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An exact solution describing the quantum states of a hydrogen atom in a homogeneous magnetic field of
arbitrary strength is obtained in the form of a power series in the radial variable with coefficients being
polynomials in the sine of the polar angle. Energy levels and wave functions for the ground state and for
several excited states are calculated exactly for the magnetic field varying in the range
0,B/(m2e3c/\3)<4000.@S1050-2947~96!11306-8#
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I. INTRODUCTION

The hydrogen atom in a uniform magnetic field remains
one of the most fascinating unsolved problems in ‘‘elemen-
tary’’ nonrelativistic quantum mechanics. Despite the great
progress in the development of quantum mechanics since the
early days of this century, only several realistic quantum
mechanical problems have been solved exactly until now.
These problems are the energy spectrum of a hydrogen atom
and of a hydrogen molecular ion, the energy levels of a har-
monic oscillator giving the spectrum of a free electron in a
uniform magnetic field, the so-called Landau levels, and the
hydrogen atom in an external electric field.

The availability of the exact solution of a realistic physi-
cal problem is of great significance to theoretical physics.
First, it provides a firm fundamental platform from which
further developments can be pursued. If the solved problem
is nonrelativistic, the exact solution can be used to accurately
identify relativistic effects from experimental data. In the
case of the hydrogen atom the exact solution provided the
solid foundation for the development of the theory of atomic
structure. Another important aspect of an exact solution is its
importance from methodical and pedagogical points of view.
For example, in elementary textbooks the exact solution for
the hydrogen atom is used to explain the structure of heavier
atoms and the principle of the Mendeleev Periodic Table.

A growing interest in the problem of the hydrogen atom
in strong magnetic fields is motivated by its various applica-
tions in different branches of physics. The problem is impor-
tant to astrophysics, solid state physics, and atomic spectros-
copy.

The structure of matter on the surface of a neutron star
where the magnetic field can be as high as 1012 G is strongly
determined by the intensity of the field@1#. If atoms on the
pulsar surface are strongly bound, forming a metal phase or
chains with large binding energy, then the mechanism of the
pulsar emission is due to the formation of the polar gap, and
the pulsar magnetosphere is formed by the pair production in
the polar gap@2#. On the contrary, if atoms on the surface of
a neutron star are bound weakly, then the charged particles
freely escape from the star, and the surface electric field is

equal to zero@3#. Detailed calculations made in the assump-
tion that the surface matter consists of a single sort of nuclei
~the ironZ526) showed that the cohesive energy of such a
matter is not sufficient for supporting the first model@4#.
However, there are indications that the bonding energy of
heterogeneous molecules in strong magnetic fields is rather
large@5#, and there is a possibility that due to the accretion of
hydrogen atoms onto the neutron star its surface may contain
both light and heavy atoms. The cohesive energy of such a
mixture can be large enough to support the finite electric
field on the pulsar surface@6#.

A quantitative understanding of problems related to the
pulsar dynamics requires a good knowledge of the behavior
of matter in superstrong magnetic fields, and the simplest
one-electron hydrogen problem is invoked to be the corner-
stone of this new atomic physics in the same manner as the
field-free hydrogen atom is the basis for the whole theory of
atomic structure.

Another very interesting and important astrophysical ap-
plication of the magnetized hydrogen problem is the radia-
tion from white dwarfs, which possess magnetic fields of the
order of 107–108 G. Some spectral features of this radiation
are identified with lines of magnetized hydrogen atoms@7#,
and complete knowledge of the excited hydrogen spectrum
in the region of intermediate field strength, which is now
limited to a small number of low-lying excited states@8#, will
be of significant importance to astrophysics.

The ‘‘atomic’’ scale of magnetic fields is available also in
laboratory conditions for shallow impurities and hydrogen-
like excitons in many semiconductors. Due to the small ef-
fective masses of the impurities and excitons and large di-
electric constants of semiconducting materials, already a
moderate magnetic field of the order of several tesla causes
complete reconstruction of the energy spectrum and wave
functions of the excitons@9#. In many semiconductors the
photoexcitation spectrum of shallow impurities lies in the
submillimeter band, which makes it possible to study transi-
tions between excited donor states@10,11#. As has been
shown recently, a strong magnetic field dramatically changes
properties of the exciton gas in a semiconductor. If the field
is so intense that the distance between the Landau levels
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exceeds the binding energy of an exciton, the system of ex-
citons becomes similar to a weakly nonideal Bose gas and is
capable of forming the Bose-Einstein condensate and a su-
perfluid state even at a relatively high temperature@12#.

In the atomic spectroscopy the basic mechanism of the
linear Zeeman effect responsible for shifting of atomic spec-
tral lines by weak magnetic fields was essentially understood
at the beginning of the century with the creation of quantum
mechanics. The theoretical interest in the problem of the
quadratic Zeeman effect has been initiated by experimentally
observed remarkable regularities in the photoabsorption
spectrum of barium@13#. In a moderate magnetic field the
photoabsorption spectrum of the Rydberg orbitals changes its
nature from typical Rydberg series to that of a series which is
equally spaced and associated with the Landau resonances
beyond the ionization threshold. In the intermediate region
where the Coulomb and the magnetic interactions are com-
parable, the spectrum does not display those simple features.
However, it was found@14# that the photoabsorption spec-
trum exhibits much more regular structure than expected.

The near crossings of energy levels and degeneracies
which occur in the intermediate region have led to a sugges-
tion that there exists an additional approximate constant of
motion and, as a consequence, an approximate dynamical
symmetry of the problem@15–19#. As is known, level cross-
ings are possible only for terms of different symmetry@20#.
The explanation of the nature of the regularities in the pho-
toabsorption spectrum was a major step towards the under-
standing of the quadratic Zeeman effect and atomic diamag-
netism in general.

The nonseparability of the Schro¨dinger equation for an
electron in combined Coulomb and magnetic fields makes
the theoretical description of the problem quite difficult, es-
pecially when the two field strengths are comparable. There
is a principal difference between this situation and the case
of an electron in combined Coulomb and external electric
fields. These two problems, the Zeeman effect and the Stark
effect for the hydrogen atom, are considered as the basis for
understanding the behavior of atoms in external electromag-
netic fields. The basic difference between the Stark effect
and the Zeeman effect concerns the symmetry of the Hamil-
tonian and the integrability of the respective Schro¨dinger
equations.

In the case of the Stark effect there is a full set of com-
muting operators, which are a projection of the orbital mo-
mentumL̂z (z axis is chosen along the field! and the modi-
fied component of the Runge-Lenz vector@21#

Âz52z•F12 ~ p̂3L̂2L̂3p̂!2
Zer

r
1r3~r3z!G ,

wherez is the unit vector. Thus, in this case there are two
constants of motion and the symmetry of the problem is
dynamical in nature. It is the direct product of groups O~2!
3O~2!, which is the respective subgroup of the supersym-
metry O~4! of the field-free Coulomb problem. An important
consequence is that the Schro¨dinger equation is separable in
parabolic coordinates, and the states are completely defined
by a full set of quantum numbers, which are eigenvalues of
the respective commuting operators@21#. Such a separation

is tantamount to the exact solution in a sense that the energy
and the wave function of any state can be computed with any
precision.

In contrast, in the case of the Zeeman effect the presence
of the external magnetic field completely destroys the super-
symmetry of the pure Coulomb problem. Now there is nei-
ther a full set of the constants of motion nor ‘‘good’’ quan-
tum numbers and the respective Schro¨dinger equation is not
separable. This causes the main difficulties in the problem.

The hydrogen atom in a magnetic field has been tackled
by many authors with the aid of various approaches ranging
from the perturbation theory for the weak-field regime@22#
to the adiabatic approximation for the opposite limit of very
strong magnetic fields@23#. It was found that the perturba-
tion series diverges already for small intensities of the field
@24#, and the perturbation analysis is not applicable for
physically interesting field values. The adiabatic approxima-
tion is applicable only for extremely large values of the field,
and its accuracy for strongly bound states is low. In the as-
ymptotic limit B→` the adiabatic approximation gives for
the binding energy of the ground state the valueE
52 1

2ln
2B ~we use atomic units, see below!. For all physi-

cally possible values of the field this estimate is about three
times larger than the actual binding energy, and even for the
hypothetical fieldB;1030 a.u. the adiabatic value is still 1.4
times larger than the true solution@25#.

Among practical computational methods the leading role
belongs to the Hartree-Fock-like technique@8#, which is
based on expansion of the wave function in terms of spheri-
cal harmonics or Landau orbitals and subsequent approxi-
mate solution of the obtained system of coupled integro-
differential equations. The method seems to have not very
good convergence in the intermediate field region and pro-
vides low precision for strongly bound states in the high-field
domain @26#. However, it has allowed one to calculate the
energies of low-lying states for the wide range of the mag-
netic field strength, as well as the splitting of the components
of the Lyman, Balmer, Paschen, and Brackett lines of the
hydrogen atom as functions of the magnetic field. In the
work @27# the Hartree-Fock-like technique was used in com-
bination with the scaling property of the Hamiltonian.

A powerful tool for establishing rigorous bounds on the
energy values is the eigenvalue analysis technique@28–31#.
However, the reported methods are applicable only to the
lowest states or to highly excited states near the ionization
threshold.

A standard method for the numerical solution of quantum-
mechanical problems is the variational technique based on
presentation of the wave function as a linear combination of
basis functions and on subsequent minimization of the en-
ergy@32#. The most precise calculations of the lowest energy
levels reported to date are variational calculations presented
in @33#. It is necessary to mention calculations with
Gaussian-type orbitals@34#, which are very promising for
investigation of molecules in the magnetic field.

Other reported techniques include fully numerical compu-
tations and semianalytical methods~e.g.,@35,36#!. Neverthe-
less, despite numerous investigations and the great progress
which has been made so far, there is as yet no satisfactory
solution of the problem, establishing a convincing theory of
the quadratic Zeeman effects, which remains the major un-
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solved problem in atomic physics. It is not yet possible to
calculate with the necessary accuracy the energy levels of
many excited states and the evolution of an arbitrary energy
level as a function of the magnetic field strength from the
zero-field limit to the regime where the magnetic and Cou-
lomb fields are comparable.

