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A theory of inelasticn,l -changing and quasielasticl -mixing collisions of Rydberg atoms with the heavy
rare-gas atoms is developed. It is based on the semiclassical impact-parameter approach combined with the
normalized perturbation theory. Semiclassical formulas for scaled transition probabilities and cross sections as
functions of the inelasticity parameter and the collision strength are analyzed. This approach gives a general
description of collisionalnl→n8 transitions independently of the specific values of the principal quantum
number, the relative velocity, and the type of colliding atoms. The energy and angular dependence of the
electron-atom scattering amplitude is included in the theory by incorporating the impulse-approximation results
in the weak-coupling limit. The Ramsauer-Townsend effect affects significantly the values of the cross sec-
tions, especially for the inelastic transitions with large energy transfer. The results obtained are used in
calculations of the quenching cross sections for the Rb(nS,nD,nF) atoms in collisions with Ar, Kr, and Xe.
Comparison of theory and experiment is made in a wide range of the principal quantum numbers and transition
energy defects.@S1050-2947~96!02509-7#

PACS number~s!: 34.60.1z

I. INTRODUCTION

Collisions of highly excited~Rydberg! atoms with neutral
particles is being intensively studied both experimentally and
theoretically~see@1–3# and references therein!. A detailed
analysis of the main theoretical approaches to collisions in-
volving highly excited atoms and their applications to vari-
ous processes has been the subject of several review articles
@1a–c,3#. In spite of significant progress in the physics of the
Rydberg-atom–neutral-particle collisions made during the
last two decades, many important problems in this field re-
main unsolved and require further detailed investigations.
There is no general theoretical approach describing different
types of processes in a wide range of the principal quantum
numbers and transition energy defects. At the same time, the
behavior of transition probabilities and cross sections of
Rydberg-atom–neutral-particle collisions depends drastically
both on the principal quantum numbern and the energy de-
fect of the process, as well as on a particular type of colliding
particles and their relative velocity. In particular, the cross
sections and rate constants turn out to be quite different for
transitions with small and large energy transferred to the
highly excited electron from the relative motion of neutral
projectile and ionic core of the Rydberg atom.

There are few efficient theoretical approaches to colli-
sions of Rydberg atoms with neutral particles. Most of them
are based on the quantum impulse approximation@1b# and its
semiclassical version@1c# ~binary-encounter theory in the
momentum representation!, the Born approximation with the
Fermi pseudopotential@1a#, and on the semiclassical impact-
parameter method@1a,1b#. The latter is widely used in com-
bination with the first-order time-dependent perturbation
theory. However, the approaches based on perturbation
theory are valid in the range of weak coupling of Rydberg

states. Therefore, for collisions with small energy transfer,
they can be applied to calculations of the cross sections only
at high principal quantum numbers.

On the other hand, the application of the close-coupling
method to collisions involving Rydberg atoms becomes very
difficult at high principal quantum numbers due to the pres-
ence of a great number of closely spaced levels. Simple ver-
sions of this method at lown(,10) were used for the quasi-
elasticl -mixing process in thermal Rydberg-atom–rare-gas-
atom collisions@1a#. Semiclassical calculations@4# of the
n-changing process in thermal Na(ns)1He collisions were
performed by the close-coupling method atn56 and 9. The
same approach was used@5# for the description ofl mixing
in rotationally elastic collisions of Rydberg atoms with
strongly polar molecules HF and HCl in a wide range ofn.
However, reliable semiclassical calculations based on nu-
merical integration of the close-coupling equations for the
transition amplitudes were carried out only for few specific
processes involving Rydberg atoms.

Furthermore, numerical calculations have not yet given a
general picture for different processes with regard to their
dependence on the quantum numbers of the Rydberg atom,
the relative velocityV of colliding particles, and the transi-
tion energy defectuDEf i u. An analytical or a semianalytical
description of Rydberg-atom–neutral-particle collisions is
desirable for understanding the cross section dependencies
on the main physical parameters.

Here we consider in detail inelasticn,l -changing and
quasielasticl -mixing processes in collisions of Rydberg at-
oms with neutral atomic targets induced by the electron–
perturber interaction. Collisional processes accompanied by
small and large energy transfer were usually studied indepen-
dently from each other. It is due to a significant difference in
the typical magnitudes of the cross sections for quasielastic
l -mixing and inelasticn,l -changing processes at thermal en-
ergies. Many theoretical models have been used for the
l -mixing processes in collisions of the Rydberg atoms with
the ground-state rare-gas atoms~see reviews@1,3# and refer-
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ences therein!. Some recent calculations employed a pure
classical model@6#, the free-electron model@7#, and the ei-
konal approximation@8#. Several calculations were also per-
formed for the inelasticn,l -changing processes@3#.

Recently a semiclassical approach combined with the nor-
malized perturbation theory was proposed@9#. It gives a gen-
eral description ofn,l -changing andl -mixing processes in a
wide range of the principal and orbital quantum numbers and
transition energy defects. The most part of calculations of
probabilities, cross sections and rate constants fornl→n8
transitions can be performed in the analytical form. A similar
analytical approach was previously used@10# for description
of elastic scattering and inelastic transitions between the
fine-structure components of Rydberg atom induced by col-
lisions with neutral particles.

In the present paper we elaborate this approach and apply
it to thermal inelastic and quasielastic collisions of Rydberg
atoms with the heavy rare-gas atoms Ar, Kr, and Xe in the
ground states. In Sec. II A we outline the main idea of the
theoretical approach and present the basic equations.

