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The problem of the minimum value of the dipole moment needed to assure the existence of a bound
electronic state has been addressed for the electrostatically screened Coulomb interaction of the Yukawa type.
Our variational calculation demonstrates that the value of the minimum dipole moment increases as the
screening parameter increases. More interestingly, we have found that the dipole’s length has a remarkable
effect on the minimum dipole moment; a feature not found for the unscreened case. This effect yields a rapid
increase of the value of the minimum dipole moment, particularly for large values of the screening parameter,
with the increasing dipole moment’s length.@S1050-2947~96!10610-7#

PACS number~s!: 31.15.Pf

I. INTRODUCTION

The existence of bound states for an electron moving in
the field of a dipole has importance in solid state physics and
in the theory of electron scattering from polar molecules
@1–4#, and has recently generated renewed interest, due to its
use in a technique that permits nondestructive selection of
mass and geometrical configurations of both neutral and
charged polar weakly bound complexes@5#. It has been
shown, following various methods@6–12#, that the minimum
value of the dipole moment,Dmin , required for electronic
binding isDmin50.6393 a.u.51.625D. It has also been de-
duced @7,10,11# that the value ofDmin is independent of
whether the dipole is a finite or a point dipole, that is, it is
independent of the dipole size. Fox and Turner@13#, using a
variational treatment, obtain an upper bound, namely,
3A3/8 a.u., to theDmin value. In this work we investigate
how this minimum value of the dipole moment, required for
the existence of bound electronic states, is affected by the
electrostatical screening of the Coulomb potential. The
weakly screened Coulomb interaction of the Yukawa type is
considered, and the existence of a bound electronic state as a
function of the screening intensity studied.

II. METHOD

A. Screened electric-dipole potential

We consider two point chargesq and2q located atr1

and r2 , respectively, from the origin. The Poisson equation
for the unscreened dipole potentialF0(r ) is @14#

¹2F0~r !524pq@d~r2r1!2d~r2r1!#, ~1!

which, using the Fourier representation to expressF0(r ),
d(r2r1), andd(r2r1), can be written as

1

~2p!3
E dk¹2F0~k!eik•r

5
24pq

~2p!3
E dk@eik•~r2r1!2eik•~r2r2!# ~2!

The Fourier components of the screened and the unscreened
potentials satisfy@15#

F~k!5
F0~k!

e~k!
, ~3!

wheree(k) is the momentum-dependent dielectric constant,
which within the Thomas-Fermi approximation can be ex-
pressed as

e~k!511
l2

k2
, ~4!

where l is the screening parameter and is related to
D(eF), the density of states for a free electron gas,

l254pe2D~eF!. ~5!

Using Eqs.~2!–~4! we get for the screened dipole potential
the expression

F~k!5
4pq

k21l2 @e2 ik•r12e2 ik•r2#. ~6!

Then in the position space

F~r !5
4pq

~2p!3
E dk

1

k21l2 @eik•~r2r1!2eik•~r2r2!#, ~7!

which as a result

F~r !5qFe2lur2r1u

ur2r1u
2
e2lur2r2u

ur2r2u G . ~8!

For the point-dipole case, where the distance between the
two chargesur12r2u52a is very small with respect to
r5ur u, we can approximate

ur2r1u5r2a cosu ~9!

ur2r2u5r1a cosu, ~10!

whereu is the angle between the dipole direction andr , and
then
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F~r !5q
e2lr

r F ela cosu

12
a

r
cosu

2
e2la cosu

11
a

r
cosuG . ~11!

If we now expand the exponentials inside the brackets to first
order ina, we get

F~r !5q
e2lr

r F 2ar cosu12la cosu

12S ar D
2

cos2u
G

'
D cosu

r 2
e2lr~11lr !, ~12!

where D52qa is the dipole moment. The effect of the
screening on the point-dipole potential is therefore to intro-
duce a multiplicative factor ofe2lr(11lr ) in its potential.