In this paper we present the exact solution of the problem
of the hydrogen atom in a uniform magnetic field. The solu-
tion is expressed as a power series in the radial variable and
the sine of the polar angle. As an application of the obtained
exact solution we present the energy levels for the ground
state and for several excited states with accuracy up to
10212 hartree.

The paper is organized as follows. In Sec. II, we formu-
late the problem and present the Schro¨dinger equation in
atomic units. In Sec. III, the solution is derived in the form of
a power series in the radial coordinate with the coefficients
depending on the polar angle. The explicit form of these
coefficients and appropriate recurrence relations are obtained
and rigorously proven. In Sec. IV, we investigate the asymp-
totic behavior of the solution and transform the boundary
conditions to a form which makes it possible to reduce the
problem to the infinite set of algebraic equations. Different
algebraic algorithms for solving the obtained set of equa-
tions, which are based on the truncation of the set at a finite
index, are presented in Sec. V. Various aspects of the con-
vergence of the solution and appropriate computational is-
sues are dealt with in Sec. VI. In Sec. VII we present the
exact calculated energy levels and wave functions for the
ground state and for several excited states of the hydrogen
atom in a uniform magnetic field.

II. FORMULATION OF THE PROBLEM

We do not take into account relativistic effects since for
fields below 2.353109 T they are negligible@33#. The effect
of the finite proton mass can be accounted for by means of a
constant energy shift@37,38#, so in the present analysis the
nucleus is assumed to be infinitely heavy, and its motion is
neglected.

The motion of the atomic electron in the superposition of
the Coulomb field of the nucleus and a uniform magnetic
field is described by the Hamiltonian

Ĥ5
1

2me
S p̂1

e

c
AD 22 e2

r
, ~1!

whereA is the vector potential andme is the electron mass.
We introduce the spherical system of coordinates (r ,u,w)
and take the gauge of the vector potential as

A5~0, 0, 1
2 Hrsinu!, ~2!

whereH is the magnetic intensity. The Hamiltonian takes the
form

Ĥ52
\2

2me
¹22 i\

eH

2mec

]

]w
1

e2H2

8mec
2 r

2sin2u2
e2

r
. ~3!

If we choose the Bohr radiusa05\2/mee
255.331029 cm

as the unit of length, one hartreeE052 Ry5mee
4/\2

527.2 eV as the unit of energy, and the value

H05me
2e3c/\352.353109 G as the unit of magnetic inten-

sity, i.e., convert formulas from the Gaussian to the atomic
system of units, then the Schro¨dinger equationĤC5EC
takes the following form:

C rr1
2

r
C r1

1

r 2
Cuu1

cosu

r 2sinu
Cu1

1

r 2sin2u
Cww1 igCw

2 1
4 g2r 2sin2uC1

2

r
C522EC. ~4!

Here g5H/H0 denotes the dimensionless intensity of the
magnetic field and subscriptsr , u, andw denote partial de-
rivatives.

The hydrogen atom in the magnetic field has two ‘‘good’’
quantum numbers, the magnetic quantum numberm and the
z-parity n, so the total wave functionC may be presented as

C~r ,u,w!5eimw~rsinu! umu~rcosu!nc~r ,u!. ~5!

The Schro¨dinger equation~4! becomes

c rr12
umu1n11

r
c r1

1

r 2
cuu

1
1

r 2
@~2umu11!cotu22ntanu#cu

5F14 g2r 2sin2u2
2

r
2~11umu!g12EbGc. ~6!

Instead of the total energyE we have introduced a new pa-
rameterEb5(11m1umu)g/22E, which coincides with the
binding energyE5g/22E for m<0.

III. DERIVATION OF SOLUTION IN THE FORM
OF A POWER SERIES

We look for the solution of the Schro¨dinger equation~6!
in the form of a power series inr with coefficients depending
on t5sinu,

c~r ,u!5(
i50

`

f i~ t !r
i . ~7!

Substituting expansion~7! into Eq. ~6! and equating coeffi-
cients of equal powers ofr , we obtain the following equation
for the angle functionsf i :

~12t2! f i91F2umu11

t
22~ umu1n11!t G f i8

1 i @ i12~ umu1n!11# f i

5 1
4 g2t2f i241@2Eb2g~ umu11!# f i2222 f i21 .

~8!

This equation is formally valid for any values ofi if we
postulate thatf i[0 for i,0. It is a nonhomogeneous linear
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differential equation, and its solution may be represented as
the sum of a particular integralGi(t) and any complemen-
tary functionFi(t).

Let us first consider the corresponding homogeneous
equation:

~12t2!Fi91F2umu11

t
22~ umu1n11!t GFi8

1 i @ i12~ umu1n!11#Fi50. ~9!

We seek the solution of Eq.~9! in the form of a power series:

Fi~ t !5(
j50

`

bi , j t
j . ~10!

We substitute the series~10! into Eq.~9!, equate coefficients
of equal powers oft, and obtain the following recurrent re-
lation for the coefficientsbi , j :

bi , j1252
~ i2 j !@ i1 j12~ umu1n!11#

~ j12!~ j12umu12!
bi , j . ~11!

This relation independently couples coefficients with evenj
and coefficients with oddj . Exactly one coefficient in each
subset can be taken arbitrarily, since all other coefficients in
the corresponding subset will be uniquely determined by this
choice. Therefore, any solution of the homogeneous equation
~9! may be represented as a linear combination of two base
vectors, the first vector corresponds to the choicebi ,051,
bi ,150, and the second one is determined bybi ,050,
bi ,151.

The ratiobi , j12 /bi , j tends to 1 asj goes to infinity, which
means that att51 the functionFi(t) becomes infinitely
large, and the solution is not a physical one. However, this
does not happen if the series~10! terminates at a finitej . As
can be seen from the recurrent relation~11!, it happens if
j5 i . Therefore, for eveni a physically allowable solution of
the homogeneous equation~9! involves only the first base
vectorbi ,051, bi ,150, while for oddi only the second base
vectorbi ,050, bi ,151 is acceptable. In both cases the func-
tion Fi is the product of an arbitrary constantCi and a poly-
nomial Hi(t)5( j50

i hi , j t
j with the lowest term equal to

unity. The termsbi , j are given by

bi , j5Cihi , j . ~12!

The functionf i assumes the following form:

f i~ t !5Gi~ t !1CiHi~ t !. ~13!

Now we proceed to the search for the particular integral
Gi of the nonhomogeneous equation~8!. The fact thatFi is a
polynomial of degreei leads to the assumption that the same
is also true for the particular integralGi(t). The validity of
this premise is rigorously proven below.

We look for a particular solution off i in the form of a
power series:

Gi~ t !5(
j50

`

ai , j t
j . ~14!

As usual, we substitute this series into~8!, equate coeffi-
cients of equal powers oft, and get the following recurrent
relation for the coefficientsai , j :

~ i2 j !@ i1 j12~ umu1n!11#ai , j

1~ j12!~ j12umu12!ai , j12

5 1
4 g2~ai24,j221Ci24hi24,j22!

1@2Eb2g~ umu11!#~ai22,j1Ci22hi22,j !

22~ai21,j1Ci21hi21,j !. ~15!

This expression is formally valid for any values of indices
i and j if we assume that coefficientsai , j with i,0 or
j521,22 are equal to zero.
Now we shall prove the following statement.Any physi-

cally allowable particular integral of Eq. (8) is a polynomial
of degree i.

Proof.We show by induction oni that

ai , j50, j. i . ~16!

The induction hypothesis holds for i50 since
f 0(t)5c(0,t)5const does not depend ont. We assume that
it holds for k, i , that is, particular integralsGk and, there-
fore, functions f k(t) are polynomials int of degreek. If
j> i , then the right-hand side of~15! is zero according to the
induction hypothesis, and expression~15! is reduced to the
following relationship:

ai , j125
~ j2 i !@ i1 j12~ umu1n!11#

~ j12!~ j12umu12!
ai , j . ~17!

As can be seen from this expression,ai ,i12 and all the sub-
sequent coefficientsai ,i14 , ai ,i16 , . . . are equal to zero. If
j→`, then ai , j12 /ai , j→1, which means that ifai ,i11Þ0,
then the particular integral tends to infinity ast tends to 1.
Therefore, a physically acceptable particular integral must
haveai , j50 for all j. i , proving the induction step.

If j5 i , then Eq.~15! takes the form 03ai ,i50 and does
not allow us to find the value ofai ,i . Therefore, this value
may be taken arbitrarily. The most ‘‘natural’’ way is to put
ai ,i50.

The series~7! can now be rewritten in the form

c~r ,u!5(
i50

`

(
j50

i

Ai , j r
isinju, ~18!

Ai , j5ai , j1Cihi , j . ~19!

We have obtained two independent subsets of solutions: the
first subset involves only even values ofj and the second one
contains only odd values ofj . We should take into account,
however, that any physical solution of the Schro¨dinger equa-
tion ~6! must obey the following boundary condition on the
axis:

]c

]u
U
u50

50. ~20!

This means that ifj is odd, thenAi , j50, and the function
c contains only even powers of the sine of the polar angle.
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As a result, we have obtained the exact structure of the
solution in the form of a power series in two variables, the
radius and the sine of the polar angle:

c~r ,u!5 (
k50

`

sin2ku (
i52k

`

Ai ,2kr
i , ~21!

Ai ,2k5H ai ,2k1Cihi ,2k , i52p,

ai ,2k , i52p11.
~22!

The polynomialsHi(t) differ from zero only for eveni and
are given by the formula

Hi~ t !5 (
k50

i /2

hi ,2kt
2k, ~23!

wherehi ,051 and the other coefficientshi ,2k are defined ac-
cording to Eq.~11!:

hi ,2k1252
~ i22k!@ i12k12~ umu1n!11#

4~k11!~k1umu11!
hi ,2k . ~24!