In Sec. II B we analyze the role of the angular and energy
dependence of the amplitude for scattering of Rydberg elec-
trons by heavy rare-gas atoms. A substantial part of the pre-
vious calculations of Rydberg-atom–rare-gas-atom collisions
was performed using the scattering-length approximation for
the amplitudef eB52L of elastic electron-atom scattering.
To improve the results of calculations for thel -mixing and
n,l -changing processes induced by the heavy rare-gas atoms
Hickman@11,12# used the parameter@sel(en)/4p#1/2 instead
of the standard scattering lengthL. Heresel(en) is the total
elastic free-electron scattering cross section for the mean ki-
netic energyen of the orbital electron motion. The semiclas-
sical model of de Prunele´ and Pascale@13# for quasielastic
collisions takes into account the actual energy dependence of
the free-electron scattering cross section and averages it over
the momentum distribution.

Another approach takes into account the low-energy be-
havior of the scattering amplitude as a function of the mo-
mentum transferQ in the Born-type form f eB52L
2paQ/4 @14,15#, where a is the atomic polarizability.
These calculations@16–18# were performed in the impulse
approximation for the quasielastic state-changing process at
high principal quantum numbersn. In these calculations the
second term of the low-energy expansion is important but it
does not affect drastically the values of the cross sections.

To describe the quasielastic and inelastic transitions in a
wide range ofn and energy defects it is necessary to take
into account the actual behavior of the amplitude for elastic
electron heavy-rare-gas atom scattering not only at very low
energies but also in the regione;0.2–1 eV. In this region,
the dependence of the scattering amplitude for Ar, Kr, and
Xe atoms on the scattering angleu and electron momenta
k cannot be reduced to one parameterQ. In Sec. II B we
present a method allowing inclusion of the actualk and u
dependencies for the amplitudef eB .

In Sec. II C we give a detailed analysis of the probabilities
and cross sections as functions of the main physical param-
eters: the inelasticity parameter, the collision strength, and
the scaled impact parameter. We show that the transition
probability and the ratio of the cross section to the geometri-
cal area of the Rydberg atom, expressed in terms of the iden-

tified parameters, do not include explicitly the dependencies
on the principal quantum numbern, relative velocityV, and
the effective scattering lengthL. Thus, calculations and
analysis of these dependencies can provide general data for
inelastic and quasielasticnl→n8 transitions in Rydberg-
atom–neutral-particle collisions independently of a particular
type of colliding partners. We will also analyze the range of
impact parameters and the Rydberg-electron–ion-core sepa-
rations which make the main contribution to the transition
probability and the cross section.

It should be noted that an approximate scaling formula for
the quasielasticl -mixing cross section was previously pro-
posed by Hickman@11# by fitting the numerical results of
close-coupling@19# and Born calculations in the momentum
representation@12#. It was widely used for a rapid estimation
of the l -mixing cross sections in the Rydberg-atom–neutral-
particle collisions. It can be considered as the first step to-
ward the description of the Rydberg-atom–neutral-particle
collisions in terms of the scaled parameters characterizing
the efficiency of collision and the transition energy defect.
However, the range of its validity is restricted by small val-
ues of the energy defect and it becomes inapplicable for the
inelasticnl→n8 transitions with a large energy transfer.

In Sec. III we present calculations of the inelastic
n,l -changing and quasielasticl -mixing processes in thermal
collisions of Rydberg Rb atoms with the ground-state Ar, Kr,
and Xe atoms. They have been performed in a wide range of
the principal quantum numbers (8,n,80) for various
Rydbergnl states (nS,nD,nF) having quite different values
of the quantum defectsd l . Comparison with available ex-
perimental data will be also given. Atomic units
e5m5\51 are used throughout the paper.

II. THEORY

A. Basic equations of the normalized perturbation theory
and semiclassical approach

to the nl˜n8 collisional transitions

The general formulation of the normalized perturbation
theory @20,21# involves theK-matrix method. Direct appli-
cation of this method to collisions involving highly excited
atoms becomes difficult due to the presence of a great num-
ber of closely spaced levels. A simple modification of the
normalized Born approximation was widely used for a de-
scription of transitions between Rydberg states in collisions
with charged particles@3#. An analytical approach based on
the semiclassical method and the normalized perturbation
theory was proposed in Ref.@9# for description of the
nl→n8 transitions in Rydberg-atom–neutral-particle colli-
sions. A similar approach was used@10# for transitions be-
tween the fine-structure components and for elastic scatter-
ing.

Here we outline the main idea of the semiclassical ap-
proach @9# and present the basic equations needed for our
analysis and calculations. Within the framework of the
impact-parameter method, the relative motion of a Rydberg
atomA and a neutral targetB is considered to be rectilinear,
so thatR(t)5r1Vt, whereR is the radius vector of the
targetB relative to the ion coreA1 , andr is the impact-
parameter vector. The idea of the semiclassical approach@9#
is based on the separation of the whole range of the impact
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parameters into two regions (0,r,r0) and (r0,r) with
qualitatively different behavior of the transition probability
Wfi(r). At large impact parametersr.r0 the coupling be-
tween Rydberg states is weak, and the transition probability
can be calculated using the general formula@22#

Wfi
pt~r!5U E

2`

1`

Vf i@R~ t !#exp~ iv f i t !dtU2 ~1!

of the first-order time-dependent perturbation theory. Here
v f i5uDEf i u is the transition frequency, Vf i@R(t)#
5^f f(r )uV@r ,R(t)#uf i(r )& is the matrix element of interac-
tion between the Rydberg atom and the neutral target,r is
the radius vector of the highly excited electron, andf i(r ),
f f(r ) are the wave functions of the Rydberg atom in the
initial and final states, respectively.

