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Inelastic and quasielastic collisions of Rydberg atoms with the heavy rare-gas atoms
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A theory of inelasticn,l-changing and quasielastiemixing collisions of Rydberg atoms with the heavy
rare-gas atoms is developed. It is based on the semiclassical impact-parameter approach combined with the
normalized perturbation theory. Semiclassical formulas for scaled transition probabilities and cross sections as
functions of the inelasticity parameter and the collision strength are analyzed. This approach gives a general
description of collisionainl—n’ transitions independently of the specific values of the principal quantum
number, the relative velocity, and the type of colliding atoms. The energy and angular dependence of the
electron-atom scattering amplitude is included in the theory by incorporating the impulse-approximation results
in the weak-coupling limit. The Ramsauer-Townsend effect affects significantly the values of the cross sec-
tions, especially for the inelastic transitions with large energy transfer. The results obtained are used in
calculations of the quenching cross sections for then$h{D,nF) atoms in collisions with Ar, Kr, and Xe.
Comparison of theory and experiment is made in a wide range of the principal quantum numbers and transition
energy defectd.S1050-294706)02509-7

PACS numbegps): 34.60+z

I. INTRODUCTION states. Therefore, for collisions with small energy transfer,
they can be applied to calculations of the cross sections only
Collisions of highly excitedRydberg atoms with neutral at high principal quantum numbers.
particles is being intensively studied both experimentally and On the other hand, the application of the close-coupling
theoretically (see[1-3] and references therginA detailed method to collisions involving Rydberg atoms becomes very
analysis of the main theoretical approaches to collisions indifficult at high principal quantum numbers due to the pres-
volving highly excited atoms and their applications to vari-ence of a great number of closely spaced levels. Simple ver-
ous processes has been the subject of several review articleions of this method at low(<10) were used for the quasi-
[1a—c,3. In spite of significant progress in the physics of the elasticl-mixing process in thermal Rydberg-atom—rare-gas-
Rydberg-atom—neutral-particle collisions made during theatom collisions[1al. Semiclassical calculationgl] of the
last two decades, many important problems in this field ren-changing process in thermal Neg) +He collisions were
main unsolved and require further detailed investigationsperformed by the close-coupling methodnat6 and 9. The
There is no general theoretical approach describing differerdkame approach was usgs] for the description of mixing
types of processes in a wide range of the principal quanturin rotationally elastic collisions of Rydberg atoms with
numbers and transition energy defects. At the same time, th&trongly polar molecules HF and HCI in a wide rangenof
behavior of transition probabilities and cross sections oHowever, reliable semiclassical calculations based on nu-
Rydberg-atom—neutral-particle collisions depends drasticallynerical integration of the close-coupling equations for the
both on the principal quantum numberand the energy de- transition amplitudes were carried out only for few specific
fect of the process, as well as on a particular type of collidingprocesses involving Rydberg atoms.
particles and their relative velocity. In particular, the cross Furthermore, numerical calculations have not yet given a
sections and rate constants turn out to be quite different fogeneral picture for different processes with regard to their
transitions with small and large energy transferred to thelependence on the quantum numbers of the Rydberg atom,
highly excited electron from the relative motion of neutral the relative velocity/ of colliding particles, and the transi-
projectile and ionic core of the Rydberg atom. tion energy defectAE;;|. An analytical or a semianalytical
There are few efficient theoretical approaches to colli-description of Rydberg-atom—neutral-particle collisions is
sions of Rydberg atoms with neutral particles. Most of themdesirable for understanding the cross section dependencies
are based on the quantum impulse approximdtlidmand its  on the main physical parameters.
semiclassical versioflc| (binary-encounter theory in the Here we consider in detail inelastie,|-changing and
momentum representatiprthe Born approximation with the quasielastid-mixing processes in collisions of Rydberg at-
Fermi pseudopotenti@llal, and on the semiclassical impact- oms with neutral atomic targets induced by the electron—
parameter methoflla,18. The latter is widely used in com- perturber interaction. Collisional processes accompanied by
bination with the first-order time-dependent perturbationsmall and large energy transfer were usually studied indepen-
theory. However, the approaches based on perturbatiodently from each other. It is due to a significant difference in
theory are valid in the range of weak coupling of Rydbergthe typical magnitudes of the cross sections for quasielastic
I-mixing and inelastia,l-changing processes at thermal en-
ergies. Many theoretical models have been used for the
*Permanent address: P.N. Lebedev Physical Institute, Leninski-mixing processes in collisions of the Rydberg atoms with
Prosp. 53, Moscow 117924, Russia. the ground-state rare-gas atofsse review$1,3] and refer-
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ences therein Some recent calculations employed a puretified parameters, do not include explicitly the dependencies
classical mode[6], the free-electron mod¢lr], and the ei- on the principal quantum numbar relative velocityV, and
konal approximation8]. Several calculations were also per- the effective scattering length. Thus, calculations and
formed for the inelastim,|-changing procességs]. analysis of these dependencies can provide general data for

Recently a semiclassical approach combined with the norinelastic and quasielastiol—n’ transitions in Rydberg-
malized perturbation theory was propo$6dl It gives a gen- atom—neutral-particle collisions independently of a particular
eral description oh,l-changing and-mixing processes in a type of colliding partners. We will also analyze the range of
wide range of the principal and orbital quantum numbers andmpact parameters and the Rydberg-electron—ion-core sepa-
transition energy defects. The most part of calculations ofations which make the main contribution to the transition
probabilities, cross sections and rate constantsnfer.n’  Probability and the cross section.
transitions can be performed in the analytical form. A similar It should be noted that an approximate scaling formula for
analytical approach was previously ugdd] for description ~ the quasielasti¢-mixing cross section was previously pro-
of elastic scattering and inelastic transitions between th@osed by Hickmari11] by fitting the numerical results of
fine-structure components of Rydberg atom induced by colclose-couplind19] and Born calculations in the momentum
lisions with neutral particles. representatiohl2]. It was widely used for a rapid estimation