B. Variational calculation for bound states
in the screened dipole

To investigate the effect that the screening of the dipole
potential has on the minimun dipole moment necessary to
assure the existence of a bound state, we carry out a varia-
tional calculation using the Fox and Turner@13# trail wave-
function,

C~r ,u,f!5g~r !Y~u,f!, ~13!

with

g~r !5ne2ar t ~14!

and

Y~u,f!5C0Y00~u,f!1C1Y10~u,f! ~15!

being the normalized radial and angular functions, respec-
tively; therefore,

n5F t~2a!3/t

G~3/t ! G1/2 ~16!

and

uC0u21uC1u251. ~17!

The functionsYlm(u,f) are the orthogonal spherical har-
monics anda, t, C0, andC1 are parameters. A sufficient
condition@13# for the existence of a bound state of the elec-
tron is that^H&min be negative or equivalently

n.2m@~ t11!~ t19!#1/2, ~18!

where

n5
2^V&

C1~12C1
2!1/2

~19!

and

m5
^T&

~ t1118C1
2!

~20!

with ^V& and^T& being the mean values of the potential and
kinetic energies, respectively, of the Hamiltonian operator
Ĥ5T̂1V̂. The functional form of̂ T& is the same as the one
given by Fox and Turner@13#, as the mean value of the
kinetic energy is only wave function dependent, namely,

m5
1

8
~2a!2/t

G~1/t !

G~3/t !
, ~21!

whereG(n/t) is the gamma function. So, we have to calcu-
late the mean value of the potential energyV(r ) of the elec-
tron in the field of the screened electric-dipoleF(r ) ~all
quantities are given in atomic units unless the contrary is
said!

V~r !52F~r !5qFe2lur2r2u

ur2r2u
2
e2lur2r1u

ur2r1u G . ~22!

For simplicity we take the dipole centered at the origin and
along thez axis and taker15a and r252a; then

V~r !5qFe2lur1au

ur1au
2
e2lur2au

ur2au G . ~23!

We expande2lur1au/ur1au and e2lur2au/ur2au in terms of
the spherical Bessel functions@16#

e2lur1au

ur1au
52l(

l50

`

~2l11! j l~ ilr,!hl
1~ ilr.!Pl~2cosu!,

~24!

e2lur2au

ur2au
52l(

l50

`

~2l11! j l~ ilr,!hl
1~ ilr.!Pl~cosu!,

~25!

where j l(x) are the spherical Bessel functions of first kind,
hl
1(x) are the spherical Bessel functions of third kind,
Pl(x) are the Legendre polynomials, andr, (r.) desig-
nates the smaller~larger! of the two moduli ofr anda.

Taking into account the symmetry properties of the Leg-
endre polynomials, the potential energy is written as

V~r ,u,a,l!52ql (
l5odd

~2l11! j l~ ilr,!hl
1~ ilr.!Pl~cosu!

~26!

and then the mean value of the potential energy is

^V&5unu2E dr e22ar t@ uC0u2P0
2~cosu!13uC1u2P1

2~cosu!

12A3 Re~C0C1* !P0~cosu!P1~cosu!#

3F2ql (
l5odd

~2l11! j l~ ilr,!hl
1~ ilr.!Pl~cosu!G ,

~27!
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where the orthonormal spherical harmonics in the wave
function have been expressed in terms of the Legendre poly-
nomials. The orthonormal properties of the Legendre poly-
nomials make zero the contribution of all the terms in the
summation overl except the one forl51. Therefore, after
angular integration, the mean value ofV reduces to

^V&54A3qlunu2Re~C0C1* !E
0

`

r 2e22ar t

3 j 1~ ilr,!h1
1~ ilr.!dr. ~28!

Both C0 andC1 can be taken as real without loss of gener-
ality; then using the normalization condition of the angular
part of the wave function, that is,C0

21C1
251, and using Eq.

~16! for the value of the normalization of the radial part, we
get

^V&54A3ql
t~2a!3/t

G~3/t !
C1~12C1

2!1/2E
0

`

r 2e22ar t

3 j 1~ ilr,!h1
1~ ilr.!dr; ~29!

hence, from Eq.~19!

n5
2^V&

C1~12C1
2!1/2

524A3ql
t~2a!3/t

G~3/t ! E0
`

r 2e22ar t j 1~ ilr,!h1
1~ ilr.!dr.