At small r,r0, due to strong coupling between Rydberg
states, the first-order perturbation theory leads to overesti-
mated values of the probability of thei→ f transition. In the
simplest version of the normalized perturbation theory the
transition probability in the region of strong coupling is
equal to a constantc of the order of unity@23#. The magni-
tude of the impact parameterr0, which separates the region
of weak coupling (r.r0) from that of strong coupling
(r,r0), is to be found from the equation

Wfi
pt~r0!5c. ~2!

For the cross sections f i(V) of the i→ f transition we obtain
@9,10#

s f i5pr0
2c12pE

r0

`

Wfi
pt~r!r dr. ~3!

The choice of parameterc contains some ambiguities. Ac-
cording to Gersten@23# its value should be close to 1. On the
other hand, as will be shown in Sec. II C, in the weak-
coupling region the theoretical results are almost indepen-
dent ofc whereas in the strong-coupling limit Eq.~3! gives
for the quasielastic cross section 4pcn

*
4 . According to Hick-

man’s scaling formula,@11# the cross section in this limit

should approach 0.6pn
*
4 corresponding toc50.15. Our

choice isc50.25. This value is based both on Hickman’s
scaling formula and on comparison of our results with the
results of close-coupling calculations and experiments ob-
tained in the strong-coupling region~see @1–3# and refer-
ences therein!. In further discussion we will not specify the
value ofc, but in all calculations we will be usingc50.25.

For the radial parts of the wave functionsf i(r ) and
f f(r ) of the Rydberg atom we use the JWKB approximation
@22#

Rn
*
l5S 2

pn
*
3 D 1/2cosF r

rkr
1/2 , F r5E

r1

r

krdr2p/4. ~4!

Heren*5n2d l is the effective principal quantum number,
kr is the radial momentum of the highly excited electron in
the Coulomb field of the ionic core

kr5F2
1

n
*
2 1

2

r
2

~ l11/2!2

r 2 G1/2, r 1,25n
*
2 ~16e! ~5!

r 1,r 2 are the left and right turning points and
e5@12( l11/2)2/n

*
2 #1/2 is the eccentricity of the Rydberg-

electron orbit. If we have to sum the probability of the
nl→n8 transition over a large number of degenerate states
with different orbital quantum numbersl 8, we use the JWKB
approximation for the angular partsYl 8m8(u,f) of the
Rydberg-electron wave function@3#.

We assume now that the interaction between the perturb-
ing atomB and the ion core can be ignored, and the short-
range interaction between the Rydberg electron andB can be
described by the zero-range Fermi pseudopotential
VeB(ur2Ru)52pLeffd(r2R), where Leff is the effective
scattering length for electron-perturber scattering. In contrast
to the standard scattering lengthL, Leff depends on collision
parameters andn. This dependence will be discussed in Sec.
II B.

The final equation for the transition probability can be
expressed in terms of the incomplete elliptic integrals of the
first kind @9#

Wn8,nl~r!55
c, 0,r,r0

Leff
2

2pn
*
6V2Ar

$F~w2 ,k!2F~w1 ,k!12Q~r̃2r!F~w1 ,k!%, r0,r,rmax

0, rmax,r.

~6!

HereQ(z)51 for z>0 andQ(z)50 for z,0; and

F~w,k!5E
0

w

~12k2sin2u!21/2du, k5@~12r/2n
*
2 !/2#1/2

~7!

~see, for example, Ref.@24#!, while the argumentsw1 and
w2 in Eq. ~6! are

ws5arcsinF S Rs~r!2r

~12r/2n
*
2 !Rs~r! D

1/2G , s51,2. ~8!

ParametersR1(r)52n
*
2 x1

(l)(y) and R2(r)52n
*
2 x2

(l)(y),
(R1<R2), are determined from the equation
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y5fl~x!, fl~x!5~2l!1/2
x5/4

~12x!1/4S 12
l

2

x1/2

~12x!1/2D
1/2

,

~9!

for a fixed value of the scaled impact parametery
5r/2n

*
2 . Here x5R/2n

*
2 is the scaled internuclear separa-

tion, andl5n* uDEn8,nlu/V is the inelasticity parameter for
thenl→n8 transition. The impact parameterrmax in Eq. ~6!
is the maximum possible value ofr in the classically al-
lowed region determined by the inelasticity parameterl of
the nl→n8 transition and by the principal quantum number
n* . Within the framework of the semiclassical approach, the
transition probability Wn8,nl(r) becomes zero for
r.rmax(l). It corresponds to the maximum value of
fl(x). The impact parameterr̃52n

*
2 ỹ in Eq. ~6b! is deter-

mined by the relationỹ5fl( x̃)5 x̃, wherex̃5R̃/2n
*
2 . From

Eq. ~9! we obtain

r̃~l!52n
*
2 ỹ~l!, ỹ~l!51/~11l2!, ~10a!

rmax~l!52n
*
2 fl

max, ymax~l!5fl
max. ~10b!

Thus r̃ and rmax are determined only by the inelasticity
parameterl and by the principal quantum numbern,
whereasr̃,rmax for givenn* andl.

Parameterr0 can be calculated from Eq.~2! using expres-
sion ~6! for the transition probability. It is determined by the
principal quantum numbern* and the energy defect
uDEf i u, as well as by the particular type of colliding partners
and their relative velocityV. It should be noted that the roots
x1
(l)(y) andx2

(l)(y) of Eq. ~9! depend significantly onl. In
the particular case of a pure elastic transition (uDEn8,nlu50
and hencel50!, when ỹ51 and ymax51, we have
x1,2
(l)(y)51. The basic expression for the transition probabil-
ity can be written as

Wn8,nl~r,V!55
c, 0,r,r0

Leff
2

pn
*
6V2Ar

K@k~r!#, r0,r,2n2

0, 2n2,r,`,
~11!

whereK(k) is the complete elliptic integral of the first kind
@24#

K~k!5E
0

p/2

~12k2sin2u!21/2du,

k~r!5A~12r/2n2!/2. ~12!

