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Bound electronic states in a statically screened electric-dipole potential

J. M. Ugalde and C. Sarasola
Kimika Fakultatea, Euskal Herriko Unibertsitatea, P.K. 1072, 20080 Donostia, Euskadi, Spain
(Received 30 May 1996

The problem of the minimum value of the dipole moment needed to assure the existence of a bound
electronic state has been addressed for the electrostatically screened Coulomb interaction of the Yukawa type.
Our variational calculation demonstrates that the value of the minimum dipole moment increases as the
screening parameter increases. More interestingly, we have found that the dipole’s length has a remarkable
effect on the minimum dipole moment; a feature not found for the unscreened case. This effect yields a rapid
increase of the value of the minimum dipole moment, particularly for large values of the screening parameter,
with the increasing dipole moment’s lengfl1050-294{®6)10610-7

PACS numbds): 31.15.Pf

[. INTRODUCTION The Fourier components of the screened and the unscreened
potentials satisfy15]
The existence of bound states for an electron moving in
the field of a dipole has importance in solid state physics and _ Do(k)
in the theor i @ (k)= ®
y of electron scattering from polar molecules

[1-4], and has recently generated renewed interest, due to its
use in a technique that permits nondestructive selection oheree(k) is the momentum-dependent dielectric constant,
mass and geometrical configurations of both neutral andvhich within the Thomas-Fermi approximation can be ex-
charged polar weakly bound complexgs]. It has been pressed as

shown, following various method$§—12], that the minimum )
value of the dipole momenD),,,, required for electronic e(k)=1+ — (4)
binding is D ;;;,=0.6393 a.u=1.62D. It has also been de- k%’

duced[7,10,11 that the value ofD,,, is independent of ) . )

whether the dipole is a finite or a point dipole, that is, it is\Where A is the screening parameter and is related to
independent of the dipole size. Fox and Turfis], using a  D(€r), the density of states for a free electron gas,
variational treatment, obtain an upper bound, namely,
34/3/8 a.u., to theD,;, value. In this work we investigate
how th_|s minimum value of the d!pole moment, required for Using Eqs.(2)—(4) we get for the screened dipole potential
the existence of bound electronic states, is affected by thg,, expression

electrostatical screening of the Coulomb potential. The

weakly screened Coulomb interaction of the Yukawa type is q A _

considered, and the existence of a bound electronic state as a (k)= W[ef'k"*—ef'k"*]- (6)
function of the screening intensity studied.

N2=4me’D(ep). (5)

Then in the position space

IIl. METHOD 4mq

(2m)*

1 . .
Pm= dkzle el ], (7)

A. Screened electric-dipole potential
We consider two point charges and —q located atr ;.
andr _, respectively, from the origin. The Poisson equation
for the unscreened dipole potenti(r) is [14]

which as a result

e—)\\r—rJr\ e—)\\r—r,\

®

) O(r)=q|+— T :

V2hy(r)=—4mq[d(r—r)—8(r—r,)], (1) lr=ri | Jr—r_|
For the point-dipole case, where the distance between the

which, using the Fourier representation to exprdsgr), two charges|r, —r_|=2a is very small with respect to

S(r—r,), and8(r—r,), can be written as r=|r|, we can approximate
L [r—=r,|=r—aco¥ 9

(ZT)gf de2(1>o(k)e”<'r

[r—r_|=r+acos, (10

_ (—247:;2J’ dk[e”"(””)—e”"“’r—)] @) ;/;l]genree is the angle between the dipole direction an@nd
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®(r)=q (11
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(M)

= t+1+8C) 20

with (V) and(T) being the mean values of the potential and

If we now expand the exponentials inside the brackets to firskinetic energies, respectively, of the Hamiltonian operator

order ina, we get

a
x| 2-co¥9+2Nacosd
r

e(r)=q 2

r
cog6

1—

D co¥
~—z—e M(1+r), (12
where D=2qa is the dipole moment. The effect of the
screening on the point-dipole potential is therefore to intro
duce a multiplicative factor o *"(1+\r) in its potential.