In the present paper we elaborate this approach and app@f the l-mixing cross sections in the Rydberg-atom—neutral-
it to thermal inelastic and quasielastic collisions of Rydbergparticle collisions. It can be considered as the first step to-
atoms with the heavy rare-gas atoms Ar, Kr, and Xe in thevard the description of the Rydberg-atom—neutral-particle
ground states. In Sec. Il A we outline the main idea of thecollisions in terms of the scaled parameters characterizing
theoretical approach and present the basic equations. the efficiency of collision and the transition energy defect.

In Sec. Il B we analyze the role of the angular and energ)HOWGVGI', the range of its validity is restricted by small val-
dependence of the amplitude for scattering of Rydberg eledl€s of the energy defect and it becomes inapplicable for the
trons by heavy rare-gas atoms. A substantial part of the prdnelasticnl—n’ transitions with a large energy transfer.
vious calculations of Rydberg-atom—rare-gas-atom collisions In Sec. Il we present calculations of the inelastic
was performed using the scattering-length approximation fon,l-changing and quasielastiemixing processes in thermal
the amplitudef,z=—L of elastic electron-atom scattering. collisions of Rydberg Rb atoms with the ground-state Ar, Kr,
To improve the results of calculations for thenixing and  and Xe atoms. They have been performed in a wide range of
n,|-changing processes induced by the heavy rare-gas atorfii¢ principal quantum numbers {81<80) for various
Hickman([11,12 used the parametgr(e,)/4mw] % instead ~ Rydbergnl states (S nD,nF) having quite different values
of the standard scattering length Here o €,) is the total ~ of the quantum defects;. Comparison with available ex-
elastic free-electron scattering cross section for the mean kperimental data will be also given. Atomic units
netic energye, of the orbital electron motion. The semiclas- €=m=#=1 are used throughout the paper.
sical model of de Pruneland Pascal§l13] for quasielastic
collisions takes into account the actual energy dependence of Il. THEORY
the free-electron scattering cross section and averages it over
the momentum distribution.

Another approach takes into account the low-energy be-
havior of the scattering amplitude as a function of the mo-
mentum transferQ in the Born-type form fog=—L The general formulation of the normalized perturbation
—7aQ/4 [14,15, where « is the atomic polarizability. theory[20,2]] involves theK-matrix method. Direct appli-
These calculation§16—18 were performed in the impulse cation of this method to collisions involving highly excited
approximation for the quasielastic state-changing process atoms becomes difficult due to the presence of a great num-
high principal quantum numbers In these calculations the ber of closely spaced levels. A simple modification of the
second term of the low-energy expansion is important but inormalized Born approximation was widely used for a de-
does not affect drastically the values of the cross sections. scription of transitions between Rydberg states in collisions

To describe the quasielastic and inelastic transitions in avith charged particleg3]. An analytical approach based on
wide range ofn and energy defects it is necessary to takethe semiclassical method and the normalized perturbation
into account the actual behavior of the amplitude for elastidtheory was proposed in Ref9] for description of the
electron heavy-rare-gas atom scattering not only at very loml—n’ transitions in Rydberg-atom—neutral-particle colli-
energies but also in the regian-0.2—1 eV. In this region, sions. A similar approach was usgt] for transitions be-
the dependence of the scattering amplitude for Ar, Kr, andween the fine-structure components and for elastic scatter-
Xe atoms on the scattering angfeand electron momenta ing.

A. Basic equations of the normalized perturbation theory
and semiclassical approach
to the nl—n’ collisional transitions

k cannot be reduced to one parameferin Sec. 11 B we Here we outline the main idea of the semiclassical ap-
present a method allowing inclusion of the actuaand proach[9] and present the basic equations needed for our
dependencies for the amplitudgg. analysis and calculations. Within the framework of the

In Sec. Il C we give a detailed analysis of the probabilitiesimpact-parameter method, the relative motion of a Rydberg
and cross sections as functions of the main physical paran&tomA and a neutral targeé® is considered to be rectilinear,
eters: the inelasticity parameter, the collision strength, ando thatR(t)=p+Vt, whereR is the radius vector of the
the scaled impact parameter. We show that the transitiotargetB relative to the ion coréA® , andp is the impact-
probability and the ratio of the cross section to the geometriparameter vector. The idea of the semiclassical appr&ch
cal area of the Rydberg atom, expressed in terms of the ideiis based on the separation of the whole range of the impact
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parameters into two regions {Qp<pg) and (pp<p) with should approach Oqﬁnj‘c corresponding toc=0.15. Our
qualitatively different behavior of the transition probability choice isc=0.25. This value is based both on Hickman's
Wsi(p). At large impact parameteys> pq the coupling be-  scaling formula and on comparison of our results with the
tween Rydberg states is weak, and the transition probabilityesults of close-coupling calculations and experiments ob-

can be calculated using the general form@3] tained in the strong-coupling regiofsee[1-3] and refer-
. ) ences therein In further discussion we will not specify the

W;fait(p):U Vi[R(t) Jexpli wyit)dt (1) value ofc, but in all calculations we will be using=0.25.

