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We present a method for calculation of differential ionization cross sections from theories that use the
close-coupling expansion for the total wave function. It is shown how, from a single such calculation, elastic,
excitation, and ionization cross sections may be extracted using solely theT-matrix elements arising from
solution of the coupled equations. To demonstrate the applicability of this formalism, the convergent close-
coupling theory is systematically applied at incident energies of 150–600 eV to the calculation ofe-He
ionization. Comparison with available measurements is generally very good.@S1050-2947~96!11209-9#

PACS number~s!: 34.80.Bm, 34.80.Dp

I. INTRODUCTION

Our primary motivation in developing electron-atom~or
-ion! scattering theory is to provide data useful for practical
and scientific applications. For this purpose, we desire a gen-
eral theory that yields accurate results irrespective of the pro-
jectile energy or the scattering process of interest. By anal-
ogy to the concept of a complete, scattering experiment, one
that measures all aspects of a particular scattering process,
@1,2# such a theory could be referred to as a ‘‘complete’’
scattering theory. It is our goal to extend the convergent
close-coupling~CCC! method, introduced by Bray and Stel-
bovics @3#, to fulfill these criteria, and to extend its applica-
bility to a large range of targets.

These goals are easy to state but difficult to achieve.
Electron-atom collisions consist of a big variety of scattering
processes. If the energy of the projectile is above the ioniza-
tion threshold, then elastic, excitation, and ionization pro-
cesses occur. These interfere and compete with each other
and hence as many as possible should be taken into account
in the scattering theory. The close-coupling~CC! formalism
is designed with this aim in mind, and is particularly suited
to the treatment of discrete excitations. However, historically
the target continuum has been completely left out of the CC
calculations, yielding identically zero for ionization cross
sections, which has been the major factor in limiting the
generality of the CC approach. In relatively recent times,
many CC calculations have been extended to incorporate the
treatment of the target continuum via the use of pseudostates;
see, for example@3–7#, and references therein. These states
are obtained by diagonalizing the target Hamiltonian in some
square-integrable basis, with the positive-energy states pro-
viding a discretized representation of the target continuum.

The introduction of pseudostates to the CC formalism
considerably improved agreement between theory and ex-
periment for the discrete transitions, and allowed for the ap-
plication of such calculations at all energies of interest. Prob-
lems with pseudoresonances that typically plagued the early
applications were shown to be primarily due to an insuffi-
cient basis size used in the calculation@8#. Generally, we
argue that for the purpose of calculating discrete excitations,

a treatment of the target continuum provided by pseudostates
is sufficiently accurate for practical applications; see, for ex-
ample @9,10#, in the cases ofe-Na ande-He scattering, re-
spectively.

In order to demonstrate that a scattering theory is com-
plete, the treatment of the target continuum needs to be di-
rectly applied to the calculation of ionization processes. The
strength of the CC approach with pseudostates to ionization
is that it allows for the treatment of the discrete transitions
when calculating ionization in the same way that the con-
tinuum is taken into account when calculating discrete tran-
sitions. Furthermore, unitarity of the CC formalism allows
for an immediate test of the calculation by applying it to the
least detailed ionization process, namely, the total ionization
cross section. Unitarity ensures that this cross section con-
verges rapidly with increasing number of states. In particu-
lar, the target-space expansions do not require large orbital
angular momenta@11#.

The first indication that one should be able to obtain ac-
curate ionization information from the CCC theory was pro-
vided by application to the calculation of electron-impact
total ionization cross sections and the associated spin asym-
metries of atomic hydrogen@12#. This indicated that the
theory correctly predicted the spin-dependent distribution of
electron flux between the discrete and continuum channels.
Even though the total ionization cross section is the least
detailed parameter used to describe ionization, we shall see
that obtaining these by the CCC method has surprising im-
plications for our formal ionization theory.

The CCC theory has already been applied to the more
detailed triple-differential ionization cross section@13–15#.
The idea is much the same as that applied initially by Curran
and Walters@16# and by Curran, Whelan, and Walters@17#,
namely, to use a CC representation of the total wave func-
tion. There are, however, some notable differences in our
approach that lead to substantial simplification. In the CCC
theory, the ionization amplitudes are generated directly from
the T-matrix elements arising from the solution of the CC
equations.

The aim of this paper is to explain how we obtain detailed
ionization information from the CCC theory. This includes
total, single-, double-, and triple-differential ionization cross
sections. We have already demonstrated that a single calcu-
lation yields these cross sections accurately in the case of*Electronic address: I.Bray@flinders.edu.au
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e-He scattering at 100 eV@18#. Here we concentrate on en-
ergies above 100 eV, where there are an abundance of ex-
perimental data for the various differential ionization cross
sections.

II. THEORY

The details of the CCC theory for the case of hydrogenic
targets have been given by Bray and Stelbovics@19#, and for
the case of helium by Fursa and Bray@10#. These discuss
techniques for defining and solving the coupled equations in
the CCC formalism. Applying the method to ionization re-
quires revisiting the foundations of the CCC theory, and we
shall focus our attention in this area.

In this paper we shall only concern ourselves with the
case where ionization involves ejection of only one target
electron. Core excitation or ionization is explicitly excluded
from our formalism, as is two-electron ejection by electron
impact. Implicitly, we have in mind ‘‘one-electron’’ targets
such as H, Li, Na, and the He atom treated by the frozen-core
approximation. Unless stated otherwise, atomic units will be
used throughout.

A. Formal CCC theory

In the CCC method, we do not directly solve the Schro¨-
dinger equation

~H2E!uC i
~1 !&50, ~1!

whereE, H, andC i are the total energy, Hamiltonian, and
wave function ~with incoming plane-wave and outgoing
spherical-wave boundary conditions!, respectively. Instead,
we solve for theT matrix

Tfi5^F f uH2EuC i
~1 !&, ~2!

whereF f is the asymptotic wave function andH5K1V is
defined as acting on the left-hand side. At this stage we do
not specify the asymptotic HamiltonianK, its eigenstates
F f , or the interaction potentialV. We shall find that they
will be determined by the method of solution.