The modified wave functionc(r ,u) is completely deter-
mined by the infinite set of coefficientsC2p ,
p50,1, . . . ,`. Since the Schro¨dinger equation is homoge-
neous and its solution is determined up to a normalizing
factor, we may put an arbitrary nonzero coefficient from the
set $C2p% to a certain nonzero value. Ifc(0)Þ0, then we
may chooseC051, otherwise the choice will be different.

The remaining coefficients$C2p% and the eigenvalueEb
must be determined from the boundary condition at infinity:
c(`,u)50. This condition, which is imposed on a one-
dimensional interval, should be transformed to the infinite set
of zero-dimensional conditions which must be equivalent to
the set of unknowns. This step is described in the following
section.

IV. BOUNDARY CONDITIONS

It is more convenient for the following analysis to rewrite
the series~21!, defining the modified wave functionc, in the
equivalent form:

c~r ,u!5 (
k50

`

gk~rsinu!2kg2k~r !. ~25!

Functionsg2k(r ) are related to the series~21! in the follow-
ing way:

g2k~r !5
1

gk (
i52k

`

Ai ,2kr
i22k. ~26!

Substituting expansion~25! into the Schro¨dinger equation
~6!, we obtain the following chain of coupled differential
equations:

1

g
g2k9 12

2k1umu1n11

gr
g2k8 1S 2gr 111umu2

2Eb

g Dg2k
5 1

4 g2k2224~k11!~k1umu11!g2k12 . ~27!

Equation~27! is valid for all non-negative values ofk includ-
ing k50 if we postulate thatg22(r )[0.

The wave functionc tends to zero asr goes to infinity.
The radial functionsg2k must behave in the same way. We
assume that asymptotically their tendency to zero is deter-
mined by a decaying exponent which can be multiplied by a
finite power ofr :

g2k~r !;B2kr
h2kexp~2k2kr !, r→`. ~28!

We substitute this expression into the coupling equation~27!
and let the radiusr tend to infinity at a fixedk:

S 1g k2k
2 111umu2

2Eb

g DB2kr
h2kexp~2k2kr !

14~k11!~k1umu11!B2k12r
h2k12exp~2k2k12r !

2 1
4 B2k22r

h2k22exp~2k2k22r !50. ~29!

If k50, then Eq.~29! becomes

r h02h252
4g~ umu11!~B2 /B0!

k0
21~ umu11!g22Eb

e~k02k2!r . ~30!

This equality holds whenr goes to infinity only ifk05k2
and h05h2 . In general, it can be proved by induction on
k with the aid of Eq.~29! that k2k5k0 andh2k5h0 for all
k. Therefore, all functionsg2k have the same asymptotic
behavior, which is described by the following formula:

g2k~r !;B2kr
hexp~2kr !, r→`. ~31!

For any nonzero strength of the magnetic field the electron
motion in the regionu'0, r→` is perfectly described by
the adiabatic approximation@9#. This fact allows us to get the
values ofh andk:

h5
1

A2Eb

, k5A2Eb. ~32!

The boundary conditions at infinity can now be written as

lim
r→`

g2k8 ~r !

g2k~r !
52k. ~33!

The set of boundary conditions~33! is equivalent to the set
of coefficients$C2p%. Since all the coefficients but one and
the value of binding energy are not known, the obtained set
of conditions~33! is equivalent to the set of unknowns.

V. THE ALGEBRAIC ALGORITHM

The set of boundary conditions~33! obtained in the pre-
ceding section is sufficient for the complete solution of the
problem. However, in order to get a practical algorithm of
the solution we need to reduce infinite sets of unknowns and
conditions to finite sets and replace boundary conditions im-
posed at infinity with boundary conditions at a finite radius.

There are two methods of reducing the infinite set of un-
knowns to a finite set, which are based on terminating the set
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of unknowns at a finite cutoff index and algebraic construc-
tion of a set of functions defined within a certain domain
0<r<R,` and converging to a limiting function as the
cutoff index increases. We discuss both of the techniques
below.

A. The first method

The first method is based on truncating the set$C2p% at a
finite indexp5 l . All C2p with p. l are assumed to be zeros.
The set of boundary conditions is reduced in the same way,
that is, we require only the firstl11 radial functions
g0 ,g2 , . . . ,g2l to satisfy the boundary conditions given by
Eq. ~33!. The boundary conditions, in turn, are reduced to the
conditions imposed at a finite radiusr5R:

g2k8 ~R!

g2k~R!
52k. ~34!

The joining radiusR must be chosen so that the firstl11
radial functions monotonically tend to zero on@R,`#.

In order to simplify the following discussion we introduce
the concept of the ‘‘trace’’ of a coefficientC2n . Let us
choose the following values ofC2p :

C2p5H 1, p5n

0, pÞn.
~35!

We compute allai , j andbi , j , according to Eqs.~12!, ~15!,
and ~24!, and designate obtained terms viaTi , j

n :

Ti , j
n 5ai , j1bi , j5H 0, i,2n

h2n, j , i52n

ai , j , i.2n.

~36!

We define the resulting functionfn(r ,t) as the ‘‘trace’’ of
the coefficientC2n :

fn~r ,t !5 (
k50

`

(
i52k

`

Ti ,2k
n r i t2k. ~37!

The wave functionc is the sum of products of coefficients
C2p and their ‘‘traces’’:

c~r ,t !5 (
p50

`

C2pfp~r ,t !. ~38!

The ‘‘trace’’ can also be represented as a sum of radial func-
tions in a form similar to Eq.~25!:

fn~r ,t !5 (
k50

`

gk~rt !2kq2k
n ~r !. ~39!

The radial functionsq2k
n and their derivatives are given by

q2k
n ~r !5

1

gk (
i52k

`

Ti ,2k
n r i22k, ~40a!

d

dr
q2k
n ~r !5

1

gk (
i52k11

`

~ i22k!Ti ,2k
n r i22k21. ~40b!

The radial functionsg2k(r ) are linear combinations of the
functionsq2k

n :

g2k~r !5 (
p50

`

C2pq2k
p ~r !, ~41a!

g2k8 ~r !5 (
p50

`

C2p

d

dr
q2k
p ~r !. ~41b!

The boundary conditions~34! take the form

(
p50

`

C2pF ddr q2kp ~R!1kq2k
p ~R!G50. ~42!

Since we consider the truncated set of coefficientsC2p ,
the summation in Eq.~38! must extend only tol instead of
infinity, and the exact functionc is replaced with a reduced
function c̃ l ,R :

c̃ l ,R~r ,t !5 (
p50

l

C2pfp~r ,t !

5 (
k50

`

gk~rt !2kg̃2k~r !, ~43!

g̃2k~r !5 (
p50

l

C2pq2k
p ~r !. ~44!

The indexR in the definition of c̃ l ,R symbolizes that this
function satisfies boundary conditions imposed onl11 ra-
dial functionsg̃2k(r ) at r5R:

g̃ 2k8 ~R!1kg̃2k~R!50, k50,1, . . . ,l . ~45!

Now we need to find the coefficientsC2p ,
p50,1, . . . ,l , and the value ofEb . At least one of the co-
efficientsC2p in the solution will differ from zero. Let us
denote the index of such a coefficient viad: C2dÞ0. Since
the Schro¨dinger equation is homogeneous and its solution
can be multiplied by a normalizing factor, we may choose
C2d51. As a result, we havel11 unknowns: the value of
Eb and $C2p : 0<p< l , pÞd%, which must satisfyl11
equations~45!. The coefficientsC2p enter Eq.~45! in a linear
way and can be found directly as the solution of a system of
l linear equations.

In order to find the values ofq2k
p (R) and (dq2k

p /dr)(R)
one needs to compute infinite sums in Eq.~40!. However,
asymptotically~asi→`) the valuesTi ,2k

n Ri converge to zero
very fast ~see Sec. VIA!, and the values ofq2k

p (R) and
(dq2k

p /dr)(R) may be calculated with any desired precision
by terminating the summation in Eq.~40! at a finitei .

One of the possible algorithms of finding the unknowns is
to solve the system~45! with k51,2, . . . ,l with respect to
the l unknown coefficientsC2p , pÞd, at a fixed value of
Eb , and to substitute the obtained values ofC2p into Eq.~45!
at k50. If Eb is not an exact solution, then the left-hand side
of ~45!, which we designate here as

D~Eb!5g̃ 08~R!1kg̃0~R! ~46!
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and which nonlinearly depends onEb , will differ from zero.
Instead of the system ofl11 equations~45! we now have a
single nonlinear equationD(Eb)50, which can be solved by
an iterative method with arbitrarily high precision. Its roots
Eb define energy levels in the consideredl ,R approximation.

The general character of the energy spectrum within each
m,n subspace corresponds to a typical atomic spectrum of
bound states. The largest in magnitude rootEb corresponds
to the ground state, other roots corresponding to various ex-
cited states lie in the interval between zero energy and the
ground energy. The structure of the spectrum, especially in
the region of intermediate field strength, is very complicated.
Although for low-lying states a field-free-like classification
was developed@22# and widely adopted~see@8#!, it seems
difficult to apply that scheme consistently for higher states.
In order to avoid any ambiguity we shall label the roots
successively by the indexS, starting from the ground state
(S50) and going to excited states. Since the roots depend
also onl andR, we denote them as (Ẽb

S) l ,R .
At a fixedR the obtained solutions (Ẽb

S) l ,R and c̃ l ,R con-
verge to their limits as the number of coefficientsl increases:

lim
l→`

~Ẽb
S! l ,R5~Eb

S!R , ~47!

lim
l→`

c̃ l ,R~r ,t !5FR~r ,t !. ~48!

