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Calculation of ionization within the close-coupling formalism
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We present a method for calculation of differential ionization cross sections from theories that use the
close-coupling expansion for the total wave function. It is shown how, from a single such calculation, elastic,
excitation, and ionization cross sections may be extracted using solelj-thatrix elements arising from
solution of the coupled equations. To demonstrate the applicability of this formalism, the convergent close-
coupling theory is systematically applied at incident energies of 150—600 eV to the calculat®hief
ionization. Comparison with available measurements is generally very §8©850-294{©6)11209-9

PACS numbs(s): 34.80.Bm, 34.80.Dp

[. INTRODUCTION a treatment of the target continuum provided by pseudostates
is sufficiently accurate for practical applications; see, for ex-

Our primary motivation in developing electron-atgior ~ ample[9,10], in the cases oé-Na ande-He scattering, re-
-ion) scattering theory is to provide data useful for practicalspectively.
and scientific applications. For this purpose, we desire a gen- In order to demonstrate that a scattering theory is com-
eral theory that yields accurate results irrespective of the proplete, the treatment of the target continuum needs to be di-
jectile energy or the scattering process of interest. By analrectly applied to the calculation of ionization processes. The
ogy to the concept of a complete, scattering experiment, onstrength of the CC approach with pseudostates to ionization
that measures all aspects of a particular scattering process, that it allows for the treatment of the discrete transitions
[1,2] such a theory could be referred to as a “complete” when calculating ionization in the same way that the con-
scattering theory. It is our goal to extend the convergentinuum is taken into account when calculating discrete tran-
close-couplingCCC) method, introduced by Bray and Stel- sitions. Furthermore, unitarity of the CC formalism allows
bovics[3], to fulfill these criteria, and to extend its applica- for an immediate test of the calculation by applying it to the
bility to a large range of targets. least detailed ionization process, namely, the total ionization

These goals are easy to state but difficult to achievecross section. Unitarity ensures that this cross section con-
Electron-atom collisions consist of a big variety of scatteringverges rapidly with increasing number of states. In particu-
processes. If the energy of the projectile is above the ionizaar, the target-space expansions do not require large orbital
tion threshold, then elastic, excitation, and ionization pro-angular momentgl1].
cesses occur. These interfere and compete with each other The first indication that one should be able to obtain ac-
and hence as many as possible should be taken into accownurate ionization information from the CCC theory was pro-
in the scattering theory. The close-couplif@C) formalism  vided by application to the calculation of electron-impact
is designed with this aim in mind, and is particularly suitedtotal ionization cross sections and the associated spin asym-
to the treatment of discrete excitations. However, historicallymetries of atomic hydrogefl2]. This indicated that the
the target continuum has been completely left out of the CGheory correctly predicted the spin-dependent distribution of
calculations, yielding identically zero for ionization cross electron flux between the discrete and continuum channels.
sections, which has been the major factor in limiting theEven though the total ionization cross section is the least
generality of the CC approach. In relatively recent times,detailed parameter used to describe ionization, we shall see
many CC calculations have been extended to incorporate thtbat obtaining these by the CCC method has surprising im-
treatment of the target continuum via the use of pseudostateplications for our formal ionization theory.
see, for exampl€3—7], and references therein. These states The CCC theory has already been applied to the more
are obtained by diagonalizing the target Hamiltonian in someletailed triple-differential ionization cross sectiph3—15.
square-integrable basis, with the positive-energy states prd-he idea is much the same as that applied initially by Curran
viding a discretized representation of the target continuum.and Walterd 16] and by Curran, Whelan, and Waltdik7],

The introduction of pseudostates to the CC formalismnamely, to use a CC representation of the total wave func-
considerably improved agreement between theory and exion. There are, however, some notable differences in our
periment for the discrete transitions, and allowed for the apapproach that lead to substantial simplification. In the CCC
plication of such calculations at all energies of interest. Probtheory, the ionization amplitudes are generated directly from
lems with pseudoresonances that typically plagued the earlhe T-matrix elements arising from the solution of the CC
applications were shown to be primarily due to an insuffi-equations.
cient basis size used in the calculatif8]. Generally, we The aim of this paper is to explain how we obtain detailed
argue that for the purpose of calculating discrete excitationdpnization information from the CCC theory. This includes

total, single-, double-, and triple-differential ionization cross
sections. We have already demonstrated that a single calcu-
“Electronic address: |.Bray@flinders.edu.au lation yields these cross sections accurately in the case of
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e-He scattering at 100 eY18]. Here we concentrate on en- As the basis siz#\ is increased, the negative-ener@pove
ergies above 100 eV, where there are an abundance of ea-frozen corgstates converge pointwise to the discrete target
perimental data for the various differential ionization crosseigenstates, whereas the positive-energy states provide an in-
sections. creasingly dense discretization of the target continuum. An
expansion involving a summation over the positive-energy
Il. THEORY states is equivalent to an integration over the true target con-
) _tinuum state$21]. We model hydrogenic targets as one ac-
The details of the CCC theory for the case of hydrogenigjye electron above a frozen Hartree-Fock cf@& For he-
targets have been given by Bray and Stelbo{dd, and for  jium, we include only the configurations where one of the
the case of helium by Fursa and Brg}0]. These discuss target electrons is represented by theotbital of Het [10].
techniques for defining and solving the coupled equations ifrhe target-state energies may then be defined relative to the
the CCC formalism. Applying the method to ionization re- core and then excitation of states with negative energies cor-
quires revisiting the foundations of the CCC theory, and Weesponds to discrete transitions, while excitation of states
shall focus our attention in this area. , with positive energies€,=g%2) corresponds to ionization
In this paper we shall only concern ourselves with theys the target.
case where ionization involves ejection of only one target Having defined our target states, we use them to form the

electron. Core e_xcitation or ionization is exp_licitly excluded yitichannel expansion of the unsymmetrized wave function
from our formalism, as is two-electron ejection by electronwi(ﬂ We define the projection operatb by

impact. Implicitly, we have in mind “one-electron” targets
such as H, Li, Na, and the He atom treated by the frozen-core N

approximation. Unless stated otherwise, atomic units will be IN= D [N N, (6)
used throughouit. n=1

with the use of an orthogonal Laguerre basis ensuring that
A. Formal CCC theory limy_...IN=1, the true identity operator acting in the space of
In the CCC method, we do not directly solve the Sehro the target electrdis). We approximate thd matrix (4) by
dinger equation using a finite basis expansion of the target space,

