s initial momentum. Let us clarify the rela-
tion of the obtained wave function with the wave functions
of the Born, Farry-Sommerfeld-Maue~FSM! and eikonal ap-
proximations for a particle in the Coulomb field.

A. Relation between the GEA and the Born approximation

Solving the Dirac equation~1! by the perturbation theory
over Coulomb potential in parabolic coordinates, we obtain
the particle wave function in the first Born approximation
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CB
C~rW !5eipW •rWF12i

g0gW •¹W

2«
G

3H 12i
a

v
$Ei@ip~r2z!#2 lnp~r2z!%J upW

A2«

~31!

and the conditions when this solution is valid

a

v
uEi„ip~r2z!…2 lnp~r2z!u!1,

a

r
!«. ~32!

As seen from~32!, the first one of these conditions differs
from the well-known condition of the Born approximation
for the Coulomb fielda/v!1. At first sight this difference
may be viewed with suspicion. However, it is noteworthy
that the traditional derivation of the Born condition for the
Coulomb field is based on the model of the short-range po-
tential; therefore the Born condition does not contain spatial
restrictions and seems as if it allows the description of the
particle states at arbitrary distances. Conversely, for a field of
long-range action such a restriction exists, just as condition
~32! indicates. In particular, whenp(r2z)@1 the Born ap-
proximation condition for the Coulomb wave function takes
the form of

a

v
ln p~r2z!!1. ~33!

As follows from ~32! the well-known Born condition for
Coulomb field

a

v
!1 ~34!

is valid in the spatial region, wherep(r2z)<1. However,
whenp(r2z)!1 one also has to consider the second con-
dition in ~32!, which has a relativistic origin. Then the con-
dition of validity of the Born approximation becomes

a

v
!pr

c2

v2
. ~35!

The conditionpr!(v/c)2 is stricter thana/v!1. Note that
p(r2z) is just the parameter that should be confined to ob-
tain the wave function of the Born approximation either from
the exact Coulomb wave function or from the FSM wave
function in the relativistic domain by expanding them over
the small parametera/v.

Now let us compare the Coulomb wave functions~29!
and ~31! in the GEA and the Born approximation, respec-
tively. When the conditions~32! hold, one can obtain the
wave function of the first Born approximation~31! by ex-
panding the wave function~29! into series and keeping the
term of first order over the Coulomb field.

A comparison of the validity conditions~30! and ~32! of
the GEA and the Born approximation shows that in the do-
main wherep(r2z)!1, the wave function of the Born ap-
proximation describes the scattering in the field of a heavier
nuclei and/or of slower particles than of the GEA wave func-
tion ~indeed, if one can consider the scattering field as a

perturbation for slow particles, then it could be done for fast
particles too!. In the domain wherep(r2z)'1 the GEA
wave function describes the particle scattering of the same
velocities and fields as the Born wave function. Conversely,
in the domain wherep(r2z)@1 there is an essential differ-
ence between the GEA and the Born approximation. As seen
from ~33!, in this domain the condition of the Born approxi-
mation is very strict~the values of the parametera/v are
strongly depressed!, whereas according to the condition~30!,
the above obtained GEA wave function describes the particle
scattering in a wider enough region ofa/v values. In this
case [p(r2z)@1] the wave function~29! goes to the quasi-
classic limit, coinciding with the eikonal wave function of
the Coulomb field

CE
C~rW !5eipW •rWF12i

g0gW •¹W

2«
Gei~a/v !ln p~r2z!

upW

A2«
. ~36!

B. Relation between the GEA and the FSM approximation

Let us compare the wave function~29! with the well-
known wave function of a relativistic particle in the Cou-
lomb field in the FSM approximation, which is valid when
a2/pr!1 ~approximation of large momenta!, wherer is the
impact parameter@1#:

CFSM~rW !5e2pa/2vGS 11i
a

v
D eipW •rWF12i

g0gW •¹W

2«
G

3FS 2i
a

v
,1;2ip~r2z!D upW

A2«
. ~37!

HereG(t) is the Gamma function andF(v,1;t) is the hyper-
geometric function.

In the quasiclassic limit, wherep(r2z)@1, using the
asymptote formula of the hypergeometric function
F(2ia,1;iy) for y@1,

F~2ia,1;iy!>
epa/2

G~11ia!
eia lnyF11OS 1yD G ,

we obtain from~37! the Coulomb wave function in the eiko-
nal approximation~26!. Thus, wherep(r2z)@1, the GEA
and FSM wave functions coincide, turning into the eikonal
wave function of a particle in the Coulomb field.

These wave functions also coincide in the region where
p(r2z)<1, if a/v!1 too. In fact, in this limit, using the
asymptotic formula for the hypergeometric function

FS 2i
a

v
,1;iyD>12i

a

v (
k51

`
yk

kk!

512i
a

v
@Ei~y!2 lny2C1ip#

~C50.577 215 . . . is Euler constant!, we obtain from~37!
the Coulomb wave function in the Born approximation~31!.
As in the case of the derivation from the GEA wave func-
tion, the Born wave function can be obtained from the FSM
wave function if only in addition to the well-known condi-
tion a/v!1, the conditionp(r2z)<1 is fulfilled too.
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IV. ELASTIC SCATTERING CROSS SECTION IN THE
GENERALIZED EIKONAL APPROXIMATION

The knowledge of the wave function of a charged particle
in the scattering field enables one to calculate the amplitude
of the elastic scattering, and hence the differential scattering
cross sections. When the wave function also describes the
particle states at large distances and has an asymptote at
r→` that is a superposition of a plane and spherical conver-
gent waves

C~rW !'upW
meipW •rW1G1~rŴ !

eipr

r
, ~38!

the scattering amplitude can be defined as~see, for example,
@1#!

f m~rŴ !5
1

2m
ūpW

mG1~rŴ !, ~39!

whereupW
m ,ūpW 8

m , are bispinors describing the state of a free
charged particle with polarizationm and momentapW and

pW 85prŴ, respectively, andG1(rŴ) is a bispinor depending on

rŴ5rW/r .
However, when the wave function describes the particle

states only in the region where the particle potential energy
U(rW) is not zero, then it is impossible to determine the scat-
tering amplitude by the asymptote of the wave function. Al-
though the scattering amplitude can be linked with such a
wave function@1#,

fm~rŴ !52
1

4p E e2ipW 8•rW8ūpW 8
m

g0C~rW8!U~rW8!d3r 8. ~40!