As the radiusR increases, the value (Eb
S)R converges to the

exact energy levelEb
S , and at any given point (r ,t) the func-

tion FR(r ,t) converges to the exact solutionc(r ,t):

lim
R→`

~Eb
S!R5Eb

S , ~49!

lim
R→`

FR~r ,t !5c~r ,t !. ~50!

The character of convergence makes it possible to control the
upper bound of discrepancy between the value (Ẽb

S) l ,R and
the exact valueEb

S . This can be achieved by comparing re-
sults obtained with different values ofl andR and is dis-
cussed in detail in Sec. VI, along with some aspects of the
computational technique.

As a result, the outlined algorithm allows straightforward
algebraic computation of energy levels and wave functions
of the hydrogen in a magnetic field with any desired preci-
sion. However, this technique is not the only one available,
and another method of reducing the infinite set of unknowns
to a finite set which is described below solves the problem in
a much more efficient way, involving a considerably smaller
amount of arithmetical operations, while keeping all the ad-
vantages of the above scheme.

B. The second method

Instead of truncating the set of coefficients$C2p% we can
terminate the infinite set of radial functions given by Eqs.
~25! and ~26!. We take a finitel and assume that fork. l
radial functionsg2k(r ) are identically equal to zero:

g2k~r ![0, k. l . ~51!

In terms of coefficientsC2p this method of truncation means
that instead of putting coefficientsC2p with p. l to zero we
choose them in such a way that

a2p,2l121C2ph2p,2l1250. ~52!

The boundary conditions are reduced to a finite radiusR
according to Eq.~34!, as was done in the first method.

To facilitate the further discussion we define the
‘‘ l -trace’’ of a coefficientC2n . We choose the following
values of coefficientsC2p :

C2p5H 1, p5n< l

0, pÞn, p< l ,
~53!

and compute valuesai , j andbi , j with j<2l , following Eqs.
~12! and ~15!. In contrast to the first method, allai , j with
j.2l are put to zeros, which means that valuesC2p with
p. l are taken implicitly in accordance with Eq.~52!. We
denote the obtained terms via (Tl

n) i , j :

~Tl
n! i , j5ai , j1bi , j5H 0, i,2n or j.2l

h2n, j , i52n

ai , j , i.2n.

~54!

The resulting functionv l ,n(r ,t) is the ‘‘l -trace’’ of the coef-
ficient C2n :

v l ,n~r ,t !5 (
k50

l

(
i52k

`

~Tl
n! i ,2kr

i t2k. ~55!

The wave functionc(r ,t) is the limit of the sum ofl11
products of coefficientsC2p by their l -traces asl goes to
infinity:

c~r ,t !5 lim
l→`

(
p50

l

C2pv l ,p~r ,t ! ~56a!

5 lim
l→`

(
k50

l

gk~rt !2kwl ,2k~r !,

~56b!

where the radial functionswl ,2k(r ) are

wl ,2k~r !5
1

gk(
p50

l

C2p (
i52k

`

~Tl
p! i ,2kr

i22k. ~57!

Termination of the set of radial functions results in re-
moving the limit sign from Eq.~56! and replacing the exact
functionc(r ,t) with a reduced functionĉ l ,R :

ĉ l ,R~r ,t !5 (
p50

l

C2pv l ,p~r ,t !5 (
k50

l

gk~rt !2kwl ,2k~r !.

~58!

The reduced functionĉ l ,R must satisfyl11 boundary con-
ditions imposed at a finite radiusR:

wl ,2k8 ~R!1kwl ,2k~R!50, k50,1, . . . ,l . ~59!
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Unknown values$C2p% andEb may be found in exactly the
same way as was done in the first method: one of the coef-
ficientsC2p is put to unity, otherC2p are found from the
linear system~59! with k51,2, . . . ,l , and the resulting non-
linear equation is solved forEb . The obtained values of
Eb , which we designate as (Êb

S) l ,R , and reduced functions
ĉ l ,R tend to their limits as the cutoff indexl increases:

lim
l→`

~Êb
S! l ,R5~Eb

S!R , ~60!

lim
l→`

ĉ l ,R~r ,t !5FR~r ,t !. ~61!

Values (Eb
S)R andFR(r ,t) in the right-hand sides of Eqs.

~60! and ~61! are equal to the corresponding limits in the
right-hand sides of~47! and~48!. The exact solution is given
by formulas~49! and ~50!.

One of the advantages of this scheme over the first
method is that it entails a considerably smaller amount of
arithmetical calculations. Another merit resides in a substan-
tially faster convergence of limits~60! and ~61! than that of
Eqs.~47! and ~48!.

However, even the second method can be substantially
improved, and before proceeding to the discussion of con-
vergence in Sec. VI we shall consider a factorization of the
wave function, which partially accounts for the asymptotic
behavior ofc and significantly accelerates convergence of
the solution.

C. Factorization of the wave function

Let us return to Eq.~29!, which describes asymptotic
links between radial functionsg2k(r ). Taking the asymptotic
law ~31! and the value ofk given by ~32!, we reduce Eq.
~29! to the following form:

B2k125
B2k22/42~11umu!B2k

4~k11!~k1umu11!
. ~62!

As can be seen from~62!, B252B0/4, B45B0 /(4
232),

and, generally,

B2k5
~21!k

4kk!
B0 ~63!

~this formula is easily proved by induction onk).
At the first glance it seems possible to substitute Eqs.~31!

and ~63! into the series~25! and obtain the asymptotic be-
havior ofc at large values ofr :

c~r ,u!;B0r
hexp~2kr !(

k50

`
1

k! S 2
1

4
gr 2sin2u D k

5B0r
hexp~2kr !expS 2

1

4
gr 2sin2u D . ~64!

However, this result is wrong because the asymptotic for-
mula ~29! was derived on the assumption thatk is fixed and
r goes to infinity, while Eq.~64! requiresk to go to infinity
at a fixedr . The inaccuracy of Eq.~64! can be easily verified
by substituting it into the Schro¨dinger equation~6!.

Nevertheless, we assume that Eq.~64! represents an ap-
proximate asymptote ofc. This asymptote may be ac-
counted for by introducing a new functionx(r ,u) according
to

c~r ,u!5exp~2 1
4 gr 2sin2u!x~r ,u!. ~65!

Substituting this expression into the Schro¨dinger equation
~6!, we obtain the following equation forx(r ,u):

x rr1S 2umu1n11

r
2grsin2u Dx r1

1

r 2
xuu

1F ~2umu11!cotu22ntanu

r 2
2gsinucosuGxu

5S 2
2

r
12EbDx. ~66!

We use the technique employed in Sec. III and look forx in
the form of a power series inr with coefficients, which de-
pend ont5sinu,

x~r ,u!5(
i50

`

f i~ t !r
i . ~67!

Substituting Eq.~67! into the Schro¨dinger equation~66! and
equating coefficients of equal powers ofr , we obtain a non-
homogeneous differential equation forf i(t), which differs
from Eq. ~8! only in the right-hand side:

~12t2! f i91F2umu11

t
22~ umu1n11!t G f i8

1 i @ i12~ umu1n!11# f i

5g~ t2t3! f i228 1@2Eb1g~ i22!t2# f i2222 f i21 .

~68!

The analysis carried out in Sec. III is applicable to the
present situation as well. The functionf i(t) is the sum of a
particular integral and a complementary function. Boundary
condition (dx/dt)(0)50 implies thatf i(t) includes only the
even powers oft. A complementary functionFi(t) is the
product of a constantCi by the polynomialHi(t) given by
Eqs.~23! and ~24!, and f i is given by Eq.~13!.

The only difference between the present case and the one
discussed in Sec. III is that the recurrent relation~15! for the
coefficientsai , j is replaced with the following equation:

~ i2 j !@ i1 j12~ umu1n!11#ai , j1~ j12!~ j12umu12!ai , j12

5g~ i2 j !~ai22,j221Ci22bi22,j22!

1~2Eb1g j !~ai22,j1Ci22bi22,j !

22~ai21,j1Ci21bi21,j !. ~69!

The functionx is given by the power series in two variables,

x~r ,u!5 (
k50

`

sin2ku (
i52k

`

Ãi ,2kr
i , ~70!
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Ãi ,2k5H ai ,2k1Cihi ,2k , i52p

ai ,2k , i52p11,
~71!

where values ofai , j are determined from~69!.
In order to transform the one-dimensional boundary con-

dition at infinity x(`,u)50 into an infinite set of zero-
dimensional conditions we rewritex in the form, similar to
Eq. ~25!,

x~r ,u!5 (
k50

`

gk~rsinu!2ky2k~r !. ~72!

Substituting this expression into~66!, we obtain the follow-
ing equation fory2l(r ):

1

2g
y2k9 1

2k1umu1n11

gr
y2k8 1S 1gr 2

Eb

g
2kD y2k

5
1

2gr
y2k228 22~k11!~k1umu11!y2k12 . ~73!

The functiony0(r ) coincides withg0(r ), whose asymptotic
behavior is given by Eqs.~31! and ~32!, and fork50 and
r→` Eq. ~73! yields

y2;B2r
h21exp~2kr !, ~74!

B25B0

~h1umu1n11!k21

2g~ umu11!
.

The asymptotic behavior ofy2k for k.1 is given by

y2k;B2kr
h21exp~2kr !, B2k5

~k21!B2k22

2k~k1umu!
. ~75!

Therefore, the exponential law, which determines the asymp-
totic behavior of functionsg2l , remains valid fory2k , and
boundary conditions fory2k coincide with the conditions
~33! for g2k :

lim
r→`

y2k8 ~r !

y2k~r !
52k. ~76!

Now the problem is formulated in exactly the same manner
as was done for the functionc(r ,u), and the algebraic algo-
rithms described in Secs. V A and V B are applicable to the
present situation without any modification.

It turned out that the factorization of the wave function
described above dramatically accelerates the convergence of
solution when the cutoff indexl increases. The fastest con-
vergence is achieved by the combination of the factorization
and the algorithm described in Sec. VB.