(H-E)|®{My=0, (1) Ti=Th=(PANH—-E+(E-H)PJIN). (7

whereE, H, and¥; are the total energy, Hamiltonian, and Note that we used™ on both sides to ensure that the target
wave function (with incoming plane-wave and outgoing space is confined to the Hilbert space spanned by our target
spherical-wave boundary conditignsespectively. Instead, statequy This way we do not have any problems with non-

we solve for thel matrix existent integrals of the kind discussed by Curran and
) Walters[16]. Furthermore, it is this expansion that deter-
Ti=(®¢H-E[¥;"), (20 mines the asymptotic HamiltoniaK. By construction we

. . . , have ensured that the target-space functions always vanish
wheredy is the asymptotic wave function attl=K+V'is ¢, guficiently large radial coordinates. This means that
defined as acting on the left-hand side. At this stage we dgqymptotically the projectile must be treated as a plane wave,
not specify the asymptotic HamiltoniaK, its eigenstates it the motion of the target electrons being governed solely

@y, or the interaction potentidV. We shall find that they py the target Hamiltonian. Hence, we write the asymptotic
will be determined by the method of solution. Hamiltonian as

Since it is numerically difficult to work with functions
obeying explicit symmetry conditions, we write K=Ko+Hr, (8)

|W{TYy=(1-P|y ™), (3)  whereK, is the free one-electron Hamiltonidwe use the

subscript O to denote projectile spacs a consequence, the
where the operator -1 P, ensures antisymmetry upon inter- asymptotic stated; satisfy
change of spatial coordinates and spin, in the total wave
function for any unsymmetrized functio{™ . Note that (Hr+Ko—E)[®@)=0, €)
this expansion is at the cost of a nonunique determination of ) ] )
) In the CCC method, this expansion introduces numeri&"d we may write(® | = (ki |, where ¢, is an eigenstate

cal instabilities that need to be addres$2@]. Equation(2)  (discrete or continuoysof Hy with energy e ,Zand K is a
now becomes plane wave with energklez such thaE= e; +k{/2. In prac-

tice we add a short-ranged projectile-space distorting poten-
Ty=(Dy|H—E+(E—H)PJu!*). (4) tial Uy to (9) and work with distorted wavels{™). However,
this is used purely for reducing computational requirements,
To solve (4) we first obtain a set of sgquare-integrable and our results are independent of the choice of this poten-
target states by diagonalizing the target Hamiltonigpin  tial. For clarity of presentation we choose the plane-wave
an orthogonal Laguerre basis of sidé The N resulting  notation here. See Rg] for more detail regarding the us-
states satisfy age ofU, in CCC calculations.
If we take ¢; such thatefzeﬁ for somen=1,... N,
(pmlHl ) =€) Smn.- (5  then, using5), the T matrix (7) becomes
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N
Th= 2 (bilen)(kidnlen+ Ko+ V—E+(E-H)PJI"yi ")

~ 2 (SlokidnlVHE-HPJING )= 2 (il dn)(katn| TI$1'Ki). (10
€f

LN
n.En—

Nie, =€

Note that by energy conservation we may writg10) k;=k,,. The approximation comes from the fact that for a sufficiently
largeN the overlapg ¢f|¢w> are essentially zero iéﬁ# €;; otherwise this overlap is unity in the case of discrete excitation,
and in the case of ionization it monotonically increases with the size of the basis. The summation, in the case of ionization, is
just a sum over the orbital angular momenta of states with the same energy as the continuug wave

For all of the square-integrable target stai® (n=1,...N), the CCC calculation$3,9,1Q yield T-matrix elements
occurring in (10), independent of the choice of the distorting potentig| by solving the coupled Lippmann-Schwinger
equations

<kn¢mv+(E_ H)Prs|¢#1k><k¢r’;l1|-r|¢i'\lki>
E+i0—en—k?/2 '

N
(knn| Tl p1'ki) = (kncbn |V + (E= H)Pl ki) + 2 f dk (11)

The basis sizé&l is progressively increased until convergenceherent sum of the direcV and the exchangeE(—H)P,s

in (10) is obtained to a desired accuracy. Obtaining converterms, We shall elaborate on this further when defining the

gence in the ionization case is particularly encouraging sincgross sections for comparison with experiment.