Integration of Eq.~6! over all impact parameters leads to the
following result for the cross section of the inelastic
nl→n8 transition@9#:

sn8,nl5H cprmax
2 ~l!, r0.rmax

cpr0
21

2pLeff
2

V2n
*
3 Fl~r0/2n*

2 !, r0<rmax,

~13a!

where the functionFl(y0) can be written as

F* ~y0!5
1

p H 2Q~ ỹ2y0!E
y0

j1S x22y0
2

x2x2 D 1/2dx
1E

j1

j2S x22y0
2

x2x2 D 1/2dx1Q~j2!2Q~j1!J ,
~13b!

Q~z!5arctanF S z

12zD
1/2G2@z~12z!#1/21lFz2 lnS 1

12zD G .
Herey05r0/2n*

2 is determined from the normalization con-
dition ~2! for the transition probabilityWn8,nl

pt (y) calculated
by the first-order perturbation theory. Parametersj1,2
5x1,2

(l)(y0) are the roots of Eq.~9! for a given value of the
scaled impact parametery05r0/2n*

2 , and ỹ5 ỹ(l) is given
by Eq. ~10!.

B. The effective scattering length

It is well known that the scattering length approximation
f eB52L5 const for the amplitude of elastic scattering of
ultralow energy electrons by heavy rare-gas atoms is valid
only in the close vicinity to zero energy. Due to the presence
of the long-range polarization potential@14,15# the differen-
tial cross sectionu f eB(k,u)u2 strongly drops with an increase
of the electron momentum. It reaches the deep Ramsauer-
Townsend minimum in the range of electron energy
e5k2/2[0.221 eV depending on the scattering angle and
the particular type of atom, and then rapidly increases. Re-
cent measurements of the cross sections in the vicinity of the
Ramsauer-Townsend minimum can be found in Refs.
@25,26#.

Previous attempts to include this dependence in the theory
of Rydberg-atom collisions@11–13# incorporate the depen-
dence of the effective cross section onn. We suggest here a
method which includes also dependence on the inelasticity
parameter. Note first that in the strong-coupling region the
transition probabilities do not depend significantly on the
specific form of the electron-perturber interaction. It can be
seen directly from Eq.~13! atr0→rmaxand reflects a general
feature of any collisional processes involving a large number
of closely spaced levels. Indeed for strong collisions the
quenching cross section for a given energy level is practi-
cally the same as the total scattering cross section, which is
determined by the unitarity condition.

Thus the required modification of the scattering amplitude
can be accomplished in the weak-coupling limit. We will do
it within the framework of the quasi-free-electron model. We
proceed from the general semiclassical formula for the cross
section of thenl→n8 transition in the momentum represen-
tation @27#.
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sn8,nl5
p

21/2V2~n8!3
E
kmin

`

k2dkugnl~k!u2

3E
21

nmax~k! d~cosu!

~12cosu!1/2
u f eB~k,u!u2. ~14a!

Here f eB(k,u) is the exact amplitude for elastic scattering of
a free electron by the atomB; k and u are the momentum
and scattering angle;nmax(k) andkmin are given by

nmax~k!5122kmin
2 /k2, kmin5Qmin/2'uDEn8,nlu/2V,

~14b!

ugnl(k)u2 is the momentum distribution function of the Ryd-
berg electron in the initialnl state. For thenl states with low
orbital angular momentum (l@n) we will use the semiclas-
sical result@28#.

ugnl~k!u25
4n*
p

1

k2~11n
*
2 k2!2

, l!n, ~15!

corresponding to the pure classical momentum distribution
function of the electron in the Coulomb field of the ion core
@3#. In the scattering length approximation (f eB52L
5const! the general formula~14! yields the following ana-
lytical result

sn8,nl
L

~l!5
2pL2

V2~n8!3
f n8,nl~l!, ~16a!

f n8,nl~l!5
2

p FarctanS 2l D2
l

2
lnS 11

4

l2D G ,
l5n* uDEn8nlu/V. ~16b!

Expression~16! was derived simultaneously in Ref.@29# by
the semiclassical impact-parameter method in the first-order
perturbation theory and in Ref.@30# using the impulse ap-
proximation and binary-encounter theory for the atomic form
factors@31,32#. It should be noted that for pure quasielastic
nl→n8 transition without energy transfer (l50! expression
~16! yields f n8,nl(l50)51. Hence Eq.~16! includes the
well-known Omont’s @33# result sn8,nl52pL2/V2n3 as a
particular case.

Comparison of Eq.~16! with the general formula~14!
allows us to introduce a parameterLeff

2 (n* ,l) which we use
to calculate cross sections according to Eqs.~6! and ~13!.
The ratioLeff

2 /L2 can be also written assn8,nl /sn8,nl
L where

sn8,nl is calculated in the impulse approximation~14! with
actual scattering amplitudef eB(k,u), while sn8,nl

L is the cor-
responding value obtained forf eB52L5const Eq.~16!. It is
convenient to rewriteLeff

2 (n* ,l) as

Leff
2 ~n* ,l!5

21/2

p f n8,nl~l!
E
zmin

` dz

~11z2!2

3E
21

nmax~z! d~cosu!

~12cosu!1/2
u f eB~k5z/n* ,u!u2,

~17!

where

nmax~z!5122zmin
2 /z2, zmin5n* uDEn8,nlu/2V5l/2.

~18!