~30!

Taking into account the definition of the spherical Bessel
functions, the product

j 1~ ilr,!h1
1~ ilr.! ~31!

can be written as

j 1~ ilr,!h1
1~ ilr.!5

21

2 S e2lr,2elr,

~lr,!2
1
e2lr,1elr,

lr,
D

3e2lr.S 1

~lr.!2
1

1

lr.
D ~32!

and the integral in Eq.~30! becomes

E
0

`

r 2e22ar t j 1~ ilr,!h1
1~ ilr.!dr

5
21

2l2e
2laS 1

~la!2
1

1

laD
3E

0

a

dre22ar t@e2lr2elr1~e2lr1elr !#

1S e2la2ela

~la!2
1
e2la1ela

la D
3E

a

`

dre22ar te2lr~11lr !. ~33!

FIG. 1. D0
l(t,a) surface, in a.u., for valuesl50.6 a.u.21 and

a51 a.u. of the screening parameter and dipole length, respec-
tively. ~b! and ~c! show cuts to the surface passing through the
minimum, for valuest50.93 anda50.31, respectively.

2870 54J. M. UGALDE AND C. SARASOLA



Making use of expressions~21!, ~30!, and ~33!, the con-
dition for the existence of a bound electronic state in the
screened dipole field@Eq. ~18!# can be written as

A3qt~2a!3/t

lG~3/t ! H e2laS 1

~la!2
1

1

laD
3E

0

a

dr e22ar t@e2lr2elr1lr ~e2lr1elr !#

1S e2la2ela

~la!2
1
e2la1ela

la D
3E

a

`

dr e22ar te2lr~11lr !J
.
1

8
~2a!2/t

G~1/t !

G~3/t !
@~ t11!~ t19!#1/2. ~34!

Consequently, from this expression one can easily obtain

2qa5Dl.

A3
8

GS 1t D @~ t11!~ t19!#1/2

3t~2a!1/t

2la
W

, ~35!

where

W5
e2la

la S 1

la
11D

3E
0

a

dr e22ar t@e2lr2elr1lr ~e2lr1elr !#

1S e2la2ela

~la!2
1
e2la1ela

la D E
a

`

dr e22ar te2lr~11lr !.

~36!

For l→0 Eq. ~35! reduces to

2qa5D.

A3
8

GS 1t D @~ t11!~ t19!#1/2

t~2a!1/tS 1a3E0adr e22ar tr 31E
a

`

dr e22ar tD .
~37!

This expression is in agreement with the result obtained by
Fox and Turner@13# for the unscreened potential case.

For the point dipole case, that is, in the limita→0, the
condition for the existence of a bound electron state for the
screened potential is

2qa5Dl.

A3
8

GS 1t D @~ t11!~ t19!#1/2

t~2a!1/tE
0

`

dr e22ar te2lr~11lr !

~38!

FIG. 2. Minimum ofD0
l(t,a), in a.u., as a function of the screening parameterl, in a.u.21, for the selected dipole length shown in Table

I. Each curve corresponds to a differenta value, starting ata50.01 a.u., from the bottom, and increasing steadily untila510.0 a.u., at the
top of the graph.
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III. DISCUSSION

For the unscreened case, letting the parametera approach
zero, the smallest value for the right-hand side of Eq.~37! is
obtained fort50 and is 3

8A3 a.u., which allows Fox and
Turner @13# to conclude that a dipole moment as small as
1.65D gives a bound electronic state for the unscreened di-
pole. For the screened case, however, the parametera can no
longer tend to zero because, in this case, the right-hand side
of Eq. ~35! goes to infinity as the two integrals in the de-
nominator converge to finite numbers and are both multi-
plied bya1/t.