—w For the radial parts of the wave functiong(r) and

) ) ) ¢+(r) of the Rydberg atom we use the JWKB approximation
of the first-order time-dependent perturbation theory. Hergp7]

wi=|AE;| is the transition frequency, V[R(t)]
=(¢(r)|V[r,R(t)]| #i(r)) is the matrix element of interac- 2 \Y2cosb, r

tion between the Rydberg atom and the neutral tangeg, n*l_( ) Tz o= fr kdr—m/4. (4
the radius vector of the highly excited electron, apdr), ' !

¢¢(r) are the wave functions of the Rydberg atom in theyeren, —n— 5, is the effective principal quantum number,

initial and final states, respectively. } k, is the radial momentum of the highly excited electron in
At small pP<po, due to strong_coupllng between Rydberg the Coulomb field of the ionic core
states, the first-order perturbation theory leads to overesti-

mated values of the probability of the-»f transition. In the
simplest version of the normalized perturbation theory the K=
transition probability in the region of strong coupling is
equal to a constart of the order of unity{23]. The magni-
tude of the impact parametpg, which separates the region
of weak coupling p>pg) from that of strong coupling
(p<py), is to be found from the equation

Wﬂi

1/2

1 2 (1+1/27?
(+172 , rio=n3(l1xe) (5

— +__
nZ ' r r2

r,r, are the left and right turning points and
e=[1—(1+1/2)?/n2]*2 is the eccentricity of the Rydberg-
electron orbit. If we have to sum the probability of the
nl—n’ transition over a large number of degenerate states
WFf)it(pO):C- 2) with different orbital quantum numbels, we use the JWKB
approximation for the angular part;.,/(68,¢) of the
For the cross sectioa; (V) of thei—f transition we obtain ~Rydberg-electron wave functidi3].
[9,10] We assume now that the interaction between the perturb-
ing atomB and the ion core can be ignored, and the short-
range interaction between the Rydberg electronBuedn be
described by the =zero-range Fermi pseudopotential
Vep([r—R|)=27L40(r—R), where Ly is the effective
The choice of parametar contains some ambiguities. Ac- scattering length for electron-perturber scattering. In contrast
cording to Gerstefi23] its value should be close to 1. On the to the standard scattering lendth L.+ depends on collision
other hand, as will be shown in Sec. Il C, in the weak-parameters and. This dependence will be discussed in Sec.
coupling region the theoretical results are almost indepenH B.
dent ofc whereas in the strong-coupling limit E(B) gives The final equation for the transition probability can be
for the quasielastic cross sectiomdni. According to Hick-  expressed in terms of the incomplete elliptic integrals of the
man’s scaling formula[11] the cross section in this limit first kind [9]

Ufi:WpSC+27T W?it(P)P dp. ©)
Po

c, 0<p<po
Whr ni(p)= Ig—gﬁ{F(qoz,k)—F(¢1,k)+2®(5—p)F(¢1,k)}. Po<P<Pmax (6)
’ 2mnéV2\p
0, Prmax<p-
|
Here®(z)=1 for z=0 and®(z)=0 for z<0; and _ Rs(p)—p vz
"’S:arcs"{(<1—p/2ni>Rs<p>) e

F(p,k)= f:(l—kzsinza)*lfzde, k=[(1—p/2n2)/2]*?
(7

(see, for example, Ref24]), while the arguments; and
@5 in Eq. (6) are

ParametersR;(p)=2n2x{M(y) and Ry(p)=2n2x{M(y),
(R1=R),), are determined from the equation



y=dy(X) ¢(X)=(2)\)1/2 x5/4 (1_£ 172 )1/2
S (1—x)4 2 (1™

9

for a fixed value of the scaled impact parameter

=pl2n2. Herex=R/2n2 is the scaled internuclear separa-

tion, and\=n, |AE, ,|/V is the inelasticity parameter for
thenl—n’' transition. The impact parametgr,. in Eq. (6)
is the maximum possible value @f in the classically al-
lowed region determined by the inelasticity parametenf

thenl—n’ transition and by the principal quantum number
n, . Within the framework of the semiclassical approach, the

transition probability W, ,(p) becomes zero for

P>pmadN). It corresponds to the maximum value of

#,(x). The impact parametgr=2n2y in Eq. (6b) is deter-
mined by the relatioly = ¢, (X) =X, whereX=R/2nZ. From
Eqg. (9) we obtain

p(M=2n2Y(\), Y(N)=1(1+N?), (108

Pmad N)=2n3 ST, YN =T (10b)

Thusp and p,. are determined only by the inelasticity
parameter\ and by the principal quantum numbaer,
whereasp < pmax for givenn, andX.

Parametep, can be calculated from E) using expres-

sion (6) for the transition probability. It is determined by the

principal quantum numbem, and the energy defect
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C7Tp§1a>é()\)a Po= Pmax
Tn n|= 2
" 2+ Vz—gﬁﬂ(pO/Zni), PO= Pmax:
n*
(139
where the functionF, (yo) can be written as
1 o b x2—y2 1/2d
f*(YO)—; 20(Y—Yo) v X—x2 X
& X2—y(2) 12
+f (—2‘_ ) dx+9<52>—g<él>],
& X—X
(13b
112
Q(z)=arctal . —[z2(1-2)]¥?+\|z—In 1
1-z 1-z) |

Herey0=p0/2ni is determined from the normalization con-
dition (2) for the transition probabilityNﬁt,’nl(y) calculated
by the first-order perturbation theory. Parametefs,
=x{3(yo) are the roots of Eq(9) for a given value of the
scaled impact parametgg=po/2n2, andy=y(\) is given
by Eq. (10).