In the scattering length approximationf eB52L, formula
~17! yieldsLeff(n* ,l)[L5const . In a general case it incor-
porates both the short- and long-range parts of the electron-
perturber interaction. The parameterLeff(n*l) characterizes
the actual electron-atom interaction in the range of the elec-
tron momenta which gives the main contribution to the
nl→n8 transition for givenn, relative velocityV, and energy
defect uDEn8,nlu. ThereforeLeff(n* ,l) depends both onn
and the inelasticity parameterl5n* uDEn8,nlu/V.

For calculation of the scattering amplitude we use the
partial-wave expansion in terms of the scattering phase shifts
h l , wherel is the electron angular momentumrelative to the
perturber. Within the framework of the modified effective
range theory@14,15#, h l at low energies may be calculated
using the analytical expressions

k21tanh052L2
pa

3
k2

4aL

3
k2lnk1D0k

21F0k
3

1O~k4!, ~19a!

k21tanh15
pak

15
2D1k

21O~k3!, ~19b!

k21tanh l5
pak

~2l13!~2l11!~2l21!
1O~k3!, l>2.

~19c!

FIG. 1. n dependence of the ratioLeff
2 /L2 for thee-Ar scattering.

Full curves are the present results, Eq.~17! for the nS→n23,
nD→n21, andnF→n transitions in the Rb (nl)1Ar collisions at
E50.026 eV. Dashed curve presents the ratiosel(en)/4pL2, where
en51/2n

*
2 is the mean kinetic energy of the orbital electron motion.
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Herea is the polarizability of the perturbing atom, andD0,
D1, andF0 are the constant coefficients. In the present cal-
culations we used experimentally obtained values@26#. Note
that the case of atoms with high polarizabilities~e.g., alkali-
metal atoms! needs a special analysis@34#.

The present calculations of the effective scattering length
were performed for transitions to the nearest energy levels
which provide the major contribution to the quasielastic or
inelastic transitions. For the relative velocities of colliding
atoms we tookV5(2T/m)1/2, whereT is the gas tempera-
ture. The results for the ratioLeff

2 /L2 are plotted in Figs. 1, 2,
and 3. The ratioLeff

2 /L2 depends significantly onn and turns
out to be quite different for transitions with small and large
energy defects. In all cases the deep minimum inLeff

2 /L2

results from the Ramsauer-Townsend effect in free-electron
scattering, but it occurs at different values ofn* (n*510,
15, and 23 fornF→n, nS→n23, andnD→n21 transi-
tions, respectively!. Simple estimates of the typical electron
momentum k;kmin5uDEn8,nlu/2V at n*'10, 15, and 23
show that they are in full agreement with the values of the
free-electron momentum which corresponds to the
Ramsauer-Townsend minimum. Note also that the use of
@sel(en)/4p#1/2 @11,12#, instead of the standard scattering
lengthL, improves the results. However, more accurate cal-
culations should incorporate the dependence ofLeff on the
energy defect.

Thus we confirm the previous conclusions@12,13# that the
standard scattering length approximationf eB52L5const
becomes inapplicable for collisions of Rydberg atoms with

the heavy rare-gas atoms, in contrast to the case of the he-
lium atom as a perturber. For reliable quantitative results on
inelastic and quasielastic transitions induced by collisions
with Ar, Kr, and Xe we need an appropriate description of
both the short- and long-range parts of the electron-perturber
interaction.

C. Analysis of probabilities and cross sections as functions
of the inelasticity parameter

and the collision strength parameter

Analysis of the basic Eqs.~6!, ~13! in a particular case of
pure quasielasticnl→n8 transitions (n85n) with a change
in the orbital angular momentum alone without energy trans-
ferred to the Rydberg atom (DEn,nl50, or l50) was per-
formed in Ref.@9#. In the present work we analyze the gen-
eral case of inelasticnl→n8 transitions with the change of
both the orbital and principal quantum numbers for an arbi-
trary magnitude of the inelasticity parameter
l5n* uDEn8,nlu/V.

1. Transition probabilities

For further analysis it is convenient to rewrite Eqs.~6!
and ~13! in terms of scaled parametersx5R/2n

*
2 and

y5r/2n
*
2 . Note that the radiusr n52n

*
2 corresponds to the

right turning point in the Coulomb potentialr 2'n
*
2 (11e) at

l!n* , when the eccentricity of the orbite'1 @see Eq.~5!#.
For the transition probability we obtain

Wz,l~y!55
c, 0<y<y0

z

pA2 S 2Q~ ỹ2y!E
y

x1~y! dx

A~x2x2!~x22y2!
1E

x1~y!

x2~y! dx

A~x2x2!~x22y2!
D , y0<y<ymax

0, ymax<y

~20!

FIG. 2. The same calculations as in Fig. 1 for the Rb(nl)1Kr
→Rb(n8)1Kr transitions.

FIG. 3. The same calculations as in Fig. 1 for the Rb(nl)1Xe
→Rb(n8)1Xe transitions.
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wherez5Leff
2 /23/2V2n

*
7 is a scaled parameter characterizing

the collision strength. The results of the present calculations
for the transition probability as a function of the scaled im-
pact parametery5r/2n

*
2 are presented in Figs. 4~a! and 4~b!

for different values of the inelasticity parameter (l50, 0.2,
0.5, 1, and 2! and the collision strength (z50.2 and 0.5!. In
the region 0<r<r0 the first-order probabilityWlz

pt (r) be-
comes large and should be normalized to a constantc ac-
cording to the normalized perturbation theory. Figure 4 dem-
onstrates how the chosen valuec50.25 limits the growth of
Wpt.