Since it is numerically difficult to work with functions
obeying explicit symmetry conditions, we write

uC i
~1 !&5~12Prs!uc i

~1 !&, ~3!

where the operator 12Prs ensures antisymmetry upon inter-
change of spatial coordinates and spin, in the total wave
function for any unsymmetrized functionc i

(1) . Note that
this expansion is at the cost of a nonunique determination of
c i
(1) In the CCC method, this expansion introduces numeri-

cal instabilities that need to be addressed@20#. Equation~2!
now becomes

Tfi5^F f uH2E1~E2H !Prsuc i
~1 !&. ~4!

To solve ~4! we first obtain a set of square-integrable
target states by diagonalizing the target HamiltonianHT in
an orthogonal Laguerre basis of sizeN. The N resulting
states satisfy

^fm
NuHTufn

N&5en
Ndmn . ~5!

As the basis sizeN is increased, the negative-energy~above
a frozen core! states converge pointwise to the discrete target
eigenstates, whereas the positive-energy states provide an in-
creasingly dense discretization of the target continuum. An
expansion involving a summation over the positive-energy
states is equivalent to an integration over the true target con-
tinuum states@21#. We model hydrogenic targets as one ac-
tive electron above a frozen Hartree-Fock core@9#. For he-
lium, we include only the configurations where one of the
target electrons is represented by the 1s orbital of He1 @10#.
The target-state energies may then be defined relative to the
core and then excitation of states with negative energies cor-
responds to discrete transitions, while excitation of states
with positive energies (eq5q2/2) corresponds to ionization
of the target.

Having defined our target states, we use them to form the
multichannel expansion of the unsymmetrized wave function
c i
(1) We define the projection operatorI N by

I N5 (
n51

N

ufn
N&^fn

Nu, ~6!

with the use of an orthogonal Laguerre basis ensuring that
limN→`I

N5I , the true identity operator acting in the space of
the target electron~s!. We approximate theT matrix ~4! by
using a finite basis expansion of the target space,

Tfi'Tfi
N5^F f I

NuH2E1~E2H !PrsuI Nc i
~1 !&. ~7!

Note that we usedI N on both sides to ensure that the target
space is confined to the Hilbert space spanned by our target
statesfn

N This way we do not have any problems with non-
existent integrals of the kind discussed by Curran and
Walters @16#. Furthermore, it is this expansion that deter-
mines the asymptotic HamiltonianK. By construction we
have ensured that the target-space functions always vanish
for sufficiently large radial coordinates. This means that
asymptotically the projectile must be treated as a plane wave,
with the motion of the target electrons being governed solely
by the target Hamiltonian. Hence, we write the asymptotic
Hamiltonian as

K5K01HT , ~8!

whereK0 is the free one-electron Hamiltonian~we use the
subscript 0 to denote projectile space!. As a consequence, the
asymptotic statesF f satisfy

~HT1K02E!uF f&50, ~9!

and we may writê F f u5^kff f u, wheref f is an eigenstate
~discrete or continuous! of HT with energye f , andkf is a
plane wave with energykf

2/2 such thatE5e f1kf
2/2. In prac-

tice we add a short-ranged projectile-space distorting poten-
tial U0 to ~9! and work with distorted wavesk f

(6). However,
this is used purely for reducing computational requirements,
and our results are independent of the choice of this poten-
tial. For clarity of presentation we choose the plane-wave
notation here. See Ref.@9# for more detail regarding the us-
age ofU0 in CCC calculations.

If we take f f such thate f5en
N for somen51, . . . ,N,

then, using~5!, theT matrix ~7! becomes
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Tfi
N5 (

n51

N

^f f ufn
N&^kffn

Nuen
N1K01V2E1~E2H !PrsuI Nc i

~1 !&

' (
n:en

N
5e f

^f f ufn
N&^kffn

NuV1~E2H !PrsuI Nc i
~1 !&[ (

n:en
N

5e f

^f f ufn
N&^knfn

NuTuf i
Nki&. ~10!

Note that by energy conservation we may write in~10! kf5kn . The approximation comes from the fact that for a sufficiently
largeN the overlapŝf f ufn

N& are essentially zero ifen
NÞe f ; otherwise this overlap is unity in the case of discrete excitation,

and in the case of ionization it monotonically increases with the size of the basis. The summation, in the case of ionization, is
just a sum over the orbital angular momenta of states with the same energy as the continuum wavef f .

For all of the square-integrable target statesf n
N ~n51,...,N!, the CCC calculations@3,9,10# yield T-matrix elements

occurring in ~10!, independent of the choice of the distorting potentialU0, by solving the coupled Lippmann-Schwinger
equations

^knfn
NuTuf i

Nki&5^knfn
NuV1~E2H !Prsuf i

Nki&1 (
m51

N E dk
^knfn

NuV1~E2H !Prsufm
Nk&^kfm

NuTuf i
Nki&

E1 i02em
N2k2/2

. ~11!

The basis sizeN is progressively increased until convergence
in ~10! is obtained to a desired accuracy. Obtaining conver-
gence in the ionization case is particularly encouraging since
the overlap̂ f f ufn

N& (en
N5e f) tends to infinity with increas-

ing N. This overlap may be interpreted as restoring the con-
tinuum normalization and boundary conditions to the square-
integrable positive-energy~above-core! statefn

N .
Now let us consider in some detail the consequences for

the calculation of ionization. The multichannel expansion
may be written explicitly as

uI Nc i
~1 !&5 (

n51

N

ufn
Nf ni

~1 !&, ~12!

where u f ni
(1)&5^fn

Nuc i
(1)& are one-electron functions. The

square-integrability of our target states ensures that there is
only one electron at true infinity. This way we avoid the
complicated considerations involving divergent phase factors
@22#. Clearly, there is no room for the three-body boundary
conditions@23#. In other words, imposition of the multichan-
nel expansion induces a target-space ‘‘box’’ on the scattering
system from which only the projectile-space electron is al-
lowed to escape. The overlap in~10! is a way of propagating
outside the box the single positive-energy target-space elec-
tron in the potential of the residual ion. The projectile-space
electron propagates asymptotically as a plane wave with the
nucleus being totally shielded by the target-space electron~s!.
Note that this interpretation assumes nothing about the rela-
tive energies of the projectile- and target-space electrons.
Furthermore, the projectile- and target-space electrons are
distinguishable~we may refer to the projectile-space electron
as the primary electron and to the continuum target-space
electron as the ejected electron!. Therefore, channelsm and
n, where the final energies are such thatem

N5kn
2/2, and so

en
N5km

2 /2, belong to theoretically distinguishable processes.
As these are not distinguished in measurements, we sum the
cross section for each of these transitions. However, the am-
plitudes for these individual transitions are made from a co-

herent sum of the directV and the exchange (E2H)Prs

terms. We shall elaborate on this further when defining the
cross sections for comparison with experiment.