As far as the wave function obtained in Secs. I and II in
the GEA describes the particle states either within the range
of a scattering field or at asymptotic large distances, then
both approaches can be applied to calculate the scattering
amplitude in the GEA. At first, we shall find the asymptote
of the GEA wave function~20! for a particle scattering in a
short-range potential. To calculate the asymptote of the func-
tion S1(rW) in ~20!, temporarily we direct theOZ coordinate
axis alongrW and change the integration variable in~13! to
QW 5pW 1qW . Turning to spherical coordinates, we carry out the

integration over the variable cosu5QW •rŴ by parts. As a result,
at r→` we obtain

S1~rW !5
i«

2p
e2ipW •rWU~pW 82pW !

eipr

r
1OS 1r 2D . ~41!

Using ~41!, we obtain from~20! an asymptote of the wave
function of the form~38!, where

G1~rŴ !52
1

4p
@2«1g0gW •~pW 82pW !#upWU~pW 82pW !.

~42!

In addition, taking into account thatūpW 8(«g02gW •pW 82m)
50 and («g02gW •pW 2m)upW50, the scattering amplitude
~39! takes the form

fm~rŴ !52
1

4p
ūpW 8g0upWU~pW 82pW !, ~43!

which coincides with the amplitude of the elastic scattering
in the first Born approximation.

The GEA wave function in the Coulomb field~29! de-
scribes the particle states at large distances too. In fact, at
large distance, taking into account the asymptote of the inte-
gral exponential function

Ei~ix!'
eix

ix
when x@1,

we obtain from~29! the asymptote of the wave function

CC~rW !'F11
a

pv
1

r ~12cosu!

g0

2«
gW •~pW 82pW !G

3upWe
ipW •rW1i~a/v !lnpr~12cosu!

1G1~rŴ !
eipr1i~a/v !lnpr

r
, ~44!

where

G1~rŴ !52
a

pv F11
g0

2«
gW •~pW 82pW !GupW ei~a/v !ln~12cosu!

12cosu
~45!

and u is the scattering angle. The first term in~44! is the
falling wave with the logarithmic distortion in the phase that
occurs because of the slow decrease of the Coulomb field at
the distance. There is a such kind of distortion in the scat-
tered spherical wave described by the second term in~44!
too. However, these deviations from the usual asymptotic
form of the wave function~38! are not essential for the defi-
nition of the scattering amplitude and using~39! and~45! we
obtain

f m~rŴ !52
a

2p2
ūpW 8g0upW
12cosu

ei~a/v !ln~12cosu!. ~46!

The expression~46! differs from the well-known scatter-
ing amplitude of the Coulomb field in the first Born approxi-
mation only by a phase factor. So using the amplitude of the
scattering in a short-range field in the first Born approxima-
tion ~43! for a long-range Coulomb field gives the same scat-
tering cross sections.

Now let us calculate the scattering amplitude by the for-
mula ~40!. We carry out integration by parts by substituting
the wave function~20! into ~40! and using Eqs.~10! and
~11!. Taking into account that for a short-range potential
U50, ]U/]a50, and ]2U/]a250 at a→`, where
a5x,y,z, we obtain the scattering amplitude in the lowest
order of the GEA

f m~rŴ !52
i

4p

ūpW 8
m g0

2«
upW 1pW 8u E e2iQW •rW@ei S̃1~rW !21#upWd

2r,

~47!

whereOZ axis is taken alongpW 1pW 8, QW 5pW 82pW is the trans-
fer momentum,rW is two-dimensional radius vector in the
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plane XOY, and we have denoted byS̃1(rW ) the function
S1(rW) at z51`, which is defined in~13!.

The expression~47! defines the amplitude of an elastic
scattering in the generalized eikonal approximation. From it
one can easily derive the elastic scattering amplitudes of the
Born and eikonal approximations. In fact, when the condi-
tion ~22! of the Born approximation holds, thenS̃1(rW )!1
and in ~47! one can expand the exponent into the series.
Keeping terms to first order inU and substituting theS1(rW)
from ~13!, we obtain the scattering amplitude in the first
Born approximation~43!. If in addition to the condition~18!
also b52pz̄/(11 z̄2/r2)@1, then instead ofS̃1(rW ) its ap-
proximate valueS̃1

E(rW )[S̃1
E(rW ,z51`) can be substituted

from ~23! into ~47!. Doing that we obtain from~47! the scat-
tering amplitude in the eikonal approximation. So the ob-
tained amplitude of the electron elastic scattering in an arbi-

trary static potential differs from the known results in eikonal
approximation. For the scattering of nonpolarized particles,
after summing over the final and averaging over initial po-
larization, we obtain from~47! the differential cross sections
in generalized eikonal approximation

ds5 1
2(

m
u f m~rŴ !u2do5u f ~rŴ !u2do, ~48!

where

f ~rŴ !52
i

8p
upW 1pW 8uS 11

pW •QW

2«2
D 1/2E e2iQW •rW@ei S̃1~rW !21#d2r

anddo is the solid angle along therŴ.
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