B. The effective scattering length

It is well known that the scattering length approximation
fog= —L= const for the amplitude of elastic scattering of

|AEj|, as well as by the particular type of colliding partners ultralow energy electrons by heavy rare-gas atoms is valid

and their relative velocity. It should be noted that the roots
x{M(y) andxM(y) of Eq. (9) depend significantly on. In
the particular case of a pure elastic transitipAE, ,|=0
and hencex=0), when y=1 and y,,=1, we have

only in the close vicinity to zero energy. Due to the presence
of the long-range polarization potentidl4,15 the differen-

tial cross sectionf .g(k, #)|2 strongly drops with an increase

of the electron momentum. It reaches the deep Ramsauer-

x(lﬁz)(y)zl.The basic expression for the transition probabil-Townsend minimum in the range of electron energy

ity can be written as

¢ 0<p<po
2, 2
Wi ni(p,V) = m/qk(p)], po<p<2n
0, 2n2<p<oo,
11

where/C(k) is the complete elliptic integral of the first kind
[24]

w2
K(k)= fo (1—K3sirte) " Y2de,

k(p)=+(1—pl2n?)/2.

12

e=k?/2=0.2—1 eV depending on the scattering angle and

the particular type of atom, and then rapidly increases. Re-
cent measurements of the cross sections in the vicinity of the
Ramsauer-Townsend minimum can be found in Refs.

[25,26].

Previous attempts to include this dependence in the theory
of Rydberg-atom collision§11-13 incorporate the depen-
dence of the effective cross section mnWe suggest here a
method which includes also dependence on the inelasticity
parameter. Note first that in the strong-coupling region the
transition probabilities do not depend significantly on the
specific form of the electron-perturber interaction. It can be
seen directly from Eq13) at pg— pmax @nd reflects a general
feature of any collisional processes involving a large number
of closely spaced levels. Indeed for strong collisions the
quenching cross section for a given energy level is practi-
cally the same as the total scattering cross section, which is
determined by the unitarity condition.

Thus the required modification of the scattering amplitude
can be accomplished in the weak-coupling limit. We will do
it within the framework of the quasi-free-electron model. We

Integration of Eq(6) over all impact parameters leads to the proceed from the general semiclassical formula for the cross
following result for the cross section of the inelastic section of thenl—n' transition in the momentum represen-

nl—n’ transition[9]:

tation[27].
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2 Expression(16) was derived simultaneously in R¢29] by
the semiclassical impact-parameter method in the first-order
perturbation theory and in Ref30] using the impulse ap-
(143 proximation and binary-encounter theory for the atomic form
factors[31,32. It should be noted that for pure quasielastic
nl—n’ transition without energy transfeik E0) expression
f(16) yields f, ,(A=0)=1. Hence Eq.(16) includes the
well-known Omont's[33] result o, ,,=27L?%/V?n® as a
particular case.
Comparison of Eq(16) with the general formula14)
allows us to introduce a parametei'ﬁ(n* ,A) which we use
Vmad K)=1—2K2. JK?,  Kmin= Qmin/2~|AEp n|/2V, to calculate cross sections according to E@.and (13).
(14D The ratioL2/L? can be also written asy: o /07, ., Where
o n is calculated in the impulse approximatioiv) with
|9n1(K)|? is the momentum distribution function of the Ryd- actual scattering amplitudieg(k, 6), while orf, o is the cor-
berg electron in the initiahl state. For thel states with low  responding value obtained fogg= — L = const Eq(16). It is
orbital angular momentum $n) we will use the semiclas- convenient to rewrité_gﬁ(n* \) as
sical resulf28].

71— o0
Tnt = ZTWL _ k?dk|gni(Kk)

f Vma)&k) d(COS9)

2
i mﬁ“es(kﬂﬂ :

Herefg(k, ) is the exact amplitude for elastic scattering o
a free electron by the atof®; k and ¢ are the momentum
and scattering angle).(k) andk,, are given by

L2 (n, ) 2112 fw dz
n,,\N)=

4&—1 |<n (15) etk oy ni(N) (1+22)2
m k¥(1+nik?)?’ ’

Zmin

|gni(K)|2=

Vmax2) d(COSg) 2
f ————mnlfea(k=2/n, ,0)/?,
. . C ~1  (1—co9)

corresponding to the pure classical momentum distribution

function of the electron in the Coulomb field of the ion core (17)
[3]. In the scattering length approximationf g=—L

=cons) the general formuld14) yields the following ana- where

lytical result
Vmad 2)=1—222.17%,  Zyin=ny|AE, n|/2V=\/2.
L 2mL? (18)
Un’,nl()\)szn’,nl()\)a (163)
In the scattering length approximatioipg=—L, formula
(17) yieldsLg¢(n, ,N\)=L=const . In a general case it incor-
fo(N)= E arcta’(g _ iln 14 i porates both the short- and long-range parts of the electron-
n’nl T N 2 A2 perturber interaction. The parametes;(n,\) characterizes
the actual electron-atom interaction in the range of the elec-
tron momenta which gives the main contribution to the
A=, |AE g |/V. (16D nl—n’ transition for givemn, relative velocityV, and energy
defect|AE, |. ThereforeLgy(n, ,\) depends both om
Rb —Ar and the inelasticity parametar=n, |AE, ,|/V.
For calculation of the scattering amplitude we use the
0 partial-wave expansion in terms of the scattering phase shifts
osr 7, wherel is the electron angular momentuwiative to the
081 perturber Within the framework of the modified effective
0.7 r range theory{14,15, », at low energies may be calculated
Looer using the analytical expressions
< 05f
S04y . ma  4al ) 3
0.3} k tann0=—L—Tk—Tk Ink+D0k +F0k
02F |
o1l +0(k%Y), (193
O'Oo 10 20 30 40 50 60 70 ‘
k’ltamh:% DK%+ O(K3), (19b)