A simple example of the necessity to interpret the
projectile- and target-space electrons as being distinguish-
able is provided by attempting to define the total ionization
cross section. The CCC theory is unitary, and so the total
cross sections t may be obtained from the forward elastic
scattering amplitude as well as by simply summing the cross
section corresponding to excitation of all states included in
the multichannel expansion. Since we know that the
negative-energy states converge, with increasingN, to the
true discrete eigenstates, the total nonbreakup cross section
snb is defined as the sum of the cross sections corresspond-
ing to excitation of only the negative-energy states. The total
ionization cross sections i5s t2snb is also given by taking
the sum of cross sections corresponding to excitation of only
the positive-energy~above-core! states. This sum correctly
predicts s i @12#, and contains terms withen

N,E/2 and
en
N.E/2, without any double-counting problems~see @24#
for more details!. In other words, the CCC theory obtains the
total ionization cross section as an integral from 0 toE,
whereas experimentally this is obtained by integrating the
measured single-differential ionization cross section~which
is symmetric aboutE/2) from 0 toE/2.

An important practical consequence of our formulation
for the calculation of ionization is that we may use theT-
matrix elements arising from the solution of the coupled
equations without modification of the CCC formalism used
for discrete excitation. All we require is the calculation of the
true target continuum waves at the same energies as the
square-integrable target states. In order to make comparison
with experiment, however, we may need to interpolate the
obtainedT-matrix elements to the energies measured in the
experiment. Though this does introduce some extra numeri-
cal uncertainty, such interpolation allows a single CCC cal-
culation to yield single-, double-, and triple-differential ion-
ization cross sections for any energy-sharing combination of
the two outgoing electrons of the total energyE.

54 2993CALCULATION OF IONIZATION WITHIN THE CLOSE- . . .



B. Calculation of the ionization amplitudes

The T-matrix equation~11! is solved by expanding the
T matrix in partial wavesJ of the total orbital angular mo-

mentum, total spinS, and parityP. The resulting reduced
T-matrix elementsTni

JSPN are used to calculate the scattering
amplitudes for each state~as required! included in the mul-
tichannel expansion

f nsnl nmn ,isi l imi

SN ~u,w![^knfn
NuTSNuf i

Nki&

5
1

A4p

1

A2l i11
Aki

kn
(

Ln ,Li ,J,P
A2Li11CLn

mi2mn
ln

mn
J
miCLi

0
l i

mi
J
miTsnl nLnsi l iLi

JSPN Ymi2mn

Ln ~u,w!, ~13!

wherel i ,mi and l n ,mn are the orbital angular momenta and
their projections of the initial and final atom states, respec-
tively. The initial and final linear and orbital angular mo-
menta of the projectile are denoted byki ,Li andkn ,Ln . The
quantization axis is chosen along the incident projectile di-
rection. We use the spin-coupled form for the total
projectile-target electron wave function withsn andsi indi-
cating the spins of the final and initial states of the target
atom, respectively. In the following we will drop the initial-
state indices for brevity of presentation whenever no ambi-
guity arises. In particular, we write ~13! as
f nslm
SN (u,w)[ f slm

SN (k), wheres,l ,m denotes the final state in-
dices. Note thatk5kn5kf .

The scattering amplitudes may be calculated for negative-
energy ~above-core! states as well as for positive energy
states. In the former case they are used to obtain all experi-
mentally observable quantities characterizing discrete spec-
trum excitations~such us various cross sections and electron-
impact coherence parameters!. In the latter case,
e f5eq.0, f f[qs

(2) (s is the spin of the target continuum
wave with momentumq), they are used to make thee-2e
ionization amplitude~10!

f s
SN~k,q!5 (

n:en
N

5e f

^qs
~2 !ufn

N&^knfn
NuTSNuf i

Nki&

5(
lm

~2 i ! lexp~ is l !Ylm~ q̂! f slm
SN ~k,q!, ~14!

where the amplitudesf slm
SN (k,q) are given by

f slm
SN ~k,q!5^fq

slmufNslm& f slm
SN ~k!, ~15!

and wherefNslm is the statefn
Nslm with energy en

N5eq .
Here we have used the partial-wave expansion of the con-
tinuum wave

qs
~6 !5(

lm
i lexp~6 is l !Ylm* ~ q̂!fq

slm , ~16!

where s l is the Coulomb phase shift, and the continuum
functionsfq

slm will be determined later. Note that only one
target-space electron offq

slm is in the continuum. The rest, if
any, are frozen in the inert target core.

1. Interpolation

As mentioned above, we require the energy of the con-
tinuum waveeq in ~15! to be the same as that of one of the

pseudostatesen
N . However, in practice it is the experiment

that determines the valueeq , and so for each set of target
quantum numbersl ,s we need to generate our pseudostates
to yield a state with energyen

N5eq . In the case of quasi-one-
electron targets (s51/2), we may readily obtain the required
energy for eachl by slightly varying the exponential falloff
of the Laguerre basis@13#. In the case of quasi-two-electron
targets (s50,1) this is more difficult. Furthermore, in either
case we may have a number of experiments for a given in-
cident energy with differenteq , making it impossible to
match these to the availableen

N arising in a single CCC cal-
culation. We therefore devise an interpolation scheme of the
positive-energyT-matrix elements so as to be able to obtain
the required scattering amplitudes~15! at any energy
0,eq,E.