the overlap({ ¢¢| #N) (eN= ;) tends to infinity with increas- A simple example of the necessity to interpret the

ing N. This overlap may be interpreted as restoring the conprojectile- and target-space electrons as being distinguish-

tinuum normalization and boundary conditions to the squareable is provided by attempting to define the total ionization

integrable positive-energiabove-corg state¢§. cross section. The CCC theory is unitary, and so the total
Now let us consider in some detail the consequences fof0Ss sectiory may be obtained from the forward elastic

the calculation of ionization. The multichannel expansionScatering amplitude as well as by simply summing the cross
may be written explicitly as section corresponding to excitation of all states included in

the multichannel expansion. Since we know that the
N negative-energy states converge, with increadihgo the
NGy =0 | pNECDY, (12)  true discrete eigenstates, the total nonbreakup cross section
n=1 o 1S defined as the sum of the cross sections corresspond-
ing to excitation of only the negative-energy states. The total
where [(7)=(¢q|¥{")) are one-electron functions. The jonization cross sectiom; = o,— oy is also given by taking
square-integrability of our target states ensures that there the sum of cross sections corresponding to excitation of only
only one electron at true infinity. This way we avoid the the positive-energyabove-corg states. This sum correctly
complicated considerations involving divergent phase factorpredicts o; [12], and contains terms With;w< E/2 and
[22]. Clearly, there is no room for the three-body boundaryeN>E/2, without any double-counting problenisee [24]
conditions[23]. In other words, imposition of the multichan- for more details In other words, the CCC theory obtains the
nel expansion induces a target-space “box” on the scatteringotal ionization cross section as an integral from OBp
system from which only the projectile-space electron is alwhereas experimentally this is obtained by integrating the
lowed to escape. The overlap(ib0) is a way of propagating measured single-differential ionization cross sectjahich
outside the box the single positive-energy target-space elegs symmetric abouE/2) from 0 to E/2.
tron in the potential of the residual ion. The projectile-space An important practical consequence of our formulation
electron propagates asymptotically as a plane wave with thgyr the calculation of ionization is that we may use fhe
nucleus being totally shielded by the target-space ele@ron matrix elements arising from the solution of the coupled
Note that this interpretation assumes nothing about the relaquations without modification of the CCC formalism used
tive energies of the projectile- and target-space electronger discrete excitation. All we require is the calculation of the
Furthermore, the projectile- and target-space electrons af@ue target continuum waves at the same energies as the
distinguishablewe may refer to the projectile-space electron square-integrable target states. In order to make comparison
as the primary electron and to the continuum target-spacgith experiment, however, we may need to interpolate the
electron as the ejected electjoitherefore, channels) and  obtainedT-matrix elements to the energies measured in the
n, where the final energies are such tkgt=k%/2, and so  experiment. Though this does introduce some extra numeri-
eﬁzkélz, belong to theoretically distinguishable processescal uncertainty, such interpolation allows a single CCC cal-
As these are not distinguished in measurements, we sum tloellation to yield single-, double-, and triple-differential ion-
cross section for each of these transitions. However, the anization cross sections for any energy-sharing combination of
plitudes for these individual transitions are made from a cothe two outgoing electrons of the total enefgy
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B. Calculation of the ionization amplitudes mentum, total spirS, and parityIl. The resulting reduced
T-matrix elementd}?™ are used to calculate the scattering

The T-matrix equation(11) is solved by expanding the amplitudes for each statas requireglincluded in the mul-
T matrix in partial waves) of the total orbital angular mo- tichannel expansion

fﬁynlnmn ,isilimi( 0!¢)E<kn¢mTSN| ¢|Nkl>

1 1 k; _ ' ™
= \/; E . \/2Li+1C:'1 mn:”TICEir:'TITgSIHI[\Is-I-L-YIr_n?—mn(e’QD)’ (13

vl \/2|i+1 n Lp.Li.Jd, n'ntnSititi
|
wherel; ,m; andl,,,m, are the orbital angular momenta and 1. Interpolation

their projections of the initial and final atom states, respec-
tively. The initial and final linear and orbital angular mo-
menta of the projectile are denoted kyL; andk,,L,. The N i L .
quantization axis is chosen along the incident projectile diPSeudostates, . However, in practice it is the experiment
rection. We use the spin-coupled form for the totalthat determines the valug,, and so for each set of target
projectile-target electron wave function with ands; indi- ~ quantum numberk,s we need to generate our pseudostates
cating the spins of the final and initial states of the targeto yield a state with energ&,}'= €q- In the case of quasi-one-
atom, respectively. In the following we will drop the initial- electron targetsg=1/2), we may readily obtain the required
state indices for brevity of presentation whenever no ambienergy for each by slightly varying the exponential falloff
guity arises. In particular, we write (13) as of the Laguerre basigl3]. In the case of quasi-two-electron
foain(0,0)=fSn(K), wheres,|,m denotes the final state in- targets 6=0,1) this is more difficult. Furthermore, in either
dices. Note thak=k,=ks . case we may have a number of experiments for a given in-
The scattering amplitudes may be calculated for negativecident energy with differente,, making it impossible to
energy (above-corg states as well as for positive energy maich these to the availab& arising in a single CCC cal-
states. In the former case they are used to obtain all experiy|ation. We therefore devise an interpolation scheme of the

mentally.ob-servable quantifcies characterizjng discrete Spe?)'ositive-energyT-matrix elements so as to be able to obtain
trum excitationgsuch us various cross sections and electron;

impact coherence parametersin the latter case, Bhieriqéured scattering amplituded5) at any energy
€= €q>0, quEq(S_) (s is the spin of the target continuum -~

wave with momentuny), they are used to make the2e For each par_t|al wavé and tptal SpIrs, upon sqlvmg the
ST . coupled equations we obtain complex matrix elements
ionization amplitudg10)

Téjf[“n corresponding to excitation of positive-energy pseu-

N ()1 N NI—SN N dostates with €& eh<E. We first put the matrix elements
fok,a)= ; (G| dn)(knbn [ TN 5 ki) onto the continuum scale by multiplying them by the over-
N-€n = €f laps (15 with the continuum functions evaluated at
eq=ew. We then interpolate the absolute, real, and imagi-
= Z (—i) expi a|)Y,m(d)f§|'r“n(k,q), (14 nary parts separately onto the energies at which experimental
Im data are available. The interpolation over the absolute values
is used to renormalize the individual real and imaginary