FIG. 1. n dependence of the ratlcéff/L2 for thee-Ar scattering.
Full curves are the present results, Ef7) for the nS—n-3,
nD—n—1, andnF—n transitions in the Rbr{l) +Ar collisions at k™ ltary, = mak +O(K3)
E=0.026 eV. Dashed curve presents the ratjige,)/4wL2, where 21+ 3)(21+1)(21-1) '
€= 1/2ni is the mean kinetic energy of the orbital electron motion. (199

[=2.
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N« n
FIG. 2. The same calculations as in Fig. 1 for the mRp¢Kr FIG. 3. The same calculations as in Fig. 1 for the Rb(-Xe
—Rb(n") +Kr transitions. —Rb(n") +Xe transitions.

Here « is the polarizability of the perturbing atom, ai, .
D,, andF, are the constant coefficients. In the present cal-the heavy rare-gas atoms, in contrast to the case of the he-

culations we used experimentally obtained vali2&). Note lium atom as a perturber. For reliable quantitative results on

L o . inelastic and quasielastic transitions induced by collisions
that the case of atoms with high polarizabilitigsg., alkali with Ar, Kr, and Xe we need an appropriate description of

me_;t_?]l atomgneeds a spemal analy{|34]._ . both the short- and long-range parts of the electron-perturber
e present calculations of the effective scattering Iengtri1nteraction
were performed for transitions to the nearest energy levels '

which provide the major contribution to the quasielastic or

inelastic transitions. For the relative velocities of colliding ¢ analysis of probabilities and cross sections as functions
atoms we tookV=(2T/u)"? whereT is the gas tempera- of the inelasticity parameter

ture. The results for the ratioZ,/L? are plotted in Figs. 1, 2, and the collision strength parameter

and 3. The ratid_2,/L? depends significantly on and turns
out to be quite different for transitions with small and large
energy defects. In all cases the deep minimum_ﬁgp/L2
results from the Ramsauer-Townsend effect in free-electro
scattering, but it occurs at different valuesof (n, =10,
15, and 23 fornF—n, nS—n—3, andnD—n—1 transi-

Analysis of the basic Eq$6), (13) in a particular case of
pure quasielastiol—n’ transitions (’=n) with a change
in the orbital angular momentum alone without energy trans-
Ferred to the Rydberg atomAE, ,, =0, or A\=0) was per-
formed in Ref[9]. In the present work we analyze the gen-

tions, respectively Simple estimates of the typical electron eral case of inelastial —n" transitions with the change of
’ P P yp both the orbital and principal quantum numbers for an arbi-

momentum k~Kin=|AE, 4l/2V at n,~10, 15, and 23 . . .
show that they are in full agreement with the values of the}\rinrl] | Argagnli%de of the inelasticity ~parameter
* n’,n .

free-electron momentum which corresponds to the
Ramsauer-Townsend minimum. Note also that the use of
[oe(en)/4m]Y? [11,17, instead of the standard scattering S _ _
lengthL, improves the results. However, more accurate cal- For further analysis it is convenient to rewrite Eq§)
culations should incorporate the dependencé gfon the and (13) in terms of scaled parametes=R/2n; and
energy defect. y=p/2ni. Note that the radiusn=2ni corresponds to the

Thus we confirm the previous conclusidi®,13 that the  right turning point in the Coulomb potentigj~n2 (1+e) at
standard scattering length approximatibgs=—L=const |<n,, when the eccentricity of the orbé~1 [see Eq(5)].
becomes inapplicable for collisions of Rydberg atoms withFor the transition probability we obtain

1. Transition probabilities

c, Osy=y,
W, (y)= ' 20(y )fxl(y) dx N Xa(y) dx Ve=y=y 20
N y)= 7T\/§ y-y y (X—X2)(X2—y2) %y (¥) (X—Xz)(Xz—yz) , 0 max

0, YmaxSY
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FIG. 4. Transition probabilityV, , (y), Eg.(20) as a function of ~ impact parametepna(\)/2n; .
the scaled impact parametgr p/2ni for different inelasticity pa-
rametersh =n, |AE, ,|/V (A=0; 0.2 and 0.k Figures 1a) and  tum transfer Q=|q’'—q| is determined by the relation
1(b) correspond to{=0.2 and 0.5 of the collision strength Q. ~|AE, ,I/V if the kinetic energyg?/2u of colliding at-
{=L2y/2%n], respectively. oms is considerably greater than the energy defect
|AE, | of the nl—n’ transition. The minimum value of
whereZ=L2%,/2°>/?n! is a scaled parameter characterizingthe Rydberg electron momentukrfor thenl—n’ transition
the collision strength. The results of the present calculationwith the energy transfefAE,, | is Kyin=|AEy yl/2V. It
for the transition probability as a function of the scaled im-corresponds to the backward scatteririg € —k) of the
pact parametey= P/Zni are presented in Figs(& and 4b) Rydberg quasifree electron by the perturBerSubstitution
for different values of the inelasticity parametex=0, 0.2,  Of Knin=N2n, into the classical expression
0.5, 1, and 2and the collision strength¢&0.2 and 0.5 In
the region B<p=<p, the first-order probability\f(p) be- k%/2—1/r = —1/2n% (22
comes large and should be normalized to a constaat-
cording to the normalized perturbation theory. Figure 4 demfor the energy of the Rydberg electron in the Coulomb field
onstrates how the chosen valoe 0.25 limits the growth of  of the ion coreA™, yields
WP,
The probabilitywﬁt{(p) becomes zero gh>pyay. This 2n2 2n2
happens because the semiclassical approach neglects the ex- M max{N) = 1T+ (N, Ko)? = 1+ (N2
H H H H * *min
ponentially decaying tail of the electron wave function. The
maximum impact parametes,,,x depends substantially on
the inelasticity parameter. To analyze this dependence, we
will proceed from the conservation of energy law for colli-
sionalnl—n’ transition