For each partial waveJ and total spinS, upon solving the
coupled equations we obtain complex matrix elements
Tsnl nLn
JSPN corresponding to excitation of positive-energy pseu-

dostates with 0,en
N,E. We first put the matrix elements

onto the continuum scale by multiplying them by the over-
laps ~15! with the continuum functions evaluated at
eq5en

N . We then interpolate the absolute, real, and imagi-
nary parts separately onto the energies at which experimental
data are available. The interpolation over the absolute values
is used to renormalize the individual real and imaginary
parts, which ensures that we obtain similar partial integration
cross sections by either summing over partial cross sections
for positive-energy states or integrating (de from 0 to E)
over the results interpolated onto the continuous scale. This
allows for a check of the interpolation for eachl ,s target
quantum numbers within each partial waveJ.

Another way to obtain the amplitudes at the required en-
ergies is to first calculate the amplitudes for each of the open
pseudostates, and then interpolate these instead of the
T-matrix elements. This has the advantage that we may in-
clude the ‘‘Born subtraction’’~see @25#, for example! for
each amplitude, thereby taking care of the high partial
waves. It may also be a more accurate interpolation proce-
dure at some scattering angles, though we do lose the above-
mentioned direct check when interpolating theT-matrix ele-
ments. Most importantly, the two schemes serve as a check
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of the interpolation choice on the results of a single CCC
calculation.

With the aid of the interpolation schemes, ionization cross
sections for any kinematic region of the two outgoing elec-
trons may be generated after the completion of a single CCC
calculation. Generally, the quality of the interpolation de-
pends on the number of pseudostate energies surrounding the
required energy. This becomes particularly important in the
equal energy sharing region and for large total energiesE. In
these cases we find it important to to have an energy level
close toE/2 for each l ,s combination. By increasing the
basis size we vary all of the energy levels, and so simulta-
neously check for stability of the results as a function of
basis size and quality of interpolation.

2. Calculation of the continuum waves

In the case of the hydrogen target the continuum waves
are pure Coulomb waves, which are calculated in a way
similar to the projectile continuum partial-wave calculation
~solving the one-dimensional differential equation!. For hy-
drogenic targets we obtain the one-electron continuum target
states by solving the frozen-core Hartree-Fock equations
@26#. Finally, for the helium target we do the following.

Continuum helium target states with spins in the frozen-
core approximation are given by

qs
~6 !~x1 ,x2!5

1

A2
S 1r 1u~r 1!xs

~6 !~q,r2!

1
~21!s

r 2
u~r 2!xs

~6 !~q,r1! DX~s!, ~17!

wherex denotes coordinate and spin space,X(s) is a two-
electron spin function@see Eq.~10! in Ref. @10##, andu(r ) is
the He1 1s orbital. The functionxs

(6)(q,r) is a one-electron
continuum wave

xs
~6 !~q,r!5A2

p

1

qr(l ,m i lexp~6 is l !usl~q,r !Ylm* ~ q̂!Ylm~ r̂!,

~18!

wheres l is the Coulomb phase shift.
Using ~18!, the partial-wave expansion for the two-

electron continuum wave~17! can be written as

qs
~6 !~x1 ,x2!5(

l ,m
i lexp~6 is l !Ylm* ~ q̂!fq

slm~r1 ,r2!X~s!,

~19!

where

fq
slm~r1 ,r2!5

1

Apqr1r 2
@u~r 1!usl~q,r 2!Ylm~ r̂2!

1~21!su~r 2!usl~q,r 1!Ylm~ r̂1!#. ~20!

The radial functionusl(q,r ) is the solution of the frozen-
core Hartree-Fock equation@27#

d2

dr2
usl2F l ~ l11!

r 2
2
2Z

r
12Y0~u,u!22eqGusl

5F ~21!s
2

2l11
Yl~u,usl!22l Gu, ~21!

whereZ52, eq5q2/25E2kn
2/212 is the energy of the one-

electron continuum wave~the corresponding two-electron
continuum wave has the energye5q2/222), where22 a.u.
is the energy of the He1 ground state, and

Yl~ f ,g!5
1

r l11E
0

r

f ~ t !g~ t !t ldt1r lE
r

` f ~ t !g~ t !

t l11 dt. ~22!

The coefficientl is equal to zero for all1,3L symmetries
except for the1S symmetry, where it is given by

l5E
0

`

u~ t !Y0~u,usl!usl~q,t !dt. ~23!

Equation~21! is of the general form

d2

dr2
y~r !2 f ~r !y~r !5g~r ,y!,

g~r ,y!5E
0

`

K~r ,r 8!y~r 8!dr8. ~24!

This is a linear integrodifferential equation and is solved by
iteration as in the case of solving the Hartree-Fock equations
@28#. The zero approximationy(0) is obtained by taking
g50 in ~24!. The consequent approximations are given by

d2

dr2
y~n11!2 f ~r !y~n11!5g~r ,y~n!!. ~25!

At each iteration the linear inhomogeneous second-order dif-
ferential equation~25! for y(n11) is solved by the Numerov
method. The iteration process converges quickly and only a
few iterations are usually required to achieve accuracy
(uy(n11)(r )2y(n)(r )u,1025,;r ).

The radial one-electron continuum functionusl(q,r ) is
matched to Coulomb functions at larger . The two-electron
continuum waves~17! are normalized to thed function in
momentum space

^q~6 !uq8~6 !&5d3~q2q8!. ~26!

To test the two-electron continuum functionsfq
sl obtained

in this way, we form overlaps with the target states, of the
same symmetry, obtained by the diagonalization~5!. For ar-
bitrary eq only the true frozen-core discrete eigenstates will
be orthogonal to the calculated continuum functions. By tak-
ing eq5en

N we find that we have orthogonality offq
sl with all

states except for thefn
N state. The overlap with the latter

increases with the size of the basis and is in excess of unity
in typical calculations whereas the overlaps with the other
states are,1023.

When considerinĝfq
slufn

Nsl& with eq5en
N for a number

of n we find that this overlap diminishes slightly with in-
creasingen

N This is due to the fact that the separation be-
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tween consecutiveen
N increases with increasingen

N @see Fig.
1#, resulting in the highest-energy state representing the
largest-energy range of the true target continuum.