VI. CONVERGENCE AND NUMERICAL TECHNIQUE

The algebraic algorithms described in Secs. VA and VB
are based on three reductions of infinite quantities to finite
values which can be practically dealt with. The first reduc-
tion is the termination of infinite sums in Eqs.~40! and~57!
at a finite indexi . The second truncation occurs when we
consider reduced functionsc̃ l ,R andĉ l ,R @Eqs.~43! and~58!#

and take a finite numberl of unknown coefficients and func-
tions. Finally, the third reduction is the replacement of
boundary conditions at infinity with boundary conditions im-
posed at a finite radius~34!. In this section we address these
aspects of the algorithms and discuss the question of conver-
gence of the solution.

A. Calculation of ‘‘traces’’

In calculating radial functionsq2k
n (R) and wl ,2k(R) we

need to terminate the summation overi in Eqs.~40! and~57!
at a finite value ofi . In order to control the error introduced
by this operation it is important to know the upper bound on
the remainder of the series. It follows from Eqs.~15! and
~69! that the asymptotic rate of convergence is exponentially
fast because for large values ofi the multiplier beforeai , j in
the left-hand sides of~15! and~69! is proportional toi 2 while
the right-hand side of~15! does not containi at all and the
right-hand side of~69! involves i only linearly. This qualita-
tive consideration can be rigorously proven.

Here we present the analysis of convergence of the infi-
nite sum in Eq.~55! with coefficients given by~69! ~the
second method with factorization!. Let us denote thel11
coefficients (Tl

n) i , j , j50,2, . . . ,2l as a vectorTi ; its kth
component is (Tl

n) i ,2k . The recurrent relation~69! can be
presented in the form

JiTi5gEiTi2222Ti21 , ~77!

whereJi andEi are matrices (l11)3( l11) with the fol-
lowing nonzero elements:

~Ji !p,p 5 ~ i22p!@ i12p12~ umu1n!11#,

~Ji !p,p11 5 4~p12!~p1umu12!,

~Ei !p,p 5 i22p,

~Ei !p,p21 5
2Eb

g
12p.

~78!

Equation~77! may be rewritten in the form

Ti5gJi
21EiTi2222Ji

21
Ti21 . ~79!

Lemma 1.Let iBi,max0<i<l11uBi u be the norm of a vec-
tor B of length l11. Then fori.3(l1umu11)

iJi
21

Bi,
1

i 224l 224~ l1umu11!2
iBi,Ki iBi .

Proof. The nonzero elements of the inverse matrixJi
21

are given by the following formula:

~Ji
21!p,q5~21!q2p

Pn5p
q21~Ji !n,n11

Pn5p
q ~Ji !n,n

, q>p. ~80!

The following estimation is valid (u5 l1umu11):
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u~Ji
21!p,qu5

Pn5p
q21~Ji !n,n11

Pn5p
q ~Ji !n,n

<
@maxp<n<q21~Ji !n,n11#

q2p

@minp<n<q~Ji !n,n#
q2p11

<
@4~q11!~q1umu11!#q2p

$~ i22q!@ i12q12~ umu1n!11#%q2p11

,
@2~q1umu11!#2~q2p!

~ i 224q2!q2p11 <
~2u!2~q2p!

~ i 224l 2!q2p11

5
1

i 224l 2 S 4u2

i 224l 2D
q2p

,~Ji
21!p.q . ~81!

Further,

iJi
21

Bi<iJi
21j iiBi ,

iJi
21j i< max

0<p< l
(
q50

l

u~Ji
21!p,qu

, max
0<p< l

(
s50

l2p

~Ji
21!p,p1s

,
1

i 224l 2(s50

` S 4u2

i 224l 2D
s

5
1

i 224~ l 21u2!
.

h

Lemma 2.If

i.4~ l1umu11!1
1

g S 2r 12Eb11D1A2r , ~82!

then the following inequality is valid:

iTi1rTi11i,
4g

i
iTi221rTi21i . ~83!

Proof.As follows from ~79!,

iTi i<gKi iEiTi22i12Ki iTi21i .

For any vectorB

iEiBi<iBi max
0<p< l

(
q50

l

~Ei !p,q

5S i1 2Eb

g D iBi,Li iBi .

Straightforward algebra gives

iTi1rTi11i<W1iTi22i1W2r iTi21i ,

where

W15gKiLi~112rK i11!,

W25
2Ki

r
1Ki11~gLi1114Ki !.

If we again denoteu5 l1umu11, then

W1,
g

i

112Eb /g i

128u2/ i 2 S 11
2r

i 228u2D,
4g

i
,

W2,
g

i

1

128u2/ i 2 S 112
1/r1Eb

ig
1

1

i 3g

4

128u2/ i 2D
,
2g

i S 112
1/r1Eb

ig
1

8

i 3g D,
4g

i
.

Therefore,

iTi1rTi11i<~ iTi22i1r iTi21i !max~W1 ,W2!

,
4g

i
iTi221rTi21i .

h

Lemma 3.If ~82! is satisfied andi.8gr 2, then

max
0<k< l

(
s5 i

`

~Tl
n!s,2kr

s,r 2 max
0<k< l

(
s5 i22

i21

~Tl
n!s,2kr

s. ~84!

Proof.With the aid of Lemma 2 we obtain

max
0<k< l

(
s5 i

`

~Tl
n!s,2kr

s5i(
s5 i

`

Tsr
si

<r i (
p50

`

iTi12p1rTi12p11ir 2p

,r i iTi221rTi21i (
p50

`

)
q50

p
4gr 2

i12q

,r i iTi221rTi21i

5r 2 max
0<k< l

(
s5 i22

i21

~Tl
n!s,2kr

s.

h

Lemma 3 gives an upper bound on the remainder of the
series in Eq.~55!. Analogous formulas can be easily obtained
for the second algorithm without factorization and for the
first algorithm.

To get more insight into the asymptotic behavior of series
we present typical results obtained numerically. Figure 1~a!
shows the dependence of terms (Tl

n) i , j @given by ~54!#, ad-
dends (Tl

n) i , jR
i , and partial sums(k50

i (Tl
n)k, jR

i on the index
i for the following set of values:g51, R510, l510, and
j5n5umu5n50. The computation was performed accord-
ing to the second algorithm without factorization.

The behavior exhibited by terms of the series is very typi-
cal for both algorithms and demonstrates the already proven
fact that for large values ofi the magnitude of addends de-
creases exponentially fast. In particular, it shows that the
estimate given by Lemma 3 is very crude and the condition
~84! is satisfied already fori!8gr 2. This is caused by very
rough estimates made in Lemma 2, where terms like
(112Eb /g i )/(1-8u

2/ i 2) were majorized by 2. In practice,
the calculation may be terminated if several last addends
have not altered the sum within the computational precision.

The numerical data shown in Fig. 1~a! are presented in
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Fig. 1~b! on a linear scale. The picture demonstrates that
although some intermediate addends are very large in mag-
nitude, they nevertheless perfectly cancel themselves, and
the final result( i50

` (T10
0 ) i ,0R

i'20.5664 is less by almost

four orders of magnitude than some intermediate partial
sums(k50

i (T10
0 )k,0R

k.
In Fig. 2 the same effect is shown for the caseg5100,

R58, l524, j5n5umu5n50. Although the intermediate
terms reach 10147, the final result is25.15831083, i.e., by
64 orders of magnitude less.~The computation was per-
formed with precision'300 decimal digits.! Due to the
complicated form of matricesJi and Ji

21 concise presenta-
tion of the sum explaining the cancellation of terms is not
obtained yet.

B. Convergence of solution

The principal question is the convergence of solutions
with increasing cutoff indexl and radiusR. Since a rigorous
investigation of convergence is not yet completed, the dis-
cussion is based on the analysis of obtained numerical data.

FIG. 1. The behavior of terms (T10
0 ) i ,0 and partial sums

(k50
i (T10

0 )k,0R
k for g51, R510, andm5n50 ~dimensionless

units!: ~a! on a logarithmic scale,~b! on a linear scale.

FIG. 2. Behavior of terms (T24
0 ) i ,0R

i and partial sums
(k50
i (T10

0 )k,0R
k for g5100, R58, andm5n50 ~dimensionless

units!.

FIG. 3. The dependence of the difference between successive
values (Êb

0) l ,R and (Êb
0) l21,R on the cutoff index l for g51,

m5n50, R55, andR515.

FIG. 4. The dependence of the difference between values
(Êb

0) l ,R and (Êb
0) l ,R21 on the joining radiusR for g51, l522,

m5n50.

54 297EXACT SOLUTION FOR A HYDROGEN ATOM IN . . .



The first question we address is the convergence of solu-
tion as the cutoff indexl increases. Figure 3 shows the loga-
rithm of difference between successive values (Êb

0) l ,R and
(Êb

0) l21,R for g51, m5n50, calculated according to the
second method with factorization. As can be seen, this dif-
ference decreases exponentially with increasingl , and the
rate of decrease grows slightly asR becomes larger. This fact
allows us to obtain the upper bound on the truncation error:

u~Êb
S!`,R2~Êb

S! l ,Ru<au~Êb
S! l ,R2~Êb

S! l21,Ru. ~85!

The value ofa depends on the quantum state and can be
obtained from computation~for the ground statea'0.3, for
low-lying statesa&1).