As mentioned above, we require the energy of the con-
tinuum wavee, in (15) to be the same as that of one of the

where the amplitude3(k,q) are given by parts, which ensures that we obtain similar partial integration
cross sections by either summing over partial cross sections
fom(k, @)= (3 M HNSMESN(K), (15  for positive-energy states or integratinde( from 0 to E)
over the results interpolated onto the continuous scale. This
and wheregNs'™ is the stateqbﬁs'm with energy er’:lze ) allows for a check of the interpolation for eatfs target
Here we have used the partial-wave expansion of the corfiuantum numbers within each partial wav.e .
tinuum wave Another way to obtain the amplitudes at the required en-

ergies is to first calculate the amplitudes for each of the open
pseudostates, and then interpolate these instead of the
o= ilexp(£io) Y (@) o3, (16)  T-matrix elements. This has the advantage that we may in-
Im clude the “Born subtraction”(see[25], for example for
each amplitude, thereby taking care of the high partial
where gy is the Coulomb phase shift, and the continuumwaves. It may also be a more accurate interpolation proce-
functions ¢>§'m will be determined later. Note that only one dure at some scattering angles, though we do lose the above-
target-space electron Qﬁ'm is in the continuum. The rest, if mentioned direct check when interpolating thenatrix ele-

any, are frozen in the inert target core. ments. Most importantly, the two schemes serve as a check
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of the interpolation choice on the results of a single CCC g2
calculation. gr2Ysi—
With the aid of the interpolation schemes, ionization cross

sections for any kinematic region of the two outgoing elec- 2
trons may be generated after the completion of a single CCC =[(— 1)32| T 1Y (u,ug) — 2N
calculation. Generally, the quality of the interpolation de-

pends on the number of pseudostate energies surrounding %erez 2, eq=22=E— k2/2+2 is the energy of the one-
required energy. This becomes particularly important in the Slectron cont?nuum waveéthe corresponding two-electron

equal energy sharing region and for large total enerfgids ontinuum wave has the energy: q2/2— 2), where—2 a.u.
these cases we find it important to to have an energy Ieve the energy of the He ground state, and

close toE/2 for eachl,s combination. By increasing the
f(t)g(t)

I(1+1) 2Z
—7 +2Y%(u,u)—2¢,

u
r sl

u, (21

basis size we vary all of the energy levels, and so simulta-
neously check for stability of the results as a function of Y'(f, g)——,—f f(t)g(t)t'dt+r f —,Td (22
basis size and quality of interpolation.

The coefficient\ is equal to zero for all**L symmetries
except for the!S symmetry, where it is given by
In the case of the hydrogen target the continuum waves
are pure Coulomb waves, \_Nhich are _calculated in a way )\:fou(t)Yo(u Ug) Ug (g, t)dt. (23)
similar to the projectile continuum partial-wave calculation 0
(solving the one-dimensional differential equatioRor hy-
drogenic targets we obtain the one-electron continuum target Equation(21) is of the general form
states by solving the frozen-core Hartree-Fock equations 42
[26]. F|r_1ally, for the helium target we do th_e following. —y(N)—f(D)y(H)=g(r.y),
Continuum helium target states with sgnn the frozen-
core approximation are given by

2. Calculation of the continuum waves

- g(r,y>=f:mr,r')y(r’)dr’. (24
qgi%xl,xz):E r—1u<rl>x<:><q,r2>

This is a linear integrodifferential equation and is solved by
(—1)° iteration as in the case of solving the Hartree-Fock equations
n u(r)x(qry) |X(s), @7  [28] The zero approximatiory(® is obtained by taking

I g=0 in (24). The consequent approximations are given by

2

wherex denotes coordinate and spin spax is a two- d
™) gy "= Ry ™ =g(ry™). (25

electron spin functiofisee Eq(10) in Ref.[10]], andu(r) is

the He" 1s orbital. The functionxgi)(q,r) is a one-electron . ) . . .
continuum wave At each iteration the linear inhomogeneous second-order dif-

ferential equatior(25) for y("*1) is solved by the Numerov
method. The iteration process converges quickly and only a
q r= \/> 2 i'exp(=io)ug(q, DYE(DYim(P), few iterations are usually required to achieve accuracy
(ly"9(r) —y™(r)|<107°,vr).
(18 The radial one-electron continuum functia(q,r) is
matched to Coulomb functions at large The two-electron

whereo, is the Coulomb phase shift. continuum waveg17) are normalized to thé function in
Using (18), the partial-wave expansion for the two- momentum space

electron continuum wavél7) can be written as
(g *)=6%g-q'). (26)

)(xl Xp) = 2 [ exq+|a,)Y q)¢> M(ry,r2)X(s), To test the two-electron continuum functioaz)g' obtained
(19 in this way, we form overlaps with the target states, of the
same symmetry, obtained by the diagonalization For ar-
bitrary €4 only the true frozen-core discrete eigenstates will
be orthogonal to the calculated continuum functions. By tak-
ing €q= e we find that we have orthogonality diz with all
sim B A states except for the&n state. The overlap with the latter
$q (1112)= \/;qurz[u(rl)us|(q,r2)Y|m(r2) increases with the size of the basis and is in excess of unity
in typical calculations whereas the overlaps with the other
+(—1)%u(rpug(q,r)Ym(fy)]. (200 states are<10 3.
When considering ¢3| ¢h>) with ;=) for a number
The radial functiorug(q,r) is the solution of the frozen- of n we find that this overlap diminishes slightly with in-
core Hartree-Fock equatid27] creasingeﬁ This is due to the fact that the separation be-

where
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wherek; ,k,q are the momenta of the incident, scattefed-

I I I | I I mary) and ejected electrons, respectively, aeq?/2 is the
3758375837583758375837583758375 ejected-electron energy. The collision frame with thaxis
chosen along the direction of the incident electron and the
scattering plane defined by the incident and scattéped
mary) electrons is used. The spherical coordinates
(0,,9,=0) of the primary and {., ¢.) of the ejected elec-
trons define the scattering geometry.