Note that the frozen-core one-electron orbitals~either
continuum or bound! for the singletS symmetry are not or-
thogonal to each other or to the He1 1s orbital. However, by
construction, all two-electron target states are orthogonal.

The frozen-core approach adopted here is an improve-
ment over the simple Coulomb-wave (Z51) description of
the ejected electron. It is also an improvement on the ap-
proach adopted by Schlemmeret al. @29# and by Franz and
Altick @30#, who calculated the ejected electron continuum
wave in the static field of the He1 ion. This corresponds to
setting the right-hand side of Eq.~21! to zero, neglecting
electron-electron correlations due to exchange. Our method
of calculation of the continuum wave functions leads to es-
sentially the same wave functions as those calculated by Fur-
tado and Mahony@31# using theR-matrix method. Schwien-
horst et al. @32# went further by relaxing the frozen-core
approximation, which allows for the calculation of resonant
phenomena.

C. Generation of ionization cross sections

We use the (e,2e) ionization amplitude~14! to calculate
the triple-differential cross section~TDCS! for the ionization
by electron impact. In atomic units it is given by

dsS~k,q!

dVkdVqde
5~2p!4

kq

ki
(
s

u f s
SN~k,q!u2, ~27!

whereki ,k,q are the momenta of the incident, scattered~pri-
mary! and ejected electrons, respectively, ande5q2/2 is the
ejected-electron energy. The collision frame with thez axis
chosen along the direction of the incident electron and the
scattering plane defined by the incident and scattered~pri-
mary! electrons is used. The spherical coordinates
(up ,fp50) of the primary and (ue ,fe) of the ejected elec-
trons define the scattering geometry.

Double-differential cross sections~DDCS! can be ob-
tained by integration of the TDCS over the spherical coordi-
nates of one of the continuum electrons. In this way different
DDCS are formed for the ejected and primary electrons. The
former one is calculated by integration of the TDCS over the
coordinates of the primary electron and can be calculated by

dse
S~q!

dVqde
5~2p!4

kq

ki
(
s

(
l ,l 8< l ,m

2

11d l 8 l
Ylm~ q̂!Yl 8m

* ~ q̂!

3ReF ~2 i ! l i l 8E dVkf slm
SN ~k,q! f sl8m

* SN~k,q!G .
~28!

The latter one is obtained by integration of the TDCS over
the coordinates of the ejected electron~this can be done ana-
lytically! and is given by

dsp
S~k!

dVkde
5~2p!4

kq

ki
(
s

(
l ,m

u f slm
SN ~k,q!u2. ~29!

Note that this DDCS describes the primary electron with
energye5k2/25E2q2/2.

The single-differential cross section~SDCS! is obtained
by integration of the DDCS for either ejected or primary
electrons over the remaining spatial coordinates

dsS~e!

de
5~2p!4

kq

ki
(
s

(
l ,m

E dVku f slm
SN ~k,q!u2. ~30!

This cross section gives the probability of the ejected elec-
tron having energye5q2/2, or, equivalently, the primary
electron having energye5k2/2.

Finally, the total ionization cross section~TICS! is ob-
tained by integration of the SDCS over the ejected~primary!
electron energy:

s i
S5E

0

E

de
dsS~e!

de

5~2p!4E
0

E

de
kq

ki
(
s

(
l ,m

E dVku f slm
SN ~k,q!u2. ~31!

Due to the discretization of the target continuum in our ap-
proach, the SDCS is known only at a number of points cor-
responding to the positions of the positive-energy states
fn
Nsl . To perform the integration overe in ~31!, we therefore

have to interpolate the available SDCS. The quality of the
interpolation can be checked by comparing with the TICS
obtained by summation over the integrated cross sections for
the excitation of the positive-energy states@24#.

All formulas for cross sections have been written for par-
ticular total spinS. The spin-averaged cross sections are ob-

FIG. 1. The excited-state energies~above core! arising in the 75-
and 83-statee-He calculations. The total energyE is for incident
electrons with energy 150 eV.
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tained by summing the cross sections for particular total spin
S multiplied by the corresponding spin weights. For hydro-
genic targets,

s i5s i
0/413s i

1/4, ~32!

ands in ~27!–~31! takes the single value of 1/2. For helium-
like target ground-state ionizationS51/2 only, but s in
~27!–~31! takes the values of 0 for singlet and 1 for triplet
states.

The summation overl in ~14! and ~28!–~31! is up to the
maximum valuelmax of the target-space orbital angular mo-
mentum included in the close-coupling expansion~within the
projection operatorI N). This specifies the maximum orbital
angular momentum of the ejected electron. Thelmax value is
relatively small (lmax<5) when compared to the allowed
maximum orbital angular momentum of the primary elec-
tron, which can be formally taken to infinity if the analytical
Born substraction is used to calculate the scattering ampli-
tudes f n

SN(k). Primary and ejected electrons, therefore, are
not treated symmetrically, which is a general feature of any
close-coupling formulation. For this reason we find that we
have to sum cross sections for theoretically distinguishable
but experimentally indistinguishable processes.

Let us begin with the TDCS~27!. It specifies the ioniza-
tion process with total energyE5q2/21k2/2, where the pri-
mary electron has momentumk and the ejected electron has
momentumq. Another ionization process at the same total
energyE, where the primary electron has momentumq and
the ejected electron has momentumk, cannot be experimen-
tally distinguished from the former one. Therefore, we sum
the cross sections for these two processes in order to com-
pare with experiment, i.e.,

ds i
S~k,q!

dVkdVqde
5

dsS~k,q!

dVkdVqde
1

dsS~q,k!

dVkdVqde
. ~33!

This summation is not related to antisymmetry and needs to
be implemented whether or not exchange is included in the
close-coupling calculations. For highly asymmetric energy

FIG. 2. Electron-impact ionization of helium TDCS at 150 eV.
The CCC~83! and CCC~75! calculations are described in the text.
The measurements denoted by SSRE91 and Ro¨der96 are due to
Schlemmeret al. @29# and Röder @36#, with the latter being normal-
ized to the CCC calculations at the binary maximum.