Figure 4 demonstrates the dependence of (Êb
0) l ,R on the

joining radiusR for the caseg51, m5n50, l522. The
value of log10u(Êb

0) l ,R2(Êb
0) l ,R21u is plotted againstR and

shows that this difference decreases exponentially asR in-

TABLE I. Binding energies~atomic units! of the ground state
1s0 . The maximal absolute error of each value is610212 (61 in
the last digit!.

g 1s0 g 1s0

1.031024 0.500 049 997 500 1.0 0.831 168 896 733
1.2531024 0.500 062 496 094 1.25 0.885 966 911 455
1.531024 0.500 074 994 375 1.5 0.935 357 250 593
2.031024 0.500 099 990 000 2.0 1.022 213 907 665
2.531024 0.500 124 984 375 2.5 1.097 537 010 632
3.031024 0.500 149 977 499 3.0 1.164 532 989 349
4.031024 0.500 199 960 000 4.0 1.280 798 016 052
5.031024 0.500 249 937 500 5.0 1.380 398 866 427
6.031024 0.500 299 910 000 6.0 1.468 245 988 856
8.031024 0.500 399 840 000 8.0 1.619 384 995 667

1.031023 0.500 499 750 000 10.0 1.747 797 163 714
1.2531023 0.500 624 609 376 12.5 1.886 577 311 278
1.531023 0.500 749 437 501 15.0 2.008 064 107 786
2.031023 0.500 999 000 004 20.0 2.215 398 515 433
2.531023 0.501 248 437 511 25.0 2.390 136 630 706
3.031023 0.501 497 750 022 30.0 2.542 421 668 319
4.031023 0.501 996 000 071 40.0 2.801 029 824 778
5.031023 0.502 493 750 172 50.0 3.017 860 707 047
6.031023 0.502 991 000 357 60.0 3.206 081 694 334
8.031023 0.503 984 001 130 80.0 3.524 277 153 307

0.01 0.504 975 002 759 100.0 3.789 804 236 305
0.0125 0.506 210 944 235 125.0 4.072 468 138 441
0.015 0.507 443 763 961 150.0 4.316 646 712 620
0.02 0.509 900 044 089 200.0 4.727 145 110 687
0.025 0.512 343 857 534 250.0 5.067 673 826 226
0.03 0.514 775 222 717 300.0 5.360 814 684 149
0.04 0.519 600 701 769 400.0 5.851 651 162 832
0.05 0.524 376 706 706 500.0 6.257 087 674 681
0.06 0.529 103 522 564 600.0 6.604 936 099 852
0.08 0.538 411 004 390 800.0 7.185 134 522 785

0.1 0.547 526 480 401 1000.0 7.662 423 247 755
0.125 0.558 657 016 093 2000.0 9.304 765 082 770
0.15 0.569 502 945 779 4000.0 11.204 145 206 603
0.2 0.590 381 565 035
0.25 0.610 247 435 260
0.3 0.629 186 552 901
0.4 0.664 605 379 868
0.5 0.697 210 538 458
0.6 0.727 462 287 757
0.8 0.782 283 393 769

TABLE II. Binding energies of the state 2s0 . The uncertainty of
each value is61 in the last digit.

g 2s0 g 2s0

1.031024 0.125 049 965 000 1.0 0.160 468 982 634
1.2531024 0.125 062 445 312 1.25 0.164 543 710 079
1.531024 0.125 074 921 250 1.5 0.168 083 038 952
2.031024 0.125 099 860 000 2.0 0.173 944 705 973
2.531024 0.125 124 781 251 2.5 0.178 655 849 584
3.031024 0.125 149 685 001 3.0 0.182 576 926 410
4.031024 0.125 199 440 004 4.0 0.188 846 463 700
5.031024 0.125 249 125 010 5.0 0.193 746 709 717
6.031024 0.125 298 740 021 6.0 0.197 757 831 051
8.031024 0.125 397 760 065 8.0 0.204 076 207 347

1.031023 0.125 496 500 159 10.0 0.208 951 829 045
1.2531023 0.125 619 531 639 12.5 0.213 793 293 8
1.531023 0.125 742 125 806 15.0 0.217 717 571 0
2.031023 0.125 986 002 548 20.0 0.223 842 126 8
2.531023 0.126 228 131 218 25.0 0.228 529 129 8
3.031023 0.126 468 512 890 30.0 0.232 313 979 6
4.031023 0.126 944 040 697 40.0 0.238 199 272 8
5.031023 0.127 412 599 234 50.0 0.242 687 793 8
6.031023 0.127 874 205 455 60.0 0.246 303 868 2
8.031023 0.128 776 646 819 80.0 0.251 913 320 1

0.01 0.129 651 571 358 100.0 0.256 181 570 3
0.0125 0.130 706 932 235 125.0 0.260 376 3
0.015 0.131 720 323 013 150.0 0.263 748 6
0.02 0.133 624 177 535 200.0 0.268 968 2
0.025 0.135 369 943 751 250.0 0.272 930 7
0.03 0.136 965 459 672 300.0 0.276 112 2
0.04 0.139 739 824 579 400.0 0.281 029 7
0.05 0.142 016 720 515 500.0 0.284 757 5
0.06 0.143 863 462 506 600.0 0.287 747 4
0.08 0.146 507 410 460 800.0 0.292 363

0.1 0.148 089 155 790 1000.0 0.295 857
0.125 0.149 057 200 581
0.15 0.149 331 214 566
0.2 0.148 986 678 198
0.25 0.148 506 569 448
0.3 0.148 367 306 786
0.4 0.149 166 347 848
0.5 0.150 807 855 777
0.6 0.152 765 570 424
0.8 0.156 770 811 245
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creases. The rate of decrease depends on the quantum state;
as a necessary condition,R must be greater than the position
of the farthest extremum of the wave function. The almost
perfect exponential behavior exhibited by the curve in Fig. 4
is typical for all energy levels and allows one to obtain a
reliable upper bound on the differenceu(Êb

S) l ,`2(Êb
S) l ,Ru.

C. Numerical technique

As was mentioned in Sec. VI A, terms of the infinite sums
almost perfectly cancel themselves. There is little doubt that

there exist concise analytical formulas for summation, and
we have serious reasons to believe that the ongoing theoreti-
cal investigation will allow us to obtain these formulas. Re-
sults reported in the present work were obtained by direct
summation of series.

Although the algorithm of solution described in Sec. V is
rather simple and straightforward and the summation of se-
ries is basically a very simple procedure, the problem does
require a nontrivial numerical treatment. The need to keep
track of a large number of canceling digits leads to the re-

TABLE III. Binding energies of the state 2p0 . The uncertainty
of each value is61 in the last digit.

g 2p0 g 2p0

1.031024 0.125 049 985 000 1.0 0.260 006 615 944
1.2531024 0.125 062 476 563 1.25 0.271 978 002 965
1.531024 0.125 074 966 250 1.5 0.281 900 248 134
2.031024 0.125 099 940 000 2.0 0.297 710 972 385
2.531024 0.125 124 906 250 2.5 0.310 016 491 599
3.031024 0.125 149 865 000 3.0 0.320 040 180 152
4.031024 0.125 199 760 001 4.0 0.335 695 728 671
5.031024 0.125 249 625 003 5.0 0.347 617 775 313
6.031024 0.125 299 460 005 6.0 0.357 161 821 897
8.031024 0.125 399 040 017 8.0 0.371 769 785 534

1.031023 0.125 498 500 042 10.0 0.382 649 848 306
1.2531023 0.125 622 656 353 12.5 0.393 078 49
1.531023 0.125 746 625 213 15.0 0.401 232 88
2.031023 0.125 994 000 672 20.0 0.413 377 73
2.531023 0.126 240 626 640 25.0 0.422 156 44
3.031023 0.126 486 503 399 30.0 0.428 898 19
4.031023 0.126 976 010 735 40.0 0.438 733 80
5.031023 0.127 462 526 184 50.0 0.445 685 11
6.031023 0.127 946 054 235 60.0 0.450 929 99
8.031023 0.128 904 170 933 80.0 0.458 430 21

0.01 0.129 850 415 833 100.0 0.463 617 76
0.0125 0.131 016 634 643 125.0 0.468 282 5
0.015 0.132 164 579 759 150.0 0.471 726 0
0.02 0.134 406 465 981 200.0 0.476 532 0
0.025 0.136 577 969 688 250.0 0.479 771 0
0.03 0.138 681 330 848 300.0 0.482 127 2
0.04 0.142 693 709 740 400.0 0.485 363 0
0.05 0.146 464 837 782 500.0 0.487 507 1
0.06 0.150 016 268 441 600.0 0.489 047 0
0.08 0.156 540 574 354 800.0 0.491 132 8

0.1 0.162 410 078 399 1000.0 0.492 495 0
0.125 0.168 998 302 963
0.15 0.174 911 277 818
0.2 0.185 184 041 068
0.25 0.193 911 175 542
0.3 0.201 504 145 350
0.4 0.214 265 501 994
0.5 0.224 760 340 776
0.6 0.233 678 467 049
0.8 0.248 291 923 804

TABLE IV. Binding energies of the state 2p21 . The uncer-
tainty of each value is61 in the last digit.

g 2p21 g 2p21

1.031024 0.125 099 970 000 1.0 0.456 597 058 424
1.2531024 0.125 124 953 125 1.25 0.498 311 263 507
1.531024 0.125 149 932 500 1.5 0.535 345 522 071
2.031024 0.125 199 880 000 2.0 0.599 612 773 602
2.531024 0.125 249 812 500 2.5 0.654 769 276 594
3.031024 0.125 299 730 001 3.0 0.703 546 577 517
4.031024 0.125 399 520 003 4.0 0.787 825 272 030
5.031024 0.125 499 250 007 5.0 0.859 832 622 577
6.031024 0.125 598 920 015 6.0 0.923 291 780 185
8.031024 0.125 798 080 048 8.0 1.032 503 930 764

1.031023 0.125 997 000 116 10.0 1.125 422 341 840
1.2531023 0.126 245 312 783 12.5 1.226 045 644 052
1.531023 0.126 493 250 587 15.0 1.314 336 111 787
2.031023 0.126 988 001 855 20.0 1.465 508 545 545
2.531023 0.127 481 254 527 25.0 1.593 422 436 295
3.031023 0.127 973 009 384 30.0 1.705 287 570 967
4.031023 0.128 952 029 630 40.0 1.896 082 532 426
5.031023 0.129 925 072 248 50.0 2.056 846 667 495
6.031023 0.130 892 149 587 60.0 2.196 970 312 115
8.031023 0.132 808 470 954 80.0 2.435 025 269 312