Double-differential cross sectionddDCS can be ob-
tained by integration of the TDCS over the spherical coordi-

1000

100

10

SR nates of one of the continuum electrons. In this way different
2 DDCS are formed for the ejected and primary electrons. The
23 0.01 former one is calculated by integration of the TDCS over the
5 "0 coordinates of the primary electron and can be calculated by
=]
v S
. dog(g) kq 2 . .
1 e _ 41 *
dnge 272 2 Tra, In@Yn@
-2
. xRe[(—i)'i"f dOQ SNk, Q) 20Nk, |
(28)
-4
The latter one is obtained by integration of the TDCS over
I I ] ] i ] I the coordinates of the ejected electftims can be done ana-
1g 8 1p 3p 1p 3p 1F 3F lytically) and is given by
target symmetry daﬁ( K)

kq
kode:(ZW)4F§ % 1S (k.a)[%. (29)
FIG. 1. The excited-state energi@bove corgarising in the 75- i .

and 83-statee-He calculations. The total enerdy is for incident  Note that this DDCS describes the primary electron with
electrons with energy 150 eV. energye= k2/2=E— q2/2.

SN L . . The single-differential cross sectid®DCS is obtained
tween consecutivey increases with increasing) [see Fig. by integration of the DDCS for either ejected or primary
1], resulting in the highest-energy state representing the

| . électrons over the remaining spatial coordinates
argest-energy range of the true target continuum.
Note that the frozen-core one-electron orbitéésther doS(e) kq
continuum or bounyfor the singletS symmetry are not or- d =(27-r)4k—2 2 f ko|f§|’,\1'1(k,q)|2. (30
thogonal to each other or to the Hels orbital. However, by € s Lm
construction, all two-electron target states are orthogonal.
The frozen-core approach adopted here is an improv
ment over the simple Coulomb-wav&< 1) description of
the ejected electron. It is also an improvement on the a
proach adopted by Schlemmer al. [29] and by Franz and
Altick [30], who calculated the ejected electron continuum
wave in the static field of the Heion. This corresponds to
setting the right-hand side of Eq421) to zero, neglecting E  doS(e)
electron-electron correlations due to exchange. Our method ais=f e e
of calculation of the continuum wave functions leads to es-
sentially the same wave functions as those calculated by Fur- E kg
tado and Mahony31] using theR-matrix method. Schwien- =(277)4j derE > f dQ, SN (k,q)|2 (31)
horst et al. [32] went further by relaxing the frozen-core 0 is Im
approximation, which allows for the calculation of resonant
phenomena.

This cross section gives the probability of the ejected elec-
Sron having energye=q?/2, or, equivalently, the primary
electron having energg=k?/2.

p- Finally, the total ionization cross sectigiICS) is ob-
tained by integration of the SDCS over the ejedgdmary)
electron energy:

Due to the discretization of the target continuum in our ap-
proach, the SDCS is known only at a number of points cor-
responding to the positions of the positive-energy states
#N°'. To perform the integration overin (31), we therefore
We use the €,2e) ionization amplitude(14) to calculate  have to interpolate the available SDCS. The quality of the
the triple-differential cross sectigitDCS) for the ionization interpolation can be checked by comparing with the TICS

C. Generation of ionization cross sections

by electron impact. In atomic units it is given by obtained by summation over the integrated cross sections for
s the excitation of the positive-energy staf@d].
da(k,9) _ 4@ SN 2 All formulas for cross sections have been written for par-
em* =2 [tNkal?, @) . . .
dQ,dQqde K %5 ticular total spinS. The spin-averaged cross sections are ob-
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6, =4°Ep=3ev] T Ep = 10eV 1000
[29]
(36] = ]
L coo(8a) . 100
L cCo(7s) -----

10

e
=

o
o

energy (eV)
o=

-1

-2

-3

-4

1g 3g 1p 3p 1p 3D F 3F G 3G 'H 3H
target symmetry

cross section (107¥cm?sr—2eV~1)

FIG. 3. The excited-state energiésbove corg arising in the
101-statee-He calculations.

The summation ovel in (14) and (28)—(31) is up to the
maximum valud .,,, of the target-space orbital angular mo-

0.2 mentum included in the close-coupling expandiefthin the

0.0 projection operatot™). This specifies the maximum orbital
0.5 angular momentum of the ejected electron. Thg value is

0.4 relatively small (,,,=5) when compared to the allowed
0.3 maximum orbital angular momentum of the primary elec-
0.2 tron, which can be formally taken to infinity if the analytical
01 Born substraction is used to calculate the scattering ampli-
0.0