FIG. 3. The excited-state energies~above core! arising in the
101-statee-He calculations.
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sharing (k@q) the first process will be dominant, whereas
for equal energy sharing (k'q) both processes become
comparable.

Let us now consider the DDCS. Experimentally, this is
obtained by observation of an electron with momentumk.
Both primary and ejected electrons contribute, therefore re-
sulting in

ds i
S~k!

dVkde
5
dse

S~k!

dVkde
1
dsp

S~k!

dVkde
. ~34!

The same result can be obtained by integration of~33! over
the spherical coordinates of either the primary or the ejected
electron.

The SDCS is related to the detection probability of an
electron with energye. Again, both primary and ejected elec-
trons will contribute and the experimentally registered SDCS
is given by

ds i
S~e!

de
5
dsS~e!

de
1
dsS~E2e!

de
. ~35!

The TICS is now given by

s i
S5E

0

E

de
dsS~e!

de

5E
0

E/2

de
ds i

S~e!

de
. ~36!

This is the experimental definition with the upper integration
limit E/2 used to avoid double counting.

III. RESULTS

The primary aim of this paper is to present the detailed
formalism of the CCC method for the calculation of electron-
impact ionization. In the preliminarye-He at 100 eV work
@18# we showed that the CCC method accurately obtained
elastic and excitation differential cross sections of the helium
ground state to then<3 states, as well as the total, single-,
double-, and triple-differential cross sections. We now apply
the above techniques to the calculation of thee-He ionization
cross sections at higher energies, primarily for completeness.
At these energies many other approaches to ionization work
very well, and it is not practical for us to compare with them
all. Instead, we shall concentrate on providing a comprehen-
sive set of CCC results for the cases where measurements
exist in the asymmetric kinematics region. The symmetric
kinematical region is numerically too difficult since, at high

FIG. 4. Electron-impact ionization of helium TDCS at 250 eV.
The CCC~101! calculation is described in the text. The measure-
ments denoted by SSRE91 and Ro¨der96 are due to Schlemmer
et al. @29# and Röder @36#, with the latter being normalized to the
CCC calculations at the binary maximum.

FIG. 5. Electron-impact ionization of helium TDCS at 256 eV.
CCC~101! calculations are described in text. The measurements de-
noted by MSJE85 are due to Mu¨ller-Fiedleret al. @39#.
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incident energies, this requires accurate determination of ex-
citation of very high-energy statesfn

N . Furthermore, at the
high incident energies, equal-energy-sharing cross sections
are particularly small. The size of our calculations would
become prohibitively large if enough states were taken, in
the required target symmetries, to accurately cover this en-
ergy region~see discussion below!. The distorted-wave ap-
proaches of Whelan, Allan, and Walters@33# and Zhang,
Whelan, and Walters@34# appear to do very well here.

Generally, a single CCC calculation yields most accu-
rately the largest cross sections of the scattering system. The
bigger the calculation the more of the smaller cross sections
will be accurately obtained.

A. Triple differential cross sections

In Fig. 1 we give the energy levels of the 75- and 83-state
calculations fore-He ionization at 150 eV. Both include tar-
get states withl<3, with the difference being that for each

given target symmetry there is one more state in the larger
calculation. This figure shows how the energy levels move
with increasing basis size. The discrete spectrum only varies
for the higher excited states, whereas the continuum has a
completely different rearrangement with the larger set span-
ning the continuum more extensively. Also given are the
total energyE ~above core! andE/2 to indicate that most of
the states have energies belowE/2, indicating the difficulty
of obtaining accurate TDCS results in the equal-energy-
sharing region at this and higher incident energies.

The results of the 75- and 83-state calculations fore-He
ionization at 150 eV are given in Fig 2. The coplanar mea-
surements by Schlemmeret al. @29# have been normalized to
the second Born approximation of Srivastava and Sharma
@35#. The fast electron with energyEA is detected at the
given anglesuA in coincidence with the slow electron of
given energyEB being detected atuB . Generally, agreement
with experiment is good, though on occasion there are sub-
stantial discrepancies with our calculations, which show
good convergence. For this reason we requested that new
measurements be performed, which at the time was only pos-
sible at the largest scattering angleuA516°. The relative
measurements of Ro¨der @36# have been normalized to the
CCC calculations at the binary maximum and show much
better agreement in shape with our calculations than the ear-
lier measurements. We are confident of the accuracy of our
results at smaller values ofuA . Joneset al. @37# and Biswas
and Sinha@38# have presented comparison of their three-
body theories with some of the data@29# showing good
agreement. In these cases, so do our calculations.

FIG. 6. Electron-impact ionization of helium TDCS at 400 eV.
CCC~51! calculations are described in text. The measurements de-
noted by SSRE91 are due to Schlemmeret al. @29#.

FIG. 7. Electron-impact ionization of helium TDCS at 600 eV.
CCC~51! calculations are described in text. The measurements de-
noted by JMSEK85 are due to Junget al. @42#.
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In Fig. 3 we present the energy levels arising in the 101-
state calculation used at a number of high energies. We
found that convergence is relatively easy to achieve at the
considered ejected-electron energies, and so we use just a
single ~our largest! calculation for presentation. This calcu-
lation includes target states with angular momentuml<5.

The results of the 101-state calculation for incident energy
of 250 eV are given in Fig. 4. The measurements of Schlem-
meret al. @29# were put on an absolute scale by extrapolating
the generalized oscillator strength to the optical-dipole oscil-
lator strength known from photoionization experiments.
Agreement between the CCC theory and experiment is simi-
lar in quality to that at 150 eV. Some very good quantitative
agreement can be seen on occasion, and some very poor also.
The measurements of Ro¨der @36# for uA516° are once more
in excellent agreement with our calculations, giving us con-

fidence in the accuracy of our results for otheruA . The re-
sults of the above-mentioned three-body theories are also
available for selected cases where agreement with our calcu-
lations is satisfactory.

We find a similar situation at 256 eV, presented in Fig. 5.
The measurements of Mu¨ller-Fiedler et al. @39# have also
been normalized using oscillator strengths. Our 101-state re-
sults are in fact quite similar to the second-order calculations
of Byron, Joachain, and Piraux@40# and of Furtado and
O’Mahony @41#. So again we are confident of our results.