The probabilityWlz
pt (r) becomes zero atr.rmax. This

happens because the semiclassical approach neglects the ex-
ponentially decaying tail of the electron wave function. The
maximum impact parameterrmax depends substantially on
the inelasticity parameterl. To analyze this dependence, we
will proceed from the conservation of energy law for colli-
sionalnl→n8 transition

Enl1q2/2m5En81~q8!2/2m, Enl521/2~n2d l !
2,

En8521/2~n8!2, ~21!

whereq2/2m and (q8)2/2m are the kinetic energies of collid-
ing atoms in the initial and final states, respectively. Accord-
ing to Eq.~21!, the minimum possible value of the momen-

tum transfer Q5uq82qu is determined by the relation
Qmin'uDEn8,nlu/V if the kinetic energyq2/2m of colliding at-
oms is considerably greater than the energy defect
uDEn8,nlu of the nl→n8 transition. The minimum value of
the Rydberg electron momentumk for thenl→n8 transition
with the energy transferuDEn8,nlu is kmin'uDEn8,nlu/2V. It
corresponds to the backward scattering (k852k) of the
Rydberg quasifree electron by the perturberB. Substitution
of kmin5l/2n* into the classical expression

k2/221/r521/2n
*
2 ~22!

for the energy of the Rydberg electron in the Coulomb field
of the ion coreA1, yields

rmax~l!5
2n
*
2

11~n* kmin!
2 5

2n
*
2

11~l/2!2
. ~23!

Within the framework of the Fermi pseudopotential model
for the electron-perturber interaction, the collisional transi-
tion of the Rydberg electron occurs when its radiusr relative
to the ion coreA1 is equal to separationR betweenA1 and
B. Thus Eq.~23! for the radiusrmax(l) corresponds to the
maximum possible value of the internuclear separation, and
therefore can be considered as an upper bound forrmax.

As is seen from Fig. 4, for eachl there is a certain impact
parameterr0 which separates the regions of weak and strong
coupling. The dependencer0(l) is demonstrated in Fig. 5
for different values of the collision strengthz ~full curves!.
For comparison we also presentrmax(l)/2n*

2 . At large z.1

FIG. 4. Transition probabilityWz,l(y), Eq. ~20! as a function of
the scaled impact parametery5r/2n

*
2 for different inelasticity pa-

rametersl5n* uDEn8,nlu/V (l50; 0.2 and 0.5!. Figures 1~a! and
1~b! correspond toz50.2 and 0.5 of the collision strength
z5Leff

2 /23/2V2n
*
7 , respectively.

FIG. 5. Scaled impact parametery05r0/2n*
2 , separating the

close- and weak-coupling regions, as a function of the inelasticity
parameterl for different collision strengthsz50.1, 0.2, 0.5, and 1
~full curves!. Dashed curve represents the maximum possible scaled
impact parameterrmax(l)/2n*

2 .
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practically the whole range of classically allowed impact pa-
rameters 0,r,rmax(l) corresponds to the strong coupling
of Rydberg states. The first-order perturbation theory be-
comes inapplicable for almost all possible values of
y5r/2n

*
2 .

2. Cross sections

Equation ~13a! for the cross section of the inelastic
nl→n8 transition can be rewritten in terms of the scaled
parametersl andz

s~l,z!5pn
*
4 3H 4cymax2 ~l!, y05ymax

4cy0
2~l,z!125/2zFl~y0!, y0<ymax

~24!

Hereymax5rmax(l)/2n*
2 ; y05r0(l,z)/2n*

2 should be calcu-
lated from equationWlz(y0)5c in which the first-order
transition probability is given by Eq.~20!; and theF function
is determined by Eq.~13b!. Note thatFl(y0)→0 when
y0(l,z)→ymax(l), i.e., for large collision strengthz. The
ratio of the cross sectionsn8,nl to the geometric area of the
Rydberg atom depends only onl andz. Thus it is interesting
to analyze the scaled cross sectionsn8,nl /pn*

4 as a function
of the inelasticity parameterl and the collision strengthz.

According to Eq.~24! the drop of the total cross section
sn8,nl5( l 8sn8 l 8,nl of the nl→n8 transition with increasing
energy defect is actually determined by the parameterl.
This fact was first established by several authors@18,29,30#
who independently obtained analytical expressions for the
cross sections of inelastic transitions in the region of weak
coupling. This parameter is more relevant to the cross sec-
tions summed over all finall 8 sublevels whereas the reduced
parameterg5n2uDEn8,nlu/V was used by Hickman@11# in
the empirical scaling formula for thel -mixing collisions. At
the same time the parameterb25(Leff /Vn

3.337)2 of Hick-
man’s formula is very close to the parameter
z5Leff

2 /23/2V2n
*
7 characterizing the efficiency of collision

within the framework of semiclassical approach@9#.
The scaling formula~24! has a simple analytical form in

two limiting cases. The first corresponds to pure quasielastic
transitions without energy transfer (l50! to the Rydberg
atom. In this caseymax51, and from Eq.~24! we obtain

sl50~z!5pn
*
4

3H 4c, y051

4cy0
2~z!1

27/2z

p E
y0

1 S x22y0
2

x2x2 D 1/2dx, y0,1.

~25!

y0(z) is determined from the equation
(2z/py0

1/2)K@k(y0)#5c. Hence, it is approximately equal to
(z/c)2 sinceK(k)'p/2 for 0<k<221/2, when 0<y<1.
For l50 there is a certain boundary value of the collision
strengthz05c ~and hence the principal quantum number
n*5n0) for which the scaled parametery0 reachesymax.
This results from the nonzero value of the transition prob-

ability at ymax(l50)51, in contrast to the general case ofl
Þ0 whenW@(ymax(l)#50 ~see Fig. 4!. The strong-coupling
region corresponds toz>c.