B. Variational calculation for bound states
in the screened dipole

H=T+V. The functional form of T) is the same as the one
given by Fox and Turnefl3], as the mean value of the
kinetic energy is only wave function dependent, namely,

1

=L payu LA
8

INECI9N

(21)

wherelI'(n/t) is the gamma function. So, we have to calcu-
late the mean value of the potential enekgy) of the elec-
tron in the field of the screened electric-dipalg(r) (all
quantities are given in atomic units unless the contrary is
said

e—)\\r—r,\ e—)\lr—r+|

V(r)=-o(r)=q

} (22)

[r=r [ Tr=r.]

For simplicity we take the dipole centered at the origin and

To investigate the effect that the screening of the dipolealong thez axis and take . =a andr_= —a; then
potential has on the minimun dipole moment necessary to

assure the existence of a bound state, we carry out a vari
tional calculation using the Fox and Turd3] trail wave-
function,

W(r,0,¢)=9(r)Y(6,¢), (13

with
g(r)=ne " (14)

and
Y(6,)=CoYool 6, )+ C1Y1o( 6,b) (15

being the normalized radial and angular functions, respec-

tively; therefore,

t(2a)3/1 1/2
”:[ r'(3h) } (19
and
|Col?+|Cyl?=1. (17

The functionsY|,(6,¢) are the orthogonal spherical har-

monics anda, t, Cy, andC,; are parameters. A sufficient

condition[13] for the existence of a bound state of the elec-
tron is that(H ), be negative or equivalently

v>2ul(t+1)(t+9)]Y2 (18)
where
—(V)
e a-cy” e
and

a- ef)\\rJraJ e77\|r7a|

V(r)=q (23

Ir+a B [r—a

We expande M*a/|r+a] ande M""¥/|r—a| in terms of
the spherical Bessel function$6]

efMHa\ ®
Trva = M, @ DI ORI ) Pi(— cosd),
(249
—\|r—a o
e —)\Z,O (21+1)j(iAr ) hi(IAr =) P (cosh),

(29

wherej (x) are the spherical Bessel functions of first kind,
hll(x) are the spherical Bessel functions of third kind,
P/(x) are the Legendre polynomials, amd (r-) desig-
nates the smalleflargen of the two moduli ofr anda.

Taking into account the symmetry properties of the Leg-
endre polynomials, the potential energy is written as

V(r,6,a,\)=2g\ >, (21+1)j,(ixr)hi(ixr-)P(cosd)
I=o0dd
(26)
and then the mean value of the potential energy is
(V)=In? [ dr &2 |Cof2P3(cosn) + 3]G, P cos)
+2\/3RECoC¥)Py(cos)Py1(cosh)]

X

2q)\|2dd(2l+1)j|(i)\r<)h|1(i7\r>)P,(cos9) :

(27)
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FIG. 1. D)(t,) surface, in a.u., for values=0.6 a.u"! and

J. M. UGALDE AND C. SARASOLA

54
where the orthonormal spherical harmonics in the wave
function have been expressed in terms of the Legendre poly-
nomials. The orthonormal properties of the Legendre poly-
nomials make zero the contribution of all the terms in the
summation ovet except the one for=1. Therefore, after
angular integration, the mean value\bfreduces to

(V) =43 R CoCY) | Tr7e 7o
0

X j1(INr2)hI(inr2)dr. (28
Both C, andC; can be taken as real without loss of gener-
ality; then using the normalization condition of the angular
part of the wave function, that i€3+ C%=1, and using Eq.
(16) for the value of the normalization of the radial part, we
get

oo

t(2a)* 2 2art

ci1-che|

Xj1(iNr2)hI(inr2)dr; (29)

hence, from Eq(19)

/A
Cy(1-ChH*
t(2 M o
=—4\/§q)\;(%/)t) . r2e2erj (ixr2)hi(inr.)dr.

(30

Taking into account the definition of the spherical Bessel
functions, the product

IHOYSIHONS!