180 .90 0 90 180 90 © 90 .180 90 0 90 180 tudes f3N(K). Primary and ejected electrons, therefore, are
not treated symmetrically, which is a general feature of any
close-coupling formulation. For this reason we find that we
have to sum cross sections for theoretically distinguishable
FIG. 2. Electron-impact ionization of helium TDCS at 150 eV. but experimentally indistinguishable processes.
The CCG83) and CC(75) calculations are described in the text. Let us begin with the TDC$27). It specifies the ioniza-
The measurements denoted by SSRE91 aildePe6 are due to tion process with total enerdy=q2/2+k?/2, where the pri-
Schlemmeet al.[29] and Raler[36], with the latter being normal-  mary electron has momentuknand the ejected electron has
ized to the CCC calculations at the binary maximum. momentumg. Another ionization process at the same total
energyE, where the primary electron has momentgrand
tained by summing the cross sections for particular total spithe ejected electron has momentincannot be experimen-
S multiplied by the corresponding spin weights. For hydro-tally distinguished from the former one. Therefore, we sum
genic targets, the cross sections for these two processes in order to com-
pare with experiment, i.e.,

scattering angle 0p (deg)

O'i:0'i0/4+ 30'i1/4, (32 dO'IS(k,C]) dO'S(k,Q) dO'S(q,k)

d0d0.de  d0d0.de  ddQde

(33
ands in (27)—(31) takes the single value of 1/2. For helium-

like target ground-state ionizatio8=1/2 only, buts in  This summation is not related to antisymmetry and needs to
(27)—(31) takes the values of 0 for singlet and 1 for triplet be implemented whether or not exchange is included in the
states. close-coupling calculations. For highly asymmetric energy
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FIG. 5. Electron-impact ionization of helium TDCS at 256 eV.
CCQ101)) calculations are described in text. The measurements de-
noted by MSJESS are due to Mer-Fiedleret al. [39].

The same result can be obtained by integratiofi38j over
the spherical coordinates of either the primary or the ejected
electron.

The SDCS is related to the detection probability of an
electron with energg. Again, both primary and ejected elec-
trons will contribute and the experimentally registered SDCS

cross section (107 ¥cm?sr2eV™!)

is given by
dod(e) doS(e) doS(E—e)
de  de | de (39
The TICS is now given by
E doSe
O'iS:j de 0;1( )
0.2 e
0.1 E2  do(e)
0.0 . = J’o € 4e (36)

-180 -90 O 90 -180 -90 O 90 -180 -90 O 90 180

scattering angle 8p (deg) This is the experimental definition with the upper integration
limit E/2 used to avoid double counting.

FIG. 4. Electron-impact ionization of helium TDCS at 250 eV.
The CCQG101) calculation is described in the text. The measure- lll. RESULTS
ments denoted by SSRE91 andded6 are due to Schlemmer ; : . . :
et al. [29] and Raler [36], with the latter being normalized to the for-rlr—glai Sﬁ;‘?ﬁrﬁ/eaénég frrleti op:jafp:)errtrl; ?al?:ﬁ;ﬁg; t:fee%itt?gﬁ(_j
CCC calculations at the binary maximum. . L .
impact ionization. In the preliminarg-He at 100 eV work
[18] we showed that the CCC method accurately obtained
sharing k>q) the first process will be dominant, whereas elastic and excitation differential cross sections of the helium
for equal energy sharingké=q) both processes become ground state to the<3 states, as well as the total, single-,

comparable. double-, and triple-differential cross sections. We now apply
Let us now consider the DDCS. Experimentally, this isthe above techniques to the calculation of éhlde ionization

obtained by observation of an electron with momentkm cross sections at higher energies, primarily for completeness.
Both primary and ejected electrons contribute, therefore reat these energies many other approaches to ionization work

sulting in very well, and it is not practical for us to compare with them
all. Instead, we shall concentrate on providing a comprehen-
s s s sive set of CCC results for the cases where measurements

doj(k) _doe(k) " day(k) (34) exist in the asymmetric kinematics region. The symmetric

dQ,de dQ.de dQde’ kinematical region is numerically too difficult since, at high
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FIG. 7. Electron-impact ionization of helium TDCS at 600 eV.
CCQ51) calculations are described in text. The measurements de-
noted by JMSEKS85 are due to Juegal. [42].

given target symmetry there is one more state in the larger

0.1 calculation. This figure shows how the energy levels move
0.0 A ; ) with increasing basis size. The discrete spectrum only varies
180 -90 O 90 -180 -90 O 90 180 for the higher excited states, whereas the continuum has a
. completely different rearrangement with the larger set span-

scattering angle 8p (deg) Petely g g b

ning the continuum more extensively. Also given are the
total energyE (above corgandE/2 to indicate that most of
FIG. 6. Electron-impact ionization of helium TDCS at 400 ev. the states have energies bel&/2, indicating the difficulty
CCQ51) calculations are described in text. The measurements de2f obtaining accurate TDCS results in the equal-energy-
noted by SSRE91 are due to Schlemraeal. [29]. sharing region at this and higher incident energies.

The results of the 75- and 83-state calculationsefdie
incident energies, this requires accurate determination of exonization at 150 eV are given in Fig 2. The coplanar mea-
citation of very high-energy states" . Furthermore, at the Surements by Schiemmet al.[29] have been normalized to
high incident energies, equal-energy-sharing cross sectiorld® sécond Born approximation of Srivastava and Sharma
are particularly small. The size of our calculations would[35]- The fast electron with energf, is detected at the
become prohibitively large if enough states were taken, iffivén anglesf, in coincidence with the slow electron of
the required target symmetries, to accurately cover this erfiVen energyEg being detected afg . Generally, agreement
ergy region(see discussion belowThe distorted-wave ap- With experiment is good, though on occasion there are sub-
proaches of Whelan, Allan, and Waltef33] and Zhang, stantial discrepancies Wlth our calculations, which show
Whelan, and Walterg34] appear to do very well here. good convergence. For this reason we re.quested that new