In the weak-coupling regionz!c (n*@n0) the total
cross section, Eq.~26! approaches the asymptotic expression
sn,nl525/2zpn

*
4 . This limiting expression is in full agree-

ment with Omont’s result@33#. In this case the magnitude of
the quasielastic cross section is much lower than the geomet-
ric area of Rydberg atom.

The second case corresponds to inelasticnl→n8 transi-
tions in the range of weak couplingz!1. The contribution
of the strong-coupling region 0<r<r0 can be neglected.
Thus assumingy05r0/2n*

2→0 in Eqs.~13b! and ~24!, we
haveFy050(l)→ f n8,nl(l), wheref is defined by Eq.~16b!.
For the scaled cross section we obtain

sn8,nl~l,z!525/2zpn
*
4 f n8,nl~l!. ~26!

This expression is in full agreement with analytical result
~16! of the first-order perturbation theory derived in Refs.
@29,30#. For pure quasielastic transitions thef n8,nl(l) func-
tion in Eq. ~26! becomes equal to one, while the collision
strength parameterz0'c. Hence, the aforementioned
Omont’s formula@33# for the l -mixing cross section in the
range of weak coupling may be derived simultaneously both
from Eqs.~25! and ~26!.

The general case, given by Eq.~24!, is presented in Figs.
6 and 7. Figure 6 demonstrates the scaled cross section
sl(z)/pn*

4 as a function ofz for different values ofl. Note
that the inelastic cross section strongly falls with increasing
inelasticity parameterl both in the range of weak and strong
coupling.

To demonstrate the failure of the perturbative approach in
the strong-coupling region, we make a comparison between
the present calculations and the first-order perturbation
theory in Fig. 7. The results are presented forz50.1, 0.25,
and 1. For each couple of curves, the lower one has been
calculated using the scaling formula~24!, while the upper
curves have been obtained in the first-order perturbation

FIG. 6. The ratiosl(z)/pn*
4 of the cross section to the geomet-

ric area of the Rydberg atom as a function of the collision strength
z. Full curves were calculated by Eqs.~25! and ~13b!. Dashed
curves represent the limiting value of this ratio atz→` for lÞ0
andz>z0'c for l50 @see Eqs.~25! and~26!#. Numbers near the
curves mark the values of the inelasticity parameterl.
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theory. The first-order perturbation theory gives satisfactory
results atz,0.1. In this case the cross sections are very close
to those calculated by the normalized perturbation theory.
Note that the difference between these two methods becomes
particularly small for largel. However, at intermediatez
~full curves forz50.25! both methods give close results only
for inelastic transitions with largel. The difference becomes
very large at smalll and largez.1. In this strong-coupling

case the first-order perturbation theory~or impulse approxi-
mation in the momentum representation! leads to signifi-
cantly overestimated magnitudes and to qualitatively incor-
rect behavior of the cross section~see long-dashed curves for
z52!.

III. RESULTS AND DISCUSSION: COMPARISON
WITH EXPERIMENT

In this section we apply our theory to calculations of the
quenching cross sections for the RydbergnS, nD, andnF
states of the rubidium atom in thermal collisions with Ar, Kr,
and Xe. The experimental data are available both fornF
level @35# having a small quantum defect (d f50.02!, and for
isolatednS, nD levels @36# ~for which ds53.13,dd51.34!.
Note that the present calculations are by no means exhaus-
tive with regard to comparison with existent experimental
data. Rather, they illustrate the results of our approach in a
wide range ofn and reaction energy defects.

Our cross sections include the summation over all pos-
sible values of the final principal quantum numbern8, i.e.,
we calculate

snl5(
n8

sn8,nl . ~27!

This summation leads to a slow decrease of the quenching
cross section in the high-n limit. For very highn@1/V1/2

FIG. 8. Cross sections for quenching of thenS-, nD-, and
nF-states of the Rydberg Rb atom by Ar averaged over the Max-
wellian velocity distribution. Full curves, the present results calcu-
lated by Eq.~13! (T5296 K!. Dashed curve, the same calculation
for the nF level at T5520 K. Full squares, empty squares, and
triangles are the experimental data for thenS-, nD levels~Ref. @36#,
T5296 K!, andnF levels~Ref. @35#, T5520 K!, respectively. Full
circles and empty circles are the free-electron-model calculations
@16,17# for nS andnF states, respectively.

FIG. 9. The same as in Fig. 8 for quenching by Kr atoms. Full
circles, theory of Sato and Matsuzawa@17# for nS states.

FIG. 10. The same as in Fig. 8 for quenching by Xe atoms.

FIG. 7. The scaled cross sectionsz(l)/pn*
4 as a function of the

inelasticity parameterl. Short-dashed, full, and long-dashed
couples of curves are the present semiclassical calculations for
z50.1, 0.25, and 1, respectively. The lower curves for each couple
were calculated using the scaling formula~24!, while the upper
curves correspond to the first-order perturbation theory, Eqs.~26!
and ~16b!.
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limit ~this region is not shown in the figure! the quenching
cross section decays as 1/n @3#. The cross sectionsn is av-
eraged then over the Maxwellian distribution of relative ve-
locities according to ^snl&5^Vsnl(V)&/^V&T , where
^V&T5(8T/pm)1/2 is the mean velocity for a given gas tem-
peratureT, andm is the reduced mass.