0.01 0.134 701 144 177 100.0 2.634 760 665 299
0.0125 0.137 034 022 428 125.0 2.848 423 318 040
0.015 0.139 330 697 178 150.0 3.033 821 231 621
0.02 0.143 817 610 347 200.0 3.347 145 23
0.025 0.148 166 846 117 250.0 3.608 550 84
0.03 0.152 384 114 685 300.0 3.834 605 66
0.04 0.160 447 535 409 400.0 4.215 128 28
0.05 0.168 058 188 454 500.0 4.531 246 38
0.06 0.175 264 418 760 600.0 4.803 692 91
0.08 0.188 633 896 259 800.0 5.260 512 40

0.1 0.200 845 672 373 1000.0 5.638 421 08
0.125 0.214 808 439 701
0.15 0.227 607 738 247
0.2 0.250 539 101 715
0.25 0.270 805 013 466
0.3 0.289 092 475 828
0.4 0.321 354 781 180
0.5 0.349 477 297 763
0.6 0.374 623 772 834
0.8 0.418 588 648 705
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quirement for high computational precision. In order to suit
this demand we had to develop a special high-precision
floating-point arithmetic which is written as a portable code
in C11 programming language and is specially optimized for
the employed algorithm. The high-precision arithmetic intro-
duces two kinds of numbers, medium-precision numbers,
used to represent physical quantities (g, R, Eb) in the inter-
nal format with moderate precision ('20 decimal digits!,
and high-precision numbers, which are used to store all in-
termediate values and can provide very high computational
precision.

This technique allows very efficient calculation of sums in
Eqs.~40! and~57!. The time required to obtain seven signifi-
cant digits of the ground-state binding energy for the field
g51, i.e., for the most interesting region for the quadratic
Zeeman effect where the magnetic and Coulomb interactions
are comparable, takes about a second with a simple 386IBM

PC. For the fieldg51000 an analogous calculation takes the
time of the order of a minute with a usual desktop worksta-
tion. The precision required to compute the ground-state
binding energies with accuracy 10212 hartree is'38 decimal

digits for g51 and'280 decimal digits forg5100; calcu-
lations of excited statesn<10 in the chaotic region
g50, . . .,0.01 require 40, . . . ,70decimal digits.

VII. RESULTS

In this section we present first results obtained with the
aid of the exact solution. Due to the immense size of related
data it is impossible to give the complete description of re-
sults here, so we present only exact tables of several low-

TABLE V. Binding energies of the state 3p0 . The uncertainty
of each value is61 in the last digit.

g 3p0 g 3p0

1.031024 0.055 605 465 6 0.1 0.069 891 690 4
1.2531024 0.055 617 914 9 0.125 0.071 332 184 9
1.531024 0.055 630 353 0 0.15 0.072 640 918 4
2.031024 0.055 655 195 6 0.2 0.074 925 455 4
2.531024 0.055 679 993 1 0.25 0.076 852 801 7
3.031024 0.055 704 745 6 0.3 0.078 506 708 7
4.031024 0.055 754 115 6 0.4 0.081 222 856 5
5.031024 0.055 803 305 8 0.5 0.083 390 113 0
6.031024 0.055 852 316 0 0.6 0.085 183 211 7
8.031024 0.055 949 797 0 0.8 0.088 026 643 3

1.031023 0.056 046 559 1 1.0 0.090 224 511 3
1.2531023 0.056 166 501 7 1.25 0.092 399 910 3
1.531023 0.056 285 323 4 1.5 0.094 151 932 5
2.031023 0.056 519 611 8 2.0 0.096 854 601 0
2.531023 0.056 749 442 6 2.5 0.098 887 587 8
3.031023 0.056 974 839 1 3.0 0.100 501 208 6
4.031023 0.057 412 445 7 4.0 0.102 950 666 0
5.031023 0.057 832 710 6 5.0 0.104 762 116 0
6.031023 0.058 235 979 3 6.0 0.106 180 992 0
8.031023 0.058 993 195 6 8.0 0.108 302 456 1

0.01 0.059 687 870 0 10.0 0.109 845 603 4
0.0125 0.060 474 826 0 12.5 0.111 297 12
0.015 0.061 179 679 5 15.0 0.112 414 34
0.02 0.062 378 561 9 20.0 0.114 051 11
0.025 0.063 350 742 4 25.0 0.115 215 16
0.03 0.064 151 833 7 30.0 0.116 098 89
0.04 0.065 406 380 0 40.0 0.117 373 14
0.05 0.066 380 498 4 50.0 0.118 263 57
0.06 0.067 203 259 8 60.0 0.118 930 16
0.08 0.068 625 377 9 80.0 0.119 876 00

100.0 0.120 525 41

TABLE VI. Binding energies of the state 3p21 . The uncer-
tainty of each value is61 in the last digit.

g 3p21 g 3p21

1.031024 0.055 655 375 556 1.0 0.125 479 244 9
1.2531024 0.055 680 274 307 1.25 0.130 880 617 2
1.531024 0.055 705 150 559 1.5 0.135 344 014 5
2.031024 0.055 754 835 567 2.0 0.142 452 180 5
2.531024 0.055 804 430 584 2.5 0.148 000 767 0
3.031024 0.055 853 935 614 3.0 0.152 545 169 6
4.031024 0.055 952 675 740 4.0 0.159 716 197 4
5.031024 0.056 051 056 004 5.0 0.165 264 273 1
6.031024 0.056 149 076 488 6.0 0.169 779 722 4
8.031024 0.056 344 038 502 8.0 0.176 858 853 0

1.031023 0.056 537 562 745 10.0 0.182 301 494 7
1.2531023 0.056 777 448 097 12.5 0.187 694 09
1.531023 0.057 015 091 899 15.0 0.192 058 82
2.031023 0.057 483 670 174 20.0 0.198 863 10
2.531023 0.057 943 334 623 25.0 0.204 066 16
3.031023 0.058 394 132 313 30.0 0.208 266 21
4.031023 0.059 269 363 270 40.0 0.214 795 86
5.031023 0.060 109 922 884 50.0 0.219 775 73
6.031023 0.060 916 499 227 60.0 0.223 788 10
8.031023 0.062 430 977 317 80.0 0.230 013 78

0.01 0.063 820 114 240 100.0 0.234 752 62
0.0125 0.065 392 702 454 125.0 0.239 411 7
0.015 0.066 798 678 347 150.0 0.243 158 7
0.02 0.069 175 121 874 200.0 0.248 961 2
0.025 0.071 068 428 637
0.03 0.072 579 377 065
0.04 0.074 772 332 699
0.05 0.076 257 724 143
0.06 0.077 373 300 563
0.08 0.079 258 016 467

0.1 0.081 171 192 010
0.125 0.083 684 869 7
0.15 0.086 189 844 8
0.2 0.090 841 835 7
0.25 0.094 919 509 5
0.3 0.098 491 031 2
0.4 0.104 477 783 7
0.5 0.109 361 674 0
0.6 0.113 478 996 6
0.8 0.120 164 833 7
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lying energy levels and discuss some general features of the
spectrum.

Despite a huge number of various analytical and numeri-
cal approaches to the magnetized hydrogen problem, even
for the ground state only several values ofEb reported so far
have precision better than 1026 hartree@33#. Table I lists the
binding energy of the ground state for 1024<g<43103.
The maximal absolute error of each value does not exceed
610212 (61 in the last digits!.

Tables II, III, and IV give the binding energies of the

states evolving from 2s0 , 2p0 , and 2p21 , respectively. The
maximal absolute error of values given in the tables is not
higher than61 in the last digit. The binding energies of
states evolving from 3p0 , 3p21 , 3d21 , and 3d22 are pre-
sented in Tables V–VIII.

Figures 5~a! and 5~b! show the energy levels of the lowest
states withn50 andm from 0 to25 and210, respectively.
It should be realized that these values are valid only in the
infinite nuclear mass approximation, since the effect of the
finite proton mass renders states withmÞ0 unbound if the

TABLE VII. Binding energies of the state 3d21 . The uncer-
tainty of each value is61 in the last digit.

g 3d21 g 3md21

1.031024 0.055 655 465 556 1.0 0.206 567 363 860
1.2531024 0.055 680 414 931 1.25 0.218 706 110 0
1.531024 0.055 705 353 057 1.5 0.228 860 214 8
2.031024 0.055 755 195 559 2.0 0.245 240 759 5
2.531024 0.055 804 993 065 2.5 0.258 180 795 2
3.031024 0.055 854 745 575 3.0 0.268 857 916 7
4.031024 0.055 954 115 618 4.0 0.285 802 855 1
5.031024 0.056 053 305 709 5.0 0.298 946 574 0
6.031024 0.056 152 315 874 6.0 0.309 631 169 2
8.031024 0.056 349 796 563 8.0 0.326 289 158 6

1.031023 0.056 546 558 013 10.0 0.338 956 189 8
1.2531023 0.056 791 499 053 12.5 0.351 325 68
1.531023 0.057 035 317 985 15.0 0.361 165 76
2.031023 0.057 519 594 775 20.0 0.376 119 81
2.531023 0.057 999 401 107 25.0 0.387 172 31
3.031023 0.058 474 753 188 30.0 0.395 812 10
4.031023 0.059 412 176 196 40.0 0.408 676 29
5.031023 0.060 332 058 593 50.0 0.417 972 13
6.031023 0.061 234 642 207 60.0 0.425 109 20
8.031023 0.062 989 081 640 80.0 0.435 517 97

0.01 0.064 678 149 523 100.0 0.442 871 14
0.0125 0.066 702 195 467 125.0 0.449 602 5
0.015 0.068 635 182 797 150.0 0.454 651 1
0.02 0.072 253 547 538 200.0 0.461 821 6
0.025 0.075 581 741 857 250.0 0.466 744 5
0.03 0.078 661 978 338 300.0 0.470 376 2
0.04 0.084 213 203 232 400.0 0.475 440 4
0.05 0.089 120 137 635 500.0 0.478 849 9
0.06 0.093 527 503 781 600.0 0.481 328 1
0.08 0.101 219 398 776 800.0 0.484 727 9