Generally, a single CCC calculation yields most accu-Mmeasurements be performed, which at the time was only pos-
rately the largest cross sections of the scattering system. TH#Ple at the largest scattering angig=16°. The relative
bigger the calculation the more of the smaller cross sectiong!€asurements of Rier [36] have been normalized to the

will be accurately obtained. CCC calculations at the binary maximum and show much
better agreement in shape with our calculations than the ear-
. . . . lier measurements. We are confident of the accuracy of our
A. Triple differential cross sections

results at smaller values &, . Joneset al.[37] and Biswas
In Fig. 1 we give the energy levels of the 75- and 83-stateand Sinha[38] have presented comparison of their three-
calculations fore-He ionization at 150 eV. Both include tar- body theories with some of the daf29] showing good
get states with =<3, with the difference being that for each agreement. In these cases, so do our calculations.
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FIG. 8. Electron-impact ionization of helium DDCS at 200 eV.  FIG. 9. Electron-impact ionization of helium DDCS at 300 eV.
CC(Q(10)) calculations are described in text. The calculations de-CCC(51) calculations are described in text. The calculations de-
noted by DWRM are due to Schwienhoedtal.[32]. The measure- noted by DWRM are due to Schwienhogttal.[32]. The measure-
ments denoted by MJE86 and GB86 are due tolléfiFiedler,  ments denoted by MJES6 and SS79 are due ttevigiedler, Jung,
Jung, and Ehrhard43] and Goruganthu and Bonhdm], respec-  and Ehrhardf43] and Shyn and Shar@5], respectively.
tvely. fidence in the accuracy of our results for ottégr. The re-

sults of the above-mentioned three-body theories are also

In Fig. 3 we present the energy levels arising in the 101yyajlaple for selected cases where agreement with our calcu-
state calculation used at a number of high energies. Weytions is satisfactory.

found that convergence is relatively easy to achieve at the e find a similar situation at 256 eV, presented in Fig. 5.
considered ejected-electron energies, and so we use justTde measurements of Mer-Fiedler et al. [39] have also
single (our largesk calculation for presentation. This calcu- been normalized using oscillator strengths. Our 101-state re-
lation includes target states with angular moments®®. sults are in fact quite similar to the second-order calculations
The results of the 101-state calculation for incident energyf Byron, Joachain, and Piraupd0] and of Furtado and
of 250 eV are given in Fig. 4. The measurements of Schlem©’Mahony[41]. So again we are confident of our results.
meret al.[29] were put on an absolute scale by extrapolating At 400 eV we find that we may drop exchange from our
the generalized oscillator strength to the optical-dipole oscilcalculation and so omit the triplet states. This reduces the
lator strength known from photoionization experiments.101-state calculation by 50 states. The singlet energy levels
Agreement between the CCC theory and experiment is simiare the same as in Fig. 3. The 51-state results are given in
lar in quality to that at 150 eV. Some very good quantitativeFig. 6. The data are due to Schlemnetral. [29]. Here we
agreement can be seen on occasion, and some very poor alfad generally somewhat better agreement with experiment,
The measurements of Rer[36] for §,=16° are once more though on occasion there are substantial discrepancies that
in excellent agreement with our calculations, giving us coniwe are unable to explain.
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FIG. 10. Electron-impact ionization of helium DDCS at 400 eV.  FIG. 11. Electron-impact ionization of helium DDCS at 500 eV.
CCQ(51) calculations are described in text. The measurements de2CC(51) calculations are described in text. The measurements de-
noted by MJE86 are due to Mer-Fiedler, Jung, and Ehrhari#3]. noted by MJE86, GB86, and ACFS87 are due tollbtuFiedler,

Jung, and Ehrhard#3], Goruganthu and Bonhap4], and Avaldi

The same 51-state calculation is applied at 600 eV and the' al. [46], respectively.

results are in excellent agreement with all the measurements
by Junget al.[42], presented in Fig. 7. We find this encour- Our results are an improvement over the distorted-wave cal-
aging and believe that our 400-eV data are equally reliableculations of Schwienhorseét al. [32], particularly for the
slow-electron DDCS. They useBR-matrix techniques for
B. Double-differential cross sections generating the target continuum waves, and so have a similar
We now turn to the presentation of the double—differentialdesc,riptio,n O,f the target structure. The difference in the ca}l-
cross sections from our CCC calculations. Our DDCS at 2o&ulations indicates that the CCC method treats the scattering
eV are presented in Fig. 8. The 101-state results are in red00re accurately. o -
sonably good agreement with the measurements dfedu The 300-eV DDCS are presented in Fig. 9. In addition to
Fiedler, Jung, and Ehrhar@43] and those of Goruganthu the measurements of Mer-Fiedler, Jung, and Ehrharf#3]
and Bonhanj44]. Note that the figure is arranged in DDCS We present the measurements by Shyn and Sptb At
pairs of the slow and the corresponding fast electron. Théhis energy we have dropped exchange in our calculation and
integral over these cross sections must be the same. For tHie only the 51 singlet statésee Fig. 3 were included. The
reason we suspect that the bottom pair of experimentaCCC calculation is usually in agreement with at least one set
DDCS are not consistent with each other. We are als@f measurements. However, the problem at small scattering
puzzled as to why the agreement at small scattering anglemngles for the 2-eV detected electron persists. Apart from the
improves with higher energy of the slow detected electronpresented distorted-wave calculatip82], the three-body-
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FIG. 14. Electron-impact ionization of helium SDCS at 300 eV.
CCQ51) calculations are described in text. The measurements de-
noted by MJES6, SS79, and GCG72 are due tdléfFiedleret al.

[43], Shyn and Sharp45], and Grissom, Compton, and Garrett
[47], respectively.

theory results of Biswas and Sinlha8] are available and
somewhat similar to our results.