1

(31

|

(32

can be written as

e M<yeh<
Ar_

o

()\r>)2+)\r

e Mo ghrc
()\I’<)2

jl(i)\r<)hi(i7\r>): 7

X e”><
and the integral in Eq(30) becomes

o0
25— 2art;

fre j
0

1(iNro)hI(iNro)dr

-1
“onee

1 1

—\a + =
(Aa)?  \a

a
_ o _ _
Xf dre 2ar[e )\r_e)\r+(e )\r_i_e}\r)]
0

—Na__ pha e—)\a_l_e)\a

+
Aa

e €

Tz

a=1 a.u. of the screening parameter and dipole length, respec-

tively. (b) and (c) show cuts to the surface passing through the
minimum, for valuet=0.93 anda=0.31, respectively.

XJ dre=2er'e A (14 \r). (33
a
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FIG. 2. Minimum ofDS(t,a), in a.u., as a function of the screening paramgten a.u. %, for the selected dipole length shown in Table
I. Each curve corresponds to a differenvalue, starting aa=0.01 a.u., from the bottom, and increasing steadily wa#il10.0 a.u., at the
top of the graph.

Making use of expression®1), (30), and(33), the con- e \a
dition for the existence of a bound electronic state in theV= \a
screened dipole fielfEq. (18)] can be written as

—+
Aa 1

a
_ t _ _
xf dre 2@ e M—eM+\r(e M+e)]
0

\/§qt(2a)3”[ Aa( 1 1
——— = J €

(31 a2 ra

eﬂ\a_e)\a ef)\a_i_e)\a 0 .
+ —2ar q—\r + .
( na)? a L dre e *M(1+NAr)

a
><J dre 2eTe M —eM 4 \r(e M +eM)] (36)
0

ForA—0 Eq.(35) reduces to

e—)\a_e)\a e—}\a+ e)\a
J’_
( (\a)? A\a

V3 (1
X | dre 2 M(1+1r) ?F(?[(t+1)(t+9)]1’2
fa 2qa:D> 1 (a o '
t(2a)1”(§fodre2“r[r3+f drez‘”t)
>1(2a)2/‘w[(t+1)(t+9)]1/2 (34) 37
8 I'(3%) ’

This expression is in agreement with the result obtained by
Fox and Turnef13] for the unscreened potential case.

For the point dipole case, that is, in the linait-0, the
condition for the existence of a bound electron state for the

Consequently, from this expression one can easily obtain

3 /1 screened potential is
\/?—F(?)[(t+l)(t+9)]l’2
2ga=D"> 2o , (35 B 1
“ona W ?r(? [(t+1)(t+9)]¥2

2qa=D*>

(39

t(2a)1’tf dre 2e'e (14 \r)
where 0
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TABLE I. Values of D§(t,a)mn (@.u), t, and & for different values of the screening parameter
(a.u.”%) and the dipole lengtl (a.u.

Dé(t:a)min t @ A Dg(tva)min t @ A
a=0.01 a=2.0
0.91 0.39 268 10 6.43 1.19 0.15 1.0
0.90 0.37 259 038 5.03 1.14 0.15 0.8
0.88 0.35 250 0.6 3.83 1.07 0.15 0.6
0.86 0.33 239 04 2.80 0.99 0.16 0.4
0.83 0.29 229 0.2 191 0.85 0.17 0.2
0.80 0.26 224 01 1.48 0.72 0.19 0.1
a=0.1 a=3.0
1.24 0.62 1.35 1.0 10.91 1.29 0.08 1.0
1.19 0.59 129 038 8.05 1.24 0.09 0.8
1.13 0.56 123 06 5.70 1.17 0.09 0.6
1.06 0.51 117 04 3.83 1.09 0.10 0.4
0.97 0.44 111 0.2 2.34 0.93 0.11 0.2
0.91 0.39 1.09 0.1 1.70 0.79 0.13 0.1
a=0.5 a=6.0
2.12 0.89 0.57 1.0 33.91 1.45 0.02 1.0
191 0.85 055 0.8 2291 1.40 0.03 0.8
1.70 0.79 053 0.6 14.33 1.33 0.03 0.6
1.48 0.72 051 04 8.05 1.24 0.04 0.4
1.24 0.62 050 0.2 3.83 1.08 0.05 0.2
1.09 0.54 051 01 2.34 0.93 0.06 0.1
a=1.0 a=10.0
3.29 1.04 0.32 1.0 88.28 1.54 0.009 1.0
2.80 0.99 0.31 0.8 57.68 1.50 0.010 0.8
2.34 0.93 031 0.6 33.91 1.45 0.012 0.6
191 0.85 030 04 16.92 1.36 0.015 04
1.48 0.72 031 0.2 6.43 1.20 0.021 0.2
1.24 0.62 032 0.1 3.29 1.04 0.029 0.1
1. DISCUSSION t=0.93 anda=0.31, as it can be seen better in Figg)l
and Xc). The value of the minimum 9} ,,,=2.34 a.u.
For the unscreened case, letting the parametspproach In Fig. 2 we show the minimum of the surfaces