The analytical calculation of the values of the parameters
a andt that minimize the right-hand side of Eq.~35!, that we
will call for simplicity D0

l(t,a,a,l), is complicated and we
have proceeded to do it numerically. For fixed values ofa
andl we look for the minimum of the surfaceD0

l(t,a) that
we denote asD0

l(t,a)min .
Figure 1 shows theD0

l(t,a) surface for values
l50.6 a.u.21 anda51a.u. of the screening parameter and
dipole length, respectively. For small and large values of
both t anda, D0

l increases and the minimum is obtained for

t50.93 anda50.31, as it can be seen better in Figs. 1~b!
and 1~c!. The value of the minimum isD0 min

l 52.34 a.u.
In Fig. 2 we show the minimum of the surfaces

D0
l(t,a) for various selected choices ofl, and a. These

valuesD0
l(t,a)min , t, a, l, anda are shown in Table I. As

it can be seen, whenl approaches zero, the value ofD0 min
l

decreases and tends to a constant independent of the distance
between chargesa, and that is close to the value 3A3/8 a.u.
obtained by Fox and Turner@13# for the unscreened dipole. It
is also seen that for small values of the dipole lengtha,
D0 min

l is less sensitive to the screening parameterl than for
larger dipole lengths.

Notice that for the unscreened case, the minimum value of
the dipole moment needed to assure the existence of a
bounded electronic state is the same for both the finite dipole
and the point dipole. In other words, it is independent of the
dipole length. However, for the screened case, the behavior
of the dipole is strongly dependent on the dipole’s length.
According to our results, and for the variational wave func-
tion used, for the point dipole the value of the dipole moment
needed to assure the existence of a bound electronic state is
only weakly dependent on the screening parameterl. How-
ever, for the finite dipole, this minimun value of the dipole

TABLE I. Values of D0
l(t,a)min ~a.u.!, t, and a for different values of the screening parameterl

~a.u.21) and the dipole lengtha ~a.u!.

D0
l(t,a)min t a l D0

l(t,a)min t a l

a50.01 a52.0
0.91 0.39 2.68 1.0 6.43 1.19 0.15 1.0
0.90 0.37 2.59 0.8 5.03 1.14 0.15 0.8
0.88 0.35 2.50 0.6 3.83 1.07 0.15 0.6
0.86 0.33 2.39 0.4 2.80 0.99 0.16 0.4
0.83 0.29 2.29 0.2 1.91 0.85 0.17 0.2
0.80 0.26 2.24 0.1 1.48 0.72 0.19 0.1

a50.1 a53.0
1.24 0.62 1.35 1.0 10.91 1.29 0.08 1.0
1.19 0.59 1.29 0.8 8.05 1.24 0.09 0.8
1.13 0.56 1.23 0.6 5.70 1.17 0.09 0.6
1.06 0.51 1.17 0.4 3.83 1.09 0.10 0.4
0.97 0.44 1.11 0.2 2.34 0.93 0.11 0.2
0.91 0.39 1.09 0.1 1.70 0.79 0.13 0.1

a50.5 a56.0
2.12 0.89 0.57 1.0 33.91 1.45 0.02 1.0
1.91 0.85 0.55 0.8 22.91 1.40 0.03 0.8
1.70 0.79 0.53 0.6 14.33 1.33 0.03 0.6
1.48 0.72 0.51 0.4 8.05 1.24 0.04 0.4
1.24 0.62 0.50 0.2 3.83 1.08 0.05 0.2
1.09 0.54 0.51 0.1 2.34 0.93 0.06 0.1

a51.0 a510.0
3.29 1.04 0.32 1.0 88.28 1.54 0.009 1.0
2.80 0.99 0.31 0.8 57.68 1.50 0.010 0.8
2.34 0.93 0.31 0.6 33.91 1.45 0.012 0.6
1.91 0.85 0.30 0.4 16.92 1.36 0.015 0.4
1.48 0.72 0.31 0.2 6.43 1.20 0.021 0.2
1.24 0.62 0.32 0.1 3.29 1.04 0.029 0.1
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moment becomes more sensitive to the screening as the di-
pole length increases. This different behavior between the
point dipole and the finite dipole where the screening is
present can be explained taking into account that the effect
of the screening is as less important as smaller is thea/r
relation. Note that whena/r is small the electron ‘‘sees’’ the
two charges of the dipole mutually neutralized, and the
screening does not have much effect, while for large values
of a/r the electron ‘‘sees’’ the two charges clearly differen-
tiated, and in this latter case the effect of the screening is felt
by the electron. In other words, it is the intercharge region of
the dipole that is mainly responsible for the sensitivity to the
screening which increases with the length of the dipole. In
the case of the point dipole, for which the intercharge region
is negleted, the screening effect is much smaller.