At 400 eV we find that we may drop exchange from our
calculation and so omit the triplet states. This reduces the
101-state calculation by 50 states. The singlet energy levels
are the same as in Fig. 3. The 51-state results are given in
Fig. 6. The data are due to Schlemmeret al. @29#. Here we
find generally somewhat better agreement with experiment,
though on occasion there are substantial discrepancies that
we are unable to explain.

FIG. 8. Electron-impact ionization of helium DDCS at 200 eV.
CCC~101! calculations are described in text. The calculations de-
noted by DWRM are due to Schwienhorstet al. @32#. The measure-
ments denoted by MJE86 and GB86 are due to Mu¨ller-Fiedler,
Jung, and Ehrhardt@43# and Goruganthu and Bonham@44#, respec-
tively.

FIG. 9. Electron-impact ionization of helium DDCS at 300 eV.
CCC~51! calculations are described in text. The calculations de-
noted by DWRM are due to Schwienhorstet al. @32#. The measure-
ments denoted by MJE86 and SS79 are due to Mu¨ller-Fiedler, Jung,
and Ehrhardt@43# and Shyn and Sharp@45#, respectively.
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The same 51-state calculation is applied at 600 eV and the
results are in excellent agreement with all the measurements
by Junget al. @42#, presented in Fig. 7. We find this encour-
aging and believe that our 400-eV data are equally reliable.

B. Double-differential cross sections

We now turn to the presentation of the double-differential
cross sections from our CCC calculations. Our DDCS at 200
eV are presented in Fig. 8. The 101-state results are in rea-
sonably good agreement with the measurements of Mu¨ller-
Fiedler, Jung, and Ehrhardt@43# and those of Goruganthu
and Bonham@44#. Note that the figure is arranged in DDCS
pairs of the slow and the corresponding fast electron. The
integral over these cross sections must be the same. For this
reason we suspect that the bottom pair of experimental
DDCS are not consistent with each other. We are also
puzzled as to why the agreement at small scattering angles
improves with higher energy of the slow detected electron.

Our results are an improvement over the distorted-wave cal-
culations of Schwienhorstet al. @32#, particularly for the
slow-electron DDCS. They usedR-matrix techniques for
generating the target continuum waves, and so have a similar
description of the target structure. The difference in the cal-
culations indicates that the CCC method treats the scattering
more accurately.

The 300-eV DDCS are presented in Fig. 9. In addition to
the measurements of Mu¨ller-Fiedler, Jung, and Ehrhardt@43#
we present the measurements by Shyn and Sharp@45#. At
this energy we have dropped exchange in our calculation and
so only the 51 singlet states~see Fig. 3! were included. The
CCC calculation is usually in agreement with at least one set
of measurements. However, the problem at small scattering
angles for the 2-eV detected electron persists. Apart from the
presented distorted-wave calculation@32#, the three-body-

FIG. 10. Electron-impact ionization of helium DDCS at 400 eV.
CCC~51! calculations are described in text. The measurements de-
noted by MJE86 are due to Mu¨ller-Fiedler, Jung, and Ehrhardt@43#.

FIG. 11. Electron-impact ionization of helium DDCS at 500 eV.
CCC~51! calculations are described in text. The measurements de-
noted by MJE86, GB86, and ACFS87 are due to Mu¨ller-Fiedler,
Jung, and Ehrhardt@43#, Goruganthu and Bonham@44#, and Avaldi
et al. @46#, respectively.
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theory results of Biswas and Sinha@38# are available and
somewhat similar to our results.

In Fig. 10 we present DDCS results at 400 eV. We are
only aware of the measurements of Mu¨ller-Fiedler, Jung, and
Ehrhardt@43# at this energy. The same 51 states were used in
the CCC calculation as for 300 eV. Agreement with the mea-
surements is quite good, perhaps with the exception of the
2-eV case. For the bottom pair of energies, though the shape
is in good agreement with experiment@43#, the absolute
value is not. This systematic trend is also evident in the
following figure ~Fig. 11! for the 500-eV case, where there
are measurements due to Goruganthu and Bonham@44# and
Avaldi et al. @46#. The latter two sets are in better agreement
with our calculation and gives us confidence in the accuracy
of all of our presented DDCS for the detected electron with
40-eV energy.

The 600-eV DDCS are presented in Fig. 12. Here the
agreement of the 51-state calculation with the data of Mu¨ller-
Fiedler, Jung, and Ehrhardt@43# is of similar quality as that
for the lower energies.

FIG. 12. Electron-impact ionization of helium DDCS at 600 eV.
CCC~51! calculations are described in text. The measurements de-
noted by MJE86 are due to Mu¨ller-Fiedler, Jung, and Ehrhardt@43#.

FIG. 13. Electron-impact ionization of helium SDCS at 200 eV.
CCC~101! calculations are described in text. The measurements de-
noted by MJE86, GB86, RD77, and GCG72 are due to Mu¨ller-
Fiedler, Jung, and Ehrhardt@43#, Goruganthu and Bonham@44#,
Rudd and DuBois@49#, and Grissomet al. @47#, respectively.

FIG. 14. Electron-impact ionization of helium SDCS at 300 eV.
CCC~51! calculations are described in text. The measurements de-
noted by MJE86, SS79, and GCG72 are due to Mu¨ller-Fiedleret al.
@43#, Shyn and Sharp@45#, and Grissom, Compton, and Garrett
@47#, respectively.

FIG. 15. Electron-impact ionization of helium SDCS at 400 eV.
CCC~51! calculations are described in text. The measurements de-
noted by MJE86 and GCG72 are due to Mu¨ller-Fiedler, Jung, and
Ehrhardt@43# and Grissomet al. @47#, respectively.
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C. Single-differential cross sections

We now turn to the presentation of the single-differential
cross sections. These are obtained by angular integration of
the DDCS. This is the case in both theory and experiment
except for the single zero-energy measurement of Grissom,
Compton, and Garrett@47#. As such, generally the SDCS do
not provide any more information than has been discussed
above. We present them primarily for completeness and to
show the results of those measurements whose DDCS we did
not give above for clarity of presentation.