(23

Within the framework of the Fermi pseudopotential model

for the electron-perturber interaction, the collisional transi-

tion of the Rydberg electron occurs when its radiuglative

to the ion coreA™ is equal to separatioR betweenA* and

B. Thus Eq.(23) for the radiusr,,,{\) corresponds to the

maximum possible value of the internuclear separation, and

therefore can be considered as an upper boung fgy.
En=—1/2n")%, (21 As is seen from Fig. 4, for eadhthere is a certain impact

parametep, which separates the regions of weak and strong

whereq?/2u and (@')?/2u are the kinetic energies of collid- coupling. The dependengg()\) is demonstrated in Fig. 5

ing atoms in the initial and final states, respectively. Accord-for different values of the collision strength(full curves.

ing to Eq.(21), the minimum possible value of the momen- For comparison we also presqmax(x)IZni. At large {>1

Enl+q2/2M:En’+(q’)2/2Ma En|=—1/2(n—6|)2,
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practically the whole range of classically allowed impact pa- ' o
rameters & p<pma\) corresponds to the strong coupling
of Rydberg states. The first-order perturbation theory be-

comes inapplicable for almost all possible values of
y=p/2ni.

2. Cross sections

Equation (133 for the cross section of the inelastic
nl—n’ transition can be rewritten in terms of the scaled
parametera. and ¢

scaled cross section

R 4Cy2ma>&)\)v Y0= Ymax o
O'()\;é’)_ 7Tn* X 4cy(2)()\,§)+25/2§]-‘}\(y0), yosymax collision strength
(29) FIG. 6. The raticm(g)/wni of the cross section to the geomet-

ric area of the Rydberg atom as a function of the collision strength

Here Yo pmad\)/2n2; Vo= po(,£)/2n2 should be calcu- ¢ Full curves were calculated by Eq&5) and (13b). Dashed
lated from equatioan(yo)=C in which the first-order Curves represent the limiting value of this ratioZat>o for N #0
transition probability is given by Eq20); and theF function ~ @nd¢={o~c for \=0 [see Eqs(25) and(26)]. Numbers near the
is determined by Eq(13b). Note thatF,(yo)—0 when curves mark the values of the inelasticity paramater
YoM, Q) —YmadN), 1.€., for large collision strengtlf. The
ratio of the cross sectionr,: ,, to the geometric area of the
Rydberg atom depends only anand{. Thus it is interesting
to analyze the scaled cross section |/ Trni as a function
of the inelasticity parametex and the collision strengtt.
According to Eq.(24) the drop of the total cross section
Onr ni=2110q11 q Of the nl—n' transition with increasing
energy defect is actually determined by the paramater
This fact was first established by several autijd&,29,3Q

who independently obtained analytical expressions for th . . .
b y y b K The second case corresponds to inelastie>n’ transi-

cross sections of inelastic transitions in the region of weak. ; . N
coupling. This parameter is more relevant to the cross sedlons in the range of weak coupling=1. The contribution

tions summed over all final sublevels whereas the reduced °f the strong-coupling rsgon Op=po can be neglected.
parametery=n2|AE, u|/V was used by Hickmafill] in | hUS 8ssuming/o=po/2n, —0 in Egs.(13b and (24), we
the empirical scaling formula for themixing collisions. At~ NaveZy —o(A)—fn ni(X), wheref is defined by Eq(16D).
the same time the paramet@f=(L.4/Vn33¥)2 of Hick-  For the scaled cross section we obtain

man’s formula is very close to the parameter

{=L2/2%2y2n! characterizing the efficiency of collision T (N, O =252 o (M), (26)
within the framework of semiclassical approdéh.

The scaling formulg24) has a simple analytical form in This expression is in full agreement with analytical result
two limiting cases. The first corresponds to pure quasielasti€16) of the first-order perturbation theory derived in Refs.
transitions without energy transfeh £0) to the Rydberg [29,30. For pure quasielastic transitions the ,(\) func-
atom. In this casg..=1, and from Eq(24) we obtain tion in Eq. (26) becomes equal to one, while the collision

strength parameter{,~c. Hence, the aforementioned

a Omont’s formula[33] for the |-mixing cross section in the
Tr=o(§)=mhy range of weak coupling may be derived simultaneously both

4c, yo=1 from Eqgs.(25) and(26).
71 5 212 The general case, given by E@4), is presented in Figs.
2" 1()( _yo) dx <1 6 and 7. Figure 6 demonstrates the scaled cross section
X— X2 Yo U)\({)/wni as a function of for different values oh. Note

that the inelastic cross section strongly falls with increasing

ability at y,,.{A=0)=1, in contrast to the general caseof
#0 whenW[ (Yma{\)]=0 (see Fig. 4 The strong-coupling
region corresponds té=c.