IV. SUMMARY

Our calculation has demostrated that the value of the
minimum dipole moment to assure the existence of at least
one bound electronic state increases as the screaning param-
eter increases. More interestingly, our calculations predict a
different behavior of the point dipole or the finite dipole
models. This feature is not encountered for the unscreened
Coulomb potential case, for which both the point dipole and

the finite dipole models lead to a minimum dipole moment of
1.625D to obtain at least one bound electronic state. How-
ever, we have predicted that for a given dipole moment
2da, the existence of at least one bound electronic state, for
the screened Coulomb potential, depends on both the screen-
ing parameter and the dipole length. For a given value of the
screening parameter, it is observed that the minimum value
of the dipole increases as its length increases.

This behavior of the dipolar molecules, with respect to
their binding capability to external electrons, could be used
to further separate different geometrical isomers of weakly
bound intermolecular complexes@5# which have the same
dipole moments and different dipole lengths, by carrying out
the experiment in a screening medium, instead of in a
vacuum. Weakly coupled plasma enviroments provide the
most obvious examples for such media, since their effects on
molecules can be adequately represented by a Yukawa-type
screened Coulomb potential@17#.

ACKNOWLEDGMENTS

We thank Professor P.M. Echenique for many helpful
comments. Funding from the University of the Basque Coun-
try ~Euskal Herriko Unibertsitatea!, Grant No. 203.215-
EB247/95, is gratefully acknowledged.

@1# R.F. Wallis, R. Herman, and H.W. Milnes, J. Molec. Spec-
trosc.4, 51 ~1960!.

@2# G.S. Hurst, L.B. O’Kelly, and J.A. Stockdale, Nature195, 66
~1962!; G.S. Hurst, J.A. Stockdale, and L.B. O’Kelly, J. Chem.
Phys.38, 2572~1963!.

@3# S. Altshuler, Phys. Rev.107, 114 ~1957!.
@4# M.H. Mittleman and R.E. von Holdt, Phys. Rev.140, A726

~1965!.
@5# C. Desfrac¸ois, H. Abdoul-Carime, N. Khelifa, and J.P. Scher-

mann, Phys. Rev. Lett.73, 2436 ~1994!; C. Desfrac¸ois, H.
Abdoul-Carime, C.P. Shulz, and J.P. Schermann, Science269,
1707 ~1995!.

@6# M.H. Mittleman and V.P. Myerscough, Phys. Lett.23, 545
~1966!.

@7# O.H. Crawford and A. Dalgarno, Chem. Phys. Lett.1, 23
~1967!.

@8# J.E. Turner and K. Fox, Phys. Lett.23, 547 ~1966!.
@9# C.A. Coulson and Mary Walmsley, Proc. Phys. Soc.91, 31

~1967!.
@10# O.H. Crawford, Proc. Phys. Soc.91, 279 ~1967!.
@11# J.-M. Lévy-Leblond, Phys. Rev.153, 1 ~1967!.
@12# W. Byers Brown and R.E. Roberts, J. Chem. Phys.46, 2006

~1967!.
@13# K.Fox and J.E. Turner, J. Chem. Phys.45, 1142~1966!.
@14# P.M. Echenique, F. Flores, and R.H. Ritchie, Solid State Phys.

43, 229 ~1990!.
@15# C. Kittel, Introduction to Solid State Physics, 5th ed. ~John

Wiley & Sons, New York, 1976!, p. 288.
@16# A. Galindo and P. Pascual,Quantum Mechanics I~Springer-

Verlag, Heidelberg, 1990!, Appendix A.
@17# Y.-D. Jung and I.-D. Cho, Phys. Rev. E52, 5333

~1995!.

54 2873BOUND ELECTRONIC STATES IN A STATICALLY . . .