The SDCS results are presented in Figs. 13–17. Agree-
ment with most of the available measurements is very good.
Sometimes this is even the case when there is some discrep-
ancy between the theoretical and experimental DDCS, with
the integration hiding this information. On occasion some of
the systematic discrepancies with the DDCS measurements
may be seen even after integration has been performed.

IV. CONCLUSIONS

We have presented detailed theory for the calculation of
differential ionization within the close-coupling formalism,
and together with our earlier work@18#, have applied it sys-
tematically at energies 100 eV and above toe-He ionization.
This application has enabled a detailed examination of the
available experimental data. We believe that on occasion our
results are more accurate than experiment. We claim this
because the CCC formalism for (e,2e) should be quite ac-
curate in the asymmetric kinematic region at intermediate to
high incident energies. Whereas one may argue about the
validity of taking a charged continuum wave and a plane
wave for the outgoing electrons in the case of equal excess-
energy sharing, this is certainly justifiable in the highly
asymmetric kinematic region. We also note that in the cal-
culations performed here the frozen-core approximation has
been used for both the target discrete and continuous spectra.
As in the case of discrete excitation@10#, we believe that this
is not a significant approximation for the considered cases.

The primary strength of the CCC theory over other tech-

niques is that the total wave function of the scattering system
is able to be determinedab initio utilizing relatively large-
basis expansions. The formalism ensures that the results are
the same whether the projectile is treated as a plane or a
distorted wave, which is often not the case in the distorted-
wave approximations. Even with the historically large num-
ber of states it is important to keep in mind that for each
target symmetry the infinite sum over true discrete states and
an integral over the true target continuum is represented by
only a handful~ten or so! of square-integrable states. For this
reason accurate determination of relatively small cross sec-
tions ~e.g.,n>4 excitation, equal-energy-sharing ionization
cross sections with high incident energies! require even
larger calculations.

In this work the CCC method has been applied to the high
incident energies. From the theoretical standpoint we are par-
ticularly interested in applying the formalism at intermediate
to low energies, where we expect to encounter more difficul-
ties. Initial applications@14,15# at 50 and 40 eV show en-
couraging agreement for the asymmetric kinematics, but
show some problems in the equal- or near-equal-energy-
sharing region. It is on this area that we shall concentrate in
the future. We are also confident that the same formalism
may be applied to the calculation of (g,2e) processes. This
has been demonstrated already for the calculation of total
double photoionization of helium@48#. In time we shall look
at differential cross sections for the latter process.
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FIG. 16. Electron-impact ionization of helium SDCS at 500 eV.
CCC~51! calculations are described in text. The measurements de-
noted by MJE86, GB86, Oda75, and GCG72 are due to Mu¨ller-
Fiedler, Jung, and Ehrhardt@43#, Goruganthu and Bonham@44#,
Oda @50#, and Grissomet al. @47#, respectively.

FIG. 17. Electron-impact ionization of helium SDCS at 600 eV.
CCC~51! calculations are described in text. The measurements de-
noted by MJE86 are due to Mu¨ller-Fiedler, Jung, and Ehrhardt@43#.

54 3003CALCULATION OF IONIZATION WITHIN THE CLOSE- . . .



@1# B. Bederson, Comments At. Mol. Phys.1, 41 ~1969!.
@2# B. Bederson, Comments At. Mol. Phys.1, 65 ~1969!.
@3# I. Bray and A. T. Stelbovics, Phys. Rev. A46, 6995~1992!.
@4# J. Callaway, Phys. Rev. A32, 775 ~1985!.
@5# W. L. van Wyngaarden and H. R. J. Walters, J. Phys. B19,

929 ~1986!.
@6# D. A. Konovalov and I. E. McCarthy, J. Phys. B27, L407

~1994!.
@7# K. Bartschatet al., J. Phys. B29, 115 ~1996!.
@8# I. Bray and A. T. Stelbovics, Phys. Rev. Lett.69, 53 ~1992!.
@9# I. Bray, Phys. Rev. A49, 1066~1994!.

@10# D. V. Fursa and I. Bray, Phys. Rev. A52, 1279~1995!.
@11# I. Bray, Phys. Rev. Lett.73, 1088~1994!.
@12# I. Bray and A. T. Stelbovics, Phys. Rev. Lett.70, 746 ~1993!.
@13# I. Bray, D. A. Konovalov, I. E. McCarthy, and A. T. Stelbov-

ics, Phys. Rev. A50, R2818~1994!.
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@36# J. Röder ~private communication!.
@37# S. Jones, D. H. Madison, A. Franz, and P. L. Altick, Phys.

Rev. A 48, R22 ~1993!.
@38# R. Biswas and C. Sinha, Phys. Rev. A51, 3766~1995!.
@39# R. Müller-Fiedler, P. Schlemmer, K. Jung, and H. Ehrhardt, Z.

Phys. A320, 89 ~1985!.
@40# F. W. Byron Jr., C. J. Joachain, and B. Piraux, J. Phys. B19,

1201 ~1986!.
@41# F. M. Furtado and P. F. O’Mahony, J. Phys. B21, 137~1988!.
@42# K. Junget al., J. Phys. B18, 2955~1985!.
@43# R. Müller-Fiedler, K. Jung, and H. Ehrhardt, J. Phys. B19,

1211 ~1986!.
@44# R. R. Goruganthu and R. A. Bonham, Phys. Rev. A34, 103

~1986!.
@45# T. W. Shyn and W. E. Sharp, Phys. Rev. A19, 557 ~1979!.
@46# L. Avaldi, R. Camilloni, E. Fainelli, and G. Stefani, Nuovo

Cimento D9, 97 ~1987!.
@47# J. T. Grissom, R. N. Compton, and W. R. Garrett, Phys. Rev.

A 6, 977 ~1972!.
@48# A. Kheifets and I. Bray, Phys. Rev. A~to be published!.
@49# M. E. Rudd and R. D. DuBois, Phys. Rev. A16, 26 ~1977!.
@50# N. Oda, Radiat. Res.64, 80 ~1975!.

3004 54IGOR BRAY AND DMITRY V. FURSA