0.1 0.107 812 103 717 1000.0 0.486 977 7
0.125 0.114 953 748 609
0.15 0.121 195 866 515
0.2 0.131 784 980 610
0.25 0.140 614 861 988
0.3 0.148 221 836 724
0.4 0.160 923 222 363
0.5 0.171 342 335 822
0.6 0.180 205 447 533
0.8 0.194 790 092 068

TABLE VIII. Binding energies of the state 3d22 . The uncer-
tainty of each value is61 in the last digit.

g 3d22 g 3d22

1.031024 0.055 705 420 556 1.0 0.353 048 025 149
1.2531024 0.055 742 844 619 1.25 0.387 496 964 9
1.531024 0.055 780 251 808 1.5 0.418 078 990 7
2.031024 0.055 855 015 563 2.0 0.471 171 930 7
2.531024 0.055 929 711 824 2.5 0.516 779 036 9
3.031024 0.056 004 340 593 3.0 0.557 151 664 5
4.031024 0.056 153 395 674 4.0 0.627 009 225 2
5.031024 0.056 302 180 844 5.0 0.686 802 520 6
6.031024 0.056 450 696 155 6.0 0.739 581 567 4
8.031024 0.056 746 917 448 8.0 0.830 597 506 3

1.031023 0.057 042 060 175 10.0 0.908 214 775 5
1.2531023 0.057 409 473 075 12.5 0.992 449 72
1.531023 0.057 775 203 906 15.0 1.066 511 00
2.031023 0.058 501 629 202 20.0 1.193 633 18
2.531023 0.059 221 359 887 25.0 1.301 491 81
3.031023 0.059 934 426 237 30.0 1.396 028 67
4.031023 0.061 340 717 761 40.0 1.557 699 07
5.031023 0.062 720 864 509 50.0 1.694 321 25
6.031023 0.064 075 310 538 60.0 1.813 683 46
8.031023 0.066 709 218 621 80.0 2.017 032 88

0.01 0.069 247 183 403 100.0 2.188 167 24
0.0125 0.072 292 792 761 125.0 2.371 725 64
0.015 0.075 207 490 379 150.0 2.531 391 02
0.02 0.080 685 874 396 200.0 2.802 000 03
0.025 0.085 758 974 923 250.0 3.028 467 34
0.03 0.090 490 563 102 300.0 3.224 790 43
0.04 0.099 124 530 270 400.0 3.556 212 78
0.05 0.106 888 753 731 500.0 3.832 390 06
0.06 0.113 981 234 765 600.0 4.070 994 26
0.08 0.126 654 630 636 800.0 4.472 201 56

0.1 0.137 839 515 462 1000.0 4.805 110 67
0.125 0.150 315 552 326
0.15 0.161 543 491 325
0.2 0.181 320 606 516
0.25 0.198 555 082 470
0.3 0.213 976 238 596
0.4 0.240 982 637 056
0.5 0.264 389 553 046
0.6 0.285 253 164 247
0.8 0.321 640 368 228
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field is sufficiently large@38#. These figures demonstrate that
for large values ofg the energy difference between adjacent
levelsm andm11 decreases as the magnetic quantum num-
berm increases in magnitude.

It is interesting to compare the results for largeumu and
g with the predictions of the adiabatic approximation@23#. In
the adiabatic approximation the lowest energy level of an
atom with quantum numbersn50,m is given by

~Eadiab!n50,m5
1

2
ln2

g

A2umu11
, ~86!

which is about three times larger than real values, and the
energy difference between states withm andm21 is, in the
limit of large negativem,

DEadiab5~Eadiab!n50,m212~Eadiab!n50,m

'
1

2umu11
ln

g

A2umu11
, m→2`. ~87!

Using Eq.~86!, the expression forDEadiabmay be rewritten
as

FIG. 5. Evolution of the lowest energy levels with quantum
numbersn50 and~a! 25<m<0, ~b! 210<m<0.

FIG. 6. Comparison of the distanceDEexact between levels
shown in Fig. 5~b! at g51000 with the adiabatic estimates
DEadiab@Eq. ~ 87!# andDEadiab,corr@Eq. ~ 88!# ~dimensionless units!.

FIG. 7. Dependence of the levels evolving from the field-free
states with principal quantum numbern52 on the magnetic field
g.

FIG. 8. Evolution of the states 3p0 , 3p21 , 3d21 , and 3d22 .
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DEadiab,corr'
A2Eb

2umu11
, m→2`. ~88!

The comparison of the exact energy difference between low-
est levelsDEexact with the predictions of the adiabatic ap-
proximation~87! and~88! is given in Fig. 6. It is interesting

to see that, althoughDEadiab is about three times larger than
the exact valuesDEexact, the corrected estimateDEadiab,corr
agrees with the exact values within 20% and, therefore, rep-
resents a fair approximation toDEexact.

The evolution of levels evolving from the states with
main quantum numbers 2 and 3 is shown in Figs. 7 and 8. It
is interesting to make a comparison of these two groups of

FIG. 9. Behavior of slightly excited levels evolving from field-
free states with principal quantum numbersn52,3.

FIG. 10. Irregular behavior of levels withm50, p511 evolv-
ing from field-free states with 6<n<10.

FIG. 11. First avoided crossings between levels withm50 andp511 evolving from field-free states with principal quantum numbers:
~a! n56 andn57, ~b! n57 andn58, ~c! n58 andn59, ~d! n59 andn510.

54 303EXACT SOLUTION FOR A HYDROGEN ATOM IN . . .



levels. As can be seen from Fig. 9, which shows the curves
simultaneously, for large values ofg the levels form groups
with the samez parity and number of zeros along theu50
axis, but with differentm (2p0 and 3d21 , 2s0 and 3p21).

Application of the obtained solution to the chaotic region
of the spectrum is demonstrated in Figs. 10–12. Figure 10
shows the general picture of levels withm50 andp511
evolving from field-free states with principal quantum num-
bers 6<n<10. Anticrossings appearing due to the existence
of an approximate constant of motion@15–19# are shown in
Figs. 11 and 12. As can be seen in Fig. 11, the width of the
first avoided crossings between levels evolving from field-
free states with differentn decreases exponentially whenn
increases, while widths of subsequent anticrossings do not
exhibit any regular behavior at all, as shown in Fig. 12. This
picture strongly suggests that in the well-mixed regime ap-
proximate symmetry is substantially lowered.

Along with establishing the exact framework for approxi-
mate methods which are being employed for the hydrogen in
magnetic field, the data presented in this section demonstrate
the large capabilities of the obtained exact solution. Of
course, a complete description of the hydrogen spectra re-
quires knowledge not only of several low-lying states but
also of many excited states, wavelengths, and oscillator
strength. Currently we are working on the compiling of ex-
tensive tables of excited states, which will be published in
subsequent papers.

VIII. CONCLUSION

We have obtained the exact representation of the solution
of the Schro¨dinger equation describing the hydrogen atom in
an external uniform magnetic field. The solution is obtained
in the form of a power series in two variables, the radius and
the sine of the polar angle. The boundary condition at infinity
is reduced to the infinite set of zero-dimensional conditions,
and the solution is obtained as the limit of the converging
series of reduced solutions.

Therefore, the solution is rigorously defined as an analyti-
cal function of two variables. Due to the two-dimensionality
of the problem the function is defined as the result of solving
an infinite system of equations, in contrast to the usual one-
dimensional problems of mathematical physics~e.g., the cir-
cular homogeneous vibrating membrane!, where eigenvalues
are defined implicitly via a single equation~in the membrane
example they are zeros of the Bessel functions!. Neverthe-
less, in the strict analogy to the usual special functions of
mathematical physics, the solution can be algebraically com-
puted with any desired precision and with exact control over
the accuracy of obtained results.

Note that well-known analytical functions, like exponen-
tial, hypergeometric functions, etc., are defined as infinite
converging series and are exact because their quantitative
determination is free of any approximations. Similarly, the
solution of the magnetized hydrogen problem is obtained in
the form of infinite power series in two variables and its

FIG. 12. Four avoided crossings in the region 0.0033,g,0.0085, 0.53,Eb,0.67 (m50, p511).

304 54YU. P. KRAVCHENKO, M. A. LIBERMAN, AND B. JOHANSSON



quantitative calculation is free of any approximations inher-
ent to numerical schemes.

It should be specially mentioned that the solution con-
verges perfectly well for all values of magnetic field, from
the zero-field limit to the region of ultrahigh fields
g.1000, and for any excited states, allowing us to obtain
detailed information on the structure of the spectrum in the
region of intermediate fields. Although the present work lists
only several low-lying states for a widely spaced mesh of
g, we are compiling extensive tables of many quantum
states, which are to be published elsewhere.

One should realize that the realistic physical description
of the atom requires incorporation of relativistic effects@33#,
effects of the finite proton mass, which affect transitions be-
tween states with differentm in strong fields and can even
prevent binding for states with nonzerom @38#, effects of
spin-orbit coupling, and so on. These effects can be obtained
as corrections to the exact solution.

The problem of the hydrogen atom in an external mag-
netic field has important applications in such different re-

search areas as atomic spectroscopy, solid-state physics, and
astrophysics. The availability of the exact solution of the
problem opens new possibilities for the further development
of the theory of matter in ultrahigh magnetic fields. In as-
tronomy, the complete knowledge of the spectrum of the
atomic hydrogen in magnetic field, which is now limited
only to a small number of low-lying states@8#, will help in
accurate measurements of stellar magnetic fields. The oppor-
tunity to calculate the excited hydrogen energy levels in the
chaotic regime is of substantial importance to the investiga-
tions of quantum chaos@18#. In addition, the technique pre-
sented in the present work has a significant methodological
interest and can provide a valuable tool for the solution of
other mathematical problems.
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