In the weak-coupling regiori<<c (n,>ngy) the total
cross section, Eq26) approaches the asymptotic expression
onm=2%%¢mn}. This limiting expression is in full agree-
ment with Omont’s result33]. In this case the magnitude of
the quasielastic cross section is much lower than the geomet-
éic area of Rydberg atom.

deyy(o)+
Yo

25 inelasticity parametex both in the range of weak and strong
coupling.
yo({) is  determined  from the  equation  To demonstrate the failure of the perturbative approach in

(2§/wy(1)’2)IC[k(y0)]=c. Hence, it is approximately equal to the strong-coupling region, we make a comparison between
(¢/c)? since K(k)~ /2 for 0<k=2"'2 when O<sy<1. the present calculations and the first-order perturbation
For A\=0 there is a certain boundary value of the collisiontheory in Fig. 7. The results are presented §e+0.1, 0.25,
strengthZ,=c (and hence the principal quantum numberand 1. For each couple of curves, the lower one has been
n, =ng) for which the scaled parametsy reachesy,...  calculated using the scaling formu(@4), while the upper
This results from the nonzero value of the transition prob-curves have been obtained in the first-order perturbation



2896 VLADIMIR S. LEBEDEV AND ILYA |. FABRIKANT 54

3.0 — ; — . . F ‘ ‘ '
\\ é I /f\nF Rb — Kr
2 0% / T E
55| \ | é / R \\\\\
\ < / e ] I T ————
g 103 E / ///,’_E
S 20t A 1 o P D o ]
& N il
Q Q
° AN 2102 ¢ E
§ 1 5 [~ \ T § Ve
E I/
2 N 101 o ; ‘ ‘ ‘ : ‘
; 10 ik . B 0 10 20 30 40 50 60 70 80
\\\ n
ST 1
051~ \\\\ — 1 FIG. 9. The same as in Fig. 8 for quenching by Kr atoms. Full
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ool o« L L case the first-order perturbation thedor impulse approxi-
00 0z 04 06 08 10 mation in the momentum representajideads to signifi-

inelasticity porameter cantly overestimated magnitudes and to qualitatively incor-

) 4 _ rect behavior of the cross secti@ee long-dashed curves for
FIG. 7. The scaled cross sectiof(\)/n, as a function of the (=2).

inelasticity parameter\. Short-dashed, full, and long-dashed

couples of curves are the present semiclassical calculations for .

£=0.1, 0.25, and 1, respectively. The lower curves for each couple lll. RESULTS C\'/TEHDéi(;léils&%NN'TCOMPARISON
were calculated using the scaling formuf24), while the upper

curves correspond to the first-order perturbation theory, EXf. In this section we apply our theory to calculations of the
and(16b). quenching cross sections for the Rydbe§ nD, andnF
states of the rubidium atom in thermal collisions with Ar, Kr,
theory. The first-order perturbation theory gives satisfactoryand Xe. The experimental data are available bothrir
results at’<0.1. In this case the cross sections are very closéevel [35] having a small quantum defec(=0.02), and for
to those calculated by the normalized perturbation theoryisolatednS, nD levels[36] (for which §5=3.13, 54=1.39.
Note that the difference between these two methods becométe that the present calculations are by no means exhaus-
particularly small for largex. However, at intermediat¢  tive with regard to comparison with existent experimental
(full curves forZ=0.25 both methods give close results only data. Rather, they illustrate the results of our approach in a
for inelastic transitions with large. The difference becomes wide range ofn and reaction energy defects.
very large at smalk and largef>1. In this strong-coupling Our cross sections include the summation over all pos-
sible values of the final principal quantum numbsgr, i.e.,
we calculate

nF Rb — Ar

f%@;?\ Unlzg On’,nl- (27

nS /’—.‘% This summation leads to a slow decrease of the quenching
: cross section in the high-limit. For very highns1/Vv'/?

T T T T T

105 F nf Rb —Xe 4

%
/% // o

| [

100 L . . I . .

quenching cross section (10-18 cm2)
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= 5!
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. oy |
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FIG. 8. Cross sections for quenching of th&-, nD-, and
nF-states of the Rydberg Rb atom by Ar averaged over the Max-
wellian velocity distribution. Full curves, the present results calcu-

lated by Eq.(13) (T=296 K). Dashed curve, the same calculation 100 L / // |
for the nF level at T=520 K. Full squares, empty squares, and E e ) ) ‘ ‘ ‘ ]
triangles are the experimental data for tif&, nD levels(Ref.[36], 0 10 20 30 40 S0 60 70 80
T=296 K), andnF levels(Ref.[35], T=520 K), respectively. Full n

circles and empty circles are the free-electron-model calculations
[16,17] for nS andnF states, respectively. FIG. 10. The same as in Fig. 8 for quenching by Xe atoms.
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limit (this region is not shown in the figur¢he quenching 10t L , ‘ _
cross section decays asnl3]. The cross sectiom,, is av- i —
eraged then over the Maxwellian distribution of relative ve- ><e//

locities according to (o,)=(Vo,(V))/{V)r, where , ]
(V)1=(8T/mu) ?is the mean velocity for a given gas tem- 103§ /K

peratureT, and u is the reduced mass.