Then dependencies of the averaged quenching cross sec-
tions for nS, nD, and nF states of Rb atoms in thermal
collisions with Ar, Kr, and Xe are shown in Figs. 8–10. They
are compared with experimental data of Refs.@35,36#. For
the quenching of thenF andnS levels by Ar andnF levels
by Kr we also show previous theoretical data of Refs.@16,17#
obtained in the impulse approximation. Overall, our calcula-
tions reproduce the experimental observations of Hugon
et al. @35,36# quite well, although there is a substantial dis-
agreement~about a factor of two! for the quenching ofnS
states by Ar. Sato and Matsuzawa’s results@17# are slightly
lower than ours in this region ofn, but they also substantially
exceed the experimental data.

The quenching cross sections reveal strong dependence
on the quantum defectd l of the initial Rydbergnl state in the
whole experimentally studied range ofn. This behavior is
reasonably reproduced by our semiclassical calculations for
quasielasticl -mixing quenching ofnF levels as well as for
inelasticn,l -changing quenching ofnS andnD levels. Note
that the impulse approximation does not describe the ob-
served cross sections for the quenching ofnF states in the
range n,25230, where it is mainly determined by the
quasielastic l -mixing collisions. On the other hand, for
n.40–50 the cross sections, corresponding to different val-
ues of the initial orbital angular momentum, start to merge.
This occurs due to contribution of a large number of differ-
ent nl→n8 transitions (Dn50,61,62, . . . ) which makes
the total quenching cross section independent of quantum
defect in accordance with the well-known results of the as-
ymptotic theory@33#.

Another interesting feature of the results is nonmonotonic
dependence of the calculated cross sections fornS andnD
levels onn in the region ofn from 15 to 25. This feature is
a manifestation of the Ramsauer-Townsend effect which is
clearly represented in then dependence of the effective scat-
tering length Figs. 8–10. Although averaging over the Max-
wellian distribution in relative velocities makes this influence
somewhat less pronounced than that for a fixed relative ve-
locity, the Ramsauer–Townsend minimum affects signifi-
cantly the quenching process in Rb—Ar collisions at
n515–30. Unfortunately there is no experimental data avail-
able in this region. For the process of quenching by the Kr
atoms the Ramsauer-Townsend minimum is less pronounced
since it occurs at higher energies in the free-electron scatter-
ing. The Maxwell average washes out this effect completely
for Xe. In order to demonstrate the Ramsauer–Townsend
effect for a fixed collision velocity, we present in Fig. 11 the
nonaveraged cross sections for quenching of Rb(nD) states.
Now the effect becomes visible even for Xe but, as before, it
is best pronounced for Ar.

IV. CONCLUSION

In summary, we have obtained simple scaling formulas
for the probabilities and cross sections ofnl→n8 transitions

in Rydberg-atom–neutral-particle collisions, using semiclas-
sical expressions@9# of the normalized perturbation theory.
These formulas contain only two physical parameters,l and
z. Inelasticity parameterl describes the transition energy
defect. The efficiency of the transition is determined by the
collision strength parameterz. Analysis of the probability
Wlz(r/2n*

2 ) and scaled cross sectionszl /pn*
4 behavior has

been done in a wide range ofz andl. The obtained data for
the cross sections describe a wide region of the principal
quantum numbern, the relative velocityV, and the energy
defectuDEn8,nlu. Thus a reasonable description of quasielas-
tic l -mixing and inelasticn,l -changing processes was simul-
taneously given from a common point of view independently
of a particular value of the energy transferred to the Rydberg
atom.

In the simplest case of the scattering length approxima-
tion, the well-known asymptotic formula@33# fo pure quasi-
elastic l -mixing collisions follows directly from Eq.~24! in
the range of weak couplingz!1. Moreover, general analyti-
cal formula~16! @see also Eq.~26!# for the cross section of
inelastic transitions obtained in Refs.@29,30# corresponds to
the weak-coupling limit of the normalized perturbation
theory. We have also rewritten the limiting analytical expres-
sion of Ref.@9# for quasielasticl -mixing collisions in terms
of the collision strength parameterz. It was shown that the
strong-coupling region corresponds to large values ofz,
while in the weak-coupling region the cross section~25! ap-
proaches Omont’s result.

We have confirmed the previous conclusions@12,13#
about the invalidity of the scattering length approximation in
the case of the Rydberg-atom–heavy-rare-gas-atom colli-
sions, in contrast to the case of the He atom as a perturber.
We have shown how to incorporate the energy and angular
dependencies of the free-electron scattering amplitude in a
more general way, valid for both quasielastic and inelastic
processes. The method is based on the impulse approxima-
tion and modified effective range theory. The strong depen-
dence of the electron–heavy-rare-gas-atom scattering ampli-
tude on the momentum and scattering angle affects
significantly the values of the cross sections for quasielastic
and inelastic transitions. In particular, the electron momenta
in the vicinity of the Ramsauer-Townsend minimum contrib-

FIG. 11. Nonaveraged cross sections for quenching ofnD states
by Ar, Kr, and Xe. The collision velocity equals the mean velocity
at temperature 296 K for each Rb—B pair.
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ute significantly to the cross sections of the inelastic pro-
cesses.

Calculations of the quenching cross sections for the Ryd-
bergnS, nD, andnF states of alkali-metal Rb atom by the
ground-state Ar, Kr, and Xe atoms have been carried out in a
wide range of the principal quantum numbers. The contribu-
tion of a large number of thenl→n8 transitions from the
initial selectively excitednl level to the degenerate manifold
of final n8 levels were taken into account. The results of
present calculations are in reasonable quantitative agreement
with experimental data on quenching of Rb atoms for quite
different quantum defects of the Rydberg states. Thus the
semiclassical approach based on the normalized perturbation

theory provides a successful quantitative description of ma-
jor phenomena in inelastic and quasielastic collisions in-
duced by interaction of Rydberg electron with the rare-gas
atoms.
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