zero, the smallest value for the right-hand side of &3) is Dg(t,a) for various selected choices of, and a. These
obtained fort=0 and is2\3 a.u., which allows Fox and vaIuesDS(t,a)min, t, @, A, anda are shown in Table I. As
Turner[13] to conclude that a dipole moment as small asit can be seen, whek approaches zero, the value B,
1.6 gives a bound electronic state for the unscreened didecreases and tends to a constant independent of the distance
pole. For the screened case, however, the paramatan no  between charges, and that is close to the value/3/8 a.u.
longer tend to zero because, in this case, the right-hand sidetained by Fox and Turngt3] for the unscreened dipole. It
of Eq. (35) goes to infinity as the two integrals in the de- is also seen that for small values of the dipole length
nominator converge to finite numbers and are both mu|t|-D0mln is less sensitive to the screening paramatéhan for
plied by a*. larger dipole lengths.

The analytlcal calculation of the values of the parameters Notice that for the unscreened case, the minimum value of
« andt that minimize the right-hand side of E@®5), that we the dipole moment needed to assure the existence of a
will call for simplicity D}(t,e,a,\), is complicated and we bounded electronic state is the same for both the finite dipole
have proceeded to do it numerically. For fixed valuesof and the point dipole. In other words, it is independent of the

. A dipole length. However, for the screened case, the behavior
andx we look for the minimum of the surfad@o(t, ) that of the dipole is strongly dependent on the dipole’s length.

we Qenote a®g(t, @) min- According to our results, and for the variational wave func-
Figure 1 shows theDg(t,a) surface for values tion used, for the point dipole the value of the dipole moment
A=0.6 a.u. ! anda=1a.u. of the screening parameter andneeded to assure the existence of a bound electronic state is
dipole length, respectively. For small and large values obnly weakly dependent on the screening parametétow-
botht and «, DS increases and the minimum is obtained for ever, for the finite dipole, this minimun value of the dipole
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moment becomes more sensitive to the screening as the dhe finite dipole models lead to a minimum dipole moment of
pole length increases. This different behavior between th&.62 to obtain at least one bound electronic state. How-
point dipole and the finite dipole where the screening isever, we have predicted that for a given dipole moment
present can be explained taking into account that the effe@da, the existence of at least one bound electronic state, for
of the screening is as less important as smaller isatlre  the screened Coulomb potential, depends on both the screen-
relation. Note that whea/r is small the electron “sees” the ing parameter and the dipole length. For a given value of the
two charges of the dipole mutually neutralized, and thescreening parameter, it is observed that the minimum value
screening does not have much effect, while for large valuesf the dipole increases as its length increases.

of a/r the electron “sees” the two charges clearly differen-  This behavior of the dipolar molecules, with respect to
tiated, and in this latter case the effect of the screening is feltheir binding capability to external electrons, could be used
by the electron. In other words, it is the intercharge region oto further separate different geometrical isomers of weakly
the dipole that is mainly responsible for the sensitivity to thebound intermolecular complexd§] which have the same
screening which increases with the length of the dipole. Irdipole moments and different dipole lengths, by carrying out
the case of the point dipole, for which the intercharge regiorthe experiment in a screening medium, instead of in a

is negleted, the screening effect is much smaller. vacuum. Weakly coupled plasma enviroments provide the
most obvious examples for such media, since their effects on
IV. SUMMARY molecules can be adequately represented by a Yukawa-type

i screened Coulomb potentig7].
Our calculation has demostrated that the value of the

minimum dipole moment to assure the existence o_f at least ACKNOWLEDGMENTS

one bound electronic state increases as the screaning param-
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