Then dependencies of the averaged quenching cross sec-
tions for nS, nD, and nF states of Rb atoms in thermal
collisions with Ar, Kr, and Xe are shown in Figs. 8—10. They
are compared with experimental data of R¢f5,36. For
the quenching of theF andnS levels by Ar andnF levels
by Kr we also show previous theoretical data of REf$,17] 1ol
obtained in the impulse approximation. Overall, our calcula-
tions reproduce the experimental observations of Hugon

et al. [35,36 quite well, although there is a substantial dis-  fi. 11. Nonaveraged cross sections for quenchingbbtates
agreementabout a factor of twpfor the quenching ohS  py Ar Ky, and Xe. The collision velocity equals the mean velocity
states by Ar. Sato and Matsuzawa’s res{dfg] are slightly 4t temperature 296 K for each REB pair.

lower than ours in this region af, but they also substantially

exceed the experimental data.

The quenching cross sections reveal strong dependenxj:ré Rydberg-at_om—neutral-particle_collisions, using semiclas-
on the quantum defed; of the initial Rydbergn| state in the sical expression§9] of. the normallzed-perturbatlon theory.
whole experimentally studied range of This behavior is | Nn€se formulas contain only two physical parameterand
reasonably reproduced by our semiclassical calculations fok- Inelasticity parametek describes the transition energy
quasielastid -mixing quenching ofF levels as well as for defect. The efficiency of the transition is determined by the
inelasticn,|-changing quenching aiSandnD levels. Note ~ collision strength parametef. Analysis of the probability
that the impulse approximation does not describe the obWM(p/Zni) and scaled cross sectiorb\/q-rnj“ behavior has
served cross sections for the quenchingnéf states in the been done in a wide range 6fand\. The obtained data for
range n<25—30, where it is mainly determined by the the cross sections describe a wide region of the principal
guasielasticl-mixing collisions. On the other hand, for quantum numben, the relative velocityv, and the energy
n>40-50 the cross sections, corresponding to different valdefect| AE,,, ,j|. Thus a reasonable description of quasielas-
ues of the initial orbital angular momentum, start to mergetic |-mixing and inelastin,|-changing processes was simul-
This occurs due to contribution of a large number of differ-taneously given from a common point of view independently
ent nl—n’ transitions An=0,£1,+2,...) which makes of a particular value of the energy transferred to the Rydberg
the total quenching cross section independent of quanturatom.
defect in accordance with the well-known results of the as- In the simplest case of the scattering length approxima-
ymptotic theory[33]. tion, the well-known asymptotic formulg3] fo pure quasi-

Another interesting feature of the results is nonmonotoniclasticl-mixing collisions follows directly from Eq(24) in
dependence of the calculated cross sectionsifdbandnD  the range of weak coupling<1. Moreover, general analyti-
levels onn in the region ofn from 15 to 25. This feature is cal formula(16) [see also Eq(26)] for the cross section of
a manifestation of the Ramsauer-Townsend effect which ignelastic transitions obtained in Refg9,3(0 corresponds to
clearly represented in thedependence of the effective scat- the weak-coupling limit of the normalized perturbation
tering length Figs. 8—10. Although averaging over the Max-theory. We have also rewritten the limiting analytical expres-
wellian distribution in relative velocities makes this influence sion of Ref.[9] for quasielastid-mixing collisions in terms
somewhat less pronounced than that for a fixed relative vesf the collision strength parametér It was shown that the
locity, the Ramsauer—Townsend minimum affects signifi-strong-coupling region corresponds to large values¢ of
cantly the quenching process in RIAr collisions at  while in the weak-coupling region the cross secti@b) ap-
n=15-30. Unfortunately there is no experimental data availproaches Omont’s result.
able in this region. For the process of quenching by the Kr We have confirmed the previous conclusiofi,13
atoms the Ramsauer-Townsend minimum is less pronounceghout the invalidity of the scattering length approximation in
since it occurs at higher energies in the free-electron scattethe case of the Rydberg-atom—heavy-rare-gas-atom colli-
ing. The Maxwell average washes out this effect completelysions, in contrast to the case of the He atom as a perturber.
for Xe. In order to demonstrate the Ramsauer—Townsen@ve have shown how to incorporate the energy and angular
effect for a fixed collision velocity, we present in Fig. 11 the dependencies of the free-electron scattering amplitude in a
nonaveraged cross sections for quenching ofrfR(states. more general way, valid for both quasielastic and inelastic
Now the effect becomes visible even for Xe but, as before, iprocesses. The method is based on the impulse approxima-
is best pronounced for Ar. tion and modified effective range theory. The strong depen-
dence of the electron—heavy-rare-gas-atom scattering ampli-
tude on the momentum and scattering angle affects
significantly the values of the cross sections for quasielastic

In summary, we have obtained simple scaling formulasand inelastic transitions. In particular, the electron momenta
for the probabilities and cross sectionsndf—n’ transitions  in the vicinity of the Ramsauer-Townsend minimum contrib-
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ute significantly to the cross sections of the inelastic protheory provides a successful quantitative description of ma-

cesses. jor phenomena in inelastic and quasielastic collisions in-
Calculations of the quenching cross sections for the Rydduced by interaction of Rydberg electron with the rare-gas

bergnS, nD, andnF states of alkali-metal Rb atom by the atoms.

ground-state Ar, Kr, and Xe atoms have been carried out in a

wide range of the principal quantum numbers. The contribu-

tion of a large number of thal—n’ transitions from the

initial selectively excitedhl level to the degenerate manifold This work has been supported by the National Science

of final n’ levels were taken into account. The results of Foundation through Grant No. PHY-9509265. V.S.L. ac-
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