In Fig. 10 we present DDCS results at 400 eV. We are
only aware of the measurements of Mu-Fiedler, Jung, and
Ehrhard{43] at this energy. The same 51 states were used in
the CCC calculation as for 300 eV. Agreement with the mea-
surements is quite good, perhaps with the exception of the
2-eV case. For the bottom pair of energies, though the shape
is in good agreement with experime3], the absolute
value is not. This systematic trend is also evident in the
following figure (Fig. 11) for the 500-eV case, where there
are measurements due to Goruganthu and BorfHdinand
Avaldi et al.[46]. The latter two sets are in better agreement
with our calculation and gives us confidence in the accuracy
of all of our presented DDCS for the detected electron with
40-eV energy.

The 600-eV DDCS are presented in Fig. 12. Here the

CCQ51) calculations are described in text. The measurements de2greement of the 51-state calculation with the data offértu

noted by MJE86 are due to Mer-Fiedler, Jung, and Ehrhar#3].
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FIG. 13. Electron-impact ionization of helium SDCS at 200 eV.

0 100
detected electron energy (eV)

150

Fiedler, Jung, and Ehrharfi43] is of similar quality as that
for the lower energies.
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CCC(10)) calculations are described in text. The measurements de- FIG. 15. Electron-impact ionization of helium SDCS at 400 eV.

noted by MJE86, GB86, RD77, and GCG72 are due tdléftu
Fiedler, Jung, and Ehrhard3], Goruganthu and Bonhar#4],

Rudd and DuBoi$49], and Grissonet al.[47], respectively.

CCQ51) calculations are described in text. The measurements de-
noted by MJE86 and GCG72 are due to IMuFiedler, Jung, and
Ehrhardt[43] and Grissonet al. [47], respectively.
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FIG. 16. Electron-impact ionization of helium SDCS at 500 ev. __FIG. 17. Electron-impact ionization of helium SDCS at 600 eV.
CCO(51) calculations are described in text. The measurements dé=CC51) calculations are described in text. The measurements de-
noted by MJES6, GB86, Oda75, and GCG72 are due fdlgviu  noted by MIE86 are due to Mer-Fiedler, Jung, and Ehrharfi3].
Fiedler, Jung, and Ehrhard3], Goruganthu and Bonhanf#4],

Oda[50], and Grissorret al. [47], respectively.

nigues is that the total wave function of the scattering system
is able to be determinedb initio utilizing relatively large-
basis expansions. The formalism ensures that the results are
We now turn to the presentation of the single-differentialthe same whether the projectile is treated as a plane or a
cross sections. These are obtained by angular integration #fstorted wave, which is often not the case in the distorted-
the DDCS. This is the case in both theory and experimenwave approximations. Even with the historically large num-
except for the single zero-energy measurement of Grissonber of states it is important to keep in mind that for each
Compton, and Garrefé7]. As such, generally the SDCS do target symmetry the infinite sum over true discrete states and
not provide any more information than has been discussedn integral over the true target continuum is represented by
above. We present them primarily for completeness and tonly a handfukten or s9 of square-integrable states. For this
show the results of those measurements whose DDCS we digason accurate determination of relatively small cross sec-
not give above for clarity of presentation. tions (e.g.,n=4 excitation, equal-energy-sharing ionization
The SDCS results are presented in Figs. 13—17. Agreesross sections with high incident energiagquire even
ment with most of the available measurements is very goodarger calculations.
Sometimes this is even the case when there is some discrep- In this work the CCC method has been applied to the high
ancy between the theoretical and experimental DDCS, witlincident energies. From the theoretical standpoint we are par-
the integration hiding this information. On occasion some ofticularly interested in applying the formalism at intermediate
the systematic discrepancies with the DDCS measurements low energies, where we expect to encounter more difficul-
may be seen even after integration has been performed. ties. Initial applicationg14,15 at 50 and 40 eV show en-
couraging agreement for the asymmetric kinematics, but
V. CONCLUSIONS show some problems in the equal- or near-equal-energy-

) ) sharing region. It is on this area that we shall concentrate in
We have presented detailed theory for the calculation ofhe future. We are also confident that the same formalism

differential ionization within the close-coupling formalism, may be applied to the calculation ofQe) processes. This
and together with our earlier wold8], have applied it sys- has been demonstrated already for the calculation of total
tematically at energies 100 eV and abovetble ionization.  double photoionization of heliuf8]. In time we shall look
This application has enabled a detailed examination of thgt differential cross sections for the latter process.
available experimental data. We believe that on occasion our
results are more accurate than experiment. We claim this
because the CCC formalism foe,@e) should be quite ac-
curate in the asymmetric kinematic region at intermediate to
high incident energies. Whereas one may argue about the We thank Jochen Rier for his considerable time and
validity of taking a charged continuum wave and a planeeffort in performing measurements upon request, and the
wave for the outgoing electrons in the case of equal excessnany detailed and very helpful communications. We are also
energy sharing, this is certainly justifiable in the highly indebted to Klaus Bartschat for a detailed critique of the
asymmetric kinematic region. We also note that in the calimanuscript and many helpful suggestions. The support of the
culations performed here the frozen-core approximation hadustralian Research Council and The Flinders University of
been used for both the target discrete and continuous specti@outh Australia is gratefully appreciated. Research was spon-
As in the case of discrete excitatiph0], we believe that this sored in part by the Phillips Laboratory, Air Force Material
is not a significant approximation for the considered cases.Command, USAF, under cooperative agreement number
The primary strength of the CCC theory over other tech-F29601-93-2-0001.

C. Single-differential cross sections
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